THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM FOR WEAKLY DEPENDENT RANDOM VARIABLES

By

Ryozo Yokoyama

1. Introduction.

Let \((\Omega, \mathcal{F}, P)\) be a probability space. For any two \(\sigma\)-fields \(\mathcal{A}\) and \(\mathcal{B}\) define the mixing coefficients \(\phi\) and \(\alpha\) and the maximal correlation coefficient \(\rho\) by

\[
\phi(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |P(B \mid A) - P(B)| \quad A \in \mathcal{A}, B \in \mathcal{B}, P(A) > 0;
\]

\[
\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |P(A \cap B) - P(A)P(B)| \quad A \in \mathcal{A}, B \in \mathcal{B};
\]

\[
\rho(\mathcal{A}, \mathcal{B}) = \sup_{\xi \in L^p(\mathcal{A}), \eta \in L^q(\mathcal{B})} |\text{Corr}(\xi, \eta)|.
\]

Let \(\{X_j: -\infty < j < \infty\}\) be a strictly stationary sequence of random variables on \((\Omega, \mathcal{F}, P)\). For integers \(n\) let \(\mathcal{F}_n\) be the \(\sigma\)-field generated by \(\{X_j: j \leq n\}\) and \(\mathcal{F}_n\) the \(\sigma\)-field generated by \(\{X_j: j \geq n\}\). The sequence \(\{X_j\}\) is said to be \(\phi\)-mixing (or uniformly mixing) if

\[
\phi(n) \equiv \phi(\mathcal{F}_n, \mathcal{F}_n) \to 0 \quad \text{as} \quad n \to \infty
\]

(see Ibragimov [9]), strongly mixing if

\[
\alpha(n) \equiv \alpha(\mathcal{F}_n, \mathcal{F}_n) \to 0 \quad \text{as} \quad n \to \infty
\]

(see Rosenblatt [15]) and completely regular if

\[
\rho(n) \equiv \rho(\mathcal{F}_n, \mathcal{F}_n) \to 0 \quad \text{as} \quad n \to \infty
\]

(see Kolmogorov-Rozanov [13]).

Among these coefficients, the following inequalities always hold:

\[
4\alpha(n) \leq \rho(n) \leq 2\phi^{1/2}(n).
\]

The left-hand inequality is an easy consequence of the definitions of the coefficients \(\alpha(n)\) and \(\rho(n)\), and the right-hand inequality is a consequence of the Ibragimov fundamental inequality for \(\phi\)-mixing sequences (see [11, Theorem 17.2.3, p. 309]). Thus a \(\phi\)-mixing sequence is completely regular (the converse...
is false; see [11, pp. 310-314]), and a completely regular sequence is strongly mixing (the converse is false; see [16, pp. 206-209], but for Gaussian sequences complete regularity is equivalent to strong mixing; see [13]). Formulations of various mixing conditions are given by Ibragimov-Rozanov [12] for stationary Gaussian sequences in terms of the spectral density, and by Rosenblatt [16] for stationary Markov sequences in terms of the transition operator.

Let \(\{X_j\} \) be a strictly stationary sequence with \(EX_j=0 \) and \(EX_j^2<\infty \). Set

\[
S_n = \sum_{j=1}^n X_j, \quad \sigma_n^2 = ES_n^2.
\]

In numerous papers conditions are investigated which guarantee asymptotic normality of the distribution of the normed sum \(\sigma_n^{-1}S_n \) (see, for example, [2, Chap. 4], [9], [10] and [11, Chap. 18]).

We are interested in knowing when the \(r \)th absolute moment of \(\sigma_n^{-1}S_n \) \((r>2)\) converges to that of the normal distribution. When \(X_j \) are independent (but not necessarily identically distributed) random variables, Bernstein [1] presented a necessary and sufficient condition (the \(r \)th Lindeberg condition) for the convergence of absolute moments in the central limit theorem. Brown [4, 5] gave an alternative proof of Bernstein's result. Hall [8] extended Bernstein's theorem in both the independence and the martingale cases. For stationary \(\phi \)-mixing and strongly mixing sequences the author [17, 18] obtained some results on the convergence of moments. Recently, in the \(\phi \)-mixing case, the following much broader result was proved; the proof is completely different from those in [17] and [18].

Theorem A ([19]). Let \(\{X_j\} \) be a strictly stationary sequence with \(EX_j=0 \) and \(E|X_j|^r<\infty \) for some \(r>2 \). If \(\phi(n)\to0 \) and \(\sigma_n^2\to\infty \) as \(n\to\infty \), then

\[
\lim_{n\to\infty} E|S_n/\sigma_n|^r = \int_{-\infty}^{\infty} (2\pi)^{-1/2} |u|^r \exp(-u^2/2) du.
\]

In Theorem A it is not assumed that \(\phi(n)\to0 \) at a specific rate, while the series-type conditions on the mixing coefficients were imposed in all the theorems of [18] (cf. [9, Theorem 1.4]). The purpose of this paper is to generalize the above \(\phi \)-mixing result to the complete regularity case. The basic idea, which was used in [19], is a martingale representation of the sum \(S_n \), and the proof is based on Ibragimov's moment inequality (Lemma 2 below) and a martingale result of Hall [8].
2. Statement of a result.

First we state a result of Ibragimov [10, Theorem 2.1], which generalizes an earlier result of his own [9, Theorem 1.4].

Theorem B (Ibragimov). Let \(\{X_j\} \) be a strictly stationary sequence with \(EX_j=0 \) and \(EX_j^2<\infty \). (i) If \(\lim \rho(n)=0 \) and \(\limsup_{n \to \infty} \sigma_n^2/n = \infty \), where \(\rho(n) \) is a slowly varying function in the sense of Karamata. (ii) If in addition \(EX_j^r<\infty \) for some \(r>2 \), then

\[
\lim_{n \to \infty} P\{S_n/\sigma_n<x\} = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-u^2/2) \, du.
\]

Remarks. Theorem B (ii) fails if its hypothesis \(EX_j^r<\infty \) \((r>2) \) is omitted; a counterexample is constructed by Bradley [3]. Lifshits [14] proved some central limit theorems on Markov chains under \(\rho(n) \to 0 \) and other slightly weaker conditions.

In this article the conditions of Theorem B, without any additional conditions, will be shown to imply the convergence of the \(r \)th absolute moments in the central limit theorem. More precisely, we shall prove

Theorem C. Let \(\{X_j\} \) be a strictly stationary sequence with \(EX_j=0 \) and \(EX_j^2<\infty \) for some \(r>2 \). If \(\rho(n) \to 0 \) and \(\limsup_{n \to \infty} \sigma_n^2/n \to \infty \) as \(n \to \infty \), then

\[
(1) \quad \lim_{n \to \infty} E|S_n/\sigma_n|^r = \int_{-\infty}^{\infty} (2\pi)^{-1/2} |u|^r \exp(-u^2/2) \, du.
\]

As we have remarked in Sect. 1, the \(\phi \)-mixing condition implies the complete regularity condition, thus Theorem C contains Theorem A as a special case. For strongly mixing sequences the relation (1) holds under the conditions \(EX_j=0 \), \(EX_j^{r+\delta}<\infty \) for some \(r>2 \) and \(\delta>0 \), \(EX_j^2+2 \sum_{j=2}^{\infty} E(X_jX_{j+1})>0 \) and \(\sum_{n=1}^{\infty} n^{r/2-1}(\alpha(n))^{\delta/(r+\delta)} < \infty \) (see [18]).

3. The proof.

In the proof, limits will be taken as \(n \to \infty \). The symbol \(K \) denotes a generic constant, not necessarily the same at each appearance. \(\beta_r \) denotes the \(r \)th absolute moment of the standard normal distribution. \(I(A) \) denotes the indicator function of the event \(A \).

For the proof of Theorem C we need a few well-known inequalities.
Lemma 1. Suppose that the random variables ξ and η, respectively, are measurable with respect to \mathcal{F}_k and \mathcal{F}_{k+1};

1. If $E\xi^s < \infty$ and $E\eta^s < \infty$, then

$$|E(\xi\eta) - E\xi \cdot E\eta| \lesssim (E\xi^s)^{1/\alpha}(E\eta^s)^{1/\alpha} \rho(n);$$

2. If $|\xi| \leq B$ a.s. and $E|\eta|^s < \infty$ for some $s > 1$, then

$$|E(\xi\eta) - E\xi \cdot E\eta| \lesssim 6B(E|\eta|^s)^{1/\alpha} \alpha(n)^{1-1/\alpha}.$$

The inequality (2) is an immediate consequence of the definition of the coefficient $\rho(n)$. The inequality (3) is due to Davydov [7]. The following inequality, due to Ibragimov [10], is fundamental to our proof.

Lemma 2. Under the assumptions of Theorem C, there exists a constant C such that

$$E|S_n|^r \leq C\sigma_n^r \quad \text{for all } n \geq 1.$$

We shall divide the sum S_n into three parts:

$$S_n = S'_n + S''_n = \sigma_n T_n + \sigma_n T'_n + S''_n,$$

and show that $\sigma_n^{-1} S''_n$ and T'_n are asymptotically negligible, while the rth absolute moment of T_n converges to β_n, where the variable T_n will be chosen to be a martingale.

The first step is to represent the sum S_n in the form

$$S_n = \sum_{j=1}^k y_j + \sum_{j=1}^{k+1} z_j = S'_n + S''_n,$$

where

$$y_j = \sum_{i=0}^{(j-1)q} X_i, \quad 1 \leq j \leq k;$$

$$z_j = \sum_{i=0}^{(j+q)q} X_i, \quad 1 \leq j \leq k;$$

$$z_{k+1} = \sum_{i=0}^{n} X_i;$$

$p = p(n)$ and $q = q(n) \in \{1, 2, \ldots, n\}$ and satisfy the following conditions:

1. $p \to \infty$, $q \to \infty$, $n^{-1} p \to 0$, $p^{-1} q \to 0$,
2. $n^{1+\beta} q^{-\beta} p^{-1} \to 0$ for some $\beta > 0$,
3. $n^{-1} p^{1/\beta} q^{-1} \to 0$,

and $k = k(n) = \lceil n/(p+q) \rceil$. Here $\lceil a \rceil$ denotes the greatest integer $\leq a$. Such systems of p and q actually exist. In fact, if we set
The convergence of moments in the central limit theorem

\[\lambda(n) = \max \{ \rho^{1/r}(n^{1/4}), (\log n)^{-1} \}, \]
\[p = \max \left\{ n\rho^{3/4}(n^{1/4}), \lambda(n)(n^{-1})^{1/4}, n^{3/4}(\lambda(n))^{-1} \right\}, \]
\[q = [n^{1/4}] , \]

then all the conditions in (5) are satisfied:

a) \(p \to \infty, \quad q \to \infty, \quad n^{-1}p \to 0, \quad p^{-1}q \to 0, \)

b) \(n^{1+\beta}q^{-1-\beta}p^{-1} \leq n^{-(1-\beta)1/4}\lambda(n) \to 0, \quad \text{if} \quad \beta \leq 1/3, \)

c) \(np^{-1}q^{2/r}(q) \leq \lambda(n) \to 0. \)

Now we break the sum \(S_n \) into two parts. We denote by \(\mathcal{L}_{nj} \) the \(\sigma \)-fields \(\mathcal{F}_{j,p+1} \) and define the random variables

\[Y_{nj} = y_{nj} - E\{ y_{nj} | \mathcal{L}_{nj} \}, \quad 1 \leq j \leq k, \]

where \(y_{nj} = y_j / \sigma_n. \) Then \(\{ Y_{nj}, \mathcal{L}_{nj} : 1 \leq j \leq k \} \) is trivially a martingale difference sequence for each \(n \geq 1. \) Let

\[T_n = \sum_{j=1}^k Y_{nj}, \quad T'_n = S_n / \sigma_n - T_n = \sum_{j=1}^k E\{ y_{nj} | \mathcal{L}_{nj} \}. \]

Then \(S_n = \sigma_n T_n + \sigma_n T'_n + S''_n. \)

The theorem will be proved in three stages:

(i) \(E|S'_n / \sigma_n|^r \to 0, \)

(ii) \(E|T'_n|^r \to 0, \)

(iii) \(E|T_n|^r \to 0. \)

In view of (i), (ii), (iii) and the inequality:

\[|(E|S'_n / \sigma_n|^r - (E|T'_n|^r)|^r \leq 2^{r-1}(E|T'_n|^r + E|S''_n / \sigma_n|^r), \]

the assertion of the theorem follows.

Proof of (i). Since \(\sigma_n^2 = nh(n) \), where \(h(n) \) is a slowly varying function (Theorem B), using Lemma 2, Minkowski's inequality and stationarity, and arguing as in [11, p. 337], we obtain

\[E|S'_n / \sigma_n|^r \leq \sigma_n^r (k(E|z_1|^r)^{1/r} + (E|z_{k+1}|^r)^{1/r})^r \]

\[\leq K(k^q q h(q') / nh(n) + q' h(q') / nh(n))^{1/r} \to 0, \]

where \(q' = n - k(p+q) \) is the number of terms in \(z_{k+1} \), and (i) is proved.

Before proving (ii) and (iii), we note that under the requirements imposed on \(p, q \) and \(k, \)
In fact,
\[
E(S_n^2/\sigma_n^2) = k\sigma_p^2/\sigma_n^2 + 2 \sum_{j=1}^{k} (k-j+1)E(y_{n1} y_{nj})
\]
by stationarity. Since \(y_{n1}\) is measurable with respect to \(\mathcal{F}_p\) and \(y_{nj}, 2 \leq j \leq k\), are measurable with respect to \(\mathcal{F}_{p+q}\), applying the inequality (2),
\[
\sum_{j=1}^{k} (k-j+1)\left|E(y_{n1} y_{nj})\right| \leq (k\sigma_p/\sigma_n)^2 \rho(q).
\]
Moreover, by condition (5),
\[
k\rho(q) \sim n p^{-1} \rho(q) \leq n p^{-1} \rho^{2q} \to 0.
\]
Hence
\[
E(S_n^2/\sigma_n^2) = (k\sigma_p^2/\sigma_n^2)(1 + o(1)).
\]
On the other hand,
\[
E(S_n^2/\sigma_n^2) = E(S_n^2/\sigma_n^2) + E(S_n^2/\sigma_n^2) - 2E(S_n S_n^*/\sigma_n^2)
\]
\[
= 1 + o(1)
\]
by (i). The equality (6) now follows from (7) and (8).

Proof of (ii). For simplicity we put
\[
w_{nj} = E\{y_{nj} \mid \mathcal{L}_{n,j-1}\}, \quad 1 \leq j \leq k,
\]
and because of the stationarity, we put
\[
a_n = E\{|y_{nj}|^r\}, \quad 1 \leq j \leq k.
\]
By Hölder's inequality,
\[
E|w_{nj}|^{r/2} = E(E\{y_{nj} w_{nj} \mid |w_{nj}|^{r/2}\})
\]
\[
= E(E\{y_{nj} w_{nj} \mid |w_{nj}|^{r-2}\} \mid \mathcal{L}_{n,j-1})
\]
\[
= E(y_{nj} w_{nj} \mid |w_{nj}|^{r/2})
\]
\[
\leq (E(y_{nj} w_{nj})^{r/2})^{r/2}(E|w_{nj}|^r)^{1/2r},
\]
so that we have
\[
E|w_{nj}|^{r/2} \leq E|y_{nj} w_{nj}|^{r/2}.
\]
Since \(w_{nj}\) is measurable with respect to \(\mathcal{F}_{(j-1)(p+q)}\) and \(y_{nj}\) is measurable with respect to \(\mathcal{F}_{(j-1)(p+q)}\) for each \(1 \leq j \leq k\), using (2) and Jensen's inequality,
\[
E|y_{nj} w_{nj}|^{r/2} \leq (E|y_{nj}|^{r/2})(E|w_{nj}|^{r/2})^{1/2} \rho(q) + E|y_{nj}|^{r/2} E|w_{nj}|^{r/2}
\]
\[
\leq a_n \rho(q) + a_n^{1/2} E|w_{nj}|^{r/2}.
\]
The convergence of moments in the central limit theorem

Using (2) and Jensen's inequality again,

\[E |w_{nj}|^{r/2} = E(y_{nj}w_{nj} | w_{nj}|^{r/2} \cdot I(|w_{nj}| > 0)) \]
\[\leq (E y_{nj}^2)^{1/2} (E |w_{nj}|^{r/2})^{1/2} \rho(q) \]
\[\leq a_n^{r/2} \rho(q). \]

Combining the estimates above, we find that

(9) \[E |w_{nj}|^r \leq 2a_n \rho(q). \]

We obtain from Minkowski's inequality, (4)-(6) and (9) that

\[E |T_n'|^r \leq \left(\sum_{j=1}^k (E |w_{nj}|^r)^{1/r} \right)^r \]
\[\leq 2k^r a_n \rho(q) \]
\[\leq K(k \sigma_p^2/\sigma_h^2)^{r/2} k^{r/2} \rho(q) \rightarrow 0, \]

and hence (ii) is proved.

Proof of (iii). Define \(w_{nj} \) and \(a_n \) as before. For simplicity of notation we also define

\[u_{nj} = y_{nj}^2 - E y_{nj}^2, \quad 1 \leq j \leq k, \]
\[v_{nj} = E \{ u_{nj} | \mathcal{L}_{n,j-1} \}, \quad 1 \leq j \leq k \]

and (because of the stationarity)

\[b_n = E |u_{nj}|^{r/2}, \quad 1 \leq j \leq k. \]

Now by stationarity,

\[\sum_{j=1}^k E Y_{nj}^2 = k \sigma_p^2/\sigma_h^2 - \sum_{j=1}^k E(y_{nj}w_{nj}), \]

and using (2),

\[\sum_{j=1}^k E(y_{nj}w_{nj}) \leq (k \sigma_p^2/\sigma_h^2) \rho(q). \]

Thus, taking account of (6), we see that

\[\sum_{j=1}^k E Y_{nj}^2 = 1 + o(1). \]

Therefore, according to Hall's [8] theorem, the proof of (iii) will be complete if we can show that

(10) \[\max_{j \leq k} E \{ Y_{nj}^2 | \mathcal{L}_{n,j-1} \} \rightarrow 0 \quad \text{in probability}, \]

(11) \[\sum_{j=1}^k E |Y_{nj}|^r \rightarrow 0 \]

and
However, (11) immediately implies the conditional Lindeberg condition:

for all \(\varepsilon > 0 \),
\[
\sum_{j=1}^{k} E\{Y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - 1 \rightarrow 0.
\]

Hence (10) is a consequence of (11) combined with (12) (see Brown [6, Theorem 1 and Lemma 1]). We have from Jensen’s inequality, (4) and (6) that

\[
\sum_{j=1}^{k} E|Y_{nj}|^r \leq 2^{r-1} \sum_{j=1}^{k} (E|y_{nj}|^r + E|w_{nj}|^r)
\]

\[
\leq 2^r k a_n
\]

\[
\leq K(k \sigma_p^n / \sigma_n^2)^{r/2} k^{-r/2+1} \rightarrow 0,
\]

and thus (11) holds.

Our goal is to show that (12) holds. Now,

\[
E\left| \sum_{j=1}^{k} E\{Y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - 1 \right|^{r/2}
\]

\[
= E\left| \sum_{j=1}^{k} E\{y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - \sum_{j=1}^{k} w_{nj}^2 - 1 \right|^{r/2}
\]

\[
\leq 2^{r/2-1} \left\{ E\left| \sum_{j=1}^{k} E\{y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - 1 \right|^{r/2} + E\left(\sum_{j=1}^{k} w_{nj}^2 \right)^{r/2} \right\}.
\]

Making use of the inequality (9), and arguing just as in the proof of (ii), we get

\[
E\left(\sum_{j=1}^{k} w_{nj}^2 \right)^{r/2} \leq 2k^{r/2} a_n \rho(q)
\]

\[
\leq K(k \sigma_p^n / \sigma_n^2)^{r/2} \rho(q) \rightarrow 0.
\]

Moreover, we have from (6) and Minkowski’s inequality that

\[
E\left| \sum_{j=1}^{k} E\{y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - 1 \right|^{r/2}
\]

\[
\sim E\left| \sum_{j=1}^{k} E\{y_{nj}^2 \mid \mathcal{L}_{n,j-1}\} - k \sigma_p^2 / \sigma_n^2 \right|^{r/2}
\]

\[
= E\left| \sum_{j=1}^{k} v_{nj} \right|^{r/2}
\]

\[
\leq \left(\sum_{j=1}^{k} (E|v_{nj}|^{r/2})^{2/r} \right)^{r/2}.
\]

Consequently, to prove (12) it is sufficient to show that

(13)

\[
\sum_{j=1}^{k} (E|v_{nj}|^{r/2})^{2/r} \rightarrow 0.
\]
The convergence of moments in the central limit theorem

We shall separate the proof of (13) in three cases; \(r > 4 \), \(r = 4 \) and \(2 < r < 4 \).

Suppose first that \(r > 4 \). By replacing \(y_{nj} \), \(w_{nj} \), \(a_n \) and \(r \) in the proof of (9) by \(u_{nj} \), \(v_{nj} \), \(b_n \) and \(r/2 \) respectively, we deduce that

\[
E |v_{nj}|^{r/2} \leq 2b_n \rho(q).
\]

Since

\[
b_n \leq 2^{r/2-1} [E |y_{nj}|^{r} + (E y_{nj}^2)^{r/2}] \leq 2^{r/2} a_n,
\]
then, by virtue of (4) and (6), we see that

\[
\sum_{j=1}^{k} (E |v_{nj}|^{r/2})^{2/r} \leq k(2b_n \rho(q))^{2/r}
\]

\[
\leq k(2^{r/2+1} a_n \rho(q))^{2/r}
\]

\[
\leq K(k \sigma_n^2 / \sigma_n^2) \rho^{2/4}(q) \to 0,
\]

and thus (13) is proved for the case \(r > 4 \).

When \(r = 4 \), using (2) and Jensen’s inequality, we get

\[
E |v_{nj}|^{r/2} = E(u_{nj} v_{nj})
\]

\[
\leq (E u_{nj}^2)^{1/2}(E v_{nj}^2)^{1/2} \rho(q)
\]

\[
\leq E u_{nj}^2 \rho(q).
\]

Hence (13) also holds for \(r = 4 \).

Finally, we assume that \(2 < r < 4 \). By Hölder’s inequality,

\[
E |v_{nj}|^{r/2} = E(u_{nj} v_{nj} | v_{nj})^{r/2}_+ I(|v_{nj}| > 0)
\]

\[
\leq E(|u_{nj}|^{2-r/2} | u_{nj} v_{nj})^{r/2}_+ I(|v_{nj}| > 0)
\]

\[
\leq b_n^{r_2-1} (E |u_{nj} v_{nj}|)^{2-2/r}.
\]

Using (2) and Jensen’s inequality, and noting that \(r/4 < 1 \),

\[
E |u_{nj} v_{nj}|^{r/4} \leq (E |u_{nj}|^{r/2})^{1/4}(E |v_{nj}|^{r/4})^{1/4} \rho(q) + E |u_{nj}|^{r/4} E |v_{nj}|^{r/4}
\]

\[
\leq b_n \rho(q) + b_n^{r/2}(E |v_{nj}|)^{r/4}.
\]

Since \(\alpha(n) \leq \rho(n) \), applying the inequality (3) with \(\xi = v_{nj} |v_{nj}|^{-1} I(|v_{nj}| > 0) \), \(\eta = u_{nj} \)

and \(s = r/2 \),

\[
E |v_{nj}| = E(u_{nj} v_{nj} | v_{nj})^{-1} I(|v_{nj}| > 0)
\]

\[
\leq 6(E |u_{nj}|^{r/2})^{2/4}(\rho(q))^{2-2/r}.
\]

Inserting the inequalities (16) and (17) into (15), we have

\[
E |v_{nj}|^{r/2} \leq b_n^{r_2-1} (b_n \rho(q) + 6^{r/4} b_n \rho(q))^{2-1/2} \rho^{2-2/r}
\]

\[
\leq K b_n (\rho(q))^{(r-2)/2r}.
\]
Just as in (14), we obtain that for $2 < r < 4$,

$$\sum_{j=1}^{k} (E|v_n|^{r/2})^{2/r} \leq K(k\sigma_2^p/\sigma_2^q)(\rho(q))^{(r-2)/2}r^2 \to 0,$$

and hence (13) follows as desired.

The proof of Theorem C is now complete.

References

Department of Mathematics
Osaka Kyoiku University
Tennoji, Osaka 543