ON ISOMORPHISMS OF A BRAUER
CHARACTER RING ONTO ANOTHER

Dedicated to Professor Hiroyuki Tachikawa

By
Kenichi Yamauchi

1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational integers and the rational field respectively. Moreover we write \mathbb{Z} to denote the ring of all algebraic integers in the complex numbers and \overline{Q} to denote the algebraic closure of Q in the field of complex numbers. For a finite set S, we denote by $|S|$ the number of elements in S.

Let $\text{Irr}(G)=\{\chi_1,\ldots,\chi_h\}$ be the complete set of absolutely irreducible complex characters of G. Then we can view χ_1,\ldots,χ_h as functions from G into the complex numbers. We write $\mathbb{Z}R(G)$ to denote the \mathbb{Z}-algebra spanned by χ_1,\ldots,χ_h. For two finite groups G and H, let λ be a \mathbb{Z}-algebra isomorphism of $\mathbb{Z}R(G)$ onto $\mathbb{Z}R(H)$. Then we can write

$$\lambda(\chi_i) = \sum_{j=1}^{h} a_{ij} \chi'_j, \quad (i=1,\ldots,h)$$

where $a_{ij} \in \mathbb{Z}$ and $\text{Irr}(H)=\{\chi'_1,\ldots,\chi'_h\}$. In this case we write A to denote the $h \times h$ matrix with (i,j)-entry equal to a_{ij} and say that A is afforded by λ with respect to $\text{Irr}(G)$ and $\text{Irr}(H)$.

As is well known, concerning the isomorphism λ, we have the following two results, which seem to be most important. (For example see Theorem 1.3 (ii) and Lemma 3.1 in [5])

(i) $|c_G(c_i)|=|c_H(c'_i)|$, $(i=1,\ldots,h)$ where $\{c_1,\ldots,c_h\}$ and $\{c'_1,\ldots,c'_h\}$ are complete sets of representatives of the conjugate classes in G and H respectively and $c_i \xrightarrow{\lambda} c'_i$ $(i=1,\ldots,h)$. (Concerning a symbol "$c_i \xrightarrow{\lambda} c'_i$", see the definition in [5] and also the definition in section 2 in this paper)

(ii) A is unitary where A is the matrix afforded by λ with respect to $\text{Irr}(G)$ and $\text{Irr}(H)$.

In this paper our main objective is to give a necessary and sufficient condition
under which the above statements (i) and (ii) hold, concerning an isomorphism λ of a Brauer character ring onto another, and to state a generalization of theorems of Saksonov and Weidman about character tables of finite groups. (See Theorem 2, Corollary 2.1 in [3] and Theorem 3 in [4])

From now on, when we consider homomorphisms from an algebra to another, unless otherwise specified, we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime number p and use the following notation with respect to a finite group G.

G_o: the set of all p-regular elements of G

$Cl(G_o) = \{ [c_i] = \{1, \ldots, [c_i]\}$: the complete set of p-regular conjugate classes in G

$\{c_i = 1, \ldots, c_r\}$: a complete set of representatives of $[c_1], \ldots, [c_r]$ respectively

$IBr(G) = \{ \phi_1, \ldots, \phi_r\}$: the complete set of irreducible Brauer characters of G, which can be viewed as functions from G_o into the complex numbers.

For any subring R of the field of complex numbers such that $1 \in R$, we write $RBR(G)$ to denote the ring of linear combinations of ϕ_1, \ldots, ϕ_r over R. That is, $RBR(G)$ is the R-algebra spanned by ϕ_1, \ldots, ϕ_r. In particular we use the notation $BR(G)$ instead of $ZBR(G)$ and say that $BR(G)$ is the Brauer character ring of G. Moreover we add the following notation.

$G(\overline{Q}/Q)$: the Galois group of \overline{Q} over Q

If $A = (a_{ij})$ is a matrix over \overline{Q}, then for $\sigma \in G(\overline{Q}/Q)$ we write A^σ to denote the matrix (a_{ij}^σ). We use the common notation X^* for the conjugate transpose of a matrix X.

Now we define characteristic class functions on G_o.

DEFINITION 2.1. We define class functions f_i on G_o $(i = 1, \ldots, r)$ as follows

$$f_i(c_i) = 1, \quad f_i(c_j) = 0 \quad (i \neq j).$$

In this case we say that these class functions are the characteristic class functions on G_o and that f_i corresponds to $[c_i]$ or $[c_i]$ corresponds to f_i $(i = 1, \ldots, r)$.

Now we prove an easy lemma concerning characteristic class functions on G_o.

LEMMA 2.2. Let $\{f_1, \ldots, f_r\}$ be the complete set of characteristic class functions on G_o. Then we have
\[f_i \in \overline{Q}BR(G), \quad (i = 1, \ldots, r). \]

Proof. Let \(\hat{f}_i \) be a characteristic class function of \(G \) such that \(\hat{f}_i|_{G_a} = f_i \) where \(\hat{f}_i|_{G_a} \) indicates the restriction of \(f_i \) to \(G_a \). Then each \(\hat{f}_i \) is written as a \(\overline{Q} \)-linear combination of \(\chi_1, \cdots, \chi_h \). That is,

\[
\hat{f}_i = \sum_{j=1}^{h} (|G|/|G_a|) \chi_j(c_i) \chi_j, \quad (i = 1, \ldots, r)
\]

For each absolutely irreducible complex character \(\chi_i \) of \(G \), \(\chi_i|_{G_a} \) is written as a \(\mathbb{Z} \)-linear combination of \(\varphi_1, \cdots, \varphi_r \). That is,

\[
\chi_i|_{G_a} = \sum_{j=1}^{r} d_j \varphi_j, \quad (i = 1, \ldots, h)
\]

where \((d_j) \) is the decomposition matrix of \(G \).

By virtue of the formulas (2.1) and (2.2), we can conclude that \(f_i \in \overline{Q}BR(G) \), \((i = 1, \ldots, r) \) as required. \(\mathsf{Q.E.D.} \)

We are given two finite groups \(G \) and \(H \). For \(G \) and \(H \) we assume that there exists an isomorphism \(\lambda \) of \(\overline{Z}BR(G) \) onto \(\overline{Z}BR(H) \). Then it follows that the rank of \(BR(G) = \text{rank of } BR(H) \) and \(|Cl(G)| = |Cl(H)| \). We also can extend \(\lambda \) to an isomorphism \(\hat{\lambda} \) of \(\overline{Q}BR(G) \) onto \(\overline{Q}BR(H) \) by linearity. By Lemma 2.2 we have \(f_i \in \overline{Q}BR(G) \). Here we use the following additional notation.

\[
Cl(H_a) = [\mathbb{C}_1', \cdots, \mathbb{C}_s']
\]

\[\{c'_1, \cdots, c'_s\} : \text{a complete set of representatives of } \mathbb{C}_1', \cdots, \mathbb{C}_s', \text{ respectively} \]

\[\{f'_1, \cdots, f'_s\} : \text{the complete set of characteristic class functions on } H_a \text{ where } f'_i \text{ corresponds to } \mathbb{C}_i', \quad (i = 1, \ldots, r). \]

\[
IBr(H) = \{\varphi'_1, \cdots, \varphi'_s\}
\]

We now show a lemma which is actually the key step in the proof of Lemma 2.4.

Lemma 2.3. In the above situation, \(\hat{\lambda}(f_i) \) is a characteristic class function on \(H_a \), \((i = 1, \ldots, r) \).

Proof. Since \(\overline{Q}BR(G)f_i = \overline{Q}f_i \equiv \overline{Q}, \overline{Q}BR(G)f_i \) is a minimal ideal of \(\overline{Q}BR(G) \) and so \(f_i \) is a (central) primitive idempotent, \((i = 1, \ldots, r) \). Since \(\hat{\lambda}(f_i) \in \overline{Q}BR(H) \), we can write

\[
\hat{\lambda}(f_i) = \sum_{j=1}^{s} a_j f'_j, \quad a_j \in \overline{Q}
\]

Since \(f_i^2 = f_i \) and \(f_i f'_j = 0 \) \((i \neq j) \), by the formula (2.3) we have

\[
\hat{\lambda}(f_i) = \sum_{j=1}^{s} a_j^2 f'_j.
\]
Thus $a_j^2 = a_j$, $(j = 1\ldots,r)$. Hence $a_j = 0$ or $a_j = 1$, $(j = 1\ldots,r)$. It follows that $\hat{\lambda}(f_j) = f_j'$ for some $j \in \{1,\ldots,r\}$, because f_j is a primitive idempotent, hence the result.

Q.E.D.

Now we define a bijection from $Cl(G_o)$ to $Cl(H_o)$ through the isomorphism λ as follows. For a p-regular conjugate class \mathcal{C}_i of G, \mathcal{C}_i corresponds to a characteristic class function f_i on G_o. Since by Lemma 2.3 $\hat{\lambda}(f_i)$ is also a characteristic class function f'_i on H_o, $\hat{\lambda}(f_i) = f'_i$ corresponds to a p-regular conjugate class $\mathcal{C}'_{i'}$ of H. Here we assign $\mathcal{C}'_{i'}$ to \mathcal{C}_i ($i = 1,\ldots,r$). Thus we get a one-to-one correspondence between $Cl(G_o)$ and $Cl(H_o)$:

$$c_i \in \mathcal{C}_i \rightarrow f_i \rightarrow \hat{\lambda}(f_i) = f'_i \rightarrow \mathcal{C}'_{i'}$$

where $i \rightarrow i''$ ($i = 1\ldots,r$) is a permutation. In this case we write $\mathcal{C}_i \xrightarrow{\lambda} \mathcal{C}'_{i'}$ or $c_i \xrightarrow{\lambda} c'_{i'}$ ($i = 1,\ldots,r$).

Keeping the above notation, we give the following lemma concerning the Brauer character table of G. This lemma plays a fundamental role in the proof of Theorem 3.1. The proof is the same as that of Theorem 2.2 in [5] and so we omit its proof.

Lemma 2.4. $(\varphi_i(c_j)) = (\lambda(\varphi_i)(c'_{j''}))$ ($r \times r$ matrices) where $c_j \xrightarrow{\lambda} c'_{j''}$, $(j = 1,\ldots,r)$.

3. Main theorems

Let G and H be two finite groups with Cartan matrices C and C' respectively. Let λ be an isomorphism of $\overline{ZBR}(G)$ onto $\overline{ZBR}(H)$ and $A = (a_{ij})$ be the matrix afforded by λ with respect to $IBr(G) = \{\varphi_1,\ldots,\varphi_r\}$ and $IBr(H) = \{\varphi'_1,\ldots,\varphi'_r\}$. We set $Cl(G_o) = \{\mathcal{C}_1,\ldots,\mathcal{C}_s\}$ and $Cl(H_o) = \{\mathcal{C}'_1,\ldots,\mathcal{C}'_s\}$ and assume that $c_i \in \mathcal{C}_i$, $c'_i \in \mathcal{C}'_i$, and $c_i \xrightarrow{\lambda} c'_{i''}$ where $i \rightarrow i''$ ($i = 1,\ldots,r$) is a permutation. We write m to denote the vector with i-th entry equal to $|C_i(c_i)|$ and m' to denote the vector with i-th entry equal to $|C'_{i''}(c'_{i''})|$, $(i = 1,\ldots,r)$. Then we have the following two theorems.

Theorem 3.1. With the above notation, $m = m'$ iff $A'CA = C'$. This necessarily happens if $CA = AC'$, in which case A is clearly unitary.

Proof. To prove this theorem, we introduce some simplifying notation: Write P to denote the $r \times r$ matrix with (i,j)-entry equal to $\varphi_i(c_j)$ and similarly write P' for the matrix with (i,j)-entry equal to $\varphi'_i(c'_{j''})$.

Since $\lambda(\varphi_i) = \sum_{k=1}^r a_k \varphi'_k$ where $A = (a_{ij})$, by Lemma 2.4 we have
A Brauer Character Ring

\[\varphi_i(c_i) = \lambda(\varphi_i)(c'_{i'}) = \sum_{j=1}^r a_{ij} \varphi'_j(c'_{i'}) \]

This implies that \(P = AP' \). Also, if \(B \) is the diagonal matrix with \((i,i)\)-entry equal to \(|C_G(c_i)| \), it follows that \(P^*CP = B \) by Theorem 60.5 in [2]. Similarly \((P')^*C'P' = B'\), where \(B' \) is the diagonal matrix with \((i,i)\)-entry equal to \(|C_H(c'_i)| \). Here we note that \(B = B' \iff m = m' \). Since \(P^* = (P')^*A^* \), we have the two equations

\[(P')^*A^*CAP' = B \quad \text{and} \quad (P')^*C'P' = B'.\]

It is now obvious that \(B = B' \iff A^*CA = C' \).

Now suppose \(CA = AC' \). Then we show that \(A \) is unitary. If we write \(J = A^*A \), then we have \((P')^*JC'P' = B \). Thus \((B')^{-1}B = (P')^{-1}(C')^{-1}JC'P' \). This is a diagonal matrix with rational entries and this shows that \(J \) has rational eigenvalues. But \(J \) has algebraic integer entries, and so must have integer eigenvalues. Thus \((B')^{-1}B \) is a diagonal matrix with positive integer diagonal entries. Also, \(A \) is invertible over \(\mathbb{Z} \) and thus \(A^* \) is too. It follows that \(\det(J) = \det((B')^{-1}B) = 1 \) and so \((B')^{-1}B \) is the identity matrix \(I \). It follows that \(J = A^*A = I \) and so \(A \) is unitary, as required.

Q.E.D.

THEOREM 3.2. If \(CA = AC' \), then we have

(i) \(\lambda(\varphi_i) = \varepsilon_i \varphi'_i \) where the \(\varepsilon_i \) are roots of \(1 \) and \(i \rightarrow i' \) \((i = 1, \ldots, r) \) is a permutation.

(ii) The Brauer character tables of \(G \) and \(H \) are the same.

PROOF. (i) Now we pay attention to the fact that if \(\alpha \in \overline{\mathbb{Z}} \) and \(|\alpha^\sigma| \leq 1 \) (an absolute value) for all \(\sigma \in G(\overline{\mathbb{Q}}/\mathbb{Q}) \), then \(\alpha = 0 \) or \(\alpha \) is a root of \(1 \).

If we use the same notation as in the proof of Theorem 3.1, then we have \(A = P(P')^{-1} \) and so \(A \) has entries that lie in a field with an abelian Galois group. Thus \((A^\sigma)^{\sigma} = (A^{\sigma'}) \) for all \(\sigma \in G(\overline{\mathbb{Q}}/\mathbb{Q}) \). Since \(A \) is unitary by Theorem 3.1, \(A^\sigma \) is automatically unitary for all \(\sigma \in G(\overline{\mathbb{Q}}/\mathbb{Q}) \). Hence we have the equation with respect to the \(i \)-th row of \(A^\sigma \).

\[\sum_{j=1}^r a_{ij}^\sigma \overline{a_{ij}^\sigma} = \sum_{j=1}^r |a_{ij}^\sigma|^2 = 1, \quad (i = 1, \ldots, r) \]

Hence we have \(|a_{ij}^\sigma| \leq 1 \) for all \(\sigma \in G(\overline{\mathbb{Q}}/\mathbb{Q}) \). This implies that \(a_{ij} = 0 \) or \(a_{ij} \) is a root of \(1 \) because of the above attention. Thus it follows that for each \(i \in \{1, \ldots, r\} \), there exists \(i' \in \{1, \ldots, r\} \) such that \(a_{ii'} \) is a root of \(1 \) and \(a_{ij} = 0 \) \((j \neq i') \). Hence \(\lambda(\varphi_i) = \varepsilon_i \varphi'_i \) where \(\varepsilon_i = a_{ii'} \) is a root of \(1 \) and \(i \rightarrow i' \) \((i = 1, \ldots, r) \) is a permutation.

(ii) We state a one-to-one correspondence \(\mu \) between \(IBr(G) \) and \(IBr(H) \).
through the isomorphism λ as follows. By (i) of this theorem, we have $\lambda(\varphi_i) = \varepsilon_i \varphi'_i$ ($i = 1, \cdots, r$) where the ε_i are roots of 1. Here we assign φ'_i to $\varphi_i : \mu(\varphi_i) = \varphi'_i$ ($i = 1, \cdots, r$). Then μ can be extended to an isomorphism of $BR(G)$ onto $BR(H)$ by linearity. (See the proof of Lemma 3.2 in [5]) By Lemma 2.4 we have $\lbrack \varphi_i(c_j) \rbrack = \lbrack \varphi'_i(c'_{j'}) \rbrack$ ($r \times r$ matrices) where $c_j \rightarrow c'_{j'}$ ($j = 1, \cdots, r$). That is, G and H have the same Brauer character table. Thus the result follows. Q.E.D.

Remark. If the condition $m = m'$ in Theorem 3.1 holds, then we can easily prove $|G| = |H|$. But we can give examples such that for two finite groups G, H with $|G| \neq |H|$, a matrix A is unitary where A is afforded by an isomorphism of $BR(G)$ onto $BR(H)$. Actually, such an example is given by taking G and H to be any two p-groups of different orders. Another example can be found in [1]. ($p = 2$, $G =$ the symmetric group S_4 on 4 symbols and $H =$ the dihedral group D_6 of order 12. See the examples of section 91 in [1]).

Acknowledgement

The author would like to thank the referee for his valuable comments, especially about the greatly simplified proof of Theorem 3.1 of the paper.

References

Department of Mathematics
Faculty of Education
Chiba University
Chiba-city 263
Japan