OPTIMUM PROPERTIES OF THE WILCOXON SIGNED RANK TEST UNDER A LEHMANN ALTERNATIVE

By

Taka-aki SHIRAISHI

1. Introduction.

Let \(X_1, \ldots, X_n \) be a random sample from an absolutely continuous distribution function \(F(x) \). The problem is to test the null hypothesis \(H: F(x) = G(x) \) where \(G'(x) = g(x) \) is assumed to be symmetric about zero. When \(G(x) \) is a logistic distribution function, Hájek and Šidák [1] reviewed that the Wilcoxon signed rank test is locally most powerful among all rank tests against the location alternative \(A: F(x) = G(x - \theta) \) for \(\theta > 0 \) and showed that the test is asymptotically optimum under the contiguous sequence of alternatives \(A_n: F(x) = G(x - d/\sqrt{n}) \) for some \(d > 0 \).

In this paper, we consider the alternative of the contaminated distribution

\[
K: F(x) = (1 - \theta)G(x) + \theta(G(x))^2 \quad \text{for } 0 < \theta < 1.
\]

The alternative \(K \) was introduced by Lehmann [2] for a two-sample problem. In order to get an asymptotic optimum property, we consider the sequence of alternatives

\[
K_n: F(x) = (1 - d/\sqrt{n})G(x) + (d/\sqrt{n})G(x)^2 \quad \text{for } d > 0,
\]

which is included in \(K \) and approaches the null hypothesis \(H \) as \(n \to \infty \). In the following Section, we shall show that the Wilcoxon signed rank test is locally most powerful among all rank tests under \(K \) and is asymptotically most powerful under \(K_n \). Further in Section 3, we shall compare the Wilcoxon signed rank test with the one-sample \(t \)-test by the asymptotic relative efficiency under the contiguous sequence of alternatives of general contaminated distributions

\[
K_n': F(x) = (1 - d/\sqrt{n})G(x) + (d/\sqrt{n})H(G(x)) \quad \text{for } d > 0.
\]

2. Optimum properties.

Taking the absolute values of observations, let \(R_i \) be the rank of \(|X_i| \) among the observations \(\{|X_i|; i = 1, \ldots, n| \) and define \(\text{sign} X = 1 \) for \(X > 0 \), \(0 \) for \(X = 0 \) and \(-1 \) for \(X < 0 \).

Received April 8, 1985. Revised June 27, 1985.
\(-1\) otherwise. Note that \(\Pr\{\text{sign } X_i = 0\} = 0\) since we consider only absolutely continuous distribution. Then we can describe the Wilcoxon signed rank statistic as the following.

\[
T = \sum_{i=1}^{n}(\text{sign } X_i)R_i.
\]

At first, we investigate the property of "locally most powerful".

Theorem 1. The Wilcoxon signed rank test based on \(T\) defined by (2.1) is locally most powerful for \(H\) versus \(K\) defined by (1.1) among all rank tests.

Proof. Putting \(\text{sign } X = (\text{sign } X_1, \ldots, \text{sign } X_n)\) and \(R = (R_1, \ldots, R_n)\), we get for any vector \(v = (v_1, \ldots, v_n)\) such that \(v_i = 1\) or \(-1\) and any permutation \(r = (r_1, \ldots, r_n)\) of \((1, \ldots, n)\), under \(H\), \(\Pr\{\text{sign } X = v\} = 1/2^n\) and \(\Pr\{R = r\} = 1/n!\). Here since the likelihood function of \((X_1, \ldots, X_n)\) under \(K\) is given by

\[
\eta(x) = \prod_{i=1}^{n}((1-\theta)g(x_i) + 2\theta G(x_i)g(x_i))
\]

the joint probability of sign vector \(\text{sign } X\) and rank vector \(R\) is expressed by

\[
\beta(\theta) = \Pr\{\text{sign } X = v, R = r\}
= \sum_{\text{sign } X = v, R = r} \eta(x) dx
= 1/(2^n \cdot n!) + \sum_{i=1}^{n} \prod_{k=1}^{n-1} g(x_k) \prod_{k=1}^{n} ((1-\theta)g(x_k) + 2\theta G(x_k)g(x_k))
\times [(1-\theta)g(x_i) + 2\theta G(x_i)g(x_i)] - \theta g(x_i) dx ,
\]

It follows that

\[
\beta'(0) = \sum_{i=1}^{n} \prod_{k=1}^{n-1} \{ -1 + 2G(x_k) \} \prod_{k=1}^{n} g(x_k) dx .
\]

Let \(|X|^{(i)}\) be the \(i\)-th order statistic among the absolute values \(|X_i|; \, i = 1, \ldots, n\). Since \(|X|^{(i)}\), \(\text{sign } X\) and \(R\) are mutually independent under \(H\) from II 1.3 theorem of Hájek and Šidák [1], we can get

\[
\beta'(0) = 1/(2^n \cdot n!) \cdot \sum_{i=1}^{n} E\{ -1 + 2G(v_i)|X|^{(i)} \}
= 1/(2^n \cdot n!) \cdot \sum_{i=1}^{n} E[v_i G(|X|^{(i)}) - 1]
= 1/(2^n \cdot n!) \cdot \sum_{i=1}^{n} v_i n/(n+1) ,
\]

which implies the result.
Next we shall show the asymptotic optimum property. Corresponding to (2.2), the joint density of \((X_i, \cdots, X_n)\) under \(K_n\) defined by (1.2) is given by

\[
q_d(X) = \prod_{i=1}^{n} \left[(1 - d/\sqrt{n}) + 2dG(X_i)/\sqrt{n} \right] g(X_i)
\]

Theorem 2. The asymptotic power of the Wilcoxon signed rank test is equal to that of the most powerful test for \(H\) versus \(K_n\) when \(d\) and \(G(u)\) are known, having critical region \(\{x; \log \{q_d(x)/g(x)\} \geq t_{na}\}\).

Proof. Taylor's series expansion of the logarithm of the likelihood ratio yields

\[
L_d = \log \left(\frac{q_d(X)/g(X)}{\prod_{i=1}^{n} \{ (1 - d/\sqrt{n}) + 2dG(X_i)/\sqrt{n} \} \} \right) \\
= \left(d/\sqrt{n} \right) \sum_{i=1}^{n} [2G(X_i) - 1] - d^2/(2n) \sum_{i=1}^{n} (2G(X_i) - 1)^2 \\
\quad + d^3/(3n\sqrt{n}) \sum_{i=1}^{n} [(2G(X_i) - 1)^3/(1 + \delta_i(d/\sqrt{n})(2G(X_i) - 1))]^2,
\]

where \(\delta_i\) satisfies \(0 < \delta_i < 1\). Under the null hypothesis \(H\), the first term of the last expression of (2.3), namely \(d/\sqrt{n} \sum_{i=1}^{n} [2G(X_i) - 1]\), has asymptotically a normal distribution with mean 0 and variance \(d^2/3\) by the central limit theorem, the second term converges to \(-d^2/6\) in probability by the law of large numbers and the third term tends to zero in probability.

Thus we get

\[
L_d \xrightarrow{\text{law}} N(\mu, \sigma^2),
\]

where \(\xrightarrow{\text{law}}\) denotes convergence in law and

\[
\mu = -d^2/6 \quad \text{and} \quad \sigma^2 = -2d^2/3.
\]

From VI 1.2 corollary of Hájek and Šidák [1], the family of densities \(\{q_d(x)\}\) is contiguous to \(\{g(x)\}\). So from LeCam’s third lemma stated in VI 1.4 of Hájek and Šidák [1], under \(\{q_d(x)\}\), \(L_d \xrightarrow{\text{law}} N(-\mu, \sigma^2)\), where \(\mu\) and \(\sigma^2\) are defined by (2.5).

Therefore the asymptotic power of the test of level \(\alpha\) with critical region \(L_d > t_{na}\) under \(\{q_d(x)\}\) is

\[
1 - \Phi(z_\alpha - d/\sqrt{3}),
\]

where \(t_{na} = -d^2/6 + z_\alpha d/\sqrt{3} + o(1)\), \(\Phi(\cdot)\) is a distribution function of the standard normal and \(z_\alpha\) is the upper 100\(\alpha\) percentage point of the standard normal distri-
bution. On the other hand, let us put $S = \sum_{i=1}^{n} \frac{(\text{sign } X_i)[2G(|X_i|) - 1]}{\sqrt{n}}$, then $T/(n+1)\sqrt{n} - S$ converges to zero in probability under H from V 1.7 theorem of Hájek and Šidák [1]. Hence $(L_{u}, T/((n+1)\sqrt{n}))$ and (L_{u}, S) have asymptotically the same normal distribution. Also it follows under H that (L_{u}, S) has asymptotically a bivariate normal distribution with mean $(\mu, 0)$ and singular covariance matrix $(\sigma_{11}, \sigma_{22})$, where μ and σ are defined by (2.5), $\sigma_{12} = \sqrt{3}/3$ and $\sigma_{22} = 1/3$. Hence, from LeCam’s third lemma, under H from $q_{l}(x)$, we get that S has asymptotically the normal distribution with mean σ_{11} and variance σ_{22}. Thus the asymptotic power of the test based on T for H versus K_{n} at level α is given by the expression (2.6). This completes the proof.

3. Comparison with the t-test under a contiguous sequence of alternatives of general contaminated distributions.

We extend K_{n} defined by (1.2) to the contiguous sequence of alternatives of general contaminated distributions K'_{n} defined by (1.3) and compare the Wilcoxon signed rank test with the t-test based on

$$U = \sqrt{n}^{-1} \sum_{i=1}^{n} X_i / \sqrt{n} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Then we get

Theorem 3. Suppose that the derivative of $H(u)$ exists and the derivative $h(u) = H'(u)$ is bounded. Then the asymptotic relative efficiency of the Wilcoxon signed rank test with respect to the t-test based on U under K'_{n} defined by (1.3) is given by

$$\text{ARE}(T, U) = 3\sigma^{2} \left[\int_{0}^{1} (2u-1)h(u)du \right]^{2} / \left[\int_{-\infty}^{\infty} th(G(t))g(t)dt \right]^{2}$$

where $\sigma^{2} = \int_{-\infty}^{\infty} t^{2}dG(t)$.

Proof. From the straight similar way to the proof of Theorem 2, $\sqrt{3} \cdot T/(n+1)\sqrt{n}$ has asymptotically a normal distribution with mean $\sqrt{3} \int_{0}^{1} (2u-1)h(u)du$ and variance 1. Further the similar argument as in the proof of Theorem 2 shows that U defined by (3.1) has asymptotically a normal distribution with mean $\int_{-\infty}^{\infty} \frac{th(G(t))dt}{\sigma}$ and variance 1 under K'_{n}. The ratio of squares of the two asymptotic means gives the result.

This asymptotic relative efficiency (ARE) equals the ARE of the two-sample
Optimum Properties of the Wilcoxon Signed Rank Test Under

Wilcoxon test with respect to the two-sample t-test under a contiguous sequence of alternatives of contaminated distributions which is given by corollary 2 of Shiraishi [3]. So we find that this ARE is 1 for any bounded function $h(u)$ if $G(x)$ is the distribution function from the uniform random variable on a finite interval. In Table 1 of Shiraishi [3], we showed the values of this ARE for $H(u) = u^k$, $1 - (1 - u)^k$ with $k = 1, 1.1, 1.3, 1.6, 2, 3, 5, 10$ and $G(x) =$ uniform, normal, logistic, double exponential distributions. As the numerical results, ARE's are always nearly equal to 1 irrespective of the form of $H(u)$, $G(x)$ and k chosen.

4. Conclusion.

About the exact power, Theorem 1 gives an admissibility of the Wilcoxon signed rank test for the alternative of contaminated distribution $F(x) = (1 - \theta)G(x) + \theta H(G(x))$, which includes K defined by (1.1), as far as we intend to seek a test having higher exact power among all rank tests. Though we found that there does not exist asymptotically a most powerful rank test under a contiguous sequence of alternatives of contaminated distributions for the two-sample problem from corollary 1 of Shiraishi [3], Theorem 2 shows that the Wilcoxon signed rank test is asymptotically most powerful for K_n defined by (1.2) which is included by K'_n. Further we find that the numerical values of ARE of the Wilcoxon signed rank test with respect to the t-test stated by Theorem 3 give no loss of the relative efficiency even against the alternative hypothesis of contaminated distributions discussed in Section 3.

References

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan