FACTORIZATION THEOREM FOR PERFECT MAPS BETWEEN METRIZABLE SPACES

By
Yoshie TAKEUCHI

1. Introduction. We assume that all spaces are normal and all maps are continuous. We write $A \in \text{ANR}$ for a space A if A is an ANR for the class of all compact metrizable spaces.

Given spaces X and A we write $\dim X \leq A$ if for any closed subset F of X any map $f: F \rightarrow A$ can be extended to X. For a map $\xi: X \rightarrow X_0$ we write $\dim \xi \leq A$ if $\dim \xi^{-1}(x_0) \leq A$ for any $x_0 \in X_0$. It is known that a space X satisfies the relation $\dim X \leq S^n$ for the n-sphere S^n if and only if X satisfies the inequality $\dim X \leq n$ in the sense of the covering dimension.

Our purpose in this paper is to prove the following theorem:

THEOREM. Let $A \in \text{ANR}$, let ξ be a closed map of a space X into a paracompact space X_0, ζ be a perfect map of a metrizable space Z into a metrizable space Z_0, and let $f: X \rightarrow Z$ and $f_0: X_0 \rightarrow Z_0$ be maps such that $\zeta f = f_0 \xi$ and $\dim \xi \leq A$. Then there are metrizable spaces Y and Y_0, a perfect map $\eta: Y \rightarrow Y_0$, and maps $g: X \rightarrow Y$, $g_0: X_0 \rightarrow Y_0$, $h: Y \rightarrow Z$ and $h_0: Y_0 \rightarrow Z_0$ such that $\eta g = g_0 \xi$, $\zeta h = h_0 \eta$, $hg = f$, $h_0 g_0 = f_0$, $\dim \eta \leq A$, $w(Y_0) \leq \max(w(X_0), w(Z_0))$, and $\dim Y_0 \leq \dim X_0$.

![Diagram of maps]

For a map $\zeta: Z \rightarrow Z_0$ we write $w(\zeta) \leq \tau$ if there is an embedding $i: Z \rightarrow Z_0 \times I^\tau$ such that $\zeta = \text{pr} i$, where I^τ is the Tikhonov cube of weight τ and $\text{pr}: Z_0 \times I^\tau \rightarrow Z_0$ is the projection.

In [9] Pasynkov proved a similar theorem to the above theorem, in which he added the property that $w(\eta) \leq \tau$, if $w(\xi) \leq \tau$, in the case that X, X_0, Z, Z_0 are compact (which are not assumed to be metrizable).

However, in [7] Pasynkov stated that, if f is a perfect map between

Received October 22, 1987.
metrizable spaces, the relation $w(f) \leq \omega$ holds. Therefore, in the above theorem we need not to add the property that $w(\eta) \leq \tau$ if $w(\xi) \leq \tau$.

2. Proof of Theorem. The above theorem is an easy consequence of Lemmas 2 and 3 (cf. [9]). We need Lemma 1 to prove Lemma 2. The idea of the proof of Theorem is essentially due to Pasynkov.

Lemma 1 ([9, (5.2)]). Let $Y \in ANR$. Then for any metric ρ in Y there is an $\varepsilon > 0$ with the following properties; if f is a map of a compact space X into Y and g is a map of a closed set F in X into Y such that $d(g, f|_F) \leq \max\{\rho(g(x), f(x)) ; x \in F\} < \varepsilon$, then g can be extended to X.

Lemma 2. Under the condition of Theorem there are metrizable spaces Y and Y_0, a perfect map $\eta : Y \to Y_0$, and maps $g : X \to Y$, $g_0 : X_0 \to Y_0$, $h : Y \to Z$ and $h_0 : Y_0 \to Z_0$ such that $\eta g = g_0 \xi$, $\xi h = h_0 \eta$, $h_0 g_0 = f_0$, $w(Y) \leq \max(w(X_0), w(Z_0))$, $\dim Y \leq \dim X_0$ and for any $y_0 \in Y_0$, any compact $F \subset \eta^{-1}(y_0)$ and any map $X : h(F) \to A$, the map $\chi h|_F$ can be extended to $\eta^{-1}(y_0)$.

Proof. Since $w(\xi) \leq \omega$, there is an embedding $i : Z \to Z_0 \times I^\omega$ such that $\xi \preceq \text{pr}i$, where I^ω is the Hilbert cube and $\text{pr} : Z_0 \times I^\omega \to Z_0$ is the projection. We denote by ρ the projection of $Z_0 \times I^\omega$ onto I^ω. We choose a countable base $\{O_n : n = 1, 2, \ldots\}$ for I^ω that is closed under finite unions. We fix a metric ρ on A and choose $\varepsilon > 0$ in accordance with Lemma 1. For any n we fix a countable dense set C_n in $C(\overline{O}_n, A)$, which is the space of maps from \overline{O}_n to A with the metric of uniform convergence.

We fix n and $\varphi \in C_n$. For each $x_0 \in X_0$ we consider the set $\Phi(x_0) = \xi^{-1}(x_0) \cap f^{-1}i^{-1}p^{-1}(\overline{O}_n)$. Since $\dim \xi \leq A$ and $A \in ANR$, the map $\varphi pi f : \Phi(x_0) \to A$ can be extended to $\xi^{-1}(x_0)$ and then to a neighbourhood $V(\xi^{-1}(x_0))$ as a map $\mathcal{V}_x_0 : V(\xi^{-1}(x_0)) \to A$.

Every point x of $\xi^{-1}(x_0)$ has a neighbourhood $O_x \subset V(\xi^{-1}(x_0))$ such that
\[
\text{diam} \varphi pi f(O_x) \cap \overline{O}_n < \varepsilon/4 \quad \text{and} \quad \text{diam} \mathcal{V}_x_0(O_x) < \varepsilon/4.
\]
Since ξ is closed, there is a neighbourhood $V(x_0)$ of x_0 such that $\xi^{-1}(V(x_0)) \subset \bigcup \{O_x : x \in \xi^{-1}(x_0)\}$ and $\Phi(x_0) \subset \bigcup \{O_x : x \in \Phi(x_0)\}$ for any $x_0 \in V(x_0)$. Hence, for any $x_0 \in V(x_0)$ and every $x' \in \Phi(x_0)$ we can find a point $x \in \Phi(x_0)$ such that $x' \in O_x$, and hence,
\[
\rho(\mathcal{V}_x_0(x'), \varphi pi f(x')) \leq \rho(\mathcal{V}_x_0(x'), \mathcal{V}_x_0(x)) + \rho(\varphi pi f(x), \varphi pi f(x')) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.
\]
By paracompactness of \(X_0 \) there is a \(\sigma \)-discrete cozero cover \(\omega(n, \varphi) = \bigcup_{j=1}^{\infty} \{ U_{j,\lambda} : j(\lambda) \in \Gamma_j \} \) of \(X_0 \) such that \(\omega(n, \varphi) \) refines \{ \(V(x_0) : x_0 \in X_0 \) \}. For any \(j \) and each \(j(\lambda) \in \Gamma_j \), we take \(x_{j,\lambda} \in X_0 \) such that \(U_{j,\lambda} \subset V(x_{j,\lambda}) \). For each \(j \) we denote by \(H_j(n, \varphi) \) the Hedgehog space (see [3]) constructed by \{ [0, 1]_{\alpha_{j,\beta}} = [0, 1] : j(\lambda) \in \Gamma_j \}. There is a function \(g_{\alpha,\beta}(n, \varphi) : X_0 \to H_j(n, \varphi) \) such that \(U_{j,\lambda} = g_{\alpha,\beta}(n, \varphi)^{-1}(0, 1]_{\alpha_{j,\beta}} \) for any \(j(\lambda) \in \Gamma_j \). We denote by \(P_j(n, \varphi) \) the partial product (see [6]) with base \(H_j(n, \varphi) \) and fiber \(A \). We perform these constructions for all \(n \) and all \(\varphi \in C_n \). We now set

\[
Y' = Z \times \prod \{ P_j(n, \varphi) : j=1, 2, \ldots, \varphi \in C_n, n=1, 2, \ldots \},
\]

\[
Y_0 = Z_0 \times \prod \{ H_j(n, \varphi) : j=1, 2, \ldots, \varphi \in C_n, n=1, 2, \ldots \}.
\]

Clearly \(Y' \) and \(Y_0 \) are metrizable. We denote by \(h \) (resp. \(h_0 \)) the projection of \(Y' \) onto \(Z \) (resp. \(Y_0 \) onto \(Z_0 \)) and for any \(n, \varphi \in C_n \) and each \(j \) we denote by \(g^{\alpha,\beta}_j(n, \varphi) \) (resp. \(g^{\alpha,\beta}_0(n, \varphi) \) the projection of \(Y' \) onto \(P_j(n, \varphi) \) (resp. \(Y_0 \) onto \(H_j(n, \varphi) \)). We set

\[
\eta = \Pi \{ \xi, \eta(n, \varphi) : j=1, 2, \ldots, \varphi \in C_n, n=1, 2, \ldots \},
\]

\[
g = \Delta(f, g_j(n, \varphi)) = \Pi \{ f, g(n, \varphi) : j=1, 2, \ldots, \varphi \in C_n, n=1, 2, \ldots \} \text{ and}
\]

\[
g_0 = \Delta(f_0, g^\alpha_0(n, \varphi)) = \Pi \{ f, g^\alpha_0(n, \varphi) : j=1, 2, \ldots, \varphi \in C_n, n=1, 2, \ldots \}.
\]

Clearly \(\eta \) is perfect and for any \(n, \varphi \in C_n \) and each \(j \)

\[
\eta(n, \varphi) g^{\alpha,\beta}_j(n, \varphi) = g^{\alpha,\beta}_0(n, \varphi) \eta,
\]

\[
g^{\alpha,\beta}_j(n, \varphi) g = g_j(n, \varphi), \quad g^\alpha_0(n, \varphi) g_0 = g_0(n, \varphi);
\]

\[
h \eta = \eta, \quad h g = f, \quad h g_0 = f_0, \quad \xi h = h \xi, \quad \zeta h = h \zeta.
\]

We set \(Y_0 = g_0(X_0) \) and \(Y = \overline{g(X)} \cap \eta^{-1}(Y_0) \). If we now regard \(\eta, h, g^{\alpha,\beta}_j(n, \varphi) \) and \(h_0, g^{\alpha}_0(n, \varphi) \) as the restrictions of these maps to \(Y \) and \(Y_0 \), respectively, then (2), (3) remain valid, and \(\eta \) is perfect.

We fix a point \(y_0 \in Y_0 \), a compact set \(F \subset \eta^{-1}(y_0) \) and a map \(X : h(F) \to A \). We shall prove that \(Xh \) can be extended to \(\eta^{-1}(y_0) \). Since \(h(F) \subset \zeta^{-1}(h_0(y_0)) \), there is a map \(\varphi' : h \circ h(F) \to A \) such that \(X = \varphi' \pi h \), and hence \(Xh = \varphi' \pi h h \).

Since \(A \subset \ANR \), we may assume that \(\varphi' \) is defined on some \(\tilde{O}_n \) with \(O_n \supset \pi h(F) \). Since \(C_n \) is dense in \(C(\tilde{O}_n, A) \), by [9, Lemma 5.1] there is a map \(\varphi \in C_n \) homotopic to \(\varphi \pi h : F \to A \). Since \(\omega(n, \varphi) \) is a cover of \(X_0 \), there is \(f \) and
$j(\lambda) \in \Gamma_j$ such that $t_0 = g_{t_0}^n(n, \varphi)(y_0) \in (0, 1]_{/\Gamma_1}$. For any $y \in F$ $\pi h(y) \in O_n$, $g(n, \varphi)(y) = \{t_0\} \times A \subset (0, 1]_{/\Gamma_1} \times A$ and $g(X)$ is dense in Y, hence there is $y' \in g(X)$ such that $\pi h(y') \in O_n$, $g(n, \varphi)(y') \in (0, 1]_{/\Gamma_1} \times A,$

$$\rho(\pi_{/\Gamma_1}^j g(n, \varphi)(y), \pi_{/\Gamma_1}^j g(n, \varphi)(y')) < \varepsilon/4 \quad \text{and} \quad \rho(\pi h(y), \pi h(y')) < \varepsilon/4.$$

We take a point $x' \in X$ such that $g(x') = y'$, then $p_{ji}(x') = \pi h(y') \in O_n$, and since $g^j(n, \varphi)\xi(x') = \eta^j(n, \varphi)g(n, \varphi)(y') \in (0, 1]_{/\Gamma_1}$, we have $x' \in \xi^{-1}g(n, \varphi)^{-1}(0, 1]_{/\Gamma_1} = \xi^{-1}U_{/\Gamma_1}$. We set $x'_0 = \xi(x')$ then $x'_0 \in U_{/\Gamma_1} \subset V(x_{/\Gamma_1})$ and $X' \in \varphi(x'_0)$. From (1), we have

$$\rho(\pi_{/\Gamma_1}^j g(n, \varphi)(y'), \varphi p_{ji}(y'))$$

$$= \rho(\pi_{/\Gamma_1}^j g(n, \varphi)(x'), \varphi p_{ji}(x'))$$

$$= \rho(\Theta X_{/\Gamma_1}(x'), \varphi p_{ji}(x')) < \varepsilon/2.$$

Hence, we see that

$$\rho(\pi_{/\Gamma_1}^j g(n, \varphi)(y), \varphi p_{ji}(y))$$

$$\leq \rho(\pi_{/\Gamma_1}^j g(n, \varphi)(y), \pi_{/\Gamma_1}^j g(n, \varphi)(y'))$$

$$+ \rho(\pi_{/\Gamma_1}^j g(n, \varphi)(y'), \varphi p_{ji}(y'))$$

$$+ \rho(\varphi p_{ji}(y'), \varphi p_{ji}(y))$$

$$< \varepsilon/4 + \varepsilon/2 + \varepsilon/4 = \varepsilon.$$

The map $\pi_{/\Gamma_1}^j g(n, \varphi)$ is defined on $\eta^{-1}(y_0)$. By Lemma 1, $\varphi p_{ji}(y)$ can be extended to $\eta^{-1}(y_0)$, and by Homotopy extension theorem (see e.g. [4]) Xh can be also extended to $\eta^{-1}(y_0)$.

The fact that $w(Y_0) \leq \max(w(X_0), w(Z_0))$ is evident.

We claim that we may assume that $\dim Y_0 \leq \dim X_0$. By [8, Theorem 2.] there is a metrizable space Y_0 and maps $g_0: X_0 \to Y_0$ and $h_0^0: Y_0 \to Y_0$ such that $w(Y_0) \leq w(Y_0)$. $\dim Y_0 \leq \dim X_0$ and $g_0 = h_0^0g_0$. We denote by Y' the fan product of Y_0 and Y with respect to h_0^0 and η (see [1. Supplement to Ch. 1, §2]); by η' and h^* we denote that projections of Y' into Y_0 and Y, respectively, and by g' a map of X into Y' such that $\eta'g' = g_0^0\xi$ and $h^*g' = g$. If we replace Y, Y_0, g, g_0, h, h_0 and η with $Y', Y_0', g', g_0', h_0^*$, h_0^0 and η', respectively, then these spaces and maps are what is required (cf. [9]).

Lemma 2 has been proved.

Lemma 3 ([9, Lemma 5.3]). Suppose that $A \in \operatorname{ANR}$ and $\{T_n, h_{n+1.n}\} (n = 0, 1, \cdots)$.
is an inverse sequence of compact spaces such that for any \(n \), any compact \(F \subseteq T_{n+1} \), and any map \(\chi: h_{n+1,n}(F) \to A \), the map \(\chi h_{n+1,n} \mid_F \) has an extension to \(T_{n+1} \). Then \(\dim T \leq A \) for the limit \(T \) of the sequence in question.

In conclusion the author wishes to express his sincere gratitude to Professor Y. Kodama for his greatful suggestions and constant encouragement.

References

Yoshie TAKEUCHI
Institute of Mathematics
University of Tsukuba
Tsukuba-shi, Ibaraki, 305