A REMARK ON R. POL'S THEOREM CONCERNING A-WEAKLY INFINITE-DIMENSIONAL SPACES

By

Zhu JIAN-PING

For notations and relevant definitions we refer to [1].

THEOREM (MA). There is no universal space in the class of all metrizable separable A-weakly infinite-dimensional spaces.

R. Pol proved this theorem in [1] under CH. The proof we shall give is similar with the one given in [1] but a little more direct.

Lemma 1. Let $S \subset \mathbb{I}^\omega$ be a countable union of zero-dimensional subsets. If $C \subset \mathbb{I}^\omega$ satisfies that for any open neighbourhood U of $S \setminus C \cup U < \mathfrak{c}$, then $C \cup S$ is A-weakly infinite-dimensional.

The proof is parallel to the proof of Lemma 1 in [1], noting that in \mathbb{I}^ω every subset with cardinality less than \mathfrak{c} is zero-dimensional.

Lemma 2 (MA). Let $\{G_\alpha : \alpha < \lambda\}$ be a family of open neighbourhoods of Σ in \mathbb{I}^ω and $\lambda < \mathfrak{c}$, where $\Sigma = \{x \in \mathbb{I}^\omega : \text{all but finitely many coordinates of } x \text{ are equal to zero}\}$. Then there exist positive numbers $a_\alpha \in \mathbb{I}(i \in \omega)$ such that $\bigcup\{0, a_\alpha\} \subset \mathbb{I} \cap \{G_\alpha : \alpha < \lambda\}$. Therefore, if $E \subset \mathbb{I}^\omega$ can be embedded in an A-weakly infinite-dimensional space, then $\bigcap \{G_\alpha : \alpha < \lambda\} \setminus E \neq \emptyset$.

Proof. Let $\mathscr{B} = \{[0, 1/n] : n > 0\}$. We define $P = \{(a, b) : a \text{ is a finite sequence in } \mathscr{B} \text{ and } b \in [\lambda]^{<\omega}\}$ and for any $\langle a', b' \rangle$, $\langle a, b \rangle \in P$, where $a = \langle I_0, I_1, \ldots, I_n \rangle$ and $a' = \langle I_0', I_1', \ldots, I_n' \rangle$, $\langle a', b' \rangle \leq \langle a, b \rangle$ iff $b' \supseteq b$, $n \leq n'$, $I_i = I_i'$ for any $i \leq n$ and if $n < n'$, $\prod_{i \leq n'} \prod_{i > n'} I_i \subset \cap \{G_\alpha : \alpha \in b\}$. It is obvious that \leq is a partial order on P. Since all of first components of elements of P are countable, P is ccc (in fact σ-centred).

Let $D_\alpha = \{(a, b) \in P : \alpha \in b\}$ and $F_n = \{(a, b) : \text{the length of } a \text{ is larger than } n\}$. It is easily seen that D_α is dense in P for any $\alpha < \lambda$. Now we want to

Received September 14, 1989. Revised November 22, 1989.
show that F_n is dense for any $n \in \omega$. Take any $(a, b) \in P$. If the length of a is larger than n, then $(a, b) \in F_n$. So we suppose that $a = (I_0, I_1, \ldots, I_m)$, where $m < n$. Since $\bigcap \{G_\alpha : \alpha \in b\}$ is an open neighbourhood of Σ, we can find $a' = (I_0, \ldots, I_m, I_{m+1}, \ldots, I_n)$ such that $\prod_{i \in n} I_i \times \prod_{i > n} I_i \subset \bigcap \{G_\alpha : \alpha \in b\}$. Therefore, $(a', b) \subseteq (a, b)$ and $(a', b) \in F_n$.

By MA, we have a filter G in P such $G \cap D_\alpha \neq 0 \ G \cap F_n \neq 0$ for any $\alpha < \lambda$ and $n < \omega$. Let $\sigma \{ a : \text{there is a } (a, b) \in G \} = \{ I_n : n \in \omega \}$. Then $\prod_{n < \omega} I_n \subset \bigcap \{ G_\alpha : \alpha < \lambda \}$.

Proof of Theorem. Let $E \subset I^\omega$ be any \mathcal{A}-weakly infinite-dimensional space. Let $\{(H_\alpha, h_\alpha) : \alpha < \mathfrak{c}\}$ be the family of all pairs such that H_α is a G_δ-set in $I^\mathfrak{c}$ containing Σ and $h_\alpha : H_\alpha \to I^\omega$ is an embedding which maps Σ onto a subset of E. Let $\{ G_\alpha : \alpha < \mathfrak{c} \}$ be all of the open sets which contain Σ. Take $x_\alpha \in \bigcap \{ G_\beta : \beta \leq \alpha \} \setminus h_\alpha^{-1}(E)$. Then by an argument paralleled to the one in the end of [1], we have $M = \Sigma \cup \{ x_\alpha : \alpha < \mathfrak{c} \}$ can not be embedded in E.

Remark 3. It is easily seen from the proof of Lemma 2 that the theorem is true under MA$_{\mathfrak{c}, \text{ centred}}$, i.e. $\mathfrak{p} = \mathfrak{c}$, which is strictly weaker than MA.

The author wishes to express his gratitude to Professor Y. Kodama and all of the members in his seminar for their stimulating discussions.

References

Zhu Jian-Ping
Institute of Mathematics
University of Tsukuba
Ibaraki 305, Japan