A DIFFERENTIAL GEOMETRIC CHARACTERIZATION
OF HOMOGENEOUS SELF-DUAL CONES

(Dedicated to Professor K. Murata on his sixtieth birthday)

By

Hirohiko Shima

In this note we give a differential geometric characterization of self-dual cones among affine homogeneous convex domains not containing any full straight line. Let \mathcal{Q} be an affine homogeneous convex domain in an n-dimensional real vector space V^n. Then \mathcal{Q} admits an invariant volume element

$$v = \phi dx^1 \wedge \cdots \wedge dx^n$$

and the canonical bilinear form defined by

$$g = \sum_{i,j} \frac{\partial^2 \phi}{\partial x^i \partial x^j} dx^i dx^j$$

is positive definite and so gives an invariant Riemannian metric on \mathcal{Q}, where \{x^1, \ldots, x^n\} is an affine coordinate system on V^n [5]. In an affine coordinate system \{x^1, \ldots, x^n\} the components of the Riemannian connection Γ and the Riemannian curvature tensor R for g are expressed as follows

$$\Gamma_{jk}^i = \frac{1}{2} \sum_p g^{ip} \frac{\partial^3 \phi}{\partial x^j \partial x^k \partial x^p},$$

$$R_{jkl}^i = \sum_p (\Gamma_{jk}^p \Gamma^i_{pl} - \Gamma^i_{pl} \Gamma^p_{jk}),$$

where $g_{ij} = \frac{\partial^2 \phi}{\partial x^i \partial x^j}$ and $\sum_p g^{ip} g_{pj} = \delta^i_j$ (Kronecker's delta). Since $\frac{1}{2} \sum_p g^{ip} \frac{\partial^3 \phi}{\partial x^j \partial x^k \partial x^p}$ defines a tensor field on \mathcal{Q}, we denote this tensor field by the same letter Γ.

An open convex set \mathcal{Q} in V^n is called a cone with vertex o if $o + \lambda(x-o) \in \mathcal{Q}$ for all $x \in \mathcal{Q}$ and $\lambda > 0$. An open convex cone \mathcal{Q} with vertex o is said to be a self-dual cone if V^n admits an inner product \langle , \rangle such that

(i) $\langle x-o, y-o \rangle > 0$ for all $x, y \in \mathcal{Q}$;

(ii) if $x \in V^n$ is a vector such that $\langle x-o, y-o \rangle \geq 0$ for all $y \in \bar{\mathcal{Q}}$ then $x \in \bar{\mathcal{Q}}$, where $\bar{\mathcal{Q}}$ is the closure of \mathcal{Q} in V^n.

Received March 24, 1981. Revised November 30, 1981.
Theorem 1. A homogeneous convex cone Ω not containing any full straight line is a self-dual cone if and only if R is parallel with respect to Γ.

Theorem 2. A homogeneous convex domain Ω not containing any full straight line is a self-dual cone if and only if Γ is parallel with respect to Γ.

The necessary conditions of these theorems have been proved by O.S. Rothaus [2].

If Γ is parallel with respect to Γ, then by (4) R is parallel with respect to Γ. The converse is not true. For example, in the case of the interior of a paraboloid; $x^2 + \frac{1}{2} (x^3)^2 > 0$, R is parallel but Γ is not parallel with respect to Γ.

We denote by \mathcal{F}_X and L_X the covariant differentiation for Γ and the Lie differentiation in the direction of a vector field X respectively. We set

$$A_x = L_x - \mathcal{F}_x.$$

Then A_x is a derivation of the algebra of tensor fields and for a vector field Y we have

$$A_x Y = - \mathcal{F}_X Y.$$

If X and Y are Killing vector fields, then we know [1]

$$R(X, Y) = [A_x, A_Y] - A_{(X,Y)}.$$

For vector fields $X = \sum_i \xi_i \frac{\partial}{\partial x^i}$ and $Y = \sum_i \eta^i \frac{\partial}{\partial x^i}$ we define a vector field $X \circ Y$ by

$$X \circ Y = - \sum_{i,j,k} \iota^i_{jk} \xi^j \eta^k \frac{\partial}{\partial x^i},$$

and we put

$$S_x Y = X \circ Y.$$

The condition that Γ is parallel with respect to Γ is equivalent to

$$\mathcal{F}_x(X \circ Y) = (\mathcal{F}_x X) \circ Y + X \circ (\mathcal{F}_x Y).$$

We shall now recall the construction of clans from affine homogeneous convex domains [5]. It is known that a homogeneous convex domain Ω not containing any full straight line admits a simply transitive triangular affine Lie group T. Let t denote the Lie algebra of T. We fix a point $e \in \Omega$ and choose an affine coordinate system (x^1, \ldots, x^n) such that $x^1(e) = \cdots = x^n(e) = 0$. Identifying $X \mathcal{E} t$ with the vector field induced by the one parameter group of transformations $\exp(-tX)$, X

(*) T. Tsuji obtained the same result independently [7].
A Differential Geometric Characterization of Homogeneous Cones

has an expression \(X = \sum_{i} (\sum_{j} a_{i} x_{j} + a_{i}) \frac{\partial}{\partial x_{i}} \), where \(a_{i} \) and \(a_{i} \) are constants. Let \(V \) denote the tangent space of \(\Omega \) at \(e \). Since \(T \) acts simply transitively on \(\Omega \), for each \(a \in V \) there exists a unique element \(X_{a} \in T \) such that the values of \(X_{a} \) at \(e \) is equal to \(a \). For \(a, b \in V \) we define a multiplication \(a \odot b \) in \(V \) by

\[
(a \odot b) = \sum_{i} (\sum_{j} a_{i} b_{j}^{i}) \frac{\partial}{\partial x_{i}}
\]

where \(a_{i}^{j} \) and \(b_{i}^{j} \) are constants given by

\[
X_{a} = \sum_{i} (\sum_{j} a_{i}^{j} x_{j} + a_{i}) \frac{\partial}{\partial x_{i}} \quad \text{and} \quad X_{b} = \sum_{i} (\sum_{j} b_{i}^{j} x_{j} + b_{i}) \frac{\partial}{\partial x_{i}}.
\]

Then we have

\[
[X_{a}, X_{b}] = X_{a \odot b - a \odot b}.
\]

Denoting by \(L_{a} \) the left multiplication by \(a \in V \);

\[
L_{a} b = a \odot b,
\]

we have

\[
[L_{a}, L_{b}] = L_{a \odot b - b \odot a}.
\]

Let \(\langle , \rangle \) denote the inner product on \(V \) induced by \(g \) and we put

\[
s(a) = \text{Tr} L_{a}.
\]

Then we know

\[
\langle a, b \rangle = s(a \odot b).
\]

The algebra \(V \) together with the linear form \(s \) is said to be the clan of \(\Omega \) with respect to \(e \in \Omega \) and the simply transitive triangular group \(T \) and is denoted by \(V(\Omega) \).

Proposition 1. For \(a, b \in V \) we denote by \(S_{a}, A_{a}, \) and \(R(a, b) \) the values of \(S_{X_{a}}, A_{X_{a}}, \) and \(R(X_{a}, X_{b}) \) at \(e \) respectively. Then we have

(i) \(S_{a} = \frac{1}{2} (L_{a} + L_{a}^{t}) \), \quad \(S_{a} b = S_{b} a \),

(ii) \(A_{a} = -\frac{1}{2} (L_{a} - L_{a}^{t}) \),

(iii) \(R(a, b) = -[S_{a}, S_{b}] \),

where \(L_{a}^{t} \) is the transpose of \(L_{a} \) with respect to \(\langle , \rangle \).

Proof. We may assume \(\phi(e) = 1 \). Since \(v = \phi dx^{1} \wedge \cdots \wedge dx^{n} \) is invariant under
the one parameter group of transformations $\text{Exp} \, t \, X_a$ generated by X_a, we have

$$\phi((\text{Exp} \, t \, X_a)e) = \exp(-t \, \text{Tr} \, L_a)$$

and so

$$(16) \quad \log \phi((\text{Exp} \, t \, X_a)e) = -ts(a).$$

Expanding the left side in a power series of t and evaluating the terms of the first, the second and the third orders, we have

$$(17) \quad \sum_t \frac{\partial \log \phi}{\partial x^i}(e)a^i = -s(a),$$

$$(18) \quad \sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}(e)a^ia^j = \langle a, a \rangle = s(a \triangle a),$$

$$(19) \quad \sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k}(e)a^ia^ja^k = -2\langle a, a \triangle a \rangle = -2s(a \triangle (a \triangle a)),$$

where $a = \sum_i a^i \left(\frac{\partial}{\partial x^i}\right)$. Taking $a + b$ and $a + b + c$ instead of a in the formulae (18) and (19) respectively we obtain

$$(18') \quad \sum_{i,j} \frac{\partial^2 \log \phi}{\partial x^i \partial x^j}(e)a^ib^j = \langle a, b \rangle = s(a \triangle b),$$

$$(19') \quad 3 \sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k}(e)a^ib^ja^k = -\langle a, b \triangle c \rangle + \langle a, c \triangle b \rangle + \langle b, a \triangle c \rangle + \langle b, c \triangle a \rangle + \langle c, a \triangle b \rangle + \langle c, b \triangle a \rangle.$$

By (14) and (18') we have

$$(20) \quad \langle a \triangle b, c \rangle + \langle b, a \triangle c \rangle = \langle b \triangle a, c \rangle + \langle a, b \triangle c \rangle.$$

Using this we get

$$(19'') \quad \sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k}(e)a^ib^jc^k = -\langle a \triangle b, c \rangle - \langle b, a \triangle c \rangle$$

$$= -\langle \langle L_a + L_a \rangle b, c \rangle.$$

On the other hand it follows from (3) (8) (9) that

$$\sum_{i,j,k} \frac{\partial^3 \log \phi}{\partial x^i \partial x^j \partial x^k}(e)a^ib^jc^k = 2 \sum_{i,j,k} \langle g_{kl}^{(ij)}e \rangle a^ib^jc^k$$

$$= -2\langle S_a b, c \rangle.$$

Thus we have

$$S_a b = \frac{1}{2} \langle L_a + L_a \rangle b$$

and (i) is proved.
A Differential Geometric Characterization of Homogeneous Cones

For $X_a = \sum_j (\sum_j a_j x^j + a^j) \frac{\partial}{\partial x^j}$ and $X_b = \sum_j (\sum_j b_j x^j + b^j) \frac{\partial}{\partial x^j}$ we have

$$F_{X_a}X_b = \sum_j \left(\sum_p b_p (\sum_q a_{pq} x^q + a^q) + \sum_r \left(\sum_s a_{rs} x^s + a^s \right) \frac{\partial}{\partial x^r} \right) \frac{\partial}{\partial x^j}.$$

Since $x^j(\epsilon) = 0$, by (8), (11) and (i) the value $(F_{X_a}X_b)e$ of $F_{X_a}X_b$ at ϵ is reduced to

$$(F_{X_a}X_b)e = \sum \left(\sum_p b_p a_p + \sum_r \left(\sum_s a_{rs} \epsilon^s \right) \frac{\partial}{\partial x^r} \right) \epsilon$$

$$= b \triangle a - b \bigtriangleup a$$

$$= \frac{1}{2} (L_a - L_b) a.$$

Therefore by (6) we get

$$A_ab = (A_{X_a}X_b)e = -(F_{X_a}X_b)e = -\frac{1}{2} (L_a - L_b) b,$$

and (ii) is proved.

By (7) we have

$$R(X_a, X_b) = [A_{X_a}, A_{X_b}] - A(X_a, X_b).$$

Using (12), (14), (i) and (ii) we obtain

$$R(a, b) = [A_a, A_b] - A_{b \triangle a - a \bigtriangleup b}$$

$$= \left[-\frac{1}{2} (L_a - L_b), -\frac{1}{2} (L_b - L_a) \right] + \frac{1}{2} (L_{b \triangle a - a \bigtriangleup b} - L_{a \bigtriangleup b - b \triangle a})$$

$$= \frac{1}{4} [L_a - L_b, L_b - L_a] - \frac{1}{2} ([L_a, L_b] - [L_a, L_b])$$

$$= -[S_a, S_b],$$

and so (iii) is proved.

Q. E. D.

Proposition 2.

(i) If Γ is parallel with respect to Γ, then we have

$$[A_a, S_b] = S_{A_a b}.$$

(ii) If R is parallel with respect to Γ, then we have

$$[A_a, [S_b, S_c]] = [S_{A_a b}, S_c] + [S_b, S_{A_a c}].$$

Proof. Since $X_a = \sum_i \xi_i \frac{\partial}{\partial x^i}$ is an infinitesimal affine transformation with respect to Γ, we have
where $L_{X_a} \Gamma^i_{jk}$ is the Lie derivative of the tensor field Γ^i_{jk} by X_a. Since $\xi^i = \sum_j x^j \xi^i_j + a^i$, we get

$$L_{X_a} \Gamma^i_{jk} = 0.$$ \hspace{1cm} (21)

From this we have

$$L_{X_a}(X_b \square X_c) = (L_{X_a} X_b) \square X_c + X_b \square (L_{X_a} X_c).$$ \hspace{1cm} (22)

Therefore by (5), (10) and (22) the condition $F_{X_a} \Gamma = 0$ is equivalent to

$$A_{X_a}(X_b \square X_c) = (A_{X_a} X_b) \square X_c + X_b \square (A_{X_a} X_c).$$

This implies (i). By (4) and (21) it follows

$$L_{X_a} R = 0.$$ \hspace{1cm} (i)

Thus by (5) the condition $F_{X_a} R = 0$ is equivalent to $A_{X_a} R = 0$. Since A_{X_a} is a derivation of the algebra of tensor fields, we have

$$((A_{X_a} R)(X_b, X_c)) X_d = A_{X_a} (R(X_b, X_c) X_d) - R(A_{X_a} X_b, X_c) X_d$$

$$- R(X_b, A_{X_a} X_c) X_d - R(X_b, X_d) A_{X_a} X_d$$

$$= ([A_{X_a}, R(X_b, X_c)] - R(A_{X_a} X_b, X_c) - R(X_b, A_{X_a} X_c)) X_d$$

and so by Proposition 1 (iii)

$$((A_a R)(b, c)) d = ([A_a, R(b, c)] - R(A_a b, c) - R(b, A_a c)) d$$

$$= ([A_a, [S_b, S_c] + [S_{A_a b}, S_c] + [S_b, S_{A_a c}]] d$$

This proves (ii). Q. E. D.

Lemma 1. If Γ is parallel with respect to Γ, then Ω is a cone.

Proof. It is known that if the clan $V(\Omega)$ of Ω has a unit element then Ω is a cone [5]. Therefore by Proposition 2 (i) it suffices to show that if $[A_a, S_b] = S_{A_a b}$ holds for all $a, b \in V(\Omega)$, then $V(\Omega)$ has a unit element. Let \mathfrak{u} be the principal idempotent of the clan $V(\Omega)$, i.e., \mathfrak{u} is an element in $V(\Omega)$ determined by $\langle \mathfrak{u}, a \rangle = s(a)$ for all $a \in V(\Omega)$. Then we get the principal decomposition

$$V(\Omega) = V_0 + N,$$

where $V_0 = \{ a \in V(\Omega) ; a \cap a = a \}$ and $N = \{ a \in V(\Omega) ; a \cap a = \frac{1}{2} a \}$. The principal de-
composition $V(\Omega) = V_0 + N$ is orthogonal with respect to the inner product \langle , \rangle and the following relations hold [5]
\[
\begin{align*}
V_0 \wedge V_0 &\subset V_0, \quad V_0 \wedge N \subset N, \\
N \wedge V_0 &\subset\{0\}, \quad N \wedge N \subset V_0.
\end{align*}
\]
(23)

Let p be an element in N. By our assumption and Proposition 1 we have
\[
0 = \langle (A_p, S_p) - S_p^p, p, p \rangle = \langle A_p S_p p - 2S_p A_p p, p \rangle
\]
\[
= -3 \langle S_p p, A_p p \rangle = \frac{3}{4} \langle (L_p + L_p^p)p, (L_p - L_p^p)p \rangle
\]
\[
= \frac{3}{4} \langle L_p p, L_p^p p \rangle - \langle L_p^p p, L_p^p p \rangle.
\]

Therefore by the orthogonality of the principal decomposition and by (23) we get
\[
\langle p \wedge p, p \wedge p \rangle = \langle L_p p, L_p^p p \rangle = \langle p, L_p^p L_p p \rangle = 0.
\]

This means $p \wedge p = 0$, $\langle p, p \rangle = s(p \wedge p) = 0$ and so $p = 0$. Thus we have $V(\Omega) = V_0$ and

n is a unit element of the clan $V(\Omega)$.

Q.E.D.

We shall now recall the notion of T-algebras [5] [6].

A matrix algebra with involution is an algebra over the real number field \mathbb{R} which is bigraded by the subspaces \mathfrak{U}_{ij} $(i, j=1, \cdots, m)$ and provided with an involutive anti-automorphism $*$ in such a way that

$\mathfrak{U}_{ij} \mathfrak{U}_{jk} \subset \mathfrak{U}_{ik}$,

$\mathfrak{U}_{ij} \mathfrak{U}_{ik} = \{0\}$ if $j \neq k$,

$\mathfrak{U}_{ij}^* = \mathfrak{U}_{ji}$.

The general element of \mathfrak{U}_{ij} will be denoted by a_{ij}, b_{ij}, etc..

A matrix algebra with involution is said to be a T-algebra if the following axioms are satisfied:

(T.1) For any i the algebra \mathfrak{U}_{ii} is one-dimensional and admits an isomorphism $\rho : \mathfrak{U}_{ii} \rightarrow \mathbb{R}$ with the following properties.

(T.2) $a_{ij}b_{ij} = \rho(a_{ii})b_{ij}$;

(T.3) $n_i \rho(a_{ij} b_{ji}) = n_j \rho(b_{ji} a_{ij})$, where $n_i = 1 + \frac{1}{2} \sum \dim \mathfrak{U}_{is}$;

(T.4) $\rho(a_{ij} a_{ji}^*) > 0$ if $a_{ij} \neq 0$;

(T.5) $a_{ij}(b_{jk} c_{ki}) = (a_{ij} b_{jk}) c_{ki}$;

(T.6) $a_{ij}(b_{jk} c_{ki}) = (a_{ij} b_{jk}) c_{ki}$ if $i < j < k$ and $j < l$;

(T.7) $a_{ij}(b_{jk} b_{ki}^*) = (a_{ij} b_{jk}) b_{ki}^*$ if $i < j < k$.

Let \mathfrak{X} denote the space of hermitian matrices in the T-algebra \mathfrak{U}; $\mathfrak{X} = \{a \in \mathfrak{U} : a^* = a\}$;
$a^*=a$. For each $a=\sum_{i,j} a_{ij} \in \mathfrak{A}$ we put

$$\hat{a}=\frac{1}{2} \sum_i a_{ii} + \sum_{i,j} a_{ij},$$

$$a=\frac{1}{2} \sum_i a_{ii} + \sum_{i,j} a_{ij},$$

We define a multiplication $L_n b = a \cdot b$ in \mathfrak{A} by the formula

$$a \cdot b = \hat{a}b + b\hat{a},$$

Then \mathfrak{A} is a clan with unit element and we denote this clan by $\mathfrak{A}(\mathfrak{A})$. Let $\Omega(\mathfrak{A})$ be the set of matrices which are expressible in the form tt^*, where t is an upper triangular matrix with positive elements on the diagonal. Then $\Omega(\mathfrak{A})$ is a homogeneous convex cone in $\mathfrak{A}(\mathfrak{A})$. For every homogeneous convex cone Ω there exists a T-algebra \mathfrak{A} such that Ω is isomorphic to $\Omega(\mathfrak{A})$ and a clan $V(\Omega)$ of Ω is isomorphic to $\mathfrak{A}(\mathfrak{A})$.

Now we return to the proof of our theorems. By the above fact we may assume $V(\Omega) = \mathfrak{A}(\mathfrak{A})$. Then it is known that for $a, b \in \mathfrak{A}(\mathfrak{A})$

$$\text{Tr } L_a = \text{Spur } a,$$

$$\langle a, b \rangle = \text{Spur } ab,$$

where Spur $a = \sum_t n_t \rho(a_{tt})$. It is easy to see

$$^tL_a b = gb + ba.$$

Therefore we get

$$(24) \quad S_a b = \frac{1}{2} (ab + ba),$$

$$(25) \quad A_a b = -\frac{1}{2} [(a-g)b - b(a-g)].$$

Let n_{ij} denote the dimension of \mathfrak{A}_{ij}. We define inductively an equivalence relation \bar{R} in the set $\{1, \cdots, m\}$ of indices:

1. $i \equiv i \pmod{\bar{R}}$ for all i,
2. if we have already determined whether the i, j such that $|i-j| < r$ are comparable modulo \bar{R} or not, then for $|i-j|=r$ we define $i \equiv j \pmod{\bar{R}}$ if and only if
 (i) $n_{ij} \neq 0$, (ii) $n_{ik} = n_{jk}$ for all $k \neq i, j$, and (iii) for all k lying between i and j (except i and j) either $n_{ik} = n_{kj} = 0$ or $i \equiv k \pmod{\bar{R}}$ and $k \equiv j \pmod{\bar{R}}$.

We put

$$\mathfrak{A}_{ij} = \begin{cases} \mathfrak{A}_{ij} & \text{if } i \equiv j \pmod{\bar{R}} \\ \{0\} & \text{if } i \not\equiv j \pmod{\bar{R}}. \end{cases}$$
A Differential Geometric Characterization of Homogeneous Cones

\[\mathcal{V} = \sum_{i,j} \mathcal{A}_{ij}. \]

Then \(\mathcal{V} \) is a \(T \)-algebra and the homogeneous convex cone \(\mathcal{O}(\mathcal{V}) \) corresponding to \(\mathcal{V} \) is self-dual.

Lemma 2. If the clan \(\mathcal{A}(\mathcal{V}) \) corresponding to a \(T \)-algebra \(\mathcal{V} \) satisfies the condition

\[[A_a, [S_b, S_c]] = [S_{A_{ab}}, S_c] + [S_b, S_{A_{ac}}], \]

then we have \(\mathcal{V} = \mathcal{V}' \).

Proof. By the condition we have

\[[[A_a, S_b] - S_{A_{ab}}, S_c] = [[A_a, S_c] - S_{A_{ac}}, S_b]. \]

Let \(a_{ij} \in \mathcal{A}_{ij}, b_{jk} \in \mathcal{A}_{jk} \) and \(e_i \in \mathcal{A}_{ii} \), where \(i < j, k \neq i, j \) and \(\rho(e_i) = 1 \). We put \(a = a_{ij} + a_{*j}^*, b = b_{jk} + b_{*k}^* \) and \(c = e_i \) and calculate the following formula

\[[[A_a, S_b] - S_{A_{ab}}, S_c] b = [[A_a, S_c] - S_{A_{ac}}, S_b] b \]

Using (24) and (25), the left side is equal to

\[\frac{1}{4} \{ a_{ij} (b_{jk} b_{*k}^*) - (a_{ij} b_{jk}) b_{*k}^* + (b_{jk} b_{*k}^*) a_{*j}^* - b_{jk} (b_{*k}^* a_{*j}^*) \} \]

and the right side is reduced to 0. Considering \(\mathcal{A}_{ij} \)-component, by (T.2) we get

\[(a_{ij} b_{jk}) b_{*k}^* = a_{ij} (b_{jk} b_{*k}^*) = \rho(b_{jk} b_{*k}^*) a_{ij}. \]

Multiplying both sides on the right by \(a_{*j}^* \) we obtain

\[(a_{ij} b_{jk}) b_{*k}^* a_{*j}^* = \rho(b_{jk} b_{*k}^*) a_{ij} a_{*j}^*. \]

Therefore, by (T.2) we have

\[\rho(a_{ij} b_{jk}) (a_{ij} b_{jk})^* = \rho((a_{ij} b_{jk}) b_{*k}^*) = \rho(b_{jk} b_{*k}^*) \rho(a_{ij} a_{*j}^*). \]

Assume \(a_{ij} \neq 0 \). For \(a_{ij} \neq 0 \), by (26) the linear mapping given by \(\mathcal{A}_{jk} \ni b_{jk} \to a_{ij} b_{jk} \in \mathcal{A}_{ik} \) is injective and so \(n_{jk} \leq n_{ik} \). In the same way we have \(n_{ik} \leq n_{jk} \). Therefore we have \(n_{ik} = n_{jk} \) for all \(k \neq i, j \). This implies that \(i \equiv j \) (mod \(R \)) if \(n_{ij} \neq 0 \). Thus we have \(\mathcal{V} = \mathcal{V}' \).

Q. E. D.

Since the homogeneous convex cone \(\mathcal{O}(\mathcal{V}) \) determined by \(\mathcal{V} \) is self-dual, in view of Proposition 2, Lemma 1 and 2 the sufficient conditions of our theorems are proved.
References

Department of Mathematics
Yamaguchi University
Yamaguchi, 753 Japan