IDEMPOTENT RINGS WHICH ARE EQUIVALENT TO RINGS WITH IDENTITY

By

J. L. GARCIA

Let A be a ring such that $A=A^3$, but which does not necessarily have an identity element. In studying properties of the ring A through properties of its modules, it is pointless to consider the category A-MOD of all the left A-modules: for instance, every abelian group —with trivial multiplication— is in A-MOD. The natural choice for an interesting category of left A-modules seems to be the following: if a left A-module ΔM is unital when $AM=M$, and is A-torsionfree when the annihilator $\gamma_M(A)$ is zero, then A-mod will be the full subcategory of A-MOD whose objects are the unital and A-torsionfree left A-modules. The category A-mod appears in a number of papers (for instance, [7-9]) and when A has local units [1, 2] or is a left s-unital ring [6, 12], then the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck category and we study here the question of finding necessary and sufficient conditions on the ring A for A-mod to be equivalent to a category R-mod of modules over a ring with 1. This was already considered for rings with local units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is therefore more general.

In this paper, all rings will be associative rings, but we do not assume that they have an identity. A ring A has local units [2] when for every finite family a_1, \cdots, a_n of elements of A there is an idempotent $e \in A$ such that $ea_j = a_j e$ for all $j=1, \cdots, n$. A left A-module M is said to be unital if M has a spanning set (that is, if $AM=M$); and M has a finite spanning set when $M=\Sigma Ax_i$ for a finite family of elements x_1, \cdots, x_n of M. The module ΔM will be called A-torsionfree when $\gamma_M(A)=0$. A ring A is said to be left nondegenerate if the left module ΔA is A-torsionfree, and A is nondegenerate when it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with local units is nondegenerate. The ring A will be called (left) s-unital [12] in case for each $a \in A$ (equivalently, for every finite family a_1, \cdots, a_n of elements

Received March 25, 1991, Revised November 1, 1991.

With partial support from the D.G.I.C.Y.T. of Spain (PB 87-0703)
of A) there is some $u \in A$ such that $ua=a$ (respectively, $ua_i=a_i$, for all i): see [12, Theorem 1]. Any left s-unital ring is idempotent and left nondegenerate.

We will say that a ring A is generated by the element $a \in A$ in case $A=A^aA$. The above mentioned results of Abrams and Ánh-Márki [1], [2], and Komatsu [6] may be stated as follows: if A has local units, then A-mod is equivalent to a category of modules over a ring with 1 if and only if A is generated by an idempotent e [2, Proposition 3.5]; if A is left e-unital and A-mod is equivalent to the category of left modules over a ring with 1, then A is generated by some element a [6, Proposition 4.7].

In the sequel, we will be dealing with left modules, and so we follow the convention of denoting the composition $g \cdot f$ of two module homomorphisms as the product fg. On the other hand, if R is a ring with 1, R^A is a left R-module and $E=\text{End}(\mu M)$ is its endomorphism ring, then we will denote by $E^E=\text{End}(\mu M)$ the following subring -in general, without identity- of E: $E^E=\{f \in E \mid f : M \rightarrow M$ factors through a finitely generated free module$\}$.

We now state and prove the following result.

Theorem. Let A be an idempotent ring. Then the category A-mod is equivalent to the category R-mod of left modules over a ring R with 1 if and only if there is some integer $n \geq 1$ such that the matrix ring $M_n(A)$ is generated by an idempotent.

Proof. We divide the proof in several steps.

Step 1. For any idempotent ring A, let us put $\text{ann}(A)=\{x \in A \mid AxA=0\}$ and $A':=A/\text{ann}(A)$. Then A' is a nondegenerate idempotent ring and A-mod and A'-mod are equivalent categories.

The fact that A' is nondegenerate is easy to verify. On the other hand, if $\varepsilon : A \rightarrow A'$ is the canonical projection, then one may see that the restriction of scalars functor ε_* gives indeed a functor from A'-mod to A-mod. Now, if \hat{A} belongs to A-mod and $a \in \text{ann}(A)$, then $AaM=AAaM=0$, so that $aM \subseteq \varepsilon_*(A)$, and $aM=0$, because M is A-torsionfree. As a consequence, there is a functor $F : A$-mod $\rightarrow A'$-mod which views each \hat{A} of A-mod as a left A'-module. Then F and ε_* are inverse equivalences and hence A-mod and A'-mod are equivalent categories.

Step 2. For each $n \geq 1$, let Δ be the matrix ring $M_n(A)$. Then A-mod and Δ-mod are also equivalent categories.

To see this, consider the bimodules $\varepsilon(A^*)_\Delta$ and $\varepsilon(A^*)_A$, and the natural mappings $\Phi : A^* \otimes_A A^* \rightarrow \Delta$, $\Psi : A^* \otimes_A A^* \rightarrow A$. It is clear that they are bimodule homomorphisms which give a Morita context between A and Δ (if we represent
elements in $\mathcal{A}(A^n)_A$ in row form, and elements of $\mathcal{A}(A^n)_A$ in column form, then ϕ and ψ are induced by products of matrices). Also, the fact that A is idempotent allows us to deduce that ϕ and ψ are surjective. Then, by [7, Theorem], A-mod and Δ-mod are equivalent categories.

Step 3. We prove now the sufficiency of the condition of the Theorem. Assume that $\Delta = M_n(A)$ is generated by an idempotent. By step 1, Δ is equivalent to $\Delta' = \Delta/\text{ann}(\Delta)$. But $\Delta = \Delta e \Delta$ for the idempotent e implies that $\Delta' = \Delta' e' \Delta'$ for the idempotent $e' = e + \text{ann}(\Delta)$; so, we can assume that Δ is a nondegenerate ring. Then Δ belongs to the category Δ-mod and is a generator of this category. But $\phi(\Delta e)$ generates Δ, so that it is also a generator of Δ-mod. Δe, being finitely spanned, is clearly a finitely generated object of Δ-mod [11, p. 121]. Finally, let $p : Y \to X$ be an epimorphism in Δ-mod, and put $U = \text{Im} \, p$, $V = X/U, W = V/\text{ker}(A)$. Then W belongs to Δ-mod and hence the canonical projection from X to W must be 0; thus, $V = 0$ and $X = U$, so that p is a surjective morphism. If $f : \Delta e \to X$ is now a homomorphism, then $f(e) = ea$ for some $a \in X$, and $\alpha(e) := ea$, with y such that $p(y) = ea$, gives a morphism α with $f = \alpha \cdot \phi$. This shows that Δe is projective. It follows that Δ-mod is equivalent to the category of left modules over the ring $\text{End}_{\phi}(\Delta e) \cong e \Delta e$. By step 2, A is equivalent to a ring with 1.

Step 4. Let us now suppose that A is an idempotent and left nondegenerate ring and that there is an equivalence $F : A$-mod \to R-mod, R being a ring with 1. We are to show that $M_n(A)$ is generated by an idempotent, for some $n \geq 1$.

By [4, Theorem 2.4], there exists a generator ρM of R-mod with the property that, if $E = \text{End}(\rho M)$, and $E_\rho = f \text{End}(\rho M)$, then A is isomorphic to some right ideal T of E_ρ, such that $E_\rho T = E_\rho$.

We now point out that we can further assume that there is an epimorphism of left R-modules $\pi : M \to R$. Indeed, this is true for some M^*, and we put $S := \text{End}(\rho M^*), S_\rho := f \text{End}(\rho M^*)$, so that there is an isomorphism $S \cong M_k(E)$. We assert that, in this isomorphism, $S_\rho \cong M_k(E_\rho)$; in fact, the inclusion $S_\rho \subseteq M_k(E_\rho)$ is obvious, and the inclusion $M_k(E_\rho) \subseteq S_\rho$ depends on the easily verified fact that morphisms $M^* \to M$ or $M \to M^*$ factor through free modules of finite type whenever they are induced by endomorphisms of ρM belonging to E_ρ. By substituting M^*, S and S_ρ for M, E and E_ρ, we have that the matrix ring $M_k(A)$ is still (isomorphic to) a right ideal of S_ρ in such a way that -assuming the obvious identification - $S_\rho \cdot M_k(A) = S_\rho$. So, by replacing A by $M_k(A)$ if necessary (note that $M_k(A)$ is again idempotent and left nondegenerate), we may indeed assume that $\pi : M \to R$ is an epimorphism.

Let $x \in M$ be such that $\pi(x) = 1$. Since $E_\rho A = E_\rho$ and $\sum_{\sigma \in E_\rho} \text{Im} \, \sigma = M$ we
deduce that $\Sigma_{x \in \mathcal{A}} \text{Im } a = M$. Therefore there exists a homomorphism $\alpha : M^n \to M$ such that $x \in \text{Im } a$; and each component $\alpha_j := \mu_j \cdot a$, with $\mu_j : M \to M^n$ being the canonical inclusion, satisfies $\alpha_j \in \mathcal{A}$. So we have that $\alpha \cdot \pi : M^n \to R$ is an epimorphism and hence there is $g : R \to M^n$ with $g\alpha \pi = 1_R$ and $\alpha \pi g = e$ an idempotent in the ring $\text{End} (\mathfrak{p} M^n) \cong M_n(E)$. Moreover, each of the components of e, when considered as a matrix, consists of $\mu_j \alpha \pi g p_x \in E j E \subseteq A$ (where the p_x are the canonical projections $M^n \to M$). This means that $e \in M_n(A)$.

As before, we may put $S := \text{End} (\mathfrak{p} M^n) \cong M_n(E)$, $S_0 := f \text{End} (\mathfrak{p} M^n) \cong M_n(E_0)$ so that $M_n(A)$ is an idempotent right ideal in S_0 which satisfies $S_0 M_n(A) = S_0$. Thus, e is an idempotent element in $M_n(A) \subseteq S_0$ and is an endomorphism of M^n such that $\text{Im } e$ is a direct summand of M^n isomorphic to R. Consequently, $\text{Im } e$ generates M^n and hence, if we let t range over all the elements in $e S_0$, we have $\Sigma_1 \text{Im } f = M^n$. This shows that $e S_0$ is a right ideal of S which satisfies $M^n \cdot (e S_0) = M^n$. If we apply now [5, Proposition 2.5], we see that this implies $S_0 e S_0 = S_0$.

Since $A = A^4$, $M_n(A) \cdot S_0 = M_n(A)$ and so we have: $M_n(A) \cdot e \cdot M_n(A) = M_n(A) \cdot S_0 e \cdot S_0 = M_n(A) \cdot S_0 = M_n(A)$. This proves that $M_n(A)$ is generated by an idempotent element.

Step 5. Now we complete the proof of the Theorem. Let A be an idempotent ring (but not necessarily left nondegenerate), and assume that there is an equivalence of categories between A-mod and R-mod for R a ring with 1. Put $\mathcal{A}(A) := \{ a \in A | A a = 0 \}$, and $A^* := A / \mathcal{A}(A)$. In a way analogous to that of Step 1, we may show that A and A^* are equivalent rings, so that we can deduce from stea 4, that for some $n \geq 1$, the matrix ring $M_n(A^*)$ is generated by an idempotent. Thus, all that is left to show is that this property can be lifted from $M_n(A^*)$ to $M_n(A)$. But we have that $M_n(A^*) = M_n(A / \mathcal{A}(A)) \cong (M_n(A)) / (M_n(\mathcal{A}(A)))$, and this last quotient is nothing else than $M_n(A) / \mathcal{A}(A) M_n(A)$, that is, $(M_n(A))^*$. Therefore, it will suffice to prove that if a ring of the form $A^* = A / \mathcal{A}(A)$ is generated by an idempotent, then so is the ring A.

So, let us assume that $A^* = A^* \cdot e \cdot A^*$ for some idempotent e. There is $u \in A$ with $u + \mathcal{A}(A) = e$, and then $u^2 - u \in \mathcal{A}(A)$, from which we see that $u^2 = u^2 = u^4$. Therefore, $w = u^2$ is an idempotent of A such that $w + \mathcal{A}(A) = e$. Now, let a, $b \in A$; by hypothesis, $b + \mathcal{A}(A) = \sum a_j \cdot e \cdot b_j$ in the ring A^*, so that $b - \sum a_j \cdot w \cdot b_j \in \mathcal{A}(A)$, for some a_j and b_j in A. Then $ab = \sum a_j \cdot wb_j$ and $ab \in AwA$. But since A is idempotent, we have finally that $A = AwA$ and A is generated by an idempotent.

Remarks. 1) It follows from the Theorem that an idempotent ring A
Idempotent rings which are equivalent

which is equivalent to a ring with 1 must be finitely generated as a bimodule over \(A \): the coordinates of the idempotent matrix \(e \) in the adequate \(M_e(A) \) give the family of generators. When \(A \) is left s-unital this gives as a consequence the already mentioned result of Komatsu [6, Proposition 4.7]. If \(A \) has local units, we get [2, Proposition 3.5].

2) However, the condition that \(A \) be finitely generated as a bimodule over itself is not sufficient for \(A \) to be equivalent to a ring with 1. To see this, take a ring \(A \) such that \(A = A^4 \), \(A \) is finitely generated as an \(A - A \)-bimodule, is nondegenerate and coincides with its Jacobson radical (Sasiada's example [10, p. 314] of a simple radical ring fulfills these requirements). It is not difficult to show that the Jacobson radical of such a ring is the intersection of all the subobjects of \(A \) in \(A \)-mod which give a simple quotient of \(A \) in \(A \)-mod, so that \(A \) has no simple quotients in \(A \)-mod. Suppose that the category \(A \)-mod were equivalent to \(R \)-mod for \(R \) a ring with 1. Then, if \(_RM \) corresponds to \(A \) in this equivalence, we would have that \(_RM \) is a generator of \(R \)-mod without simple quotients. But this is absurd, since \(R \) is isomorphic to a summand of some \(M^4 \).

3) It may happen that \(A \) be an idempotent ring such that \(A \)-mod is equivalent to a category \(R \)-mod for a ring \(R \) with 1 but, nevertheless, \(A \) is not generated by an idempotent. For instance, let \(R \) be a simple domain which is not a division ring and let \(I \) be a right ideal of \(R \) such that \(I \neq 0, I \neq R \). Then \(RI = R, I = IR = I^2 \) and \(I \) is a faithful right ideal of \(R \), so that we can view \(I \) as a left nondegenerate and idempotent ring contained in \(R = \text{End}(R) \). By [4, Theorem 2.4], we see that \(I \)-mod is equivalent to the category \(R \)-mod. But \(I \) contains no idempotent other than 0, so that \(I \) is not generated by an idempotent.

References

Departamento de Matemáticas
Universidad de Murcia
30001 Murcia, Spain