ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN

By

Akira Okabe

Introduction. It is well known that every overring of a valuation domain V is of the form V_P for some prime ideal P of V. Hence, if I is an ideal of a valuation domain V with quotient field K, then the conductor overring $I: KI$ is of the form V_P for some prime ideal P of V. In case $I: KI = V_P$, is there any relation between I and P? The main purpose of this paper is to investigate this relation.

In order to give a complete answer to the question stated above, we introduce the notion of "recurrent closure": If I is an ideal of an integral domain R with quotient field K, then the ideal $R:x(I:xI)$ of R is called the "recurrent closure" of I and is denoted by l_x. We prove, in Theorem 13, that if I is an ideal of a valuation domain V with quotient field K such that $I: KI \neq V$, then l_x is always a prime ideal of V and if we set $I: KI = V_P$ for some prime ideal P of V, then P is equal to the recurrent closure l_x.

In general, our terminology and notation will be the same as [3] and [6]. Throughout the paper, V denotes a valuation domain, with quotient field K.

Theorem 1. If P is a proper prime ideal of V, then $P: KP = V_P$. In particular, if M is the unique maximal ideal of V, then $M: KM = V$.

Proof. If $P=(0)$, then $(0): K(0)=K=V_{(0)}$ (cf. [9, Remark 1.2]) and hence our assertion is trivial. Thus we may assume that $P \neq (0)$. Then, by [3, Theorem 17.3], $P(x)=P$ for any $x \in V\setminus P$ and accordingly $1/xP \subseteq P$. Thus $1/x \in P: KP$ for any $x \in V\setminus P$. From this fact it follows that $V_P \subseteq P: KP$. Hence, if we put $P: KP = V_Q$ for some prime ideal Q of V, then we have $V_P \subseteq P: KP = V_Q$ and so $Q \subseteq P$. Assume now that $Q \neq P$. Then $Q: KP$ is a nonmaximal prime ideal of $P: KP$ by [9, Corollary 2.4]. On the other hand, $Q=QV_Q$ is a maximal ideal of V_Q by [3, Theorem 17.6]. Since $Q \subseteq Q: KP$, we have $Q=Q: KP$ and therefore $Q: KP$ is a maximal ideal of $P: KP$, a contradiction. Hence we must have $Q=P$, and accordingly $P: KP = V_P$ as desired. Thus our first assertion is proved. The second assertion follows immediately from the first one.

Received July 27, 1983.
Before proving the next theorem, we first establish the following lemma.

Lemma 2. Let R be an integral domain with quotient field K and let I be a proper ideal of R. If $I:_{K}I=RP$ for some prime ideal P of R, then we have $I\subseteq P$.

Proof. Assume the contrary. Then we can choose an element $a\in I\setminus P$. Then, by hypothesis, $1/a\in RP=I:_{K}I$ since $a\not\in P$. Therefore we have $1=a\cdot 1/a\in I:_{K}I\subseteq I$, which implies that $I=\emptyset$. This clearly contradicts our assumption.

Theorem 3. If Q is a primary ideal of V, then $Q:\kappa Q=V,\sqrt{Q}$.

Proof. If $Q=(0)$, then $(0):_{K}(0)=K=V,\sqrt{Q}$ and hence our assertion is evident. Therefore we may assume that $Q\neq (0)$. If we set $Q:\kappa Q=VP$ with some prime ideal P of V, then $Q\subseteq P$ and hence $\sqrt{Q}\subseteq P$. We shall next show that $P\subseteq \sqrt{Q}$. By [3, Theorem 17.3], $Q(x)=Q$ for any element $x\in V,\sqrt{Q}$, and accordingly $1/a\in Q:_{\kappa}Q$ for any $a\in V,\sqrt{Q}$. Thus we have $V,\sqrt{Q}\subseteq Q:_{\kappa}Q=V,\kappa$ and hence $P\subseteq \sqrt{Q}$, as required. This completes the proof.

Corollary 4. If Q is a primary ideal of V, then $Q:_{\kappa}Q=\sqrt{Q},\sqrt{Q}$.

Proof. This follows immediately from Theorem 1 and Theorem 3.

Definition 5. Let R be an integral domain with quotient field K and let I be a proper ideal of R. Then the ideal $R:_{I}I$ of R is called the "recurrent closure" of I and is denoted by I_r. An ideal I of R is said to be "recurrent" in case $I=I_r$.

Remark 6. If I is a recurrent ideal of an integral domain R with quotient field K, then $I:_{K}I=\emptyset$. For, if $I:_{K}I=R$, then $I=I_r=R:_{R}I=\emptyset:_{R}R=R$, a contradiction. Moreover, if M is a maximal ideal of R, then the converse of the above statement also holds. In fact, if $M:_{K}M=\emptyset$, then $M\subseteq R:_{M}M=\emptyset$ and hence $M=\emptyset:_{M}M$, since M is a maximal ideal of R. Therefore M is a recurrent ideal of R as required.

Remark 7. If M is the unique maximal ideal of V, then M is not recurrent. By Theorem 1, $M:_{K}M=V$ and therefore our assertion follows from Remark 6.

We first collect some facts about recurrent ideals that will be needed later.

Lemma 8. Let R be an integral domain with quotient field K. If I is an ideal of R such that $I:_{K}I=\emptyset$, then $I\subseteq I_r$ and I, itself is recurrent.
Proof. By definition the containment $I \subseteq I_r$ is evident. Next, we shall establish the second assertion. First it should be noted that I_r is an ideal of $I : kI$ (cf. [9, Lemma 1.1(2)]). It follows from this fact that if $x \in I : kI$ and $a \in I_r$, then $ax \in I_r$. Thus we have $I : kI \subseteq I_r$. Therefore $I_r = R : k(I : kI) \supseteq R : k(I_r : kI_r) \supseteq I_r$, whence $I_r = R : k(I_r : kI_r) = (I_r)_r$, completing the proof.

Lemma 9. Let R be an integral domain with quotient field K and let I be a proper ideal of R. Then

1. If P is a prime ideal of R contained in I, then $I : kI \subseteq P : kP$.
2. If I is a recurrent ideal of R, then, for any prime ideal P of R, $P \subseteq I$ if and only if $I : kI \cap P : kP$.

Proof. (1) Let $x \in I : kI$ and $p \in P$. Since $x^p \in I : kI$ and $p \in I$, $x^p \in (I : kI) \subseteq I$, and accordingly $(xp)^p = (x^p)p \in I P \subseteq P$, which implies that $xp \in P$ because $x \in R$. Thus $(I : kI)P \subseteq P$ and hence $I : kI \subseteq P : kP$ as required.

(2) The "only if" half is proved in (1). Conversely, assume that $I : kI \subseteq P : kP$. Then P is an ideal of $I : kI$, since $P(I : kI) \subseteq P(P : kP) \subseteq P$. Hence, by [9, Lemma 1.1 (4)], $P \subseteq R : k(I : kI) = I_r$. Then we have $P \subseteq I_r = I$ because I is, by hypothesis, recurrent. This completes the proof.

Remark 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.2] or in [2, Lemma 3.7].

Lemma 11. Let R be an integral domain with quotient field K and let I be a proper ideal of R. If P is a recurrent prime ideal of R properly contained in I, then $I : kI \equiv P : kP$.

Proof. By part (1) of Lemma 9, we have $I : kI \subseteq P : kP$. Hence, it suffices to show that $I : kI \cap P : kP$. Assume that $I : kI = P : kP$. Then I is an ideal of $P : kP$ and therefore, by [9, Lemma 1.1 (4)], $I \subseteq P_r$. By hypothesis, $P_r = P$ and hence $I \subseteq P$, the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if I is an ideal of an integral domain R with quotient field K, then $I : kI \subseteq I_r : kI_r$. If P is a prime ideal of R, then it can be shown that $P : kP = P_r : kP_r$.

Theorem 12. Let R be an integral domain with quotient field K. If P is a prime ideal of R, then we have $P : kP = P_r : kP_r$.

Proof. We have already shown in Lemma 8 that $P : kP \subseteq P_r : kP_r$. Hence,
we need only prove the reverse containment $P_r : kP_r \subseteq P : kP$. If $P=Pr$, then there is nothing to prove. Therefore we may assume that $P \neq Pr$. If we choose $teP_r \setminus Pr$, then, for any $x \in P_r : kP_r$, we have $xt \in P_r \subseteq R$. Then we have $xtP \in P$ for any $p \in P$. But, since $xP \in P_r : kP_r \subseteq P_r \subseteq R$ and $teR \setminus P, (xp)tP$ implies that $xp \in P$. Thus $P_r : kP_r \subseteq P : kP$ as desired and our proof is complete.

We are now in a position to prove the main theorem of this paper.

Theorem 13. Let V be a valuation domain with quotient field K. Then

1. Every nonmaximal prime ideal P of V is recurrent.
2. If I is an ideal of V such that $I : kI \neq V$, then I_r is a prime ideal of V and we have $I : kI = V/I_r$.
3. If I is an ideal of V such that $I : kI \neq V$, then $\sqrt{T} \subseteq I_r$.
4. If Q is a primary ideal of V such that \sqrt{Q} is not the unique maximal ideal M of V, then $\sqrt{Q} = Q_r$.

Proof. (1) First, by Theorem 1, $P : kP = V : V (P : kP) \neq V$. Indeed, if $P = V$ then $1 \in P_r$, and so $P : kP \subseteq V$, a contradiction. Thus we get $P \subseteq P_r \neq V$. Next, by [9, Lemma 1.1 (2)], P_r is an ideal of $P : kP = V_r$ and therefore $P_r \subseteq PV_r = P$. Accordingly, $P = P_r$, which implies that P is recurrent.

(2) By hypothesis, $I : kI$ is a proper overring of V and so we can write $I : kI = V_r$ with some nonmaximal prime ideal P of V. Since, by Theorem 1, $V_r = P : kP$, it follows that $I : kI = P : kP$. Then we have $I_r = V : V (I : kI) = V : V (P : kP) = P$, since P is recurrent by (1). Thus, I_r is a prime ideal of V and moreover $I : kI = V/I_r$ as required.

(3) Since $I \subseteq I_r$, we always have $\sqrt{T} \subseteq \sqrt{T_r}$. If $I : kI \neq V$, then, by (2), I_r is prime and therefore $\sqrt{T} \subseteq \sqrt{T_r} = I_r$ as wanted.

(4) First, by Theorem 3, $Q : kQ = V_\sqrt{Q}$. Moreover, $Q : kQ \neq V$, since \sqrt{Q} is not maximal. Hence, by (2), Q_r is prime and $Q : kQ = V_{\sqrt{Q_r}}$. Thus $V_{\sqrt{Q}} = V_{\sqrt{Q_r}}$, and accordingly $\sqrt{Q} = Q_r$, completing the proof.

Remark 14. Let R be an integral domain with quotient field K and let $P \subseteq I$ be ideals of R with P prime. Then we cannot in general expect that P is also prime in $I : kI$. To show this, we shall give the following example.

Example 15. Let $R = \mathbb{Z}[2X, X^*, X^+]$ be the subdomain of $T = \mathbb{Z}[X]$, where X is an indeterminate over \mathbb{Z}. Then $K = \mathbb{Q}(X)$ is the quotient field of R. If we set $M = 2\mathbb{Z}R + 2XR + X^*R + X^+R$, then $R/M = \mathbb{Z}/2\mathbb{Z}$ is a field and so M is a maximal ideal of R. Moreover, it is easy to see that $M : kM = \mathbb{Z}[X]$. If we put $P = 2XR$
On conductor overrings of a valuation domain

+ $X^2R + X^3R$, then, since $R/P = \mathbb{Z}$, P is a prime ideal of R properly contained in M. But P is not a prime ideal of $M:K$, because $3X \in \mathbb{Z}[X] \setminus P$, but $(3X)^3 \in P$.

Corollary 16. If $P \subset I$ are ideals of V with P prime, then P is also prime in $I:K$ and $P = P:K$.

Proof. If $I:K = V$, then there is nothing to prove. Hence we may assume that $I:K \neq V$. Then, by Theorem 13 (2), $I:K = V_r$, and I_r is a prime ideal of V. Hence, by [3, Theorem 17.6 (b)], $P = PV_r$ is a prime ideal of V_r, since $P \subset I \subseteq I_r$. Thus, P is a prime ideal of $I:K$. Our second assertion follows then from [9, Corollary 1.5].

We close this paper with a characterization of primary ideals Q of V such that $Q:K \neq V$.

We first prepare the following two lemmas.

Lemma 17. Let Q be a primary ideal of V. Then $Q:K \neq V$ if and only if \sqrt{Q} is not the unique maximal ideal of V.

Proof. Let M be the unique maximal ideal of V. First, suppose that $\sqrt{Q} = M$. Then, by Theorem 3, $Q:K = V, \sqrt{Q} = V_M = V$. Thus, the “only if” half is proved. Conversely, suppose that $Q:K = V$. Then, also by Theorem 3, $V = Q:K = V, \sqrt{Q}$, and so $\sqrt{Q} = M$. Hence, the “if” half is also proved.

Lemma 18. Let I be a nonzero ideal of an integral domain R with quotient field K. Then, for any $x \in I:K$, x is a unit of $I:K$ if and only if $xI = I$.

Proof. First, assume that x is a unit of $I:K$. Then there is an element $y \in I:K$ such that $xy = 1$. Then, $I = (xy)I = x(yI) \subseteq xI \subseteq I$, and so $I = xI$, as we required. Conversely, suppose that $I = xI$. Since $I \neq (0)$, x is a nonzero element of K, and so $x^{-1} \in K$. Hence, by hypothesis, $x^{-1}I = x^{-1}(xI) = (x^{-1}x)I = I$, and so $x^{-1} \in I:K$, which implies that x is a unit of $I:K$. This completes the proof.

Theorem 19. Let I be an ideal of V such that $I:K \neq V$. Then I is a primary ideal of V if and only if $\sqrt{I} = I_r$.

Proof. The “only if” half is proved in part (4) of Theorem 13. To prove the “if” half, suppose that I is not a primary ideal of V. By part (2) of Theorem 13, $I:K = V_{r_I}$, and therefore, to prove that $\sqrt{I} \neq I_r$, it suffices to show that $I:K \neq V_{r_I}$. Now, since I is not primary, there exist $a, b \in V$ such that $a \notin I, b \notin \sqrt{I}$,
but $ab \notin I$. Then $b \notin \sqrt{I}$ implies that $I \subseteq (b)$, since V is a valuation domain. Then, since (b) is invertible, there exists an ideal J of V such that $I = f(b)$. Therefore, by hypothesis, $ab \notin I = f(b)$, and so $a \notin I$. Since $a \in f \setminus J, I = f(b) \subseteq J$ and therefore $bI = (bI = f(b)I) \subseteq J(b) = J$. Thus, $bI \subseteq I$ and therefore it follows from Lemma 18 that b is not a unit of $I : _K I$. On the other hand, b is a unit of V_{J_I}, since $b \notin \sqrt{I}$. Therefore $I : _K I = V_{J_I}$, as we wanted and hence our proof is complete.

Remark 20. If I is an ideal of V such that $I : _K I \neq V$, then \sqrt{I} is not maximal in V. For, if \sqrt{I} is maximal, then, by part (3) of Theorem 13, I_r is also maximal in V and therefore, by part (2) of Theorem 13, $I : _K I = V_{I_r} = V$, a contradiction.

Corollary 21. Let I be an ideal of V such that $I : _K I \neq V$. Then I is recurrent if and only if I is prime.

Proof. First, assume that I is prime in V. Then it follows from Theorem 1 that I is not maximal in V, since $I : _K I \neq V$. Therefore the “if” half follows from part (1) of Theorem 13. Furthermore, the “only if” half follows immediately from part (2) of Theorem 13.

References