Recombination dynamics of localized excitons in a CdSe/ZnSe/ZnS_{x}Se_{1-x} single-quantum-well structure

藤本 泰章	物理学研究所
岩崎 直	北海道大学

doi: 10.1103/PhysRevB.54.2629
Recombination dynamics of localized excitons in a CdSe/ZnSe/ZnS$_{x}$Se$_{1-x}$

single-quantum-well structure

Shigeo Yamaguchi, Yoichi Kawakami, Shizuo Fujita, and Shigeo Fujita

Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-01, Japan

Yoichi Yamada, * Tomobumi Mishina, and Yasuaki Masumoto

Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

(Received 4 December 1995)

Optical properties of localized excitons have been studied in a highly strained CdSe quantum well with 1-ML thickness by employing time-resolved photoluminescence (PL) and nonlinear PL spectroscopy under various excitation conditions. At 20 K, the time-integrated PL from the well layer was peaked at 2.7276 eV with a linewidth of 21 meV under low excitation intensity (0.11 μJ/cm²). The lifetime ranged from 200 ps to 50 ps as the monitored photon energy was changed from the low-energy tail to the high-energy one. The behavior could be well understood as a result of exciton localization, which is induced by terraces and islands with units of ML thickness fluctuation lying at the interface between CdSe and ZnSe. An emission with the fast decay component was observed at the low-energy side of the peak (2.7168 eV) under higher excitation condition. The emission could be well resolved as a positive component by the nonlinear PL measurement, and originates from the many-body effect of localized excitons, which is probably attributed to localized biexcitons. [S0163-1829(96)07828-9]

I. INTRODUCTION

Ternary and quaternary II-VI alloy semiconductors are examples of materials with perturbed crystal potential. The perturbation results from microscopic, statistical variations of the alloy composition on a microscopic scale. This alloy disorder leads to a density of tail states of the form of the alloy composition on a microscopic scale. This alloy perturbation results from microscopic, statistical variations of materials with perturbed crystal potential. The volume of excitons due to the small size of islands. Consequently, unlike the localization caused by the effect of alloy disorder, the degree of localization strongly depends on the quality of the interface.

In recent years, intense studies have been carried out on excitonic properties of ZnCdSe/Zn(S)Se quantum wells in terms of their usefulness for blue-green laser diodes. Since the well layer in the structures is under compressive strain, the lowest excitonic transition occurs between the $n=1$ conduction electron and $n=1$ heavy hole, generally designated as E_{1hh}. The solid composition of Cd in Zn$_{1-x}$Cd$_{x}$Se well layers is typically about 15–20% in the device structures. The PL linewidth of E_{1hh} for such layers grown under the appropriate condition is as low as about 9 meV at low temperature, a value that agrees fairly well with the theoretical one derived from the alloy broadening effect. This suggests that the localization of the exciton in these structures is mainly caused by the effect of alloy broadening.

In CdSe/ZnSe quantum-well structures, the localization of excitons occurs only due to interface roughness. This enables us to investigate easily the properties of localized excitons focusing on the interface structures. The well width fluctuation of 1 ML in the CdSe/ZnSe quantum well with ultrathin width (≤ 5 ML) results in the fluctuation of the electron confinement energy of the order of 100 meV. The strong spatial variation of the carrier confinement leads to significant localization of excitons to the tail states, and the optical and electrical properties of the structure are extremely sensitive to such kind of disorder. Accordingly, another feature of this structure is the large lattice mismatch between the well and the barrier. It has been reported that pseudomorphic growth of the CdSe layer on the ZnS buffer without the formation of misfit dislocations is limited to a few ML’s and the high PL efficiency is obtained in such pseudomorphic well layers. In this study, the CdSe single quantum well (SQW) with 1-ML thickness was embedded in a ZnS$_{x}$Se$_{1-x}$/ZnSe/ZnS$_{x}$Se$_{1-x}$ waveguide structure, which was coherently grown on the GaAs substrate. The use of the structure has two reasons: one is for the effective confinement of generated carriers, and the other is that the flatness of ZnSe...
coherently grown on a ZnS,Se_{1-x} buffer is superior to that
grown on a strain-relaxed ZnSe layer.

More recently there has been increasing interest in lasing
processes in disordered semiconductors in terms of the fact
that localized excitons can easily contribute to the optical
gain due to their low density of states. In many studies,
however, many-body effects of localized excitons have been
ignored as a first-order approximation. This is probably be-
cause of the difficulty in the assignment of new emissions,
which may appear as a function of photoexcitation intensity,
caused by the inhomogeneous broadening effect such as al-
loying and/or interfacial disorder.

In this paper, effects of high excitation on the dynamical
behavior of localized excitons in the CdSe SQW have been
assessed by employing linear and nonlinear luminescence
spectroscopy.

II. EXPERIMENTAL PROCEDURE

The CdSe/ZnSe/ZnS,Se_{1-x} separate confinement single
quantum well (SC-SQW) structure described above was
grown by molecular beam epitaxy on a Zn-doped p-type
GaAs substrate oriented to (100). The growth of the SC-
SQW structure proceeded as follows.

First, a 0.85-μm ZnS_{0.07}Se_{0.93} cladding layer was depos-
ited, followed by a 30-nm ZnSe buffer layer. A CdSe SQW
(the active layer) is sandwiched between ZnSe waveguide
layers (50 nm in each). Finally, a 0.15-μm ZnS_{0.07}Se_{0.93}
capped layer was grown. The mean thickness of the well
was set to 1 ML. The value was estimated according to the
growth rate and PL energy of the CdSe layer. This estimation
has been assured by the previous results for the growth of
CdSe on ZnSe, where the CdSe thickness was estimated by
the reflection high-energy electron diffraction oscillation and
the cross section transmission electron microscopy.

Time-resolved PL measurements were carried out using a
frequency-doubled beam of an Al_2O_3:Ti laser pumped by a
cw Ar^+ laser, and a photon counting method with a synchro-
nscan streak camera in conjunction with a 25-cm single-
grating monochromator. The wavelength (WL), the pulse
width (PW), and the repetition rate (RR) of the excitation
beam were 390 nm, 1.7 ps, and 82 MHz, respectively. The
incident excitation energy density was tuned by the variable
neutral density filter. The time resolution of the detection
system is about 20 ps. Accordingly, the exponential decay
time can be estimated within the accuracy of 5 ps by the
deconvolution technique.

In order to investigate high excitation effects, nonlinear
PL spectroscopy was performed by the population mixing
technique, where two excitation beams were modulated at
different frequencies (Ω=831 Hz, Ω=1000 Hz) by a chopper
and focused at the same spot on a sample. The nonlinear
PL component was obtained by detecting the sum-frequency
element (Ω_1+Ω_2=1831 Hz) of the total PL signal using a
lock-in technique. In this study, the second harmonic light of
the amplified laser output (WL, 400 nm; PW, 200 fs; RR,
250 kHz) was used as an excitation source, and the delay
between the excitation pulse pairs was set to zero. The prin-

FIG. 1. Three dimensional representation of the time-resolved
PL spectrum taken from the CdSe/ZnSe/ZnS,Se_{1-x} SC-SQW
structure under I_{ex}=0.11 μJ/cm². Emissions from ZnSe and
ZnS,Se_{1-x} layers decay rapidly, and the emission from the CdSe
SQW dominates in intensity. This indicates that photogenerated car-
riers are effectively captured to the well.

in the vicinity of the linear-PL peak under high excitation
conditions due to the band-filling effect. Accordingly, posi-
tive nonlinearity is occasionally detected at either the higher-
and/or lower-energy side of the negative peak as a result of
the formation of hot excitons and/or bimolecular excitons
(biexcitons).

III. RESULTS AND DISCUSSION

A. Time-resolved PL from a CdSe QW, ZnSe waveguides,
and ZnS,Se_{1-x} cladding layers

Figure 1 shows a time-resolved PL spectrum from the
CdSe/ZnSe/ZnS,Se_{1-x} SC-SQW structure under the excita-
tion energy density (I_{ex}) of 0.11 μJ/cm². The spectrum is
composed of three parts, located at about 437, 440, and 458
nm, which correspond to emissions from ZnS,Se_{1-x} clad-
ing layers, ZnSe waveguiding layers, and a CdSe SQW, re-
spectively. Lifetimes of PL from ZnS,Se_{1-x} and ZnSe
layers are as small as 47 and 25 ps, respectively. Time-
resolved signals from ZnSe layers and a CdSe SQW reach
the maximum after time delays of several ps and 55 ps, re-
spectively with respect to the maximum of the signal from
ZnS,Se_{1-x} cladding layer. These results indicate that re-
combination processes in both ZnSe and ZnS,Se_{1-x} layers
are not dominated by radiative transitions but by transfer
processes of photogenerated carriers to the CdSe SQW.
Moreover, an emission from the CdSe well is dominant in
spite of a very thin thickness (1 ML) of the active layer.

It had been recognized that the well layer thickness of 1
ML was too small to effectively collect carriers. Kolbas, Lo,
and Lee have pointed out, however, that the efficiency of
carrier collection in Al,Ga_{1-x}As/GaAs SQW’s is not deter-
mined by the well width but by the spatial extent of the wave
function (Ψ). The full width at half maximum (FWHM) of
probability densities (|Ψ|^2), at first, decreases with well
width and then increases for very thin wells due to the
spreading of the wave function out of the well. In our struc-
ture, the FWHM of |Ψ|^2 of the n=1 electron and heavy
hole is calculated to be 4.5 and 4.0 nm, respectively, which are the values also achieved with the well width of about 4 nm. It should be also noted that the ZnSe waveguiding layers (~100 nm) act as the reservoir of photogenerated carriers, which promotes the collection of them to the lowest-energy level of the well.

The FWHM of PL from the CdSe SQW is about 21 meV. The broadening originates from the fluctuation of well layer thickness within the volume of the exciton. This probably indicates that there exist some regions without the CdSe layer grown, and that the QW is divided into some parts in the lateral direction. If this is the case, it is necessary to take into account the effect of lateral confinement for the calculation of energy level.

B. Time-integrated PL

Figure 2 shows the time-integrated PL spectra at 20 K taken from the CdSe well layer under the I_{ex} values of (i) 0.11, (ii) 0.93, and (iii) 4.72 μJ/cm2. The PL at the lowest excitation density shown in curve (i) is dominated by the recombination of localized excitons (denoted by X_1), whose peak is situated at 454.61 nm (2.7276 eV). The X_1 peak gradually shifts to higher photon energy with increasing excitation densities. This is because of the filling of the density state, which is easily induced for localized excitons lying at the tail state. This phenomenon is demonstrated by the non-linear luminescence measurement described below.

With raising the excitation density up to 0.93 μJ/cm2, a shoulder appears on the low-energy side. When further increasing excitation density, the shoulder grows more rapidly than the X_1 line, and a new peak (denoted by X_2) appears at 456.41 nm (2.7168 eV). The energy difference between X_1 and the X_2 peaks is estimated to be about 11 meV.

C. Decay and lifetime

Figure 3 shows the lifetimes of the emission as a function of photon energy, together with the time-integrated PL spectrum measured under $I_{ex}=0.11$ μJ/cm2, the lowest excitation condition. Figure 4 depicts PL decay curves monitored at four different emission energies. The decay spectra are well fitted by single exponential curves. The PL intensity reaches the maximum after a certain time after pulsed excitation. The rise time as well as the lifetime increase with decreasing monitored photon energy. These behavior can be understood as the effect of exciton localization, where decay of excitons is not only due to radiative recombination but also due to transfer processes to the low-energy tail by the assistance of acoustic phonons.

Lifetimes obtained have been well fitted by the theoretical decay time $\tau(E)$ as a function of emission energy as follows:

$$\tau(E)^{-1} = \tau_r^{-1} \left[1 + \exp\left(\left(E - E_{me} \right) / E_0 \right) \right].$$

(1)
where E_0 is the characteristic energy for the density of states, τ_r is the radiative lifetime, and E_{me} is defined by a definite energy for which the decay time equals the transfer time.\(^{12}\)
The best fit has been obtained using the following parameters: $E_0=8.5$ meV, $\tau_r=209$ ps, and $E_{me}=2.7267$ eV. It should be noted that such a fitting under low excitation conditions has also been made for localized excitons in CdSe/ZnSe SQW’s grown by a self-limiting monolayer epitaxy\(^{7}\) and that a similar E_0 value has been obtained. E_0 represents the degree of localization. The value of 8.54 meV is larger than the values reported for CdS$_x$Se$_{1-x}$ (Refs. 12–21) and Zn$_x$Cd$_{1-x}$S (Refs. 27 and 31) alloys and for Zn$_x$Cd$_{1-x}$Te/ZnTe (Refs. 25 and 26), and CdTe/ZnTe (Refs. 22 and 24) QW’s. This implies that the large localization of excitons is rather a universal characteristic in the ultrathin CdSe/ZnSe SQW system.

Figure 5 shows decay curves monitored at various emission energies under $I_{ex}=4.72 \, \mu J/cm^2$, the highest excitation condition. It was found that the PL transient $[I(t)]$ in the vicinity of the X_2 line decays with a double exponential profile shown as

$$I(t)=A_f \text{exp}(-t/\tau_f) + A_s \text{exp}(-t/\tau_s),$$

where τ_f and τ_s are the decay times of the fast and the slow components, respectively. Fitted values of τ_f, τ_s, and A_f/A_s are plotted in Fig. 6 as a function of monitored emission energy. Both the slow and the fast decay components increase with decreasing photon energy, indicating that both the X_1 and the X_2 lines are related to localized excitons. The tendency of the slow components is almost the same as that of lifetimes obtained under $I_{ex}=0.11 \, \mu J/cm^2$. The fast components are estimated to be roughly half as small as the slow components, probably suggesting that the X_2 emission originates from the biexcitonic transition, where a biexciton recombines radiatively, leaving a photon and an exciton.

This is because the formation rate of biexciton concentration is proportional to the square of exciton concentration after a certain time of pulsed excitation.\(^{32,33}\) The situation, however, is complicated in this case because the effect of transfer processes has to be considered in the localized excitonic states. Consequently, for the quantitative analyses, it is necessary to construct the model of population dynamics of localized excitons and localized biexcitons.

PL intensity, I_{PL}, changes with I_{ex} as in the following equation. Neglecting the terms higher than third order, I_{PL} is written as

$$I_{PL}=kI_{ex}^n=aI_{ex}+bI_{ex}^2.$$

The signal detected by the nonlinear PL spectroscopy is the second term (b) proportional to I_{ex}.

Figure 7 shows the nonlinear PL spectra under three different excitation intensities. The positive signal means the superlinear component, while the negative signal corresponds to the sublinear one. Under low values of I_{ex}, the positive signal is observed in the whole spectral range, and the spectra shape is almost the same as the time-integrated linear PL. The origin is probably due to the saturation of residual nonradiative centers by the photogenerated carriers. Increasing I_{ex} more than about 0.31 $\mu J/cm^2$, the positive signal at the X_2 line grows more than that at the X_1 line. Under the excitation intensity of $I_{ex}=4.72 \, \mu J/cm^2$, the nonlinear signal at the X_1 line changes its sign to show negative nonlinearity because of the band-filling effect of localized excitons. However, the positive signal at the X_2 line remains to grow even at the excitation density, indicating that the X_2 line originates from the many-body effect of localized excitons such as localized exciton-exciton collisions or localized biexcitons.\(^{34}\)

D. Time evolution of PL spectra

Figures 8 and 9 show the time evolution of the luminescence spectra measured as a function of time after pulsed excitation (t_p) under two different excitation intensities of 0.11 and 4.72 $\mu J/cm^2$, respectively. Under the excitation

![Figure 5](image-url)
FIG. 5. PL decay curves from the CdSe SQW under $I_{ex}=4.72 \, \mu J/cm^2$ obtained at various monitored photon energies. Decay curves in the vicinity of the X_2 are well fitted by the double exponential function.

![Figure 6](image-url)
FIG. 6. Slow and fast components of lifetimes (τ_f and τ_s), and A_f/A_s under $I_{ex}=4.72 \, \mu J/cm^2$. The tendency of the slow components is almost the same as that of lifetimes obtained under $I_{ex}=0.11 \, \mu J/cm^2$ (Fig. 3). The fast components are roughly half as small as the slow components.
intensity of 0.11 \, \mu J/cm^2, the PL peak at \(t_d = 0 \) ps is located at 454.4 nm (2.728 eV), and then shifts towards a lower photon energy with delay time at a rate of \(2.3 \times 10^7 \) eV/s. This behavior can be understood as a transfer process of excitons to the tail state as discussed in the previous section. The PL spectrum slightly narrows with time from \(t_d = 50 \) to 40 ps. A shoulder appears and grows at about 458 nm \((2.71 \) eV\) after \(t_d = 40 \) ps. The component is overlapped with the main peak \((X_1) \) after \(t_d = 400 \) ps, and no peak shift was observed after then. This indicates that the density of tail states \(g(E) \) is not exactly the form of \(\exp[-E/E_0] \) but rather a form of separately distributed features depending on the distribution of islands and terraces in the QW.

Under \(I_{\text{ex}} = 4.72 \, \mu J/cm^2 \), the PL spectrum is nearly the same as that under \(I_{\text{ex}} = 0.11 \, \mu J/cm^2 \), and no \(X_2 \) line is observed just after the excitation \((t_d = 0)\) ps. The \(X_2 \) line begins to grow at \(t_d \) equal to several tens of ps, and then reaches the maximum at \(t_d = 100 \) ps. The dynamics of localized excitons under high excitation conditions can be described as follows. Photogenerated excitons relax to the states of lower energy and reach the local minima. In such a situation, excitons are localized spatially within the well layer due to the break of the momentum preservation, and many-body effects such as a formation of biexcitons or exciton-exciton scattering are easily produced compared to the case of flat QW’s without the effect of localization. It should be noted that a similar scenario has also been proposed by Kreller et al.\(^{36} \) in the Zn\(_{x}\)Cd\(_{1-x}\)Se/ZnSe system.

The energy difference between \(X_1 \) and \(X_2 \) is about 11 meV at \(t_d = 100 \) ps. The origin of the \(X_2 \) being due to inelastic collision of localized exciton, this energy difference should correspond to the binding energy of localized excitons. The exciton binding energy for bulk CdSe and ZnSe is 13 and 18 meV,\(^{37,38} \) respectively. We calculated the exciton binding energy \((E_{\text{ex}}) \) of the CdSe/ZnSe QW’s by the variational method using the trial wave function of the 1S exciton as

\[
\psi_{1S} = \exp \left(-\frac{1}{\lambda} \sqrt{x^2 + y^2 + \eta(z_c - z_h)^2} \right).
\]

The result shows that the maximum \(E_{\text{ex}} \) (about 34 meV) is achieved at the well width \((L_w)\) of 3 ML, and that the \(E_{\text{ex}} \) is estimated to be 30.5 meV at \(L_w = 1 \) ML. Although analyzing the \(E_{\text{ex}} \) value in the strongly localized system is dif-

FIG. 7. Nonlinear PL spectra under three different \(I_{\text{ex}} \) values of (i) 0.31 \(\mu J/cm^2 \), (ii) 0.93 \(\mu J/cm^2 \) and (iii) 4.72 \(\mu J/cm^2 \). The upward direction on the vertical axis means the superlinear dependence, while the downward direction corresponds to the sublinear dependence.

FIG. 8. PL spectra measured as a function of delay time under \(I_{\text{ex}} = 0.11 \mu J/cm^2 \). Because of the transfer process of localized exciton, PL peaks shift towards lower photon energy with time delay.

FIG. 9. PL spectra measured as a function of delay time under \(I_{\text{ex}} = 4.72 \mu J/cm^2 \). The \(X_2 \) line does not appear just after excitation. It begins to grow at about \(t_d = 100 \) ps.
difficult, it is expected that the E_{ex} value will be increased compared to the case of no localization effect, due to the enhanced confinement of wave functions. Thus the process of inelastic collision can be excluded. It is very difficult to estimate theoretically the biexciton binding energy in the system where the penetration of wave functions to the barrier has to be taken into account. Nevertheless, judging from the relationship of decay times between the X_1 and X_2, we could conclude that the radiative recombination of localized biexcitons is the most probable process for the X_2.

IV. CONCLUSIONS

Optical properties of localized excitons in a highly strained CdSe QW with about 1-ML thickness have been studied at 20 K by employing time-resolved PL and nonlinear PL spectroscopy under various excitation conditions. The time-integrated PL from the well layer was peaked at 2.7276 eV with the linewidth of 21 meV under low excitation intensity (0.11 μJ/cm2). The lifetime ranged from 200 to 50 ps as the monitored photon energy was changed from the low-energy tail to the high-energy one. These features could be interpreted by the model of exciton localization, which is induced by terraces and islands lying at the interface between CdSe and ZnSe layers.

An emission with the fast decay component was observed at the low energy side of the peak (2.7168 meV) under higher excitation condition. The component was also detected as a superlinear signal in nonlinear PL spectra, and was attributed to a dense excitonic effect such as localized biexcitons.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.