THE MODULI SPACE OF ANTI-SELF-DUAL CONNECTIONS OVER HERMITIAN SURFACES

By
Shiho SATOH

The Doctoral Research in Human Culture, Ochanomizu University

1 Introduction

Let \((M, g)\) be a compact Hermitian surface with an orientation induced by the complex structure of \(M\), and \(P\) a principal bundle over \(M\) with structure group \(SU(n)\). Then a canonical representation \(\rho\) of \(SU(n)\) induces a smooth complex vector bundle \(E = P \times_\rho \mathbb{C}^n\). A necessary and sufficient condition for a \(SU(n)\)-connection \(D\) on \(E\) to be an anti-self-dual connection is that the curvature of \(D\) is a differential 2-form of type \((1,1)\), and is orthogonal to the fundamental form \(\Phi\) of \((M, g)\). Hence, a holomorphic structure is induced on \(E\) and hence on \(\text{End}^0E\) (the subbundle of \(\text{End}E\) consisting of endomorphisms with trace 0) by an anti-self-dual connection \(D\). Itoh ([4]) showed that the moduli space of anti-self-dual connections over Kähler surfaces is a complex manifold. We will extend this result over Kähler surfaces to over Hermitian surfaces, which are not necessarily Kählerian.

Let \(K_M\) be a canonical line bundle over \(M\). We define \(\tilde{H}_D = H^0_0(M; /\langle \text{End}^0E \otimes K_M \rangle)\) as the space of holomorphic sections, where \(\text{End}^0E\) is endowed with the holomorphic structure induced from the irreducible anti-self-dual connection \(D\). We denote by \(\mathcal{M}\) the moduli space of irreducible anti-self-dual connections (the quotient space of irreducible anti-self-dual connections by the gauge transformation group \(SU(E)\)), and set \(\mathcal{M}_0\) as follows: \(\mathcal{M}_0 = \{[D] \in \mathcal{M} : \tilde{H}_D = (0)\}\). Then we obtain the following

Theorem 1. Let \(M\) be a compact Hermitian surface. If \(\mathcal{M}_0\) is not empty, then \(\mathcal{M}_0\) is a complex manifold.

We can make \(H_D\) vanish under a certain condition. On a Hermitian manifold

Received May 2, 1994.
$$(M, g)$$, $\text{Scal}(g)$ denotes the scalar curvature of the Hermitian connection with respect to g. Then we have the following vanishing theorem.

Proposition 1. Let (M, g) be a compact Hermitian surface with fundamental form Φ which satisfies $\partial \overline{\partial} \Phi = 0$. If $\int_M \text{Scal}(g) d\nu \geq 0$, then $\tilde{H} = 0$.

With this proposition, Theorem 1 implies the following.

Theorem 2. Let (M, g) be a compact Hermitian surface which satisfies the same condition as proposition 1. If \mathcal{M} is not empty, then \mathcal{M} is a complex manifold.

2. Two moduli spaces

In this section we will recall the moduli spaces of anti-self-dual connections and holomorphic semi-connections following [1], [4], and [5].

Let (M, g) be a compact oriented Hermitian surface with fundamental form $\Phi = \sqrt{-1} \sum g_{ab} dz^a \wedge d\bar{z}^b$. We will denote by A^p (resp. $A^{p,q}$) the space of real valued smooth p-forms (resp. (p,q)-forms) on M. Then we have the decomposition of the space of 2-forms,

$$A^2 \otimes \mathbb{C} = A^{2,0} \oplus A^{1,1} \oplus A^{0,2}. \quad (2.1)$$

The fundamental form Φ decomposes $A^{1,1}$ further:

$$A^{1,1} = A^{1,1} \oplus (A^{1,1})^\perp, \quad (2.2)$$

where

$$A^{1,1} = \{ f \Phi : f \in C^\infty(M; \mathbb{C}) \}, \quad (2.3)$$

and

$$(A^{1,1})^\perp = \{ \psi = \sum g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta : \sum g^{a\bar{\beta}} \psi_{a\bar{\beta}} = 0 \}. \quad (2.4)$$

$(A^{1,1})^\perp$ is the space of all primitive $(1,1)$-forms in (M, g). We put

$$A_1^2 = (A^{2,0} + A^{1,1} + A^{0,2}) \cap A^2, \quad (2.5)$$

and

$$A_2^2 = (A^{1,1})^\perp \cap A^2. \quad (2.6)$$

Then A_2^2 (resp. A_2^1) is the self-dual part (resp. the anti-self-dual part) of A^2 ([1]). Then projection from A^2 onto A_2^2 is denoted by p_\perp.

172 Shiho SATOH
Let \(P \) be a principal bundle over \(M \) with structure group \(SU(n) \). Then the canonical representation \(\rho \) of \(SU(n) \) induces a smooth complex vector bundle \(E = P \times_{\rho} \mathbb{C}^n \). We denote by \(h \) and \(\omega \), the Hermitian structure and the \(n \)-form on \(E \) defined by the \(SU(n) \)-structure of \(P \), respectively. Let \(GL(E) \) denote the group of \(C^\infty \)-bundle automorphisms of \(E \) (inducing the identity transformations on the base manifold \(M \)). Let \(SL(E) \) (resp. \(SU(E) \)) denote the subgroup of \(GL(E) \) consisting of bundle automorphisms of \(E \) (resp. unitary automorphisms of \((E, h) \)) with determinant 1. They are called the gauge transformation groups of \(E \). Let \(\text{End}^{0}(\rho, \omega) \) (resp. \(\text{End}^{0}(E, h) \)) the subbundle of the endomorphism bundle \(E \) consisting of endomorphisms (resp. skew-Hermitian endomorphisms) with trace 0. \(\text{End}^{0}(E, h) \) is the real subbundle of \(\text{End}^{0}E \) and we have

\[
\text{End}^{0}E = \text{End}^{0}(E, h) \oplus \sqrt{-1}\text{End}^{0}(E, h).
\] (2.7)

For \(\psi = \psi_0 + \sqrt{-1}\psi_1, \psi_0 - \sqrt{-1}\psi_1 \), we denote the complex conjugate by \(\overline{\psi} \), which is defined by \(\overline{\psi} = \psi_0 - \sqrt{-1}\psi_1 \).

An \(SU(n) \)-connection \(D \) in \((E, h) \) is a connection in \(E \) preserving \(h \) and \(\omega \), i.e., a homomorphism \(D: \text{End}^{0}(E, h) \rightarrow \text{End}^{1}(E, h) \) over \(\mathbb{C} \) such that

\[
D(f\sigma) = \sigma df + f.D\sigma \quad \text{for} \quad f \in \mathcal{A}^{0}_{\mathbb{C}}, \sigma \in \mathcal{A}^{1}_{\mathbb{C}}(E),
\]

\[
Dh = 0,
\]

\[
D\omega = 0.
\] (2.8)

The set of \(SU(n) \)-connections has an affine structure. Namely, it is given by \(\{D + v: v \in \mathcal{A}^{1}(\text{End}^{0}(E, h))\} \) for a fixed \(SU(n) \)-connection \(D \). We can extend an \(SU(n) \)-connection \(D \) to a connection in \(\text{End}^{0}(E, h) \). We call \(D \) irreducible when the kernel of \(D: \text{End}^{0}(E, h) \rightarrow \mathcal{A}^{1}(\text{End}^{0}(E, h)) \) is trivial. An \(SU(n) \)-connection \(D \) is called anti-self-dual, if the curvature form \(R(D) \) belongs to \(\mathcal{A}^{2}_{\mathbb{C}}(\text{End}^{0}(E, h)) \), namely \(p, R(D) = 0 \). Let \(\text{Asd} \) be the set of all anti-self-dual \(SU(n) \)-connections in \((E, h) \). The gauge transformation group \(SU(E) \) acts on the space of \(SU(n) \)-connections and leaves \(\text{Asd} \) invariant. Thus we obtain the moduli space \(\text{Asd}/SU(E) \) of anti-self-dual \(SU(n) \)-connection in \((E, h) \).

A semi-connection \(D'' \) in \(E \) is a linear map \(D'': A^{0}(E) \rightarrow A^{0,1}(E) \) satisfying \(D''(f\sigma) = D''f\sigma + f D''\sigma \) for \(\sigma \in A^{0}(E), f \in C^\infty(M; \mathbb{C}) \). Moreover we assume that \(D'' \) preserves the \(n \)-form \(\omega \), i.e.; \(D''\omega = 0 \). The set of semi-connections has an (complex) affine space. Namely, it is given by \(\{D'' + v: v \in A^{0,1}(\text{End}^{0}E)\} \) for a fixed semi-connection \(D'' \). We can extend \(D'' \) to a semi-connection in \(\text{End}^{0}E \). We call \(D'' \) simple when the kernel of \(D'': A^{0}(\text{End}^{0}E) \rightarrow A^{0,1}(\text{End}^{0}E) \) is trivial. A semi-connection \(D'' \) which satisfies \(D'' \circ D'' = 0 \) defines a unique holomorphic structure on \(E \). We call such a semi-connection holomorphic. Let \(\text{Hol} \) be the set
of all holomorphic semi-connections in E. The gauge transformation group $SL(E)$ acts on the space of semi-connections and leaves Hol invariant. Thus we obtain the moduli space $\text{Hol}/SL(E)$ of holomorphic semi-connections in E.

Let D be an $SU(n)$-connection in (E, h). Set $D = D' + D''$ where $D': A^0(E) \to A^{0,1}(E)$. Then D'' is a semi-connection in E. This natural map $D \mapsto D''$ is a bijective map of the set of $SU(n)$-connections onto the set of semi-connections. If D is anti-self-dual, D'' is holomorphic. In fact the $(0,2)$-component of $R(D) = D'' \circ D'$. Thus we obtain a natural map $f: \text{Asd}/SU(E) \to \text{Hol}/SL(E)$. It is known that f is an injective map (cf. [5, p.243]). Moreover we have

Lemma 1. If an anti-self-dual connection D is irreducible, then D'' is simple.

Proof Suppose $\phi \in A^0(\text{End}^0 E)$ be a holomorphic section of $\text{End}^0 E$. Then $D''\phi = 0$. By the vanishing theorem of the holomorphic sections ([5]), we obtain $D\phi = 0$. By the assumption that D is an irreducible connection, we conclude $\phi = 0$.

In order to consider infinitesimal deformations, we introduce two complexes (2.9), (2.10), and their cohomology groups. For $D \in \text{Asd}$ set

$$0 \to A^0(\text{End}^0 E, h) \xrightarrow{D} A^1(\text{End}^0 E, h) \xrightarrow{D^2} A^2(\text{End}^0 E, h) \to 0$$

(2.9)

where $D_\pm = p_\pm \circ D$. Their cohomology groups are denoted by $H^p_D (p = 0, 1, 2)$. For $D'' \in \text{Hol}$, we consider the Dolbeault complex

$$0 \to A^{0,0}(\text{End}^0 E) \xrightarrow{D^*} A^{0,1}(\text{End}^0 E) \xrightarrow{D^2} A^{0,2}(\text{End}^0 E) \to 0$$

(2.10)

and their cohomology groups are denoted by $H^{p,0}_D (p = 0, 1, 2)$. We set

$$\mathcal{M}_0 = \{ [D] \in \text{Asd}/SU(E) : D \text{ is irreducible and } H^1_{D'} \text{ vanishes} \}$$

(2.11)

Then it is known that \mathcal{M}_0 is a smooth manifold, and its tangent space at $[D]$ is naturally isomorphic to $H^1_{D'}$. We set

$$\mathcal{M}_0' = \{ [D''] \in \text{Hol}/SU(E) : D'' \text{ is simple and } H^{0,2}_{D''} \text{ vanishes} \}$$

(2.12)

Similarly it is known that \mathcal{M}_0' is a complex manifold and its tangent space at $[D'']$ is naturally isomorphic to $H^{0,1}_{D''}$.

Now we consider the following natural homomorphism between two complexes (2.9), (2.10) for an irreducible anti-self-dual $SU(n)$-connection D and its corresponding holomorphic semi-connection D:
The Moduli Space of Anti-self-dual Connections

\[\begin{array}{c}
0 \rightarrow A^0(\text{End}^0(E, h)) \xrightarrow{h_0} A^1(\text{End}^0(E, h)) \xrightarrow{h_1} A^2(\text{End}^0(E, h)) \rightarrow 0 \\
\downarrow h_0 \quad \downarrow h_1 \quad \downarrow h_2
\end{array} \]

\[\begin{array}{c}
0 \rightarrow A^{0,0}(\text{End}^0(E)) \xrightarrow{h_0} A^{0,1}(\text{End}^0(E)) \xrightarrow{h_1} A^{0,2}(\text{End}^0(E)) \rightarrow 0 \\
\downarrow h_0 \quad \downarrow h_1 \quad \downarrow h_2
\end{array} \]

(2.13)

where

- \(h_0 \) : inclusion
- \(h_1 : \alpha \rightarrow \alpha^{0,1} \)
- \(h_2 : \alpha \rightarrow \alpha^{0,2} \)

and \(\alpha^{0,p} \) represents the \((0, p)\)-component of \(\alpha \). Itoh showed that \(h_p \) induces an isomorphism of \(H^p_D \) onto \(H^{0,p}_D \) \((p = 0, 1, 2)\) when \((M, g)\) is a Kähler surface. We can extend this result to the case of a Hermitian surface. Its proof will be given in section 3. Therefore we have \(f(\mathcal{K}_0) \subset \mathcal{N}_0 \) for the natural map \(f \). Moreover it is known that \(f \) is a differentiable map. Since we can regard the differential \(f_* \) of \(f \) at \([D]\) as \(h_1, f \) is a diffeomorphism of \(\mathcal{N}_0 \) into \(\mathcal{N}_0 \). Thus it has been shown that \(\mathcal{N}_0 \) is a complex manifold. We note that \(H^{0,2}_D \) is isomorphic to \(\tilde{H} = H^0(M, \text{End}^0(E \otimes K_M)) \) by the Serre duality. Hence our Theorem 2 has been proved.

3. Isomorphisms between cohomology groups \(H^p_D \) and \(H^{0,p}_D \)

In this section, we prove that for an irreducible anti-self-dual connection the cohomology groups \(H^p_D \) are isomorphic to \(H^{0,p}_D \) \((p = 0, 1, 2)\) in the diagram (2.13).

We first begin with the preparation for the proof. On a Hermitian surface \((M, g)\), we define differential 1-forms \(\theta = -d^* \Phi \eta = \theta J \), and \((1, 0)\)-form \(\varphi = \eta + \sqrt{-1} \theta \). Here \(J \) is the complex structure of \((M, g)\). Then we obtain following formulas by direct calculation.

Lemma 2. For the operators acting on \(A^p(\text{End}^0E) \), the following formulas hold:

\[D^* = -\sqrt{-1}(D^2 \Lambda - \Lambda D^2) + \frac{1}{2} (p-2)i(\varphi) - \frac{\sqrt{-1}}{2} e(\varphi) \Lambda \]

(3.1)

\[D^* = \sqrt{-1}(D^2 \Lambda - \Lambda D^2) + \frac{1}{2} (p-2)i(\varphi) - \frac{\sqrt{-1}}{2} e(\varphi) \Lambda \]

(3.2)

It is known that there is a unique Hermitian metric up to the homothety such that
$d^* \eta = 0$ in the conformal class of the given Hermitian metric ([3]). Moreover the anti-self-duality is preserved by a conformal change of the metric. Therefore we may assume that $d^* \eta = 0$ on the given Hermitian surface. Define a mapping $\mathcal{J} : A^0(\text{End}^0 E) \to A^0(\text{End}^0 E)$ by $\mathcal{J} = -\sqrt{-1} \Lambda D'D''$. Then we have

Lemma 3. On $A^0(\text{End}^0 E)$

$$\mathcal{J} = \frac{1}{2} (\Delta_D + i(\eta) D),$$

(3.3)

where $\Delta_D = D^* D$.

Proof In fact

$$\Delta_D = D^* D = (D^* + D'') (D' + D'')$$

(3.4)

Using equations (3.1) and (3.2), we see that

$$D^* D' + D' D'' = \sqrt{-1} \Lambda D'' D' - \frac{1}{2} i(\Lambda \phi) D' - \sqrt{-1} \Lambda D'' D' - \frac{1}{2} i(\phi) D'$$

(3.5)

$$= \sqrt{-1} \Lambda (D'' D' - D' D'') - i(\eta) D.$$

Since D is an anti-self-dual connection, for $\psi \in A^0(\text{End}^0 E)$, we have

$$\Lambda(D'' D' + D' D'')\psi = \Lambda R(D)(\psi)$$

$$= \Lambda(R(D) \circ \psi - \psi \circ R(D))$$

$$= (\Lambda R(D))\psi - \psi(\Lambda R(D))$$

(3.6)

$$= 0.$$

It follows that

$$\Delta_D = -2 \sqrt{-1} \Lambda D'' D' - i(\eta) D.$$

(3.7)

Then we obtain (3.3).

From Lemma 3 we see that $\mathcal{J}(A^0(\text{End}^0 E, h)) \subset A^0(\text{End}^0 E, h))$. Let \mathcal{J}^* be the formal adjoint operator of \mathcal{J}. For $\phi, \psi \in A^0(\text{End}^0 (E, h))$,

$$(\mathcal{J}\phi, \psi)_M = \left(\frac{1}{2} \Delta_\phi + \frac{1}{2} i(\eta) D \phi, \psi \right)_M$$

$$= \left(\phi, \frac{1}{2} \Delta_\psi + \frac{1}{2} D^* \varepsilon(\eta) \psi \right)_M, \quad (3.8)$$

Consequently we have
The Moduli Space of Anti-self-dual Connections

\[\mathcal{G}^* = \frac{1}{2} (\Delta_D + D^* \varepsilon(\eta)). \] (3.9)

By the direct calculation on \(\mathcal{A}^0(\text{End}^0(E,h)) \), we have

\[D^* \varepsilon(\eta) = \varepsilon(d^* \eta) - i(\eta)D = -i(\eta)D. \] (3.10)

Consequently, we obtain

\[\mathcal{G}^* = \frac{1}{2} (\Delta_D - i(\eta)D). \] (3.11)

Lemma 4. On \(\mathcal{A}^0(\text{End}^0(E,h)) \), we have

\[\ker \mathcal{G} = \ker \mathcal{G}^* = \ker D \] (3.12)

Proof: It is clear that \(\ker D \subset \ker \mathcal{G} \), and \(\ker D \subset \ker \mathcal{G}^* \) by (3.3), (3.11). Conversely suppose that \(\mathcal{G} \phi = 0 \), for \(\phi \in \mathcal{A}^0(\text{End}^0(E,h)) \). Then

\[0 = (\mathcal{G} \phi, \phi)_M = \left(\frac{1}{2} \Delta_D \phi + \frac{1}{2} i(\eta)D \phi, \phi \right)_M \]
\[= \frac{1}{2} (D\phi, D\phi)_M + \frac{1}{2} (i(\eta)D\phi, \phi)_M \] (3.13)

Using (3.10), we see that

\[(i(\eta)D\phi, \phi)_M = (\phi, D^* \varepsilon(\eta)\phi)_M \]
\[= -(\phi, i(\eta)D\phi)_M \]
\[= -(i(\eta)D\phi, \phi)_M. \] (3.14)

Then

\[(i(\eta)D\phi, \phi)_M = 0, \] (3.15)

From (3.13) it follows that \(D\phi = 0 \). Noting that \(\mathcal{G}(\mathcal{A}^0(\text{End}^0(E,h))) \subset \mathcal{A}^0(\text{End}^0(E,h)) \), we obtain

\[\ker \mathcal{G} \subset \ker D \] (3.16)

Owing to (3.11), we obtain \(\ker \mathcal{G}^* \subset \ker D \) similarly.

Theorem 3. Let \(D \) be an irreducible anti-self-dual \(\text{SU}(n) \)-connection. Then the homomorphisms of the cohomology groups \(h_p : H^0_{\mathcal{G}} \to H^{0,p}_{\mathcal{G}^*}(p = 0,1,2) \) induced from the diagram (2.13) are isomorphisms.
Proof)

h_0: By Lemma 1, we have $H^0 \rightarrow H^{0,0} = 0$. Therefore it is trivial that h_0 is isomorphic.

h_1: First we show the injectivity of h_1. Suppose $[\alpha] \in H^1$ and $h_1([\alpha]) = 0$. That is, $\alpha \in A^1(\text{End}^0(E, h))$ satisfies $D_\alpha = 0$ and there exists $\phi \in A^0(\text{End}^0 E)$ such that $h_1(\alpha) = \alpha^{0,1} = D^*\phi$. Since $D_\alpha = 0$, $\Lambda(D''D\overline{\phi} + D'D\overline{\phi}) = 0$. We set $\phi = \phi_0 + \sqrt{-1}\phi_1$ and $\overline{\phi} = \phi_0 \sqrt{-1}\phi_1$ for $\phi_0, \phi_1 \in A^0(\text{End}^0(E, h))$. Then

$$0 = \Lambda(D''D\phi_0 - \sqrt{-1}D'\phi_1 + D'D\phi_0 + \sqrt{-1}D'D\phi_1)$$
$$\quad = \Lambda(D'D\phi_0 + D'D\phi_0 - \sqrt{-1}\Lambda(D''D\phi_1 - D'D\phi_1)$$

(3.17)

Since D is an anti-self-dual connection,
$$\Lambda(D''D + D'D)\phi_0 = (\Lambda R(D))\phi_0 = 0,$$

(3.18)

and
$$\sqrt{-1}\Lambda(D'D'' - D''D')\phi_1 = 2\gamma\phi_1.$$

(3.19)

Therefore we have $2\gamma\phi_1 = 0$. Together with Lemma 4, the irreducibility of D implies $\phi_1 \equiv 0$. Consequently
$$\alpha = \alpha^{0,0} + \alpha^{0,1} = D'\phi_0 + D''\phi_0 = D\phi_0$$

(3.20)

and then $[\alpha] = 0$ in H^1. It is shown that h_1 is injective.

Next, in order to prove the surjectivity of h_1, given $\beta \in A^{0,1}(\text{End}^0 E)$ satisfying $D^*\beta = 0$, we will find $[\alpha] \in H^1$ such that $h_1([\alpha]) = [\beta]$ in $H^{0,1}$. To do so, we put $\alpha = \overline{\beta} + D'\overline{\psi} + \beta + D''\psi \in A^1(\text{End}^0(E, h))$. The equation $D_\alpha = 0$ means
$$D''\alpha^{0,1} = D''(\beta + D''\psi) = 0$$

(3.21)

and
$$\Lambda(D''\alpha^{1,0} + D'\alpha^{0,1}) = \Lambda(D''\beta + D''D'\overline{\psi} + D'\beta + D'D''\psi)$$
$$\quad = \Lambda(D''\beta + D'\beta + 2\sqrt{-1}\Lambda D'D''\psi) = 0,$$

(3.22)

where $\psi = \psi_0 + \sqrt{-1}\psi_1$. Therefore we have
$$2\gamma\psi_1 = \Lambda(D''\beta + D'\beta)$$

(3.23)

By Lemma 4 and the irreducibility of D, the kernel of γ^k is trivial. Then we can find ψ_1 which satisfies the equation (3.23). Taking ψ_0 suitably, we obtain
\(\alpha \in A^1(\text{End}^0 E, h) \) satisfying \(h_1([\alpha]) = [\beta] \).

\(h_2 \) is surjective. So we show the injectivity. Let \(\psi \) be an element of \(A^2(\text{End}^0 E, h) \). We decompose \(\psi \) as follows: \(\psi = \psi^{0,2} + (1/2)\Phi \wedge \phi + \psi^{0,2} \) for \(\phi \in A^0(\text{End}^0 E, h) \). Suppose \(h_2([\psi]) = 0 \). That is, there exists a \(\beta \in A^{0,1}(\text{End}^0 E, h) \) such that \(h_2(\psi) = \psi^{0,2} = D''\beta \). We will find \(\alpha \in A^1(\text{End}^0 E, h) \) such that \(\psi = D_0\alpha \). To do so, we put \(\alpha = \beta + D'\gamma + D''\phi \) for some \(\gamma \in A^0(\text{End}^0 E) \). Then we have

\[
\psi = D_0\alpha = D'\beta + D'\gamma + \frac{1}{2} \Phi \wedge \Lambda [D''(\beta + D'\gamma) + D'(\beta + D''\gamma)] + D''(\beta + D''\gamma)
\]

(3.24)

We set \(\gamma = \gamma_0 + \sqrt{-1}\gamma_1 \) for \(\gamma_0, \gamma_1 \in A^0(\text{End}^0 E, h) \). Then

\[
\phi = \Lambda [D''\beta + D''D'\gamma + D'\beta + D'D''\gamma] = \Lambda [D''\beta + D'\beta] + 2\Lambda D'D''\gamma_1.
\]

(3.25)

Therefore we have

\[
2 \phi \gamma_1 = \Lambda (D''\beta + D'\beta) - \phi.
\]

(3.26)

The solution \(\gamma_1 \) of (3.26) exists since \(D \) is irreducible and \(\ker \phi^0 = \{0\} \). We have found \(\alpha \) satisfying \(\psi = D_0\alpha \).

4. Vanishing of \(\tilde{H}_p \)

In this section, we will prove Proposition 1 in the introduction. First we recall the results obtained by Gauduchon in [2]. Let \((M, g)\) be an \(m \)-dimensional compact Hermitian manifold with \(\partial \bar{\partial} \Phi = 0 \). Let \(L \) be a holomorphic line bundle over \((M, g)\), and \(h \) be its Hermitian structure. We denote by \(k \) the mean curvature of \((L, h)\). We use the notation "mean curvature" following Kobayashi [5, p. 51] and it is called the Ricci-scalar in Gauduchon [2]. Then the following holds ([2]):

1. \(\int_M k d\nu \) is independent of the Hermitian structure \(h \).

2. There exists a unique Hermitian structure \(h_0 \) on \(L \) (up to the homothety) such that its mean curvature \(k_0 \) is constant.

In particular, applying the above results to the canonical line bundle \(K_M \), we obtain the Hermitian structure with constant mean curvature \(k_0 \). We note that
\[k_0 \text{Vol}(M, g) = -\int_M \text{Scal}(g) \, dv, \]
where \(\text{Scal}(g) \) denotes the scalar curvature of the Hermitian connection with respect to \(g \).

Now we return to the proof of Proposition 1. The \(C^\infty \)-Hermitian vector bundle \((E, h)\) has a holomorphic structure defined by the anti-self-dual \(SU(n) \)-connection \(D \). \(D \) is the Hermitian connection of \((E, h)\) with respect to this holomorphic structure and it has mean curvature 0 and so for \(\text{End}^0 E \). Together with the former, it implies that the tensor product \(F = \text{End}^0 E \otimes K_M \) admits a Hermitian structure with mean curvature \(k_0 I_L \). If \(k_0 < 0 \), by the vanishing theorem of the holomorphic sections ([5, pp. 49–53]), \(\text{End}^0 E \otimes K_M \) admits no nonzero holomorphic sections. Further, if \(k_0 = 0 \), then every holomorphic section is parallel. Let \(f \) be a nonzero holomorphic section section of \(\text{End}^0 E \otimes K_M \). For each point \(x \) on \(M \), consider the eigenspace of the homomorphism \(f_x \). These eigenspaces define a parallel subbundle of \(E \). This contracts that \(D \) is an irreducible connection. Consequently, even if \(k_0 = 0 \), \(\text{End}^0 E \otimes K_M \) has no nonzero holomorphic sections.

Remark: Let \((M, g)\) be a compact anti-self-dual Hermitian surface (i.e., its Weyl conformal curvature tensor \(W \) belongs to \(A^2 \)) with \(\partial\bar{\partial}\Phi = 0 \). Then we have
\[\int_M \text{Scal}(g) \, dv \geq 0 \]
and the equality holds if and only if \((M, g)\) is Kählerian (cf. Boyer [6]).

References

