COVERINGS OF GENERALIZED CHEVALLEY GROUPS
ASSOCIATED WITH AFFINE LIE ALGEBRAS

By

Jun Morita

R. Steinberg [21] has given a presentation of a simply connected Chevalley group (=the group of \(k \)-rational points of a split, semisimple, simply connected algebraic group defined over a field \(k \)) and has constructed the (homological) universal covering of the group. In this note, we will consider an analogy for a certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor \(K_2(\Phi, \cdot) \).

Let \(\Phi \) be a reduced irreducible root system in a Euclidean space \(\mathbb{R}^n \) with an inner product \((\cdot, \cdot) \) (cf. [4], [6]). We denote by \(\Phi^+ \) (resp. \(\Phi^- \)) the positive (resp. negative) root system of \(\Phi \) with respect to a fixed simple root system \(H = \{ \alpha_i, \ldots, \alpha_n \} \). We suppose that \(\alpha_i \) is a long root (for convenience' sake). Let \(\alpha_{n+1} \) be the negative highest root of \(\Phi \). Set \(\alpha_{ij} = 2(\alpha_i, \alpha_j) / (\alpha_j, \alpha_j) \) for each \(i, j = 1, 2, \ldots, n+1 \).

The matrices \(A = (a_{ij})_{i,j=1}^n \) and \(\tilde{A} = (a_{ij})_{i,j=n+1}^{n+n+1} \) are called a Cartan matrix of \(\Phi \) and the affine Cartan matrix associated with \(A \) respectively (cf. [4], [5], [6]).

Let \(G(\Phi, \cdot) \) be a Chevalley-Demazure group scheme of type \(\Phi \) (cf. [1], [20]). For a commutative ring \(R \), with 1, we call \(G(\Phi, R) \) a Chevalley group over \(R \). For each \(\alpha \in \Phi \), there is a group isomorphism—"exponential map"—of the additive group of \(R \) into \(G(\Phi, R) \). The elementary subgroup \(E(\Phi, R) \) of \(G(\Phi, R) \) is defined to be the subgroup generated by \(x_\alpha(t) \) for all \(\alpha \in \Phi \) and \(t \in R \). We use the notation \(G_i(\Phi, \cdot) \) and \(E_i(\Phi, \cdot) \) (resp. \(G_\alpha(\Phi, \cdot) \) and \(E_\alpha(\Phi, \cdot) \)) if \(G(\Phi, \cdot) \) is simply connected (resp. of adjoint type). It is well-known that \(G_i(\Phi, R) = E_i(\Phi, R) \) if \(R \) is a Euclidean domain (cf. [22, Theorem 18(Corollary 3)]).

Let \(St(\Phi, R) \) be the group generated by the symbols \(\check{x}_\alpha(t) \) for all \(\alpha \in \Phi \) and \(t \in R \) with the defining relations

\[
\begin{align*}
(A) \quad & \check{x}_\alpha(s) \check{x}_\alpha(t) = \check{x}_\alpha(s+t), \\
(B) \quad & [\check{x}_\alpha(s), \check{x}_\beta(t)] = \prod \check{x}_{\alpha+i}^j(\mathbb{N}_{\alpha, \beta, i, j, s^j} t^j), \\
(B') \quad & \check{\omega}_\alpha(u) \check{x}_\alpha(t) \check{\omega}_\alpha(-u) = \check{x}_{-\alpha}(-u^{-1} t)
\end{align*}
\]

for all \(\alpha, \beta \in \Phi(\alpha + \beta \neq 0) \), \(s, t \in R \) and \(u \in R^* \), the units of \(R \), where \(\check{\omega}_\alpha(u) = \check{x}_\alpha(u) \check{x}_{-\alpha}(-u^{-1} t) \).

Received March 11, 1981.
We call $St(\Phi, R)$ a Steinberg group over R.

Since the relations corresponding to (A), (B), $(B)'$ hold in $E_i(\Phi, R)$, there is a homomorphism θ of $St(\Phi, R)$ onto $E_i(\Phi, R)$ such that $\theta(\bar{x}_a(t)) = x_a(t)$ for all $a \in \Phi$ and $t \in R$. Put $K_2(\Phi, \cdot) = \ker [St(\Phi, \cdot) \longrightarrow E_i(\Phi, \cdot)]$, i.e., $1 \longrightarrow K_2(\Phi, \cdot) \longrightarrow St(\Phi, \cdot) \longrightarrow E_i(\Phi, \cdot) \longrightarrow 1$ is exact. For each $a \in \Phi$ and $u, v \in R^*$, we set $[u, v]_a = h_a(uv)h_a(u)^{-1}h_a(v)^{-1}$, called a Steinberg symbol, where $h_a(u) = \omega_a(u)\omega_a((-1)).$ Let $\tilde{K} = \langle [u, v]_a | a \in \Phi, u, v \in R^* \rangle$. Then $\tilde{K} \subseteq K_2(\Phi, R) \cap \text{Cent}(St(\Phi, R))$.

Definition. R is called universal for Φ if $K_2(\Phi, R) = \tilde{K}$.

Let $E_u(\Phi, R) = St(\Phi, R)/\tilde{K}$. Then the homomorphism θ induces a homomorphism $\tilde{\theta}$ of $E_u(\Phi, R)$ onto $E_i(\Phi, R)$. We see:

- "R is universal for Φ"
- \Leftrightarrow "$\tilde{\theta}$ is an isomorphism"
- \Rightarrow "θ is a central extension."

Example 1 (cf. [20], [21], [22]). Let k be a field.

1. $St(\Phi, k)$ is connected if $(\Phi, |k|) = (A_1, 2), (B_2, 2), (G_2, 2)$ and $(A_1, 3)$.
2. k is universal for each Φ.
3. $St(\Phi, k)$ is a universal covering of $E_i(\Phi, k)$ with a few exceptions.

2. The case of Laurent polynomial rings.

Let $k[T]$ be the ring of polynomials in T with coefficients in a field k, and \mathfrak{m} the maximal ideal of $k[T]$ generated by T. Let $k[T, T^{-1}]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in k. We identify $k[T]$ with a subring of $k[T, T^{-1}]$ naturally. Set

$$
U = \langle x_a(f), x_b(g) | a \in \Phi^+, f, g \in k[T], g \not\in \mathfrak{m} \rangle,
$$

$$
N = \langle w_a(T^m) | a \in \Phi, t \in k^*; m \in \mathbb{Z} \rangle,
$$

$$
H = \langle h_a(t) | a \in \Phi, t \in k^* \rangle,
$$

$$
B = \langle U, H \rangle
$$

as subgroups of $E(\Phi, k[T, T^{-1}])$, where $w_a(u) = x_a(u)\omega_a(-u^{-1})x_a(u)$ and $h_a(u) = w_a(u)$ $w_a(-1)$.

Theorem 2 ([17]).

1. $B \cap N = H$.
2. $(E(\Phi, k[T, T^{-1}]), B, N)$ is a Tits system.
Coverings of generalized Chevalley groups

Corollary 3.

(1) The canonical homomorphism \(\phi: E_0(\Phi, k[T, T^{-1}]) \rightarrow E_0(\Phi, k[T, T^{-1}]) \) is a central extension.

(2) \(\ker \phi = \{ \prod h_n(t_i) \prod t_i^\beta a_i = 1 \text{ for all } \beta \in \Phi \} \), where \(\langle \beta, \alpha \rangle = 2(\beta, \alpha)/(\alpha, \alpha) \), and \(t_i \in k^* \).

We define the subgroups \(\tilde{U}, \tilde{N}, \tilde{H}, \tilde{B} \) of \(St(\Phi, k[T, T^{-1}]) \):

\[
\tilde{U} = \langle \tilde{x}_\alpha(f), \tilde{x}_\beta(g) | \alpha \in \Phi^+, \beta \in \Phi^- \rangle, \\
\tilde{N} = \langle \tilde{w}_n(t^m) | \alpha \in \Phi, t \in k^*, m \in \mathbb{Z} \rangle, \\
\tilde{H} = \langle \tilde{h}_n(t) | \alpha \in \Phi, t \in k^* \rangle \tilde{K}, \\
\tilde{B} = \langle \tilde{U}, \tilde{H} \rangle.
\]

We denote by \(U_u, N_u, H_u \) and \(B_u \) the canonical images of \(\tilde{U}, \tilde{N}, \tilde{H} \) and \(\tilde{B} \) in \(E_u(\Phi, k[T, T^{-1}]) \) respectively. Then \((E_u(\Phi, k[T, T^{-1}]), B_u, N_u) \) and \((St(\Phi, k[T, T^{-1}]), B, N) \) are Tits systems, which is established by using the same technique as in [17].

Theorem 4.

(1) \(G_1(\Phi, k[T]) \) is presented by the generators \(\tilde{x}_\alpha(f) \) and \(\tilde{w}_n(t) \) for all \(\alpha \in \Pi, \gamma \in \Phi^+, f \in k[T] \) and \(t \in k^* \), and the defining relations (R1)—(R9):

\[
\text{(R1)} \quad \tilde{x}_\alpha(f) \tilde{x}_\gamma(g) = \tilde{x}_\gamma(f + g), \\
\text{(R2)} \quad \tilde{w}_n(t)^{-1} = \tilde{w}_n(-t), \\
\text{(R3)} \quad \tilde{w}_n(t) \tilde{x}_{\alpha}(u) \tilde{w}_n(-t) = \tilde{x}_{\alpha}(-t^2 u^{-1}) \tilde{w}_n(t^2 u^{-1}) \tilde{w}_n(-t^2 u^{-1}), \\
\text{(R4)} \quad [\tilde{x}_\alpha(f), \tilde{x}_\beta(g)] = \prod \tilde{x}_{\gamma_{i+1}}(N_{\gamma_i, \gamma_{i+1}} f \gamma_{i+1}) \gamma_i, \\
\text{(R5)} \quad \tilde{h}_n(t) \tilde{h}_n(u) = \tilde{h}_n(tu), \\
\text{(R6)} \quad \tilde{w}_n(t)^{ \frac{q}{q} } \tilde{w}_n(u)^{ \frac{q}{q} } = \tilde{w}_n(u)^{ \frac{q}{q} } \tilde{w}_n(t)^{ \frac{q}{q} }, \\
\text{(R7)} \quad \tilde{w}_n(t) \tilde{w}_n(u)^{ \frac{q}{q} } = \tilde{x}_{\rho}(ct^{\frac{q}{q}} f), \\
\text{(R8)} \quad \tilde{h}_n(t) \tilde{h}_n(u)^{-1} = \tilde{x}_\alpha(t^2 f), \\
\text{(R9)} \quad \tilde{w}_n(t) \tilde{h}_n(u) \tilde{w}_n(-t) = \tilde{h}_n(u) \tilde{h}_n(u^{-c}, \rho)
\]

for all \(\alpha, \beta \in \Pi(\alpha \neq \beta), \gamma, \delta \in \Phi^+, \rho \in \Phi^+ - \{\alpha\}, f, g \in k[T] \) and \(t, u \in k^* \), where \(\tilde{h}_u(t) = \tilde{w}_u(t) \tilde{w}_u(-1) \), and \(N_{\gamma, \gamma_i, \gamma_j} \) and \(c \) are as in [20] or [22], and each side of the equation in (R6) is the product of \(q \) symbols, and \(q = 2, 3, 4 \) or 6 if \((R\alpha + R\beta) \cap \Phi \) is of type \(A_1 \times A_1, A_2, B_3 \) or \(G_2 \) respectively, and \(\langle \gamma, \alpha \rangle = 2(\gamma, \alpha)/(\alpha, \alpha) \) and \(\rho' = \rho - \langle \rho, \alpha \rangle \alpha \).

(2) \(k[T] \) is universal for each root system \(\Phi \).

Proof. (1) One can get this presentation of \(G_1(\Phi, k[T]) \) by using the same argument as in [23], [24] and [25]. (2) It follows from (1) that \(k[T] \) is universal. (By using an amalgamated free product decomposition of \(G_1(\Phi, k[T]) \) which is
described in [26], Rehmann [19] has given a different proof of the statement (2) from ours.) q.e.d.

Theorem 5. $k[T, T^{-1}]$ is universal for each root system Φ.

Proof. In the following commutative diagram:

\[
\begin{array}{c}
B_uN_uB_u = E_u(\Phi, k[T, T^{-1}]) \\
\xrightarrow{\tilde{\theta}} E_1(\Phi, k[T, T^{-1}]) = B_1N_1B_1 \\
E_u(\Phi, k[T]) \xrightarrow{\sim} E_1(\Phi, k[T]) \cong B_1
\end{array}
\]

we have $\text{Ker} \tilde{\theta} \subseteq B_u$. On the other hand, $B_u \simeq B_1$ by the universality of $k[T]$. Therefore $\tilde{\theta}$ is an isomorphism. q.e.d.

By taking $T = 1$, the sequence $0 \to k \to k[T, T^{-1}]$ splits, so $K_2(\Phi, k)$ is a direct summand of $K_2(\Phi, k[T, T^{-1}])$. Then:

Theorem 6 ([2]).

1. $K_2(A_1, k[T, T^{-1}]) = K_2(A_1, k) \oplus S$, where $S = \langle (T, t) \mid t \in k^* \rangle$ and α is a fixed root.
2. $S \simeq k^*$ if $k^2 = k$ (i.e. k is a square root closed field).

Corollary 7 (cf. [2], [12], [13]).

1. $K_2(\Phi, k[T, T^{-1}]) = K_2(\Phi, k) \oplus S$, where $S = \langle (T, t) \mid t \in k^* \rangle$ and α is a fixed long root.
2. S is isomorphic to a factor group of k^* if $\Phi \neq C_n$ ($n \geq 1$).
3. S is isomorphic to a factor group of k^* if $k^2 = k$.

Proof. (1) and (3) follow from Theorem 6. If $\Phi \neq C_n$ ($n \geq 1$), then A_2 can be embedded in the long roots of Φ. By Matsumoto's theorem, one sees (2). q.e.d.

Remark 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have been confirmed by Hurrelbrink [7] in the case when $\Phi \neq G_2$. He has directly calculated the relations of $G_2(\Phi, k[T, T^{-1}])$ of type $\Phi = A_1, A_3$, and B_2, and by using this has proved Theorem 5 for $\Phi \neq G_2$. Our proof of Theorem 5 is different from his, and contains the case of type G_2.

As an application of [20, (5.3) Theorem/Remarks] and Theorem 5, we can establish the following theorem.

Theorem 9. If $\text{char} k = 0$, then $\text{St}(\Phi, k[T, T^{-1}])$ is a universal covering of $E_0(\Phi, k[T, T^{-1}])$.

An \(l \times l \) integral matrix \(C = (c_{ij}) \) is called a generalized Cartan matrix if (i) \(c_{ii} = 2 \), (ii) \(i \neq j \Rightarrow c_{ij} \leq 0 \), and (iii) \(c_{ij} = 0 \Leftrightarrow c_{ji} = 0 \). From now on, we suppose \(\text{char } k = 0 \). We denote by \(L_l = L_l(C) \) the Lie algebra over \(k \) generated by the \(3l \) generators \(e_1, \ldots, e_l, h_1, \ldots, h_l, f_1, \ldots, f_l \) with the defining relations \([h_i, h_j] = 0, [e_i, f_j] = \delta_{ij} h_i, [h_i, e_j] = c_{ij} e_j, [h_i, f_j] = -c_{ji} f_j \) for all \(1 \leq i, j \leq l \), and \((\text{ad } e_i)^{\delta_{ij} + 1} e_j = 0, (\text{ad } f_i)^{\delta_{ij} + 1} f_j = 0 \) for all \(1 \leq i \neq j \leq l \). Then the generators \(e_i, e_i, h_i, \ldots, h_i, f_i, \ldots, f_i \) are linearly independent in \(L_l \). We view \(L_l \) as a \(\mathbb{Z}^l \)-graded Lie algebra defined by \(\deg(e_i) = (0, \ldots, 0, 1, 0, \ldots, 0) \), \(\deg(h_i) = (0, \ldots, 0, -1, 0, \ldots, 0) \), and \(\deg(f_i) = (0, \ldots, 0, 1, 0, \ldots, 0) \), where \(\pm 1 \) are in the \(i \)-th position. Then there is the maximal homogeneous ideal \(R_l = R_l(C) \) of \(L_l \) such that \(R_l \cap (\Sigma_{j=1}^l k h_j + \cdots + k h_l) = 0 \). Set \(L = L(C) = L_l/R_l \), called the Kac-Moody Lie algebra over \(k \) associated with a generalized Cartan matrix \(C \) (cf. [3],[5],[8],[10],[14]). The algebra \(L \) is also \(\mathbb{Z}^l \)-graded. For each \(l \)-tuple \((n_1, \ldots, n_l) \in \mathbb{Z}^l \), we let \(L(n_1, \ldots, n_l) \) denote the homogeneous subspace of degree \((n_1, \ldots, n_l) \) in \(L \). We identify \(e_i, h_i, f_i \) with their images in \(L \). Then:

Proposition 10.

1. \(L(n_1, \ldots, n_l) \) is the subspace of \(L \) spanned by the elements \([e_i, [e_i, \ldots, [e_i, \ldots \ldots, e_i] \ldots]] \) (resp. \([f_i, [f_i, \ldots, [f_i, \ldots \ldots, f_i] \ldots]] \)), where \(e_j \) (resp. \(f_j \)) occurs \(|n_j| \) times, if \((n_1, \ldots, n_l) \) belongs to \((\mathbb{Z})^l - \{ 0 \} \) (resp. \((\mathbb{Z})^l - \{ 0 \} \)).
2. \(L(0, \ldots, 0) = kh_1 + \cdots + kh_l \).
3. \(L(n_1, \ldots, n_l) = 0 \) otherwise.

Put \(L_0 = L_0(C) = kh_1 + \cdots + kh_l \). For each \(i = 1, \ldots, l \), we define a degree derivation \(D_i \) on \(L \) such that \(D_i(x) = n_i x \) for all \(x \in L(n_1, \ldots, n_l) \). Set \(D_0 = k D_1 + \cdots + k D_l \), viewed as an abelian Lie algebra of dimension \(l \). For a subspace \(D \subseteq D_0 \), let \(L^* = L(C)^* = D \times L \) (semidirect product) and \((L_0)^* = D \times L_0 \) (direct product). For each \(j = 1, \ldots, l \), let \(\gamma_j \) be an element of \((L_0)^*)^* \), the dual of \((L_0)^*)^* \), such that \([h, e_j] = \gamma_j(h) e_j \) for all \(h \in (L_0)^* \). We note that \(\gamma_j(h_i) = c_{ij} \) for all \(i, j = 1, \ldots, l \). We will choose and fix a subspace \(D \) of \(D_0 \) such that \(\gamma_1, \ldots, \gamma_l \) are linearly independent in \((L_0)^*)^* \). This is possible, since \(\gamma_i(D_j) = \delta_{ij} \). Set \(L' = \{ x \in L | [h, x] = \gamma(h) x \} \) for all \(h \in (L_0)^* \) for each \(\gamma \in (L_0)^*)^* \). It is easily seen that \(L'^{\gamma_1 + \cdots + \gamma_l} = L(n_1, \ldots, n_l) \) for all \((n_1, \ldots, n_l) \in \mathbb{Z}^l \). In particular, \(L' = k L_0, L' = k L_0 \) and \(L'^{\gamma_i} = k h_i \).

Let \(\Delta = \Delta(C) = \{ \gamma \in (L_0)^* | L' \neq 0 \} \), called the root system of \(L \). Set \(\Gamma = \sum_{i=1}^l \mathbb{Z}_{\gamma_i} \), a free \(\mathbb{Z} \)-submodule of \((L_0)^*)^* \). The Weyl group \(W = W(C) \) is defined to be the subgroup of \(GL((L_0)^*)^* \) generated by \(\omega_i \) for all \(i = 1, \ldots, l \), where \(\omega_i \) is an endomorphism of \((L_0)^*)^* \) such that \(\omega_i(\gamma) = -\gamma(h_i) \). Then \(\Delta \) and \(\Gamma \) are \(W \)-stable. Also \(W \) acts on \(L_0 \) naturally: \(\omega_i(h_j) = h_j - c_{ij} h_i \). Hence we see \((\omega_i(\gamma) \omega_i \gamma) = \gamma(h) \) for
Let $F_0(C, k)$ be the subgroup of $\text{Aut}(L)$ generated by $\exp \text{ad} \, t e_i$ and $\exp \text{ad} \, t f_i$ for all $i \in k$ and $i = 1, \ldots, l$. Let V be a standard L^*-module with a highest weight $\lambda_i \neq 0$ (cf. [5], [10]). We let $F_\nu(C, k)$ denote the subgroup of $GL(V)$ generated by $\exp \text{ad} \, t e_i$ and $\exp \text{ad} \, t f_i$ for all $i \in k$ and $i = 1, \ldots, l$. These groups $F_0(C, k)$ and $F_\nu(C, k)$ have Tits systems respectively (cf. [11], [16]). Then there is a homomorphism ν of $F_\nu(C, k)$ onto $F_0(C, k)$ such that $\nu(\exp \text{ad} \, t e_i) = \exp \text{ad} \, t e_i$ and $\nu(\exp \text{ad} \, t f_i) = \exp \text{ad} \, t f_i$ for all $i \in k$ and $i = 1, \ldots, l$ (cf. [11]), and ν is central (cf. [18]).

4. The affine case.

Let Φ, A and \tilde{A} be as in §1. Then we can regard $L(A)$ as a subalgebra of $L(\tilde{A})$ naturally. We note that $R_{i}(A) = R_{i}(\tilde{A}) = 0$, and that $\Delta(A) = \Phi \cup \{0\}$ and $\Delta(\tilde{A}) = \Delta(A) \times Z$ (cf. [5], [9], [15]). Also we identify $W(A)$ with a subgroup of $W(\tilde{A})$. Therefore we have the following commutative diagram.

\[
W(A) \times L_0(A) \longrightarrow L_0(A) \\
\downarrow \\
W(\tilde{A}) \times L_0(\tilde{A}) \longrightarrow L_0(\tilde{A})
\]

We take an element σ of $W(A)$ such that $\sigma(\alpha_i) = \alpha_{n+i}$. Put $h_n = \sigma(h_1)$ and $h_i = h_{n+i} - h_n$. Then $\gamma_1(h_0) = \gamma_0(h_1) = \langle \sigma^{-1} \gamma_1 \rangle(h_1) = \langle \sigma^{-1} \alpha, \alpha \rangle = \langle \alpha, \alpha_{n+1} \rangle = d,_{n+1}$ and $\gamma_1(h_2) = 0$. Therefore $\mathcal{Z} = k h_i$ is the center of $L(\tilde{A})$, and we have an exact sequence of Lie algebras over k (cf. [5], [8], [15]):

\[
0 \longrightarrow \mathcal{Z} \longrightarrow L(\tilde{A}) \stackrel{\pi}{\longrightarrow} k[T, T^{-1}] \otimes L(A) \longrightarrow 0.
\]

Hence the map π induces an isomorphism $\tilde{\pi}$ of $F_0(\tilde{A}, k)$ onto $E_0(\Phi, k[T, T^{-1}])$ such that

\[
\tilde{\pi}(\exp \text{ad} \, t e_i) = x_{n+i}(t) \quad \text{for all } 1 \leq i \leq n,
\]
\[
\tilde{\pi}(\exp \text{ad} \, t e_{n+i}) = x_{n+i+1}(tT),
\]
\[
\tilde{\pi}(\exp \text{ad} \, t f_i) = x_{-n+i}(t) \quad \text{for all } 1 \leq i \leq n,
\]
\[
\tilde{\pi}(\exp \text{ad} \, t f_{n+i}) = x_{-n+i+1}(tT^{-1}).
\]

Since $St(\Phi, k[T, T^{-1}])$ is a universal covering of $E_0(\Phi, k[T, T^{-1}])$ (cf. Theorem 9), there is a unique homomorphism, denoted by ϕ, of $St(\Phi, k[T, T^{-1}])$ into $F_\nu(\tilde{A}, k)$ such that the following diagram is commutative.

\[
\begin{array}{ccc}
\phi \downarrow & & \downarrow \tilde{\pi} \\
F_{\nu}(\tilde{A}, k) & \longrightarrow & F_0(\tilde{A}, k) \\
\Phi \downarrow & & \downarrow \phi \\
St(\Phi, k[T, T^{-1}]) & \longrightarrow & E_0(\Phi, k[T, T^{-1}]) & \longrightarrow & E_0(\Phi, k[T, T^{-1}])
\end{array}
\]
Then, by the relation $h_n(t)x_n(a)h_n(t)^{-1}=x_n(t^a)$, we see
\[
\phi(x_n(a)) = \exp ae_i \quad \text{for all } 1 \leq i \leq n,
\]
\[
\phi(x_n(aT)) = \exp ae_{n+1},
\]
\[
\phi(x_{n+1}(a)) = \exp af_i \quad \text{for all } 1 \leq i \leq n,
\]
\[
\phi(x_{n+1}(aT)) = \exp af_{n+1},
\]
\[
\phi(x_n(aT^{-1})) = \exp af_{n+1},
\]
\[
\phi(x_{n+1}(aT^{-1})) = \exp af_{n+1},
\]
\[
\phi(x_{n+1}(aT)) = \exp af_{n+1},
\]
where $w_i(t) = (\exp t e_i)(\exp -t f_i)(\exp t e_i)$ and $h_i(t) = w_i(t)w_i(-1)$ for each $i = 1, 2, \ldots, n+1$, and $a \in k$ and $t \in k^*$. In particular, ϕ is an epimorphism. Thus:

Theorem 11. $St(\Phi, k[T, T^{-1}])$ is a universal covering of $F_V(\hat{A}, k)$.

Finally in this note, we will discuss the kernel of ϕ. Since $Ker \phi \subseteq Ker (\theta \phi)$, an element x of $Ker \phi$ can be written as $\prod_{i=1}^n h_{n+1}(t_i) \prod_{j=1}^{n+1} [T, c_j]_{m+1}^{x_{n+1}}$, where $t_i, a_{p, b, p, c_j} \in k^*$ and $p_j, s_j \in \mathbb{Z}_1$. Then $\phi(T, c_j)_{n+1} = h_{n+1}(c_j)h_1(c_j)^{-1}a^{-1}$. On each weight space V_μ of V (cf. [5], [10]), $\phi(x) = \prod_{i=1}^n t_i^{(h_i)} \prod_{j=1}^{n+1} c_j^{(h_j)} = \prod_{i=1}^n t_i^{(h_i)} \prod_{j=1}^{n+1} c_j^{(h_j)} = \prod_{i=1}^n t_i^{(h_i)} \prod_{j=1}^{n+1} c_j^{(h_j)} = 1$ for all weight μ. Therefore:

\[
\phi(x) = 1
\]
\[
\Leftrightarrow \prod_{i=1}^n t_i^{(h_i)} \prod_{j=1}^{n+1} c_j^{(h_j)} = 1 \quad \text{for all weight } \mu.
\]

Put $P = \langle \prod_{i=1}^n h_{n+1}(t_i) \prod_{j=1}^{n+1} [T, c_j]_{m+1}^{x_{n+1}} \prod_{i=1}^n t_i^{(h_i)} \prod_{j=1}^{n+1} c_j^{(h_j)} = 1 \quad \text{for all weight } \mu \rangle$ of V.

Theorem 12. $Ker \phi = K_2(\Phi, k) \oplus P$.

Acknowledgment. The author wishes to thank Professor Eiichi Abe for his valuable advice.

References

Morita, J., Tits’ systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math., (2) 3 (1979), 41-51.

———, Moody-Teo’s groups and Marcuson’s groups, preprint.

———, “Lectures on Chevalley groups,” Yale University Lecture notes, 1967/68.

Behr, H., Eine endliche Präsentation der symplektischen Gruppe \(Sp_4(Z) \), Math. Z., 141 (1975), 47-56.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan

Note added in proof. Recently H. Garland [Publ. IHES 52 (1980), 181-312] has constructed a subgroup \(F_i \) of \(\text{Aut}(V) \) containing \(F_V(\hat{A}, k) \), and has shown that \(St(\Phi, k(T)) \) is a universal covering of \(F_i \), where \(k(T) \) is the \(T \)-adic completion of \(k[T, T^{-1}] \). Then the composite map \(St(\Phi, k(T, T^{-1})) \to St(\Phi, k(T)) \to F_i \) coincides with the covering map of \(F_V(\hat{A}, k) \)