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Abstract

    MafA is a basic leucine zipper (b-Zip) type transcription factor that binds to 

the insulin promoter and regulates insulin transcription synergistically with 

Pdx-1 and NeuroD.  Transforming growth factor- (TGF-) signaling has been 

reported to regulate activity of b-Zip transcription factor such as ATF-2 and acts 

as an important regulator of insulin gene transcription and pancreatic  cell 

maintenance. To investigate the relationship between MafA-dependent 

transcriptional activation and TGF- signaling, we examined the effects of 

TGF- signal on MafA-dependent transactivation of the rat insulin II gene 

promoter (RIPII-251) and a synthetic MafA-dependent promoter. 

MafA-dependent activation of the reporters was inhibited in the presence of 

Smad2/Smad4 or Smad3/Smad4 and a constitutively active TGF- type I 

receptor and this inhibition was dependent upon the presence of MafA. 

Co-immunoprecipitation analyses revealed that MafA physically interacts with 

Smad2 or Smad3. These results suggest that MafA-dependent transcriptional 

activation is negatively regulated by TGF- signaling.
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Introduction

MafA is a basic leucine zipper (b-Zip) transcription factor that regulates 

gene expression in both the lens and pancreas [1-5]. MafA recognizes a specific 

sequence, the Maf recognition element (MARE), which contains a cAMP 

responsive element (CRE) or a TPA responsive element (TRE), and 

trans-activates target genes containing this element within their regulatory 

sequences. Within the pancreas, MafA is exclusively expressed in  cells and is 

involved in insulin gene transcription together with several other transcription 

factors including Pdx-1 and NeuroD [6, 7]. The expression of MafA within 

cells is controlled by the glucose concentration [3, 4]. Mice lacking MafA 

display reduced transcription of the insulin gene, intolerance to glucose, 

abnormal islet structure and develop diabetes mellitus [8]. These reports 

indicate that MafA plays critical roles in insulin transcription, secretion and 

cell maintenance [6-9].

The transforming growth factor- (TGF-) super family is known to regulate 

a wide range of cellular functions, such as cell proliferation, differentiation, 
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apoptosis and morphogenesis [10-12]. Growing evidence suggests that TGF- is 

involved in the regulation of insulin expression, secretion and induction of 

apoptosis of cells. For examples, TGF- ligands, receptors, and R-Smads are 

expressed in adult rat pancreatic islets [13, 14]. In fetal rat islets, activin receptor 

like kinase 7 (ALK7) is the most dominant type I receptor of the TGF-

superfamily [15] and ALK7 has been reported to induce apoptosis of cells 

[16]. In addition, TGF- has been reported to increase insulin release from 

pancreatic islets in a concentration-dependent manner [17]. On the other hand, 

the Smad and TAK1 pathways in TGF- signaling have been reported to 

regulate the transcriptional activity of ATF-2, which is a member of b-Zip type 

transcription factors and recognizes the CRE [18]. According to these 

observations, MafA function may be regulated by TGF- signals.

To determine the relationship between MafA dependent transcriptional 

activation and TGF- signaling at the molecular level, we analyzed 

MafA-dependent transcriptional activation of the rat insulin II gene promoter 

(RIPII-251) and a MafA specific promoter in the presence or absence of TGF-
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signals in NIH3T3 cells. We show that MafA-dependent transcriptional 

activation is inhibited by TGF- signaling.
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Materials and methods

Cell lines.  Mouse fibroblast NIH3T3 and human embryonic kidney 293T 

cells were grown in DMEM supplemented with 10% fetal bovine serum, 2 mM 

L-glutamine, 100 U/ml penicillin, and 100 g/ml streptomycin.

Plasmid construction.   Mouse MafA cDNA was subcloned into pFFX3-Flag 

[4] and the pcDNA3-6xMyc eukaryotic expression vector. Pdx-1 and NeuroD 

cDNAs were amplified by RT-PCR using MIN6 cDNA as template. The 

forward primer used for amplification of the Pdx-1 gene was 

5’-ACCATGAACAGTGAGGAGCAGTAC-3’, and the reverse primer was 

5’-GGTTAAGTTCCCTTATCCAGCTGC-3’. The forward primer used for 

NeuroD amplification was 5’-AACATGACCAAATCATACAGCGAG-3’ and 

the reverse primer was 5’-GTGAAACTGACGTGCCTCTAATCG-3’. The 

amplified fragments were completely sequenced and inserted into the 

pcDNA3.1+neo mammalian expression vector (Invitrogen).  Expression 

constructs encoding Flag-Smads, ALK5TD and Flag-c-Ski were constructed as 



7

described previously [19]. RIPII-251 and 6×cCE2 promoters [20] were 

subcloned into pGL4- and pGL2-basic vector (Promega), respectively.

Transient Transfection and Luciferase Assay.  NIH3T3 cells were plated at a 

density of 2x105 cells/well on 12-well dishes and transfected for 24 h using 

LipofectamineTM 2000 (Invitrogen) according to the manufacture’s instructions. 

For each transfection, 150 ng of the luciferase reporter plasmid and 75 ng of 

MafA, Smad2, Smad3 and Smad4, and 50 ng of the ALK5 expression vectors 

were used. The total amount of transfected DNA was kept constant by adding 

empty vector, as needed. All plasmid DNA was prepared using the PureLinkTM

High Pure Plasmid Midiprep Kit (Invitrogen). Co-transfection of 75 ng of 

control pRL-tk plasmid was performed for normalization of transfection 

efficiency. Forty-eight hours later, total cell lysates were subjected to luciferase 

activity assessment, using the Dual-Luciferase reporter system (Promega). 

Measurements were performed with a GLOMAX 20/20 luminometer 
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(Promega). Luciferase activities were normalized on the basis of Renilla 

luciferase expression from the pRL-tk control vector.

Immunoprecipitation and immunoblotting.  293T cells were plated at a density 

of 1x106 cells/well on 6-well dishes and transfected 24 h using LipofectamineTM

2000 according to the manufacture’s instructions. For each transfection, 1 g of 

pcDNA3-6xMyc-MafA, 0.5 g of Flag-Smads and 0.5 g of HA-ALK5TD 

expression vectors, were used. The total amount of transfected DNA was kept 

constant by adding pcDNA3.1+neo vector. Total cell lysates were solubilized in 

lysis buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Nonidet 

P-40, and 1.5% Trasyrol. The lysates were cleared and incubated with anti-Flag 

antibodies followed by incubation with Protein G-Sepharose beads (GE 

Healthcare UK Ltd.). The beads and antibodies were washed with lysis buffer, 

then the immunoprecipitates were eluted by boiling at 95 °C for 5 min in 1xSDS 

sample buffer containing 100 mM Tris-HCl, (pH 8.8), 0.01% bromophenol blue, 

36% glycerol, 4% SDS, 20 mM dithiothreitol. The immunoprecipitates and cell 

lysate control were subjected to SDS-PAGE (10% gel) and electrotransferred to 
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Immobilon-P PVDF membranes (MILLPORE), and subjected to 

immunoblotting. Anti-Myc (9E10, Calbiochem), anti-hemaggulutinin (HA) 

(3F10, Roche), horseradish peroxidase (HRP)-anti-Flag M2 antibodies (Sigma) 

were used as primary antibodies. The reacted antibodies were detected using 

an ECL-plus Western Blotting Detection System (GE Healthcare UK Ltd.).
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Results

TGF-signals inhibit MafA dependent transcription of the rat insulin II gene.  

MafA, Pdx-1 and NeuroD regulate insulin expression through binding to the 

insulin promoter in pancreatic  cells. To investigate the effect of TGF-signal 

on transcriptional activation by these factors, we used the pGL-RIPII-251 

reporter construct. As shown in Fig. 1A, this construct carries 251 bp (-251~ -1) 

of the rat insulin II gene promoter, which contains two Pdx-1 binding sites (A1 

and A3), a NeuroD binding site (E1) and a MafA binding site (C1) driving 

expression of a luciferase reporter gene. We first examined the effect of MafA, 

Pdx-1 and NeuroD expression on RIPII-251 reporter activity in NIH3T3 cells, 

since these factors are expressed in  cell lines and it is thus difficult to estimate 

the individual contribution of these factors in these cells. As shown in Fig. 1B, 

RIPII-251 reporter activity was increased by MafA expression alone (4.6 folds), 

but not by Pdx-1 or NeuroD expression alone. Co-expression of MafA and 

NeuroD stimulated RIPII-251 activity (21.2 folds), whereas co-expression of 

MafA and Pdx-1 led to a level of reporter expression similar to that observed 
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following MafA expression alone. Co-expression of Pdx-1 and NeuroD did not

activate the RIPII-251 reporter. Furthermore, co-expression of all three factors 

stimulated reporter expression most strongly (49.7 folds). These results 

suggested that MafA is an important regulator of RIPII-251 reporter activity in 

NIH3T3 cells.

We next investigated the effect of TGF-signaling on MafA-mediated 

activation of the RIPII-251 reporter activity. As shown in Fig. 1C, cells were 

transfected with RIPII-251 reporter plasmid along with plasmids expressing 

MafA, Pdx-1 and NeuroD, and various combinations of Smad2/Smad4, 

Smad3/Smad4 and ALK5TD (constitutively active TGF- type I receptor) as 

indicated. Unexpectedly, RIPII-251 reporter activation induced by 

co-expression of MafA, Pdx-1 and NeuroD was inhibited by co-transfection of 

Smad2/Smad4 or Smad3/Smad4. Inhibition of RIPII-251 reporter activity by 

Smads was further inhibited in the presence of ALK5TD. The repressive effect 

of Smad3/Smad4 expression was greater than that of Smad2/Smad4 expression 

(6.3 folds versus 3.0 folds). These results demonstrate that trans-activation of the 
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RIPII-251 reporter by MafA, Pdx-1 and NeuroD is suppressed by co-expression 

of factors that mediate TGF-signals. 

To clarify the molecular mechanism of suppression of the reporter promoter 

in NIH3T3 cells by factors that mediate TGF-signals, we next evaluated 

reporter expression following coexpression of Smad2/Smad4, Smad3/Smad4 

and ALK5TD in the presence of only MafA. Expression of MafA alone 

stimulated luciferase activity about four fold (Fig. 1D). MafA-mediated 

transcriptional activation was inhibited by co-transfected with Smad3/Smad4 

and ALK5TD. The inhibitory effect of Smad2/Smad4 and ALK5TD was weaker 

than that of Smad3, Smad4 and ALK5TD co-expression. We observed little 

effect of Smad2/Smad4, Smad3/Smad4 and ALK5TD co-expression on reporter 

expression in cells co-transfected with Pdx-1 and NeuroD (Fig. 1E). These 

results indicated that TGF-signals inhibit the transcriptional activation of the 

RIPII-251 reporter following MafA, Pdx-1 and NeuroD co-expression through 

an effect upon MafA.
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Smads inhibit the activation of 6×cCE2 (aA-crystallin gene) promoter by MafA.  

There are two possible mechanisms through which TGF- signals might inhibit 

MafA transcriptional activity. One possibility is that Smads bind to the 

RIPII-251 promoter sequences directly and inhibit MafA dependent reporter 

activation. The second possibility is that Smads form a complex with MafA and 

inhibit its activity directly. To evaluate these two possibilities, we examined the 

effect of TGF- signals on another MafA dependent promoter; the 6×cCE2

promoter derived from the chicken A-crystallin promoter (Fig. 2A) [20]. As 

shown in Fig. 2B, co-expression of Smad3, Smad4 and ALK5TD inhibited 

MafA-dependent activation of the 6×cCE2 promoter to an extent similar to 

their effect upon the RIPII-251 reporter, as shown in Figure 1. Co-expression of 

Smad3, Smad 4 and ALK5TD in absence of MafA expression had no effect upon 

the basal activity of the reporter. This result indicates that inhibition of MafA 

dependent transcription by Smads is not specific to the RIPII-251 reporter. Both 

the RIPII-251 and 6×cCE2 promoters contain MAREs, whereas neither the 

6×cCE2 sequence nor the -actin basal promoter contain CAGA sequences, 
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which are Smad binding elements. Therefore, these results suggest that since 

Smads do not bind directly to the 6×cCE2 or -actin basal promoters, the 

TGF- signal must act directly upon MafA to repress transcriptional activity of 

this reporter.

MafA physically interacts with Smad proteins.   Smads are known to interact 

with many transcription factors and to regulate their transcription activity [12, 

21]. We next examined whether MafA directly interacts with Smad proteins by 

co-immunoprecipitation analyses. 293T cells were co-transfected with plasmids 

encoding 6xMyc-tagged MafA, Flag-tagged Smads (Smad2, Smad3 and Smad4) 

and HA-tagged ALK5TD. Cell lysates prepared from the transfected cells were 

immunoprecipitated with an anti-Flag antibody, followed by Western blot 

analysis using an anti-Flag antibody to detect Flag-tagged Smad2, Smad3 and 

Smad4, an anti-Myc antibody to detect 6xMyc-tagged MafA, or an anti-HA 

antibody to detect HA-tagged ALK5TD (Fig. 3). The results indicated that MafA 

interacts with Smad2, Smad3 and Smad4. The interactions between Smads and 



15

MafA were detected in the absence but not in the presence of co-expressed 

ALK5TD. These results show that Smads directly bind to MafA. 
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Discussion

The insulin promoter contains three indispensable elements for 

cell-specific activity: the A3, C1 and E1 elements recognized by Pdx-1, MafA 

and NeuroD, respectively (Fig. 1A). We previously reported the generation and 

analyses of MafA-deficient mice [8]. MafA-deficient mice show normal 

pancreatic islet development at birth, but exhibit decreased insulin gene 

transcription, an increase in the / cell ratio, abnormal islet architecture and 

abnormal glucose tolerance after several weeks. A fraction of these mice 

subsequently develop overt diabetes mellitus. These results clearly indicate that 

MafA is a key regulator of  cell function and maintenance. In addition, TGF-

stimulates insulin secretion and increases the expression of the insulin mRNA 

in a concentration dependent manner in islet cells and cell lines [17, 22, 23].

As such, we hypothesized that TGF- signaling might stimulate 

MafA-dependent transactivation of an insulin reporter gene in NIH3T3 cells. 

Contrary to our expectations, we found that TGF- signals strongly inhibited 

transactivation of an insulin promoter reporter construct by MafA. Moreover, 
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we detected direct protein-protein interaction of Smads with MafA. This 

interaction between Smads and MafA has not been previously identified and 

suggests a mechanism for cross-talk between these signaling pathways. 

TGF-has been reported to stimulate Pdx-1-mediated transactivation of 

insulin gene transcription [23].  According to this study, TGF-increased 

binding of Pdx-1 to the A3 element within the insulin promoter based on an 

EMSA performed using cell lysates prepared from the INS-1 cell line. In 

contrast, a similar analysis revealed that binding of MafA to element was 

unchanged by TGF-signaling. We have shown here that Smads inhibit the 

transcriptional activity of MafA in NIH3T3 cells. Taken together, we conclude 

that TGF- increases Pdx-1 transcriptional activity and decreases MafA 

transcriptional activity depending upon the particular cell and environmental 

condition.

We have demonstrated here that the activation of a luciferase reporter gene 

by MafA is suppressed by TGF- signals and that this suppression is more 

prominent in the presence of ALK5TD. However, the interaction between MafA 
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and Smads appears to be independent of ALK5TD. To identify the molecular 

mechanism of this suppression, EMSA analysis was performed the absence or 

presence of ALK5TD, but there was no significant difference between the DNA 

binding activity of MafA under these conditions (data not shown). These results 

suggest that the activated type I receptor may recruit a suppressor complex 

such as Ski/Sno and change components of transcriptional complex to inhibit 

transcriptional activation mediated by MafA. Further analysis is needed to 

identify the molecular mechanism of the suppression of MafA-mediated 

transcriptional transactivation by ALK5TD.

The physiological role of the suppression of MafA-mediated transcriptional 

transactivation by TGF-signaling is unclear at this time. One possibility is that 

TGF- signaling might regulate apoptosis of cells through an effect upon 

MafA activity. As previously demonstrated, ALK7 is the dominant type I 

receptor of the TGF- superfamily receptor in  cells and ALK7 induces 

apoptosis of these cells [15, 16]. The activation of ALK7 increases Smad2 

phosphorylation, reduces protein kinase B (Akt) activity and is associated with 
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increased levels of the bioactive forms of caspase-3. Since MafA deficiency 

induces abnormal islet structure and decreases the ratio of / cells, 

suppression of MafA function may play a role in the induction of apoptosis by 

ALK7. Further experiments are necessary to reveal the effect of TGF- signaling 

on MafA function in vivo. 
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Figure legends

Figure 1.  Smads inhibit activation of the rat insulin II gene promoter by MafA, 

Pdx-1 and NeuroD. (A) A schematic representation of the rat insulin II gene 

promoter reporter plasmid (pGL-RIPII-251). The location of the Pdx-1 (A3, 

-216/-207; A1, -81/-77), NeuroD (E1, -100/-91), and MafA (C1, -115/-107) 

binding elements are shown in the rat insulin II gene promoter (-251/-1). (B-E) 

NIH3T3 cells were transiently co-transfected with MafA, Pdx-1, and NeuroD 

expression plasmids and the pGL-RIPII-251 reporter plasmid (B). Analysis of 

the effects of expression of MafA, Pdx-1 and/or NeuroD on reporter expression. 

Analysis of the effects of Smad2, Smad3, Smad4, and/or ALK5TD 

co-expression on reporter gene expression in the presence of MafA, Pdx-1 and 

NeuroD (C), MafA alone (D) or Pdx-1/NeuroD alone (E).  Co-transfection of 

control pRL-tk plasmid was performed for normalization of transfection 

efficiency. Luciferase activities were measured 48 h after transfection. Error bars 

mean ± S.D. 
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Figure 2.  Smads inhibit activation of the 6×cCE2 promoter by MafA.  (A) A 

schematic representation of the 6×cCE2 reporter plasmid (pGL-6×cCE2). Six 

tandem copies of the CE2 sequence (-119/-99) of the chicken A crystalline 

promoter and a chicken -actin basal promoter were inserted into the pGL2 

luciferase reporter plasmid. The half MARE sequence is underlined in the CE2 

sequence. (B) NIH3T3 cells were transiently transfected with pGL-6×cCE2 and 

MafA expression plasmids. Smad3, Smad4 and ALK5TD expression plasmids 

were co-transfected as indicated. Co-transfection of pRL-tk plasmid was 

performed for normalization of transfection efficiency. Luciferase activities 

were measured 48 h after transfection. Error bars mean ± S.D.

Figure 3.  Immunoprecipitation and western blot analysis of the interaction of 

MafA with Smad proteins. 6xMyc-tagged MafA, Flag-tagged Smad2, Smad3, 

Smad4 and HA-tagged ALK5TD were co-expressed in 293T cells as indicated in 

the top panel. The cell lysate was immunoprecipitated (IP) with an anti-Flag 

antibody, followed by Western blot analysis (Blot) with an anti-Flag antibody 
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(to detect Flag-tagged Smad2, Smad3 and Smad4), an anti-Myc antibody (to 

detect 6xMyc-tagged MafA), or an anti-HA antibody (to detect HA-tagged 

ALK5TD), as indicated in the lower panels. 
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