Mechanism of ellipsometry monolayer oscillations during metalorganic vapor-phase epitaxy

<table>
<thead>
<tr>
<th>著者別名</th>
<th>崇本 泰章</th>
</tr>
</thead>
<tbody>
<tr>
<td>契約施設</td>
<td>契約施設の詳細</td>
</tr>
<tr>
<td>項目</td>
<td>には</td>
</tr>
<tr>
<td>設備</td>
<td>には</td>
</tr>
<tr>
<td>権利</td>
<td>権利の詳細</td>
</tr>
</tbody>
</table>

doi: 10.1063/1.373642
Mechanism of ellipsometry monolayer oscillations during metalorganic vapor-phase epitaxy

Jeong-Sik Lee, a) Shigeo Sugou, and Yasuaki Masumoto
Single Quantum Dot Project, ERATO, JST, Tsukuba Research Consortium, 5-9-9 Tokodai, Tsukuba 300-2635, Japan

(Received 14 June 1999; accepted for publication 23 March 2000)

Ellipsometry signal oscillations were clearly seen during metalorganic vapor-phase epitaxy (MOVPE) of III–V materials under high sample rotation at 1400 rpm. The ellipsometric signal oscillated at a period corresponding to 1 ML of MOVPE growth. Oscillations correlated with the formation of islands due to nucleation on terraces during the growth of 1 ML. Different surface reconstructions between (100) terraces (As stable) and (111)A step edges (Ga stable) result in different dielectric functions. The effective medium dielectric response of rough and smooth surfaces appears to be responsible for different ellipsometry signals. Layer thickness and InGaAs composition were precisely determined in situ. Critical layer thickness and In composition for InGaAs quantum-dot formation were also evaluated directly from in situ ellipsometry data.

I. INTRODUCTION

Real-time monitoring and control is highly desirable in growing low-dimensional structures. Reflection high-energy electron diffraction (RHEED) is used routinely for this in molecular-beam epitaxy (MBE). The diffraction pattern observed is used for different monitoring purposes, e.g., deoxidation of the substrate surface, temperature calibration, and thickness control via monolayer oscillations in island growth mode. In metalorganic vapor-phase epitaxy (MOVPE) under gas-phase conditions, however, electron-based in situ techniques cannot be used. To overcome this, MOVPE has been studied by techniques such as reflectance difference spectroscopy (RDS), surface photoabsorption (SPA), and spectroscopic ellipsometry (SE). In situ RDS and SE have been successfully used to monitor layer thickness, bulk composition, and surface reconstruction during III–V growth. We report well-defined ellipsometry monolayer oscillations during GaAs growth using a laser as the probe light. Compared to RDS and SE results, our data show a high signal-to-noise ratio even under high sample rotation.

We evaluated the origin of oscillations from experimental data and explain ellipsometry monolayer oscillation using a model based on relative domain coverage and the surface reconstruction complex and/or Ga-alkyl bond surface concentration. Surface morphology is assignable by ellipsometry, and we observed quantum-dot (QD) formation onset. Using in situ monitoring of QD formation and monolayer oscillations, we determined alloy composition and critical layer thickness precisely for QD formation.

II. EXPERIMENT

A Faraday-modulated self-nulling ellipsometer is attached to the reactor at a 70° angle of incidence to the sample. Determining maximum sensitivity for small changes in complex reflectivity of the sample requires a high-power probe light with minimum random noise. A 632.8 nm (1.96 eV) He–Ne laser and 532 nm (2.32 eV) green-diode-pumped solid-state laser were used for the probe light because they meet the above requirements and have the energy of a surface resonance related to Ga dimers (2 eV) at Tg 500 °C or the energy of a Ga–C bond (2.34 eV). The He–Ne laser (532 nm laser) has a 4 (20) mW power output (spot size: 1 mm in diameter) and is linearly polarized with a polarization ratio of 500:1 (20:1). From the detector, the signal is transferred to a lock-in amplifier (time constant: 100 ms). The interval between data acquisitions was 500 ms. Noise levels during growth were typically 0.02° for Δ and 0.01° for Ψ (0.001 for ε1 and 0.003 for ε2).

Our growth system is based on conventional Encore Discovery 75 MOVPE at a working pressure of 80 hPa. Using 1400 rpm substrate rotation throughout growth ensured uniform source gas flow. Substrates were unintentionally doped GaAs and InAs (100) oriented. Triethylgallium (TEG), trimethylgallium (TMG), trimethylindium (TMI), and arsine (AsH3) were the source materials.

Ex situ surface morphologies were studied by atomic-force microscopy (AFM) in air.

III. RESULTS AND DISCUSSIONS

Figure 1 shows transients in (a) real (ε1) and (b) imaginary (ε2) parts of pseudodielectric functions during GaAs growth with TEG supply as the varied parameter using a 532 nm probe light. An immediate decrease in ε1 and an increase in ε2 are seen when TEG is switched on, followed by a number of well-resolved oscillations. The amplitudes of ε1 and ε2 oscillations detected were 0.03 and 0.05. Similar oscillations have been observed when TMI was used in InAs growth (Fig. 2).
The time period of oscillations decreases with increasing source gas supply independent of the material, indicating that the time period corresponds to 1 ML of growth. To verify this, we evaluated the growth rate by determining the layer thickness after growth \textit{ex situ}. GaAs and InAs layer thicknesses after growth were evaluated for In$_{0.2}$Ga$_{0.8}$As (3 ML)/GaAs (100 ML) and In$_{0.8}$Ga$_{0.2}$As (3 ML)/InAs (100 ML) superlattices by x-ray diffraction (XRD). With the XRD system, it is possible to measure the percentage composition and layer thickness to within 1% using routine measurements. Growth rate data are plotted in Fig. 3 together with that obtained assuming that oscillations describe the completion of a monolayer of GaAs and InAs \textit{in situ}. Linear dependence on the source gas supply and excellent agreement between growth rate data derived from the oscillation period and that derived from thickness were obtained. The deviation between \textit{in situ} and \textit{ex situ} data was less than 1%. We thus concluded that ellipsometry in MOVPE growth has a potential equivalent to RHEED for MBE growth in characterizing the surface before growth and calibrating growth on a monolayer scale.

The mechanism generating ellipsometry oscillation is clearly cooperative, involving oscillating step density. Ellipsometry oscillations vanish when the growth mode changes from two-dimensional (2D) islands to a step flow (Fig. 4). GaAs(100) exactly oriented and 1° off toward the [110] azimuth was used for the experiment. On a vicinal substrate, an ellipsometry signal showing clear oscillations at T_g of 500 °C vanishes at 550 °C, whereas oscillations are observed at both T_g on an exactly oriented substrate. Surface morphology of the 550 °C grown sample on a vicinal substrate shows clear step bunching, indicating that growth proceeds in step-flow mode. The result provides additional evidence for the assumption that a condition necessary for the appearance of ellipsometry oscillations is due to oscillating step density. The result further implies that ellipsometry can also be used to determine diffusion length in MOVPE via the analysis of transition temperatures between the island growth mode to step-flow growth mode on vicinal surfaces.

The above data show a clear correlation between step density and oscillation. We studied the difference in the ellipsometric signal between terrace and step regions. Since island edges on the (100) surface consist of (111)A and B steps, the investigation of ellipsometry signal dependence on growth condition for these surfaces should help us to determine the oscillation mechanism precisely. Figure 5 shows

![FIG. 1. Transients in (a) real (ε_1) and (b) imaginary (ε_2) parts of pseudodielectric functions during GaAs growth at 500 °C.](image1)

![FIG. 2. Transients in (a) real (ε_1) and (b) imaginary (ε_2) parts of pseudodielectric functions during InAs growth at 400 °C.](image2)

![FIG. 3. GaAs and InAs growth dependence on source gas supply evaluated from growth oscillation and from postgrowth thickness determination.](image3)
the temperature dependence of trajectories of the dielectric functions under AsH₃ supply. At lower temperatures, no difference is seen in the trajectory between the two \(\{111\} \)A and \(\{111\} \)B surfaces, just the same as for that of the \(\{100\} \) surface. At 600 °C when the temperature increases, however, the trajectory of the \(\{111\} \)A surface slips off, whereas that on the \(\{111\} \)B surface shows continuous change. With decreasing temperature, the trajectory then goes back at 560 °C. The transition is relatively fast “within a few seconds” and the transition temperature depends on the AsH₃ supply. These features suggest As desorption on the \(\{111\} \)A surface results in a surface reconstruction change. On the \(\{111\} \)GaAs surface, \((2\times2)\) reconstruction is stable at lower temperature. The As-stabilized \((2\times2)\) reconstruction of the GaAs(\(\{111\}\)B surface consists of As trimers bonded to the underlying As plane. Surface reconstruction changes to \((\sqrt{19}\times\sqrt{19})\) at higher temperature; however, the topmost surface consists of As.¹¹ As-stabilized \((2\times2)\) reconstruction of the GaAs(\(\{111\}\)A surface has the As trimer structure directly bonded to the Ga plane. With increasing temperature, As desorbs and Ga, emerging on the topmost surface, forms a trimer structure. Different dielectric functions between As–As and Ga–Ga bonds cause the change in dielectric function. The same shift was observed when the Ga source was supplied only on the \(\{111\} \)A surface (data not shown).

Taking the above results and step density change during 1 ML of growth into account, we propose the elementary surface process below and calculate the origin of ellipsometry signal oscillation during GaAs growth.

In MOVPE, \((4\times4)\) reconstruction is stable on the \(\{100\} \)GaAs surface [Fig. 6(a)]. During growth, the Ga dimer constellation is related to the \(\{111\} \)A step at the island edges and the \((4\times4)\)-like dimer constellation related to a smooth surface covers the centers of the islands [Fig. 6(b)]. Although we cannot demonstrate the surface reconstruction of the \(\{111\} \)A surface to the \(\{111\} \)A steps directly, step regions dominated by the \((n\times6)\)-like \((n=1 \text{ or } 4)\) structure, the mixture of As and Ga dimers, are apparently more likely to exist close to the steps.¹²,¹³

The Bruggemann effective medium approximation (EMA) (Ref. 14) has been shown to describe these effects accurately and is used here to describe oscillations in the ellipsometry response through island formation. The effective complex dielectric functions of films, obtained by EMA theory, are connected with complex dielectric functions of the GaAs surface with a mixture of reconstructions and ambient. Accordingly, the effective complex dielectric function \(\varepsilon \) of the GaAs topmost layer during growth is obtained from the following equations:

FIG. 4. Transients in imaginary parts of pseudodielectric functions \((\varepsilon_2) \) during GaAs growth on GaAs(\(\{100\}\)) exactly oriented and vicinal substrates.

FIG. 5. Temperature dependence of trajectories of the dielectric functions under the AsH₃ supply.

FIG. 6. Analytical models for Bruggemann EMA. (a) Model of perfectly smooth layer. (b) Model of the layer with surface roughness with step related \((n\times6)\)-like area fraction. \(f_s \) is covered by \((4\times4)\) island area fraction \(f_i \). (c) Model of rough surface with the Ga–C bond at the step edges.
curs at the completion of half-monolayer growth. The change vanishes faster than that of TMG. These results indicate pairs at the edges prevent As incorporation groups are likely present at the island edges since lone Ga

difference in the growth condition except for the Ga source. Growth, the surface is assumed to oscillate between more

The rapid increase in \(\varepsilon_2 \) [arrows in Fig. 8(a)] is caused by probe light scattering because of increased surface roughness from QD formation. \(\text{Ex situ} \) AFM measurement of In\(_{0.4}\)Ga\(_{0.6}\)As sample surfaces whose growth was stopped before and after the inflection point [indicated by arrows \(\alpha \) and \(\beta \) in Fig. 8(a)] clearly proved that deviation from the spiral trajectory comes from the growth mode transition [Fig. 8(c)]. QD structures were observed only on the surface after inflection points. The data show the critical point of In composition for QD formation. In our experiment, no inflection point is directly obtained by measuring the rate of increase. The In composition deduced from oscillation periods and from \(\text{ex situ} \) measurement by x-ray diffraction agrees well [Fig. 8(b)].

In a highly lattice-mismatched system, QD structures are self-formed due to the transition of the growth mode from 2D to three-dimensional (3D) at a certain layer thickness. This drastic change in surface morphology reflects the occurrence of inflection points in the ellipsometric trajectory. The rapid increase in \(\varepsilon_2 \) density is a possible candidate for the origin of ellipsometry oscillation. The contribution of Ga–C bond absorption has also been suggested as the origin of the oscillation. \(\text{19} \) Organometallic groups are likely present at the island edges since lone Ga pairs at the edges prevent As incorporation [Fig. 6(c)]. Figure 7 compares the \(\varepsilon_1 \) offset, the difference in \(\varepsilon_1 \) before and during growth, when TEG and TMG was used for Ga source materials. A different \(\varepsilon_1 \) offset were observed despite no difference in the growth condition except for the Ga source. The TMG offset is three times larger than that of TEG. The same feature was observed in \(\varepsilon_2 \). Further, the TEG oscillation diminishes faster than that of TMG. These results indicate that the difference in offset and oscillation correlate closely with the difference in organometallic groups. By replacing ethyl groups with methyl groups, the degree of polarity for the corresponding Ga–C bond is strengthened due to the higher electronegativity of the methyl radical. Preventing thermal decomposition of TMG and most of the Ga–C bonds remain at step edges, whereas the Ga–C bond scarcely remains in TEG. Consequently, the laser energy of 2.32 eV, near the energy of the Ga–C bond, is expected to be sensitive enough to interfere with the bonds, and the results show the clear difference in the oscillation feature. A comparison of oscillation \(T_g \) between TMG and TEG agrees well with the above result. \(\text{15} \) The oscillation gradually disappears with increasing \(T_g \), eventually vanishing. This disappearance with increasing \(T_g \) was mainly due to the growth mode transition. The oscillations disappear for higher \(T_g \) when nucleation occurs predominantly at step edges because the diffusion length is in the range of the average terrace width. A higher \(T_g \) for TMG than for TEG, however, corresponds to the higher decomposition temperature of TMG and gives additional weight to the assumption that one of the origins of ellipsometry oscillations is probe light absorption by Ga–C bonds at the step edges. In actual growth, surface reconstruction and Ga-alkyl bond-related processes would be complicated.

Precise In composition and critical layer thickness and In composition for QD formation of the InGaAs layer is obtained directly from the ellipsometry signal. Figure 8(a) shows a transient in \(\varepsilon_2 \) during InGaAs growth at 500 °C. The In composition changed from 0% (GaAs) to 50% by changing the TMI flow rate from 0 to 8.67 \(\times 10^{-8} \) mol/s. The TEG flow rate was set at 8.33 \(\times 10^{-8} \) mol/s. The oscillation period decreases with increasing TMI flow and the In composition is directly obtained by measuring the rate of increase. The In composition deduced from oscillation periods and from \(\text{ex situ} \) measurement by x-ray diffraction agrees well [Fig. 8(b)].
position is 0.5 (0.37). Although the critical layer thickness
depends on growth condition, these values match the critical
layer thickness obtained from the MBE growth with RHEED
oscillations under similar conditions.19,20

These results indicate that ellipsometric oscillation is a
practical means for accurate in situ growth and gas flow ratio
determination in MOVPE, which is important for precisely
controlling lattice matching, alloy composition, quantum-
well thickness, and QD formation.

IV. SUMMARY

We observed ellipsometry oscillations during GaAs and
InGaAs growth, and found that the ellipsometric signal os-
cillated at a period corresponding to 1 ML of growth. Excellent
agreement between growth rate data from the oscillation
period and that from thickness measurements indicates that
ellipsometry in MOVPE growth has a potential equivalent to
RHEED for MBE growth in characterizing the surface before
growth and calibrating the growth rate on a monolayer scale.

We determined the layer thickness and InGaAs compo-
sition precisely in situ and directly calculated the critical
layer thickness and In composition for InGaAs QD forma-
tion directly from in situ ellipsometry data.

Clear ellipsometry oscillation under a high sample rota-
tion implies that the technique enables true in situ moni-
toring.

3T. Makimoto, Y. Yamauchi, N. Kobayashi, and Y. Horikoshi, Jpn. J.
B 17, 1341 (1999).
7M. Wassermeier, J. Behrend, J.-T. Zettler, K. Stahrenberg, and K. H.
9J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. A 83,
1 (1983).
12K. Ploska, J.-Th. Zettler, W. Richter, J. Jonsson, F. Reinhardt, J. Rumberg,
M. Pristovsek, M. Zorn, D. Westwood, and R. H. Williams, J. Cryst.
Growth 145, 44 (1994).
L614 (1999).
16G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and
17E. G. Rochow, D. T. Hurd, and R. N. Lewis, The Chemistry of Organoma-
18C. F. Bohren and D. B. Huffman, Absorption and Scattering of Light by