COMPLETE SPACE-LIKE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF AN INDEFINITE SPACE FORM

By

Qing-ming CHENG* and Soon Meen CHOI

1. Introduction.

Let \(M^p_{n+p}(c) \) be an \((n+p)\)-dimensional connected indefinite Riemannian manifold of index \(p \) and of constant curvature \(c \), which is called an indefinite space form of index \(p \). According to \(c>0 \), \(c=0 \) or \(c<0 \) it is denoted by \(S^p_{n+p}(c) \), \(R^p_{n+p} \) or \(H^p_{n+p}(c) \). A submanifold \(M \) of an indefinite space form \(M^p_{n+p}(c) \) is said to be space-like if the induced metric on \(M \) from that of the ambient space is positive definite. It is pointed out by some physicians that space-like hypersurfaces with constant mean curvature of arbitrary spacetimes get interested in relativity theory and an entire space-like hypersurface with constant mean curvature of an indefinite space form are studied by many authors (for examples: [1], [2], [3], [4], [7], [12] and so on).

Now, for a complete space-like submanifold \(M \) with parallel mean curvature vector of \(S^p_{n+p}(c) \), it is also seen by the first author [5] that \(M \) is totally umbilic if \(n=2 \) and \(h^2 \leq 4c \) or if \(n>2 \) and \(h^2 < 4(n-1)c \), where \(H \) denotes the mean curvature, i.e., the norm of the mean curvature vector and \(h = nH \). On the other hand, the first author and Nakagawa [6] investigated the total umbilicness of such hypersurfaces from the different point of view. They proved that the squared norm \(S \) of the second fundamental form of \(M \) is bounded from above by \(S_>(1) \) and if \(\sup S < S_>(1) \) and \(H^2 \leq c \), then \(M \) is totally umbilic, where

\[
S_>(p) = -pnc + \frac{nh^2 \pm (n-2)\sqrt{h^4 - 4(n-1)ch^2}}{2(n-1)}.
\]

In this paper, we research the similar problem to the above property for the complete space-like submanifolds with parallel mean curvature vector of an indefinite space form. That is, we prove the following

* The project is supported by National Natural Science Foundation of China.
Received November 5, 1992.
THEOREM 1. Let M be an n-dimensional complete space-like submanifold with parallel mean curvature vector of an indefinite space form $M^{n+p}_p(c)$. If the one of the following conditions is satisfied:

1. $c \leq 0$,
2. $c > 0$ and $n^2H^2 \geq 4(n-1)c$,

then

(1.1) \[S \leq S_+(p) + K(p), \]

where $K(p)$ is a constant defined by

\[K(p) = (p-1)H \{ nH + \sqrt{n(n-1)}\{ S_+(1) - nH^2 \} \}. \]

THEOREM 2. The hyperbolic cylinder $H^1(c_1) \times R^{n-1}_{1+1}$ in R^{n+1}_{1+1} is the only complete connected space-like n-dimensional submanifolds with parallel mean curvature vector of R^{n+p}_p satisfying $S = S_+(p) + K(p)$.

THEOREM 3. The hyperbolic cylinder $H^1(c_1) \times H^{n-1}(c_2)$ of $H^{n+1}_{1+1}(c)$ and the maximal submanifolds $H^{n_1}(c_1) \times \cdots \times H^{n_{p+1}}(c_{p+1})$ of $H^{n+p}_p(c)$ are the only complete connected space-like n-dimensional submanifolds with parallel mean curvature vector satisfying $S = S_+(p) + K(p)$, where $c_r = (n/n_r)c$ and $\sum_{r=1}^{p+1} n_r = n$ in the latter case.

2. Standard models.

This section is concerned with some standard models of complete space-like submanifolds with parallel mean curvature vector of an indefinite space form $M^{n+p}_p(c)$, $c \leq 0$. In particular, we only consider non-totally umbilic cases. Moreover, the squared norms of the second fundamental forms of such standard models are calculated. Without loss of generality, an $(n+p)$-dimensional indefinite Euclidean space R^{n+p}_p of index $p \geq 1$ can be first regarded as a product manifold of

$R^{n_1+1}_{1+1} \times \cdots \times R^{n_{p+1}}_{1+1} \times R^n$,

where $\sum_{r=1}^{p+1} n_r + m = n$. With respect to the standard orthonormal basis of R^{n+p}_p a class of space-like submanifolds

$H^{n_1}(c_1) \times \cdots \times H^{n_p}(c_p) \times R^n$

of R^{n+p}_p is defined as the Pythagorean product

$H^{n_1}(c_1) \times \cdots \times H^{n_p}(c_p) \times R^n$

$\{ (x_1, \cdots, x_{p+1}) \in R^{n+p}_p | x_r^2 = -\frac{1}{c_r} > 0 \}$.
where \(r=1, \ldots, p \) and \(| |\) denotes the norm defined by the product on the Minkowski space \(R^{p+1}_i \) which is given by \(\langle x, x \rangle = -(x_0)^2 + \sum_{i=1}^{p} (x_i)^2 \). The mean curvature vector \(h \) of \(M \) is given by

\[
(2.1) \quad h = -\frac{1}{n} \sum_{r=1}^{p} n_r c_r x_r,
\]

at \((x_1, \ldots, x_{p+1}) \in M\), which is parallel in the normal bundle of \(M \). The number \(S_r(1) \) and the squared norm \(S \) of the second fundamental form are given by

\[
(2.2) \quad S_r(1) = n^2 H^2 = -\sum_{r=1}^{p} n_r^2 c_r, \quad S = -\sum_{r=1}^{p} n_r c_r.
\]

Then we get

\[
S_r(p) + K(p) = pn^2 H^2 = -p \sum_{r=1}^{p} n_r^2 c_r \geq S,
\]

where the equality holds if and only if \(p=1 \) and \(n_1 = 1 \).

Next we consider an \(n \)-dimensional space-like submanifold of \(H^{p+1}(c), \ p \geq 1 \). Without loss of generality, an \((n+p+1)\)-dimensional indefinite Euclidean space \(R^{p+1}_{p+1} \) of index \((p+1)\) can be first regarded as a product manifold of

\[
R^{p+1}_{p+1} \times \cdots \times R^{p+1}_{p+1},
\]

where \(\sum_{r=1}^{p} n_r = n \). With respect to the standard orthonormal basis of \(R^{p+1}_{p+1} \) a class of space-like submanifolds

\[
H^{n_1(c_1)} \times \cdots \times H^{n_{p+1}(c_{p+1})}
\]

of \(R^{p+1}_{p+1} \) is defined as the Pythagorean product

\[
H^{n_1(c_1)} \times \cdots \times H^{n_{p+1}(c_{p+1})} = \left\{ \left(x_1, \ldots, x_{p+1} \right) \in R^{p+1}_{p+1} = R^{p+1}_{p+1} \times \cdots \times R^{p+1}_{p+1} : \ |x_r|^2 = -\frac{1}{c_r} > 0 \right\},
\]

where \(r=1, \ldots, p+1 \). The mean curvature vector \(h \) of \(M \) is given by

\[
(2.3) \quad h = -\frac{1}{n} \sum_{r=1}^{p+1} \left(n_r c_r x_r \right) + cx
\]

at \(x=(x_1, \ldots, x_{p+1}) \in M \), which is parallel in the normal bundle of \(M \). The norm \(H \) of the mean curvature vector \(h \) and the squared norm \(S \) of the second fundamental form are given by

\[
(2.4) \quad h^2 = n^2 H^2 = n^2 c - \sum_{r=1}^{p+1} n_r^2 c_r, \quad S = \sum_{r=1}^{p+1} n_r (c - c_r) = nc - \sum_{r=1}^{p+1} n_r c_r.
\]

When \(M \) is maximal, it satisfies \(n_r c_r = nc \) for any index \(r \) by (2.3), which yields \(S = -nc \). Then we get \(S_r(p) + K(p) = 0 \), because of \(S_r(p) = -nc \) and \(K(p) = 0 \).
Suppose that $H \neq 0$. By a theorem of Ki, Kim and Nakagawa [9], if $p=1$, then we have $S_+(1)-S=0$. On the other hand, we have $S_+(1)>h^2-nc$, because of $c<0$. So it is seen that if $p \geq 2$, then we obtain

$$S_+(p)+K(p)-S=h^2-nc-S \geq 0$$

by (2.4). In order to prove the last inequality, the following lemma is prepared. The proof of this lemma is the only calculus and hence it is omitted.

Lemma 2.1. Let a_1, \ldots, a_{p+1} be numbers not less than 1 satisfying $\sum a_r = n$ and b_1, \ldots, b_{p+1} be negative numbers satisfying $\sum (1/b_r) = (1/b)$. Then we have

$$\sum (a_r - p(a_r)^2) b_r \geq n(p+1-pn)b.$$

3. **Preliminaries.**

Throughout this paper all manifolds are assumed to be smooth, connected without boundary. We discuss in smooth category. Let $M^{n+p}_p(c)$ be an $(n+p)$-dimensional indefinite Riemannian manifold of constant curvature c whose index is p, which is called an *indefinite space form of constant curvature c and with index p*. Let M be an n-dimensional submanifold of an $(n+p)$-dimensional indefinite space form $M^{n+p}_p(c)$ of index p. The submanifold M is said to be *space-like* if the induced metric on M from that of the ambient space is positive definite. We choose a local field of orthonormal frames e_1, \ldots, e_{n+p} adapted to the indefinite Riemannian metric of $M^{n+p}_p(c)$ and the dual coframes $\omega_1, \ldots, \omega_{n+p}$ in such a way that, restricted to the submanifold M, e_1, \ldots, e_n are tangent to M. Then connection forms $\{\omega_{AB}\}$ of $M^{n+p}_p(c)$ are characterized by the structure equations

$$\begin{align*}
d\omega_A + \sum \varepsilon_B \omega_{AB} \wedge \omega_B &= 0, \quad \omega_{AB} + \omega_{BA} = 0, \\
d\omega_{AB} + \sum \varepsilon_C \omega_{AC} \wedge \omega_{CB} &= \Omega_{AB}, \\
\Omega_{AB} &= -\frac{1}{2} \sum_{c,d} \varepsilon_c \varepsilon_d R'_{ABCD} \omega_C \wedge \omega_D,
\end{align*}$$

(3.1)

\begin{align*}
R'_{ABCD} &= c \varepsilon_A \varepsilon_B (\delta_{AD} \delta_{BD} - \delta_{AC} \delta_{BD}),
\end{align*}

(3.2)

where $\varepsilon_A = 1$ for an index $A \leq n$, $\varepsilon_A = -1$ for an index $A \geq n+1$, and Ω_{AB} (resp. R'_{ABCD}) denotes the indefinite Riemannian curvature form (resp. the components of the indefinite Riemannian curvature tensor R') of $M^{n+p}_p(c)$. Therefore the components of the Ricci curvature tensor Ric' and the scalar curvature r' of $M^{n+p}_p(c)$ are given as

$$R'_{AB} = c(n+p-1)\varepsilon_A \delta_{AB}, \quad r' = (n+p)(n+p-1)c.$$
Complete space-like submanifolds

In the sequel, the following convention on the range of indices is used, unless otherwise stated:

\[1 \leq A, B, \ldots \leq n + p; \quad 1 \leq i, j, \ldots \leq n; \quad n + 1 \leq \alpha, \beta, \ldots \leq n + p. \]

We agree that the repeated indices under a summation sign without indication are summed over the respective range. The canonical forms \(\{ \omega_A \} \) and the connection forms \(\{ \omega_{AB} \} \) restricted to \(M \) are also denoted by the same symbols. We then have

\[(3.3) \quad \omega_n = 0 \quad \text{for} \quad \alpha = n + 1, \ldots, n + p. \]

We see that \(e_1, \ldots, e_n \) is a local field of orthonormal frames adapted to the induced Riemannian metric on \(M \) and \(\omega_1, \ldots, \omega_n \) is a local field of its dual coframes on \(M \). It follows from (3.1), (3.3) and Cartan's lemma that we have

\[(3.4) \quad \omega_{ni} = \sum h_{ij}^{\alpha} \omega_j, \quad h_{ij}^{\alpha} = h_{ij}^{\alpha}. \]

The second fundamental form \(\alpha \) and the mean curvature vector \(h \) of \(M \) are defined by

\[\alpha = -\sum h_{ij}^{\alpha} \omega_i \omega_j e_n, \quad h = -\frac{1}{n} \sum \left(\sum h_{ij}^{\alpha} \right) e_n. \]

The mean curvature \(H \) is defined by

\[(3.5) \quad H = |h| = \frac{1}{n} \sqrt{\sum (h_{ij}^{\alpha})^2}. \]

Let \(S = \sum (h_{ij}^{\alpha})^2 \) denote the squared norm of the second fundamental form \(\alpha \) of \(M \). The connection forms \(\{ \omega_{ij} \} \) of \(M \) are characterized by the structure equations

\[(3.6) \quad \begin{cases} \quad d\omega_i + \sum \omega_{ij} \wedge \omega_j = 0, & \omega_{ij} + \omega_{ji} = 0, \\ d\omega_{ij} + \sum \omega_{ik} \wedge \omega_{kj} = \Omega_{ij}, \quad \Omega_{ij} = -\frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l, \end{cases} \]

where \(\Omega_{ij} \) (resp. \(R_{ijkl} \)) denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor \(R \)) of \(M \). Therefore, from (3.1) and (3.6), the Gauss equation is given by

\[(3.7) \quad R_{ijkl} = c(\delta_i \delta_{jk} - \delta_{ik} \delta_{jl}) - \sum (h_{ij}^{\alpha} h_{kj}^{\alpha} - h_{ik}^{\alpha} h_{lj}^{\alpha}). \]

The components of the Ricci curvature \(Ric \) and the scalar curvature \(r \) are given by

\[(3.8) \quad R_{jk} = (n - 1) c \delta_{jk} - \sum h_{ij}^{\alpha} h_{kj}^{\alpha} + \sum h_{ij}^{\alpha} h_{jk}^{\alpha}, \]

\[(3.9) \quad r = n(n - 1) c - n^2 H^2 + \sum (h_{ij}^{\alpha})^2. \]
We also have
\[(3.10)\]
\[d\omega_{\alpha\beta} - \sum \omega_{\alpha i} \wedge \omega_{\beta j} = -\frac{1}{2} \sum R_{\alpha j k} \omega_i \wedge \omega_j,\]
where
\[R_{\alpha j k} = -\sum (h_{\alpha j}^p h_{\alpha k}^q - h_{\alpha k}^p h_{\alpha j}^q)\]
The Codazzi equation and the Ricci formula for the second fundamental form are given by
\[(3.11)\]
\[h_{\alpha j}^m - h_{\alpha j}^m = 0,\]
\[(3.12)\]
\[h_{\alpha j}^m - h_{\alpha j}^m = -\sum h_{\alpha m}^p h_{\alpha j}^q - \sum h_{\alpha j}^p h_{\alpha k}^q + \sum h_{\alpha j}^p h_{\alpha k}^q R_{\alpha j k},\]
where \(h_{\alpha j}^m\) and \(h_{\alpha j}^m\) denote the components of the covariant differentials \(\nabla \alpha\) and \(\nabla \beta\) of the second fundamental form, respectively. The Laplacian \(\Delta h_{\alpha j}^m\) of the components \(h_{\alpha j}^m\) of the second fundamental form \(\alpha\) is given by
\[\Delta h_{\alpha j}^m = \sum h_{\alpha j}^m h_{\alpha k}^m.\]
From \(3.12\) we get
\[(3.13)\]
\[\Delta h_{\alpha j}^m = \sum h_{\alpha m}^p h_{\alpha j}^q - \sum h_{\alpha j}^p h_{\alpha k}^q + \sum h_{\alpha j}^p h_{\alpha k}^q R_{\alpha j k}.\]
The following generalized maximum principle due to Omori [11] and Yau [15] will play an important role in this paper.

Theorem 3.1. Let \(M\) be an \(n\)-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below. Let \(F\) be a \(C^2\)-function bounded from above on \(M\), then for any \(\varepsilon > 0\), there exists a point \(p\) in \(M\) such that
\[F(p) + \varepsilon > \sup F, \quad |\text{grad } F(p)| < \varepsilon, \quad \Delta F(p) < \varepsilon.\]
The following lemma is already known.

Lemma 3.2. Let \(a_1, \ldots, a_n\) be real numbers satisfying \(\sum a_i = 0\) and \(\sum a_i^2 = k^2\) for \(k > 0\). Then we have
\[|\sum a_i^2| \leq (n-2) \frac{1}{n(n-1)} k^2,\]
where the equality holds if and only if \(n-1\) of them are equal with each other.

Let \(M\) be an \(n\)-dimensional space-like submanifold with parallel mean curvature vector \(h\) of an indefinite space form \(M_\mathbb{R}^{n+p}(c)\). Because the mean curvature vector is parallel, the mean curvature is constant. Suppose that
Complete space-like submanifolds

$H \neq 0$. We choose e_{n+1} in such a way that its direction coincides with that of the mean curvature vector. Then it is easily seen that we have

\begin{align}
(4.1) & \quad \omega_{n,n+1} = 0, \quad H = \text{constant}, \\
(4.2) & \quad H^n H^{n+1} = H^{n+1} H^n, \\
(4.3) & \quad \text{tr} H^{n+1} = nH, \quad \text{tr} H^n = 0
\end{align}

for any $\alpha \neq n+1$, where H^n denotes an $n \times n$ symmetric matrix (h_{ij}).

A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect to the direction of the mean curvature vector h, that is,

\[(4.4) \quad h_{ij}^{n+1} = H \delta_{ij}.\]

We denote by μ an $n \times n$ symmetric matrix with $\mu_{ij} = h_{ij}^{n+1} - H \delta_{ij}$. Then we have

\[(4.5) \quad \text{tr} \mu = 0, \quad |\mu|^2 = \text{tr}(\mu)^2 = \sum (\mu_{ij})^2 = \text{tr}(H^{n+1})^2 - nH^2.\]

So the pseudo-umbilic submanifolds are characterized by the property $\mu = 0$. A non-negative function τ is defined by $\tau^2 = \sum_{\alpha = n+1} (h_{ij}^\alpha)^2$. We then have

\[(4.6) \quad S = |\mu|^2 + \tau^2 + nH^2.\]

Hence it is seen that $|\mu|^2$ as well as τ^2 are independent of the choice of the frame fields and they are functions defined globally on M.

Proposition 4.1. Let M be n-dimensional complete space-like submanifold with parallel mean curvature vector of an indefinite space form $S^p_{n+1}(c)$. If it satisfies

\[n^2 c \geq n^2 H^2 \geq 4(n-1)c, \quad S \leq S_1(1),\]

then M is pseudo-umbilic, where H denotes the mean curvature, i.e., the norm of the mean curvature vector.

Proof. In order to prove this property it suffices to show $\mu = 0$. From (3.13), the Gauss equation (3.7) and (3.10), we have

\[(4.7) \quad \Delta h_{ij}^{n+1} = nch_{ij}^{n+1} - nH \delta_{ij} + \sum h_{km}^{n+1} h_{m}^{k} h_{ij}^{k} - 2\sum h_{kk}^{n+1} h_{kj}^{k} h_{ij}^{k} \]
\[\quad + \sum h_{km}^{k} h_{m}^{k} h_{ij}^{k} - nH \sum h_{km}^{n+1} h_{m}^{n+1} + \sum h_{kk}^{k} h_{km}^{k} h_{m}^{n+1}.\]

Accordingly we obtain from (4.2)

\[\frac{1}{2} \Delta |\mu|^2 = \sum (h_{ij}^{n+1})^2 + nc \sum (h_{ij}^{n+1})^2 - n^2 c H^2 \]
\[\quad + \sum h_{km}^{n+1} h_{m}^{k} h_{ij}^{k} h_{ij}^{k} - 2\sum h_{kk}^{n+1} h_{km}^{n+1} h_{m}^{k} h_{ij}^{k} + \sum h_{km}^{n+1} h_{m}^{n+1} h_{k}^{k} h_{ij}^{k} h_{ij}^{k}.\]
and hence we see

\[\frac{1}{2} \Delta |\mu|^2 = \sum (h^{+1}_i h^{+1}_j) + n c \sum (h^{+1}_i)^2 \]

(4.8)

\[-n^2 c H^2 - n H \text{tr}(H^{n+1})^2 - \sum_{\beta \neq n+1} \text{tr}(H^{n+1}H^\beta - H^\beta H^{n+1})^2 + \{\text{tr}(H^{n+1})^2 + \sum_{\beta \neq n+1} \{\text{tr}(H^{n+1}H^\beta)\}^2. \]

On the other hand, because of

\[\text{tr}(H^{n+1}) = 3H(\text{tr}(H^{n+1})^2 - nH^2) + nH^3, \]

we get

\[\frac{1}{2} \Delta |\mu|^2 \geq (|\mu|^2 + nH^3) - nH \{\text{tr} \mu^3 + 3H|\mu|^2 + nH^3\} + nc|\mu|^2 \]

(4.9)

\[= |\mu|^2 + n H^2 - nH \text{tr} \mu^3. \]

Because of \(\text{tr} \mu = 0 \), we can apply Lemma 3.2 to the eigenvalues of \(\mu \) and obtain

\[|\text{tr} \mu|^2 \leq \frac{n-2}{n(n-1)} |\mu|^2. \]

(4.10)

Hence we obtain

\[\frac{1}{2} \Delta |\mu|^2 \geq |\mu|^2 \left(|\mu|^2 - nH^2 \frac{n-2}{n(n-1)} |\mu| + nc - nH^2 \right), \]

where we have used (4.9) and (4.10). From (3.8) we know that the Ricci curvature of \(M \) is bounded from below. Putting \(F = -1/\sqrt{|\mu|^2 + a} \) for any positive number \(a \). Since \(M \) is complete and space-like, we can apply the Generalized Maximum Principle (Theorem 3.1) to the function \(F \). For any given positive number \(\varepsilon > 0 \), there exists a point \(p \) at which \(F \) satisfies

\[\sup F < F(p) + \varepsilon, \quad |\text{grad} F|(p) < \varepsilon, \quad \Delta F(p) < \varepsilon. \]

(4.12)

Consequently the following relationship

\[\frac{1}{2} F(p)^2 \Delta |\mu|^2(p) < 3\varepsilon^2 - F(p)\varepsilon \]

(4.13)

can be derived by the simple and direct calculations. For a convergent sequence \(\{\varepsilon_m\} \) such that \(\varepsilon_m \to 0 \) \((m \to \infty)\) and \(\varepsilon_m > 0 \), there exists a point sequence \(\{p_m\} \) such that \(\{F(p_m)\} \) converges to \(F_0 = \sup F \) by (4.12). On the other hand, it follows from (4.13) that we have

\[\frac{1}{2} F(p_m)^2 \Delta |\mu|^2(p_m) < 3\varepsilon_m^2 - F(p_m)\varepsilon_m \]

(4.14)

The right hand side of (4.14) converges to 0 because \(F \) is bounded. Accordingly,
for any positive number \(\varepsilon > 0 \) (\(\varepsilon < 2 \)) there exists a sufficiently large integer \(m \) for which we have

\[F(p_m) \Delta |\mu|^2(p_m) < \varepsilon. \]

Hence we get

\[
(2-\varepsilon)|\mu|^4(p_m) - 2nH \frac{n-2}{\sqrt{n(n-1)}} |\mu|^4(p_m) + 2(nc-nH^2-\varepsilon a) |\mu|^2(p_m) - \varepsilon a^2 < 0.
\]

Thus the sequence \(\{ |\mu|^2(p_m) \} \) is bounded and the definition of \(F \) gives rise to

\[\lim_{m \to \infty} |\mu|^2(p_m) = \sup |\mu|^2. \]

Therefore the supremum of \(F \) satisfies \(F_\varepsilon = \sup F < 0 \). According to (4.14) we have

\[\lim_{m \to \infty} \sup \Delta |\mu|^2(p_m) \leq 0. \]

Thus (4.11) and (4.16) yield

\[0 \leq \sup |\mu|^2 \left(\sup |\mu|^2 - nH \frac{n-2}{\sqrt{n(n-1)}} \sup |\mu| + nc - nH^2 \right). \]

Taking account of (4.5) we have

\[\sup \sum (h_{ij}^{p-1})^2 = nH^2 \text{ or } S_+ (1) \leq \sup \sum (h_{ij}^{p-1})^2 \leq S_+ (1), \]

from which combining with the assumption of Proposition 4.1 it follows that we have

\[\sup \sum (h_{ij}^{p-1})^2 = nH^2. \]

This means that \(\mu = 0 \) because of (4.5) and therefore \(M \) is pseudo-umbilic.

The inequality (4.17) holds on the space-like submanifold \(M \) of \(M_\varepsilon^{p+p}(c) \). Accordingly, in this case we have

\[\sup \sum (h_{ij}^{p-1})^2 = nH^2 \text{ or } \sup \sum (h_{ij}^{p-1})^2 \leq S_+ (1). \]

Remark. When \(p = 1 \), the hypersurface \(M \) becomes totally umbilic under the assumption of Proposition 4.1, which means that this property is a generalization of the theorem due to the first author and Nakagawa [6].

5. **Proof of Theorem 1.**

In this section the squared norm \(S \) of the second fundamental form of \(M \) is estimated from above. Let \(M \) be an \(n \)-dimensional space-like submanifold with parallel mean curvature vector \(h \) of an indefinite space form \(M_\varepsilon^{p+p}(c) \).
Proof of Theorem 1. Because the mean curvature vector is parallel, the mean curvature is constant. If \(H = 0 \), then from Theorem 1.1 due to Ishihara [8], we know that \(M \) is totally geodesic if \(c \geq 0 \) and \(S \leq -npc \) if \(c < 0 \). Hence Theorem 1 is true. Next we may suppose \(H \neq 0 \). We choose \(e_{n+1} \) in such a way that its direction coincides with that of the mean curvature vector. Then we get (4.1), (4.2) and (4.3). From (3.13), the Gauss equation (3.7) and (3.10) we get

\[
\frac{1}{2} \Delta \tau^2 = \sum_{\alpha \neq \gamma + 1} (h_{ij}^\alpha)^2 - \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha \Delta h_{ij}^\alpha
\]

\[
= \sum_{\alpha \neq \gamma + 1} (h_{ij}^\alpha)^2 + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha \Delta h_{ij}^\alpha
\]

\[
- 2 \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
- nH \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\gamma,
\]

and hence we get

\[
\frac{1}{2} \Delta \tau^2 = \sum_{\alpha \neq \gamma + 1} (h_{ij}^\alpha)^2 + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha \Delta h_{ij}^\alpha
\]

\[
- 2 \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
+ \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
- 2 \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
- nH \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\gamma.
\]

(5.1)

We put \(S_{\alpha \beta} = \sum h_{ij}^\alpha h_{ij}^\beta \) for any \(\alpha, \beta \neq n + 1 \). Then \((S_{\alpha})_\beta \) is a \((p - 1) \times (p - 1)\) symmetric matrix. It can assumed to be diagonal for a suitable choice of \(e_{n+1}, \ldots, e_{n+p} \). Set \(S_{\alpha} = S_{\alpha \alpha} \). We then have \(\tau^2 = \sum S_{\alpha} \). In general, for a matrix \(A = (a_{ij}) \), we define \(N(A) = \text{tr}(A^2) \). Hence we get

\[
\sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
+ \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma + \sum_{\alpha \neq \gamma + 1} h_{ij}^\alpha h_{ij}^\beta h_{ij}^\gamma
\]

\[
= \sum_{\alpha \neq \gamma + 1} (S_{\alpha})_\beta + \sum_{\alpha \neq \gamma + 1} N(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha}).
\]

(5.2)

Obviously, we see

\[
\sum_{\alpha \neq \gamma + 1} N(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha}) \geq 0.
\]

Suppose \(p \geq 2 \). Let
Complete space-like submanifolds

\[(p - 1)\sigma_i = \tau^2 = \sum S_a,\]
\[(p - 1)(p - 2)\sigma_i = 2 \sum_{a \prec \beta, \alpha, \beta \prec n + 1} S_a S_\beta.\]

Then we get
\[
\sum(S_a)^2 = (p - 1)(\sigma_i)^2 + (p - 1)(p - 2)(\sigma_i)^2 - \sigma^2 = \sum_{a \prec \beta, \alpha, \beta \prec n + 1} (S_a - S_\beta)^2.
\]

Hence we obtain
\[
\sum_{a, \beta \prec n + 1} h^a_{k_m} h^{k_m}_{k_j} h^{k_j}_{l_j} \geq \sum_{a, \beta \prec n + 1} h^a_{k_m} h^{k_m}_{k_j} h^{k_j}_{l_j} - 2 \sum_{a, \beta \prec n + 1} h^{n+1}_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j} - 2 \sum_{a, \beta \prec n + 1} h^{n+1}_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j}
\]
\[
= (p - 1)(\sigma_i)^2 - \frac{1}{p - 1} \tau^4.
\]

Then the equations (5.1), (5.2) and (5.3) imply
\[
\frac{1}{2} \Delta \tau^2 \geq n c \tau^2 + \frac{1}{p - 1} \tau^4 + \sum_{a, \beta \prec n + 1} h^a_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j} - 2 \sum_{a, \beta \prec n + 1} h^{n+1}_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j}
\]
\[
\geq (p - 1)(\sigma_i)^2 - \frac{1}{p - 1} \tau^4.
\]

For a fixed index \(\alpha\), since \(H^a H^{n+1} = H^{n+1} H^a\), we can choose \(\{e_1, \ldots, e_n\}\) such that
\[
h^{e_i}_{e_i} = \lambda^2 \delta_{i,i}, \quad h^{e_i+1}_{e_i+1} = \lambda \delta_{i,i}.
\]

Then we get
\[
\sum h^a_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j} - 2 \sum h^{n+1}_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j} + \sum h^{n+1}_{k_m} h^{n+1}_{k_j} h^{n+1}_{l_j}
\]
\[
= (\sum \lambda_i \lambda_i^2)^2 - n H \sum \xi_i (\lambda_i^2)^2.
\]

We notice here that eigenvalues \(\lambda_i\) are bounded by (4.19). In order to estimate the last term on the above equation, the following property is prepared.

Lemma 5.1. Let \(a_1, \ldots, a_n\) be real numbers satisfying \(\Sigma a_i = 0\) and let \(b_1, \ldots, b_n\) be also real numbers. Then we have
\[
\sum a_i (b_i)^2 \leq \sqrt{n - 1 \over n} \sqrt{\sum (a_i)^2} \sum (b_i)^2,
\]
where the equality holds if and only if the \(n - 1\) of \(a_i\)'s are equal with each other and the corresponding \(n - 1\) of \(b_i\)'s are equal to 0.
Proof. We consider the function \(f = \sum a_i (b_i)^2 \) with constraint \(\sum a_i = 0, \sum (a_i)^2 = a \) and \(\sum (b_i)^2 = b \). Then there exists a critical point of \(f \) on \(\mathbb{R}^2 \) at which we have

\[
(b_i)^2 + \mu_i + 2\mu_i a_i = 0, \quad 2a_i b_i + 2\mu_i b_i = 0.
\]

From (5.4) we get

\[
\mu_i = -\frac{1}{n} b,
\]

and the critical value of \(f \) is equal to \(-\mu_i b = -2\mu_i a\), and therefore we have

\[
(5.5) \quad a_i = -\mu_i, \quad \text{or} \quad b_i = 0.
\]

If \(a_i = -\mu_i \) for any index \(i \), then we get \(f = 0 \), because of \(\sum a_i = 0 \). If \(a_i = -\mu_i, 1 \leq i \leq m \) and \(b_j = 0, m+1 \leq j \leq n \), then we have from (5.4)

\[
2\mu_i a_j = \frac{1}{n} b, \quad j = m + 1, \ldots, n.
\]

If \(\mu_i = 0 \), then \(f = 0 \). Without loss of generality, we may suppose \(\mu_i \neq 0 \). Thus we see

\[
a_j = \frac{b}{2n\mu_i}, \quad j = m + 1, \ldots, n,
\]

which yields

\[
(5.6) \quad m \mu_i = (n - m) \frac{b}{2n\mu_i}.
\]

From (5.4) and (5.5) it follows that we obtain

\[
\mu_i = \pm \frac{1}{2} \sqrt{\frac{n-m}{nm}} \frac{b}{\sqrt{a}},
\]

which means that we obtain

\[
|f| \leq \frac{1}{n} \sqrt{n-1} \sqrt{\sum (a_i)^2} \sum (b_i)^2.
\]

If the equality holds, then we have \(m = 1 \) and \(a_j = \pm \sqrt{a/(n-1)} \), \(b_j = 0 \), \(2 \leq j \leq n \).

The converse is obvious. \(\square \)

According to Lemma 5.1 we have

\[
(\sum \lambda_i \lambda_j^2) - nH \sum \lambda_i (\lambda_j^2) \geq -nH \sum \lambda_i - H(\lambda_j^2) - nH^2 \sum (\lambda_j^2)
\]

\[
= -nH (\sum \mu_i (\lambda_j^2)^2 + H \sum (\lambda_j^2)^2)
\]

\[
\geq -nH \left(\sqrt{\frac{n-1}{n}} \sqrt{\sum (h_{ij}^{n+1})^2} - nH^2 + H \right) \text{tr}(H)\).
\]
The right hand side of the inequality above does not depend on the choice of frame fields. Therefore we have

\[
\sum_{\alpha \neq n+1} h_{\alpha m}^* h_{m k}^* h_{ij}^* - 2 \sum_{\alpha \neq n+1} h_{\alpha m}^* h_{m j}^* h_{ij}^* + \sum_{\alpha \neq n+1} h_{\alpha m}^* h_{m k}^* h_{ij}^*
\]

\[= -nH \sum_{\alpha \neq n+1} h_{\alpha m}^* h_{m j}^* h_{ij}^* + \sum_{\alpha \neq n+1} h_{\alpha m}^* h_{m k}^* h_{ij}^* \]

\[\geq -nH \left(\sqrt{\frac{n-1}{n}} \sqrt{\sum (h_{ij}^*)^2} - nH^2 + H \right) \tau^2 .\]

Thus we have

\[\frac{1}{2} \Delta \tau^2 \geq \left\{ n c - nH \left(\sqrt{\frac{n-1}{n}} \sqrt{\sum (h_{ij}^*)^2} - nH^2 + H \right) \right\} \tau^2 + \frac{1}{p-1} \tau^4 .\]

Making use of the same proof as in the proof of \(|\mu|^2 \) above, we have

\[0 \geq \left\{ n c - nH \left(\sqrt{\frac{n-1}{n}} \sqrt{\sum (h_{ij}^*)^2} - nH^2 + H \right) \right\} \tau^2 + \frac{1}{p-1} \tau^4 .\]

Thus from (4.19) we get

\[\text{(5.7)} \quad \text{sup} \tau^2 \leq (p-1) \left\{ nH \left(\sqrt{\frac{n-1}{n}} \sqrt{S_\alpha(1)} - nH^2 + H \right) - nc \right\} .\]

The equality (4.6), the inequalities (4.19) and (5.7) yield

\[S \leq S_\alpha(1) + (p-1)H \{ nH + \sqrt{n(n-1)} \{ S_\alpha(1) - nH^2 \} \} .\]

Hence we complete the proof of Theorem 1. \(\square \)

Remark. When \(M \) is maximal (i.e., \(H=0 \)), Theorem 1 implies \(S \leq -n \rho \). Ishihara [8] obtained this relation for complete maximal space-like submanifolds. When \(p=1 \), Theorem 1 becomes \(S \leq S_\alpha(1) \). This result is obtained by the first author and Nakagawa [6]. Hence Theorem 1 generalizes the results above.

6. Proof of Theorems 2 and 3.

Let \(M \) be an \(n \)-dimensional complete space-like submanifold with parallel mean curvature vector of \(M^p \), \(c \leq 0 \). We assume \(S=S_\alpha(1) + K(p) \). Then the equalities of all inequalities in the previous sections have to hold. Consequently, from (4.8) and (5.7) it is seen that

\[\text{(6.1)} \quad h_{\alpha i}=0\]

for any \(i, j, k \) and \(\alpha \). Also from (4.2) and (5.7) it follows that

\[H^\alpha H^\beta = H^\beta H^\alpha\]

for any \(\alpha \) and \(\beta \). The equations imply that all of \(H^\alpha \) are simultaneously...
diagonalizable and the normal connection in the normal bundle of M is flat. Hence we can choose a suitable basis $\{e_i\}$ such that

$$h_{ij}^\alpha = \lambda_i^\alpha \delta_{ij}$$

for any i, j and α. The submanifold M is said to be isoparametric [13] if the normal connection is flat and the characteristic polynomial of the shape operator A_ξ has constant coefficients over the domain of any local parallel normal field ξ.

Lemma 6.1. M is isoparametric.

Proof. Since the normal connection is flat, it is seen that there exist locally p mutually orthogonal unit normal vector fields which are parallel in the normal bundle. So we can choose a suitable parallel basis $\{e_\alpha\}$ and then we have $\omega_{\alpha \beta} = 0$. Hence, since we have

$$\sum h_{ij}^\alpha \omega_k = d h_{ij}^\alpha - \sum h_{ij}^\beta \omega_k = \sum h_{ij}^\beta \omega_k + \sum h_{ij}^\beta \omega_{\beta \alpha},$$

setting $i = j$ in the above equation and using (6.1) we get $d h_{ij}^\alpha = 0$. Hence h_{ij}^α is constant and M is isoparametric.

Lemma 6.2. M is of non-positive curvature.

Proof. Suppose that there exist indices i, j and α such that $h_{ij}^\alpha \neq h_{ij}^\beta$. From the equation (6.3) we get

$$\sum h_{ij}^\alpha \omega_k = \sum h_{ij}^\beta \omega_k = (h_{ij}^\alpha - h_{ij}^\beta) \omega_{ij} = 0,$$

from which it follows that $\omega_{ij} = 0$. Accordingly, we have

$$\sum \omega_{ij} \wedge \omega_{kj} = 0.$$

In fact, for any fixed indices i and α we denote by $[i]$ the set consisting of indices k such that $h_{ij}^\alpha = h_{kj}^\alpha$. Then we have $[i] \neq [j]$ by the supposition and hence we get

$$\sum_{k \in [i]} \omega_{ij} \wedge \omega_{kj} = \sum_{k \in [i]} \omega_{ij} \wedge \omega_{kj} + \sum_{k \in [j]} \omega_{ij} \wedge \omega_{kj} = \sum_{k \in [i] \wedge [j]} \omega_{ij} \wedge \omega_{kj},$$

each term of which vanishes identically. By the structure equation

$$d \omega_{ij} + \sum \omega_{ij} \wedge \omega_{kj} = -\frac{1}{2} \sum R_{ij \beta} \omega_k \wedge \omega_i,$$

we obtain

$$R_{ij \beta} = c - \sum \lambda_i \lambda_j = 0.$$
Complete space-like submanifolds

Next, suppose that $h^i_i = h^j_j$ for any distinct indices i and j and for any index α. Then the Gauss equation implies

$$R_{ijkl} = c - \sum_\alpha (h^i_i)^\alpha - \sum_\alpha (\lambda^\alpha)^\alpha \leq 0,$$

because of $c \leq 0$.

Thus M is of non-positive curvature. □

Proof of Theorem 2. By a theorem due to Koike [10] and Lemmas 6.1 and 6.2 it is seen that M is locally congruent to the product submanifold $H_{n(1)} \times \cdots \times H_{n(2)} \times R^n$ of R^{n+p}, where $\sum p_i n_p + m = n$ and $1 \leq q \leq p$. Then M can be naturally regarded as the space-like submanifold of R^{n+p} whose mean curvature vector is given by (2.1). It is also parallel in the normal bundle of M in R^{n+p}. The constant $S(1)$ and the squared norm S of the second fundamental form are given by (2.2). Therefore it is seen that we have

$$S_+(p) + K(p) = -p \sum r \alpha c_r = S,$$

which implies $p = q = 1$ and $n_1 = 1$. Accordingly the hyperbolic cylinder $H_{1(1)} \times R^{n-1}$ of R_{1}^{n+1} is the complete space-like hypersurface with constant mean curvature whose squared norm S attaining the maximal value. □

Proof of Theorem 3. When $p = 1$ it is seen by a theorem due to Ki, Kim and Nakagawa [9] that the hyperbolic cylinder $H_{1(1)} \times H^{n-1}(\bar{c})$ is the complete space-like hypersurface with constant mean curvature of $H_{1}^{n+1}(\bar{c})$ satisfying the given condition.

Suppose next that $p \geq 2$. By means of Koike’s theorem and Lemmas 6.1 and 6.2 again, M is locally congruent to the product submanifold $H_{n(1)} \times \cdots \times H_{n(2)} \times R^{n+1} \times H_{q}^{n+q}(\bar{c'})$, where $\sum p_i n_p = n$, $\sum q_i (1/c_r) = (1/c') \geq (1/c')$ and $H_{q}^{n+q}(\bar{c'})$ is a totally umbilic submanifold of $H_{p}^{n+p}(c)$. The mean curvature vector of M in $H_{q}^{n+q}(\bar{c'})$ is denoted by h', which is parallel in the normal bundle of M in $H_{q}^{n+q}(\bar{c'})$. Then the mean curvature vector h of M of $H_{p}^{n+p}(\bar{c})$ is given by $h = h' + h''$, where h'' is the mean curvature vector of $H_{q}^{n+q}(\bar{c'})$ in $H_{p}^{n+p}(c)$. Consequently the mean curvature vector h is parallel in the normal bundle $N(M)$ and the mean curvature H and the squared norm S of M in $H_{p}^{n+p}(c)$ are given by

$$h^2 = n^2 H^2 = n^2 c - \sum r \alpha c_r,$$

$$S = nc - \sum r \alpha c_r.$$
We have $S,1 \geq h^2 - nc$, because of $c < 0$. So it is seen by Lemma 2.1 that we obtain

\[(6.4) \quad S,1(p) + K(p) - S \geq h^2 - pnc + (p - 1)h^2 - S = ph^2 - pnc - S \geq 0,\]

where the equality holds if and only if $H = 0$. Accordingly, if we have $S = S,1(p) + K(p)$, then H must vanish identically. This implies that Theorem 3 is proved by a theorem due to Ishihara [8]. □

References

Institute of Mathematics, Fudan University, Shanghai 200433, P. R. China
Institute of Mathematics, University of Tsukuba, 305 Ibaraki, Japan