MAXIMAL FUNCTIONS OF PLURISUBHARMONIC FUNCTIONS

By

Hong Oh Kim and Yeon Yong Park

Abstract. We show that for nonnegative plurisubharmonic functions on the unit ball of \mathbb{C}^n the admissible maximal functions are dominated by the radial maximal functions in L^p-mean. This gives another characterization of the class M^p of holomorphic functions and its invariance under the compositions by automorphisms of the unit ball. As a consequence of the invariance all onto endomorphisms of M^1 ($n=1$) are characterized.

1. Introduction.

Let B be the unit ball of \mathbb{C}^n and let σ denote the Lebesgue measure on $S=\partial B$, normalized so that $\sigma(S)=1$. For a function $u:B \to \mathbb{C}$, the radial maximal function $\mathcal{M}u$ on S is defined by

$$\mathcal{M}u(\eta)=\sup\{|u(r\eta)| : 0 \leq r < 1\}, \quad \eta \in S.$$

For $\alpha>1$ and $\eta \in S$, we let

$$D_\alpha(\eta)=\{z \in B : |1-<z, \eta>|<\frac{\alpha}{2}(1-|z|^2)\}.$$

The admissible maximal function $\mathcal{M}_\alpha u$ on S is defined by

$$\mathcal{M}_\alpha u(\eta)=\sup\{|u(z)| : z \in D_\alpha(\eta)\}.$$

We prove the following theorem.

Theorem I. For $0<p<\infty$, there is a positive constant $C=C(n, p, \alpha)$ such that if $u \geq 0$ is plurisubharmonic in B then

$$\int_S \mathcal{M}_\alpha u(\eta)^p d\sigma(\eta) \leq C \int_S \mathcal{M}u(\eta)^p d\sigma(\eta).$$

For $n=1$, the corresponding theorem for harmonic functions on the upper half plane appears in [3, Theorem 3.6].

1980 Mathematics Subject Classification (1985 Revision). 31C10, 32A35.
Key words and phrases. plurisubharmonic function, maximal function; class M^p.
Received March 4, 1991, Revised June 4, 1991.
For an application of Theorem I, we consider the class \(M^p(B)(0 < p < \infty) \) of holomorphic functions \(f \) on \(B \) for which
\[
\int_S (\log^+ Mf(\eta))^p d\sigma(\eta) < \infty.
\]
For \(n=1 \), these classes as topological algebras have been studied in [7, 10] for \(p>1 \) and in [2, 5, 6] for \(p=1 \). For \(n \geq 1 \), it is shown in [2] that
\[
\bigcup_{p>0} H^p \subseteq \bigcap_{p>1} M^p \subseteq M^1 \subseteq N^+,
\]
where \(H^p \) is the usual Hardy space and \(N^+ \) is the Smirnov class on \(B \). The main theorem of [2] concerns with the boundary behavior of functions in the class \(M^p(p \geq 1) \), with its application to outer factors of functions in \(M^1 \) when \(n=1 \).

If we take \(u=\log^+ |f| \) with holomorphic functions \(f \) on \(B \) in Theorem I, we get the following characterization of \(M^p \) immediately.

Theorem II. A holomorphic function \(f \) on \(B \) belongs to \(M^p \) if and only if
\[
\int_S (\log^+ Mf(\eta))^p d\sigma(\eta) < \infty.
\]
Since every automorphism of \(B \) maps any radius into a curve which approaches the boundary nontangentially, the following corollary is immediate.

Corollary III. The class \(M^p(0 < p < \infty) \) is invariant under the compositions of automorphisms of \(B \).

When \(p>1 \), this fact is not new because \(M^p(p>1) \) can be defined by means of boundary functions. See [2, 7]. As a consequence of this corollary we can characterize all onto algebra endomorphisms of \(M^1 \) for the case \(n=1 \). For the case \(p>1 \), see [7].

Theorem IV. Let \(n=1 \). Then \(\Gamma : M^1 \to M^1 \) is an onto algebra endomorphism if and only if
\[
\Gamma(f) = f \ast \varphi, \quad f \in M^1
\]
for some automorphism \(\varphi \) of the unit disc \(U \) of \(\mathbb{C}^1 \). In particular, \(\Gamma \) is invertible in this case and \(\Gamma^{-1}(f) = f \ast \varphi^{-1}, \ f \in M^1 \).

The proof will be given in the last section. The theorem might be true for \(n>1 \) but we do not have a proof.
2. An inequality of Hardy and Littlewood.

The following lemma is due to Hardy and Littlewood. It is stated in [3, 4] for $|u|$ with harmonic functions u but the proof is exactly the same for non-negative subharmonic functions.

2.1. Lemma. If $u \geq 0$ is subharmonic on the disc $D(z_0, R)$ with center at z_0 and radius $R > 0$ in the complex plane \mathbb{C} and if $0 < p < \infty$, then

$$u(z_0) \leq K \left(\frac{1}{\pi R^2} \int_{D(z_0, R)} u(x^p \, dx \, dy) \right)^{1/p},$$

where $K = K(p)$ is a positive constant independent of u.

The next lemma will be a polydisc version of the above inequality. Its statement is suitably adapted for the proof of Theorem I.

Let $z = r \zeta \in B$ and $R > 0$. Let $\zeta_1, \ldots, \zeta_n \in \mathcal{S}$ be such that $\zeta, \zeta_1, \ldots, \zeta_n$ form an orthonormal basis for \mathbb{C}^n. Define a polydisc $\Delta(z, R)$ with respect to the basis $\zeta, \zeta_1, \ldots, \zeta_n$ at z as follows:

$$\Delta(z, R) = \Delta(z, R; \zeta, \zeta_1, \ldots, \zeta_n) = \{w = z + \lambda \zeta + \sum_{j=1}^{n} \lambda_j \zeta_j : |\lambda| < R, |\lambda_j| < R^{1/2}, 2 \leq j \leq n\}.$$

2.2. Lemma. Let $\Delta = \Delta(z, R) \subset B$. If $u \geq 0$ is plurisubharmonic in B and $0 < p < \infty$, then

$$u(z)^p \leq K \frac{1}{m_n(\Delta)} \int_{\Delta} u(w)^p \, dm_n(w),$$

where $K = K(n, p)$ is a positive constant independent of u and dm_n is the Lebesgue measure on \mathbb{C}^n.

Proof. We define

$$v(\lambda, \lambda_1, \ldots, \lambda_n) = u(z_0 + \lambda \zeta + \lambda_1 \zeta_1 + \ldots + \lambda_n \zeta_n).$$

Since u is plurisubharmonic in B, v is an n-subharmonic function for $|\lambda| < R$, $|\lambda_j| < R^{1/2}(2 \leq j \leq n)$. We now apply Lemma 2.1 n times to v. The positive constants K's in the following are not the same in each occurrence but are independent of v.

$$v(0, \ldots, 0)^p \leq K \frac{1}{R} \int_{|\lambda_n| < R^{1/2}} v(0, \ldots, 0, \lambda_n) \, dm_1(\lambda_n) \leq \ldots \leq K \frac{1}{R^{n-1}} \int_{|\lambda_{j+1} < R^{1/2}| \ldots \zeta_j \leq \zeta_{n}} v(0, \lambda, \ldots, \lambda_n)^p \, dm_1(\lambda) \ldots dm_n(\lambda_n)$$
Therefore, we have
\[u(z)^p \leq K \frac{1}{\gamma_n(\Delta)} \int u(w)^p \, dm_n(w). \tag{Q. E. D.} \]

3. Geometric lemmas.

3.1. Lemma. \(z = \zeta \in B \) and let \(\Delta(z, \varepsilon(1-r^*) \supset B \) for a choice of \(\zeta, \ldots, \zeta_n \in S \) and \(\varepsilon > 0 \). If \(r > 1/2 \) and \(w \in \Delta(z, \varepsilon(1-r^*)) \) then
\[r - \delta(1-r^*) < |w| < r + \delta(1-r^*) \]
for some choice of a positive constant \(\delta = \delta(n, \varepsilon) \) independent of \(z \) and \(\zeta \)'s.

Proof. Suppose \(w = z + \lambda \zeta + \sum \lambda \zeta_j \in \Delta(z; \varepsilon(1-r^*)) \). Then
\[|w|^2 = |r + \lambda|^2 + \sum_j |\lambda|^2 \leq r^2 + |\lambda|^2 + (n-1)\varepsilon(1-r^*) \]
\[\leq r^2 + (n+2)\varepsilon(1-r^*). \]
Also,
\[|w|^2 \geq (r - |\lambda|)^2 = r^2 - 2r|\lambda| + |\lambda|^2 \]
\[\geq r^2 - 2|\lambda|^2 \geq r^2 - 2\varepsilon(1-r^*). \]
If \(r > 1/2 \) then
\[|w| - r \leq 2|w|^* - r^* \leq 2(n+2)\varepsilon(1-r^*). \]
So we can take \(\delta = 2(n+2)\varepsilon. \tag{Q. E. D.} \)

The following lemma appears in [1] but its proof is included for the sake of completeness.

3.2. Lemma. \(\beta > \alpha > 1 \) and \(z = \zeta \in D_\alpha(\eta) \). Then there is a positive constant \(\varepsilon = \varepsilon(n, \alpha, \beta) \) such that
\[\Delta(z, \varepsilon(1-r^*)) \subset D_\beta(\eta) \]
for any choice of \(\zeta, \ldots, \zeta_n \in S \).

Proof. Suppose \(w = z + \lambda \zeta + \sum \lambda \zeta_j \in \Delta(z; \varepsilon(1-r^*)) \). Then \(\lambda \leq \varepsilon(1-r^*) \) and \(|\lambda_j| \leq (\varepsilon(1-r^*))^{1/2} \). By the orthogonality of \(\zeta \) and \(\zeta_j \), the Schwarz lemma and the hypothesis \(z \in D_\alpha(\eta) \), we have
\[\langle \zeta_j, \eta \rangle = |\zeta_j, \eta - r \zeta| \]
\[\leq |\eta - r \zeta| \]
We compute
\[
|1 - \langle w, \eta \rangle| = \left| 1 - \left(r \langle \zeta, \eta \rangle + \lambda \langle \xi, \eta \rangle + \sum_{j=1}^{n} \lambda_j \langle \zeta_j, \eta \rangle \right) \right|
\]
\[
\leq \frac{\alpha}{2} (1-r^2) + \varepsilon (1-r^2) + \sum_{j=1}^{n} \varepsilon (1-r^2)^{1/2} |\langle \zeta_j, \eta \rangle|
\]
\[
\leq \left\{ \frac{\alpha}{2} + \varepsilon + (n-1)\varepsilon^{1/2} \alpha^{1/2} \right\} (1-r^2)
\]

On the other hand, from the proof of Lemma 3.1, we have
\[
1 - |w|^2 \geq (1-(n+2)\varepsilon)(1-r^2).
\]

Therefore we can choose \(\varepsilon = \varepsilon(n, \alpha, \beta) > 0 \) so small that
\[
|1 - \langle w, \eta \rangle| < \frac{\beta}{2} (1-|w|^2),
\]
for any \(w \in \Delta(z, \varepsilon(1-r^2)) \). Therefore \(\Delta(z, \varepsilon(1-r^2)) \subset D_{\beta}(\eta) \). Q.E.D.

We define the radial projection \(\pi \) from \(B \setminus \{0\} \) onto \(S \) as
\[
\pi(w) = w/|w|, \quad w \in B \setminus \{0\}.
\]
For \(\eta \in S \) and \(\delta > 0 \),
\[
Q(\eta, \delta) = \{ \zeta \in S : |1 - \langle \zeta, \eta \rangle| < \delta \}
\]
is the nonisotropic "ball" of radius \(\delta^{1/2} \) around \(\eta \). The volume \(\sigma(Q(\eta, \delta)) \) is roughly proportional to \(\delta^n \), i.e., \(\sigma(Q(\eta, \delta)) \approx \delta^n \). See [9, Proposition 5.1.4].

33. Lemma. Let \(z = r \zeta \in D_\alpha(\eta) \), \(r > 0 \) and \(\beta > \alpha > 1 \). Then there is a positive constant \(\varepsilon = \varepsilon(n, \alpha, \beta) \) so small that
\[
\pi(\Delta(z, \varepsilon(1-r^2))) \subset Q\left(\eta, \left(\frac{\beta}{2} + 1 \right)(1-r^2) \right)
\]
for any choice of \(\zeta, \ldots, \zeta_n \).

Proof. Choose \(\beta' \) so that \(\beta > \beta' > \alpha \). Let \(w = \rho w \in \Delta(z, \varepsilon(1-r^2)) \). Then
\[
|1 - \langle w, \eta \rangle| = |1 - \langle \rho w, \eta \rangle - (1-\rho)\langle w, \eta \rangle|
\]
\[
\leq |1 - \langle w, \eta \rangle| + (1-\rho^2).
\]
By Lemma 3.2, we can choose \(\varepsilon > 0 \) so small that
\[
|1 - \langle w, \eta \rangle| < \frac{\beta'}{2} (1-r^2).
\]
From the proof of Lemma 3.1, we have
\[1 - \rho^4 \leq (1 + 2s)(1 - r^4). \]
Therefore we have
\[|1 - \langle \omega, \eta \rangle| < \left(\frac{\beta'}{2} + 1 + 2s \right)(1 - r^4). \]
If we choose \(\varepsilon = \varepsilon(n, \alpha, \beta) > 0 \) even smaller so that \(\beta' / 2 + 1 + 2s < \beta / 2 + 1 \), we have
\[|1 - \langle \omega, \eta \rangle| < \left(\frac{\beta}{2} + 1 \right)(1 - r^4); \]
so that \(\omega \in Q(\eta, (\beta / 2 + 1)(1 - r^4)) \).

Q. E. D.

4. Proof of Theorem I.

It suffices to prove the theorem for a modified admissible maximal function (with the same notation) as
\[\mathcal{M}_\alpha u(\eta) = \sup \left\{ |u(z)| : |\frac{z}{2}|, z \in D_\alpha(\eta) \right\}. \]
Let \(z = r \zeta \in D_\alpha(\eta), \ r \geq 1 / 2 \) and \(\beta > \alpha \). By Lemmas 3.1, 3.2 and 3.3, we can choose positive constants \(\varepsilon = \varepsilon(n, \alpha, \beta) \) and \(\delta = \delta(n, \varepsilon) = \delta(n, \alpha, \beta) \) so that
(i) \(\Delta = \Delta(z, s(1 - r^4)) \subseteq D_\beta(\eta) \) for a choice of \(\zeta_2, \cdots, \zeta_n \),
(ii) \(\pi(\Delta) \subset Q(\eta, (\beta / 2 + 1)(1 - r^4)) \),
(iii) \(r - \delta(1 - r^4) < |w| < r + \delta(1 - r^4) \) if \(w \in \Delta \).

Using Lemma 2.2, we have the following computation in which the constants \(K = K(n, \rho, \delta) \) are not the same in each occurrence, but are independent of \(u \).

\[
\begin{align*}
\mathcal{M}_\alpha u(z) &\leq K \frac{1}{(1 - r^4)^{n+1}} \int_\Delta u(w)^{p/2} d\sigma(w) \\
&\leq K \frac{1}{(1 - r^4)^{n+1}} \int_{r - \delta(1 - r^4)}^{r + \delta(1 - r^4)} \sigma^{n-1} \rho \int_{Q(\eta, (\beta / 2 + 1)(1 - r^4))} \mathcal{M}u(\omega)^{p/2} d\sigma(\omega) \\
&\leq K \frac{1}{(1 - r^4)^{n}} \int_{Q(\eta)} \mathcal{M}u(\omega)^{p/2} d\sigma(\omega) \\
&\leq K \left(\frac{1}{\sigma(Q)} \right) \int_{Q} \mathcal{M}u(\omega)^{p/2} d\sigma(\omega) \\
&\leq KM \{ \mathcal{M}u \}^{p/2}(\eta),
\end{align*}
\]
where \(M \) is the Hardy-Littlewood maximal function operator on \(S \). Therefore we have
\[\{ \mathcal{M}_\alpha u(\eta) \}^{p/2} \leq KM \{ \mathcal{M}u \}^{p/2}(\eta). \]

We note that the constant \(K \) is eventually dependent on \(n, \rho, \alpha \) from the choice
of β and δ. By the Hardy-Littlewood maximal theorem [9, Theorem 5.2.6], we have
\[
\int_S M_n u(\eta)^p d\sigma(\eta) \leq C \int_S M u(\eta)^p d\sigma(\eta).
\]
for some positive constant $C = C(n, p, \alpha)$ independent of u. Q.E.D.

5. Proof of Theorem IV.

By corollary III, every automorphism φ of U defines an algebra isomorphism $\Gamma'(f) = f \cdot \varphi$, $\varphi \in M^1$. Conversely, let Γ be any onto endomorphism of M^1. We will follow the corresponding proof for the case N^+ [8]. Let $\varphi = \Gamma(z)$ and let $\lambda = U$. (z denotes the identity function on U.) Define $\gamma(f) = \Gamma'(f)(\lambda)$, $f \in M^1$. Since γ is a multiplicative linear functional on M^1, γ corresponds to the point evaluation at some $\beta \in U$ by Theorem 6.4 of [6]. Thus $\beta = \gamma(z) = \Gamma'(z)(\lambda) = \varphi(\lambda)$. Hence $\varphi(z) \in U$ for all $\lambda \in U$ and $\Gamma'(f)(\lambda) = f(\varphi(\lambda))$, $f \in M^1$, $\lambda \in U$. Since Γ' is onto, φ is not constant. Thus $\varphi(U)$ is open in U. Therefore Γ' is one-to-one (and onto). Thus Γ^{-1} is also an onto endomorphism, so $\Gamma^{-1}(f) = f \cdot \varphi$, $f \in M^1$, for some holomorphic self-map φ of U. But then $z = \Gamma \Gamma^{-1}(z) = \Gamma(\varphi) = \varphi \cdot \varphi$ and $\varphi \cdot \varphi = z$. Therefore φ is an automorphism of U. Q.E.D.

Acknowledgement.

The first author wishes to express his gratitude to Professor P. Ahern for the valuable discussions. He is in part supported by TGRC (KOSEF).

References

Department of Mathematics
Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea