資料

盲学校における基礎生理学実習の試み
ーウシガエルの心収縮機能の観察ー

志村まゆら*・黒岩聰*・佐々木愛*・鳥山由子**

盲学校の理療科（あん摩マッサージ指圧師、はり師、きゅう師養成課程）の生徒を対象にした基礎生理学実習として、聴覚、触覚、視覚情報を利用した「ウシガエルの心収縮機能の観察」の実習例を報告する。さらに実習を行うことの意義と問題点を調べる目的でアンケート調査を行ったのでその結果を報告する。実習を経験した生徒および未経験の生徒行ったアンケート結果（回収率75%）から、実習を行うことで半数以上の生徒が生体の観察に興味を持ち、傾向にあうことが明らかとなった。実験直後の記名式のアンケート（回収率81%）では、生徒30名中7名が「スタニスの第1結紮」の理解が不十分であることがわかった。7名のうち、点字に転向したばかりの生徒が2名、拡大読書器を使用する強度弱視の生徒が3名いた。このような生徒に対して、標本の形状と結紮部位の観察方法をどのように工夫するかが今後の検討課題となることが示唆された。

キー・ワード：盲学校、基礎生理学実習、心収縮機能、ウシガエル

I はじめに

視覚に障害のある生徒の職業教育課程として、全国59校の盲学校高等部専攻科に理療科（あん摩マッサージ指圧師、はり師、きゅう師の免許試験受験資格を得る3年課程）が設置されている。この課程の基礎科目「人体の構造と機能（平成11年高等部学習指導要領改訂前の生理学と解剖学に相当）」では、知識に偏ることがないよう実験・実習を取り入れるようにすることが求められている。筑波大学附属盲学校の発表手技療法科（理療科）では、授業内容の充実を図るため、講義ののみでなく、解剖学実習をはじめとする種々の実習にこれまで力を注いできた。さらに、2002年より、生理学への興味を高める目的で、生物を利用した基礎生理学実習を試みている。

基礎生理学実習では、ヒトを対象とした実習では観察できない生理機能について観察することを目的としている。実験試験における生理学の過去5年の問題を出題分野別に比較すると、循環器系および神経系の出題数が極めて多い（Table 1）。あん摩マッサージ指圧師、発表師に求められる生理学知識の多くが、循環器系および神経系にすることが予測される。カエルの心臓は構造的にはヒトと異なるが、基本的機能はヒトと同じである。我々は、「ウシガエルの心収縮機能の観察」は、ヒトの心収縮の働きを知るために役立つと考え、これを実習に取り入れることにした。

視覚に障害のある生徒を対象とした基礎生理学実習を実施するには種々の工夫を要する。点字使用者が多い盲学校理療科では、ウシガエルの心機能の観察に関する実習の報告がほとんど

* 筑波大学附属盲学校高等部専攻科
** 筑波大学大学院人間総合科学研究科
Table 1 免許試験における生理学各分野の出題率（第1～12回）

<table>
<thead>
<tr>
<th>出題数</th>
<th>生 理 学の基礎</th>
<th>生 理 学</th>
<th>循環器</th>
<th>呼吸</th>
<th>消化と吸収</th>
<th>代 謝</th>
<th>体 温</th>
<th>排 泄</th>
<th>内 分 泌</th>
<th>生 殖</th>
<th>神 経</th>
<th>筋</th>
<th>身体の運動</th>
<th>身体活動の協調</th>
<th>感 覚</th>
<th>生体の防御機能</th>
<th>合 計</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>36</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>16</td>
<td>3</td>
<td>50</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>15</td>
<td>209</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>6.7</td>
<td>17.2</td>
<td>5.7</td>
<td>7.2</td>
<td>3.8</td>
<td>2.9</td>
<td>5.7</td>
<td>7.7</td>
<td>1.4</td>
<td>23.9</td>
<td>5.7</td>
<td>4.3</td>
<td>0.7</td>
<td>0.5</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>27</td>
<td>12</td>
<td>14</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>4</td>
<td>34</td>
<td>8</td>
<td>14</td>
<td>0.1</td>
<td>17</td>
<td>2</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>6.3</td>
<td>15.3</td>
<td>6.8</td>
<td>8.0</td>
<td>1.1</td>
<td>5.1</td>
<td>6.3</td>
<td>6.3</td>
<td>2.3</td>
<td>19.3</td>
<td>4.5</td>
<td>8.0</td>
<td>0.9</td>
<td>9.7</td>
<td>1.1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

A：あん摩マッサージ指圧師試験 B：はり師試験・きゅう師試験

んどない。佐々木の調査によると、平成11年度の高等部指導要領改訂に伴い、全国の盲学校理療科で利用した生理学基礎実習を実施しているのは、57校中の2校（回答率97%）である7）。「どこがわからなかったか」、「何が不足しているか」ということを、生徒との対話を通じてひとつひとつ手探りで問題解決していかなければならないのが現状である。本研究では、これまでに実施してきた実習方法を紹介し、生徒の感想文およびアンケート調査から、実習の意義と問題点を検討したので報告する。

II 実習における観察方法

実習の観察は、聴覚情報、触覚情報、そして身体の生徒のための視覚情報を組み合わせて行った。

1 聴覚情報

ウシガエル（Rana catesbeiana）の中枢神経破壊モデルを作成し、心臓を挟んだセルフィン（Serrefine）で糸を取り付け、糸の端を変位計（TD-111T、日本光電）のバーに固定する。心収縮に同期して動くバーの情報を変位計、高感度直流アンプ（ADG32J、日本光電）を介して、波数変調音源（ES601J、日本光電）から聴取する（Fig.1）。心電が収縮すると高い音を発し、心電が弛緩すると低い音に変化する。心収縮の時間的な変化は目で見ても耳の方が感度がよいため11）、点子使用者のみならず、弱視の生徒にとっても有用な情報源となり得る。

心房と心室の収縮期のズレも音の周波数変化として聴取できる。しかし心電の収縮力が弱まった場合は、この音のズレが識別しにくいので、弱視2名の生徒に拡大モニター（後述）を介して心房と心室の収縮を音声でそれぞれカウントさせ、収縮時期のズレを2名の声のズレとして全員で聴取する。

Fig.1 ウシガエル心収縮の観察
2 触察情報
心臓をつけた糸を強くに牽引することで心筋が伸展され、心筋自体の硬さが増す。やわらかい内臓は触察で確認することが難しいが、長軸方向に牽引されて心筋の硬さが増すと、親指の先くらいの心房と心室の形状の違いも確認しやすくなる（Fig. 2）。またスターリング的心臓法則により、心筋の初期の長さが伸ばると、より収縮力が強くなるので、収縮の様子も触察しやすくなる。ただし、実習前指導として、予めカエルの心臓の形態を立体コピーで確認させ、全体の構造を理解させるようにしないと、実習中の触察で相当の時間を要することになる。墨字（普通文字または拡大文字）から点字に切り替えたばかりで触察が不都合な生徒には、心収縮に伴う変位計のバーの動きを指で触ることで心臓の収縮回数を確認する（Fig. 3）。対象物の位置関係を把握するため、対象物に基点を定めて、そこから全体を触察させる（Table 2－2の展開1、2）。対象物の位置や形がわからなくなった場合は再び基点から触察を始めさせ、触る方向を指示する。これにより、むやみに触ることで生じる時間の消耗を省き、短時間で対象物の位置関係を把握することが可能となる。

3 視覚情報
標本の動きをデジタルビデオカメラから拡大モニターに映し出し、実物の約10～15倍の映像を観察させる。視力により視野に問題がある生徒には標本を直接観察させるか、ビデオカメラに付属する小型モニターで実物の1/3の大きさの映像を観察させる。

4 収縮曲線の観察
直流アンプから記録紙に描かれた収縮曲線の時系列変化を、拡大コピー、レーズライターまたは立体コピーに転写し、レポート作成の際に
Table 2-1 学習指導案（単元の設定）

生理学学習指導案（略案）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 号時</td>
<td>平成16年10月1日 第1～4授時</td>
</tr>
<tr>
<td>2 使用教科</td>
<td>生理学実習室</td>
</tr>
<tr>
<td>3 対象学年</td>
<td>専攻科総合手技療法科第1学年○○組（点字使用者3名、視覚者3名）</td>
</tr>
<tr>
<td>4 調整者</td>
<td>教授 〇〇〇</td>
</tr>
<tr>
<td>5 分野</td>
<td>専門基礎科目</td>
</tr>
<tr>
<td>6 科目名</td>
<td>人体の構造と機能</td>
</tr>
<tr>
<td>7 講義名</td>
<td>生理学（6単位）</td>
</tr>
<tr>
<td>8 単元名</td>
<td>[大項目] 循環</td>
</tr>
<tr>
<td></td>
<td>[中項目] 心臓の構造と働き</td>
</tr>
<tr>
<td></td>
<td>[小項目] ユリガネル心機能の観察</td>
</tr>
</tbody>
</table>

9 小単元設定の理由

ユリガネルの心機能異常を用いた観察により、心筋機能の特性を理解させる。さらに、設定された課題についての、結果の予測、事象の観察、結果の記録、生徒同士での結果の分析、実験レポートの作成及び発表を通じて、観察した事象を生理学的に捉える能力を育む。

10 小単元の目標

（1） 心臓機能の実験で観察したことを適切に説明できる。
（2） 心房・心室の拍動に時間的な差があることを理解できる。
（3） 心臓の刺激伝導系、心臓の自律能に、相対不応期など既に教科書で学んだ知識を活用して説明できる。
（4） 心拍數計の使用と心拍数の関係を説明できる。
（5） 実験方法、実験結果の記録、結果の分析と解釈を順序立ててレポートにまとめることができる。

11 小単元の展開

<table>
<thead>
<tr>
<th>時間</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>実習前指導</td>
<td>1時間</td>
</tr>
<tr>
<td>実習</td>
<td>2時間（本稿）</td>
</tr>
<tr>
<td>レポート発表</td>
<td>1時間</td>
</tr>
</tbody>
</table>

Table 2-2 本時の展開（1）

<table>
<thead>
<tr>
<th>段階</th>
<th>指導内容・教師の動き</th>
<th>生徒の活動</th>
<th>指導上の留意点</th>
</tr>
</thead>
<tbody>
<tr>
<td>指導入力</td>
<td>1. 本時の内容確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2分</td>
<td>① 本時の流れを簡単に説明する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 前日の内容と教員の説明から実験の流れと各自の役割を確認する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>展開</td>
<td>1. 女の外形観察</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10分</td>
<td>① 中枢神経系が破壊された蛙について説明する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 弱視1，2，3はモニター及び観察。点字1，2，3は観察により蛙を観察する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 点字生徒には倒骨部を基点に全体の形態を認知させる。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>展開</td>
<td>2. 心臓標本作成方法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28分</td>
<td>① 説明しながら標本作成を実施する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 弱視1は教師の指導で観察、弱視2，3はモニターで観察して、点字1，2，3に説明する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 点字1は模様の横に観察、点字2，3はモニターで観察し、点字1，2，3で説明する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 弱視1は模様の手順で観察し、弱視2，3はモニターを基準に観察する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 弱視1は模様を観察する実習生の標本作成方法に従い、弱視1が新たな標本作成する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>① 弱視2，3はモニターを見た観察し、点字2，3は模様に応じた標本で胸部内臓を観察し、弱視1の指示に従って観察する。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

—52—
Table 2-3 本時の展開(2)

<table>
<thead>
<tr>
<th>段階</th>
<th>指導内容・教員の動き</th>
<th>生徒の活動</th>
<th>指導上の留意点</th>
</tr>
</thead>
<tbody>
<tr>
<td>展開</td>
<td>4. 課題結果の予測</td>
<td>① 点字1が課題を読み上げ、他の生徒はその結果を予測し話し合う。</td>
<td>① 必ず自分の意見を述べるように強調する。</td>
</tr>
<tr>
<td></td>
<td>35分</td>
<td>② 松下先生が作成した心臓模型を心臓に触っている。心臓の形状・構造を観察する。</td>
<td>③ 理解できない生徒には別の心臓模型を用意するように。</td>
</tr>
<tr>
<td></td>
<td>5. 実験準備</td>
<td>③ 各生徒の作業にあたっての作業の概要を理解する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 各生徒の作業を聞き出す。</td>
<td>④ 実験結果の記録をとる。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④ 実験データの集計</td>
<td>④ 実験結果の集計と教師の実験を聞き、実験の進行状況を把握する。</td>
<td>④ これまでの作業の様子から模型作成が可能と考えられる詳しく作図する。</td>
</tr>
<tr>
<td></td>
<td>⑤ 実験データの処理</td>
<td>⑤ 実験データの処理</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥ 実験データの処理</td>
<td>⑥ 実験データの処理</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦ 実験データの処理</td>
<td>⑦ 実験データの処理</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧ 実験データの処理</td>
<td>⑧ 実験データの処理</td>
<td></td>
</tr>
</tbody>
</table>

※休憩（10分）：この間に、教師は心臓、臓器を拡大データ、触図データに変更しておく。

Table 2-4 本時の展開(3)

<table>
<thead>
<tr>
<th>段階</th>
<th>指導内容・教員の動き</th>
<th>生徒の活動</th>
<th>指導上の留意点</th>
</tr>
</thead>
<tbody>
<tr>
<td>展開</td>
<td>8. 実験結果分析と解釈</td>
<td>① 2グループに分かれる。テキストの内容を想定し、論理的に話し合い、各課題についてグループとして解釈をまとめる。</td>
<td>① 小グループにして全員を討議に参加させる。</td>
</tr>
<tr>
<td></td>
<td>20分</td>
<td>② 心輸細血管型を学び、心輸細血管と心筋細血管の関係を理解する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. レポート作成方法</td>
<td>③ 心輸細血管を学び、実験写真の質問を受けて説明する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>確認</td>
<td>③ レポートの作成方法を説明する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>整理</td>
<td>10. 餅食付け</td>
<td>① お互いに声をかけ合い、分担して器具のかたづけをする。</td>
</tr>
<tr>
<td></td>
<td>5分</td>
<td>① 餅食付けをするよう指示する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. 餅食付け</td>
<td>② 餅食付けをするよう指示する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>③ 模型になった生物の感想を述べ。</td>
<td></td>
</tr>
</tbody>
</table>

補足）点字使用者1, 2, 3をそれぞれ点字1, 点字2, 点字3, 難読者1, 2, 3をそれぞれ難読1, 難読2, 難読3として表記した。
Table 2-5 本時の展開(4)

13 評価の観点

（1）検の標本を観察し、聴覚・触覚・視覚情報による以下の事項を確認できたか。(知識)
①棲の全体形状と棲の内腔、②腹部内臓と心臓の位置、③心拍動
④心房と心室の拍動の時間差、⑤挙げられた心房と心室の反復の違い
⑥スタンウスの第一結合部、心収縮曲線や周波数変位音源からの音の変化
（2）前記の知識に基づいて、以下の事項が理解できたか。(思心・理解)
①標本作製や実験の順序、②課題の内容、③心房と心室の違い、④心収縮曲線と心拍数の
関係
（3）教科書をもとに論理的な話し合いができていたか。(思考)
（4）協力しあって積極的に標本作製、事例観察、後片付けに取り組めたか。(態度・意欲)
（5）話し合いに意欲的に参加できたか。(態度・意欲)

資料とする。心収縮曲線は、盲学校で使われる生理学の教科書に記載がないため、波形について実習中に説明をする必要がある（Table 2-4の展開4）。

III 実習例（2004年度入学生1クラス）

1 対 象

錦糸手技療法科1学年。弱視生徒3名（以下、弱視1、2、3とする）、点字使用者3名（以下、点字1、2、3とする）。

2 実習中の課題設定の目的：ウシガエルの心機能の観察

（1）心房と心室の収縮時期のズレを観察し、刺激伝導系の理解を深める。
（2）心拍数を測定しヒトの心拍数と比較する。
（3）錦電気刺激装置により心筋および骨格筋に直接電気刺激を行い、刺激の回数（周波数）を1 Hz、5 Hz、10Hz、20Hzと変化させたときの心筋と骨格筋の収縮の違いを観察させ、心筋が単収縮のみであることを理解する。

（4）スタンウスの第一結合（静脈洞と心房の間を経て縫）による心収縮の変化を観察し、ペースメーカー以外にても心筋の興奮が発生する部位が存在することを理解する。
（5）摘出した心臓の動きを観察し、自動能の存在を理解する。

3 実習前指導

実習の手引を作成し、生物を標本とする意義、実習で用いる機器・器具に触れ、取り扱いの注意事項を確認するとともに、実習における役割分担を確認する（Table 2-1）。実習前指導

Fig. 4 6名の生徒を対象とした実習の流れ

— 54 —
は実習の1～数日前に行う。

4 実習の流れ
実習の流れを学習指導案（Table 2，3，4）とFig.4に示した。
(1) 教員が標本作成を行う様子を拡大モニターに映すとともに、標本を触察により確認させる。
(2) 点字1が標本作成の手順を音読し、弱視1が標本を作成する。
(3) 生徒が作成した標本を用いて課題に沿った作業を弱視1，2，3のいずれかが行う。課題ごとに点字使用者全員が触察する。触察により心臓が弱くやすいので、予備の標本を用意しておく。
(4) 弱視2，3はモニターに映る心房と心室の収縮を声に出して数える。
(5) 点字2は音源から心収縮の変化や心拍数を観察し、点字3に報告する。
(6) 点字3は、弱視生徒と点字2からの報告を記録し、発表する。
(7) 結果について3人一組の2班に分かれ、それぞれ討議する。
(8) レポートの書き方について説明を受けた。
(9) 全員でかたづける。
(10) 標本になった生物への感謝の意を表す。

4 実習直後の感想
1 調査対象
2002～2004年 第1学年37名。実習後に生徒に実習の感想を記名式、自由記述で回答してもらった。

2 結果
30名から回答があった（回収率81％、点字14名・弱視16名）。結果を以下に示す。なお回答には複数回答がある。点字使用者は「点字」、墨字使用者は「墨字」と表記する。
(1) 心臓がやわらかくてびっくりした（点字5名、墨字3名）。
(2) 心臓を取り出しても動きづけるのには感動した（点字4名、墨字2名）。
(3) 生命の不思議さを感じた（墨字2名）。
(4) 教科書ではわからないことが実習で体験できた（点字11名、墨字11名）。
(5) 実習の前にもっと勉強しておけばよかった（点字1名、墨字2名）。
(6) また実験をしたい（点字3名、墨字2名）。
(7) スタニウスの結紮がよくわからない（点字4名、墨字3名）。
(8) カエルに対して罪悪感を覚えたけれども、心臓はとてもきれいに動感した（墨字1名）。
(9) 心臓以外の内臓ももっと見たいかった（点字1名、墨字2名）。
(10) 自分で標本を作りたかった（点字2名、墨字3名）。
(11) カエルを触ってもよくわからない（点字2名）。
(12) モニターを一人ひとつほしい（墨字1名）。

V 生理学実習に関する意識調査
実習経験者または未経験者が、基礎生理学実習に対してどのような意識をもっているかを調べるため、アンケート調査を実施した。実習経験者へのアンケートは実習後7ヶ月以上経た時点で行った。

1 調査対象
2002～2005年鍼灸手技療法科第1学年45名である。アンケートは無記名式として、成績評価に関わらない者に配布及び回収した。

2 アンケート内容
ウシガエルの心収縮機能の基礎生理学実習について、経験者はもう一度実習に参加したか、参加したい理由または参加しない理由は何か、未経験者は実習をどう考えているか、を調べるためアンケート調査を行った（Table 3）。

3 結果
34名から回答があった（回収率75％、点字13名、墨字21名）。結果をTable 4、Table 5に示
Table 3 生理学の実習に関するアンケート用紙（墨字使用者用）

| 問 | ウシガエルを使って心臓の機能や筋の収縮を観察する実習に参加したいですか。
 該当する項目に〇をつけてください。 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>はい</td>
</tr>
<tr>
<td>2</td>
<td>いいえ</td>
</tr>
<tr>
<td>3</td>
<td>わからない</td>
</tr>
</tbody>
</table>

問2 問1で「はい」と答えた方はその理由を書いてください。
問3 問1で「いいえ」と答えた方はその理由を書いてください。

問4 あなたがこれまで生物を使った実習をしたことがありますか？該当する項目に〇をつけてください。
1 はい
2 いいえ
問5 問4で「はい」と答えた方に質問です。以前やっての実習はどのようなものでしたか。該当する項目に〇をつけてください。
問6 問4で「はい」と答えた方に質問です。以前やっての実習についてどう思いますか。該当する項目に〇をつけてください。
1 好奇心深かった
2 嫌だった
3 覚えていない
問7 問6で「嫌だった」と答えた方はその理由を書いてください。
ご協力ありがとうございます。

Table 4 生理学実習経験者の実習への興味

<table>
<thead>
<tr>
<th>経験者群</th>
<th>%</th>
<th>実数</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>参加希望</td>
<td>60</td>
<td>15/25人</td>
<td>勉強できるから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>他にも機会が少なくならないから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>教員になったときに自分でできるから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>おもしろいから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>教科書だけでは限界があるから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>生物を使うと理解しやすいから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>心臓の動きがわかるから</td>
</tr>
<tr>
<td>参加希望せず</td>
<td>40</td>
<td>10/25人</td>
<td>一度やったから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>意味がないから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>カエルが嫌いだから</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>生命を奪うのが心苦しいから</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>点字経験者</th>
<th>%</th>
<th>実数</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>参加希望</td>
<td>73</td>
<td>8/11人</td>
<td>一度やったから</td>
</tr>
<tr>
<td>参加希望</td>
<td>27</td>
<td>3/11人</td>
<td>生命を奪うのが心苦しいから</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>勢視経験者</th>
<th>%</th>
<th>実数</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>参加希望</td>
<td>50</td>
<td>7/14人</td>
<td>一度やったから</td>
</tr>
<tr>
<td>参加希望</td>
<td>50</td>
<td>7/14人</td>
<td>興味がないから</td>
</tr>
<tr>
<td>参加希望</td>
<td>50</td>
<td>7/14人</td>
<td>カエルが嫌いだから</td>
</tr>
<tr>
<td>参加希望</td>
<td>50</td>
<td>7/14人</td>
<td>意味がないから</td>
</tr>
</tbody>
</table>
Table 5 生理学実習未経験者の実習への興味

<table>
<thead>
<tr>
<th>未経験者群</th>
<th>%</th>
<th>実数</th>
<th>理由</th>
<th>実数</th>
</tr>
</thead>
<tbody>
<tr>
<td>参加希望</td>
<td>22</td>
<td>2/9人</td>
<td>興味ある</td>
<td>2/9人</td>
</tr>
<tr>
<td>参加希望</td>
<td>44</td>
<td>4/9人</td>
<td>カエルの解剖をしたことがある</td>
<td>1/9人</td>
</tr>
<tr>
<td>せず</td>
<td></td>
<td></td>
<td>カエルが嫌い</td>
<td>1/9人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>見えないから</td>
<td>1/9人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>無回答</td>
<td>1/9人</td>
</tr>
<tr>
<td>わからない</td>
<td>33</td>
<td>3/9人</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

す。

(1) 25人中15人（60%）[以下、15／25人（60%）とする]は、もう一度実習参加を希望している。理由として「生物を使うと理解しやすい」という意見が最も多く、参加を希望しない10／25人（40%）のうち「一度やったら」というもののが5／25人で最も多かった。

(2) 点字使用の実習経験者で参加を希望しているのは、8／11人（73%）に対して、墨字使用者は7／14人（50%）であり、点字使用者の方が参加を希望する割合が大きかった。

(3) 未経験者のうち、2／9人は参加希望、4／9人が希望しない、3／9人がわからないと回答した。

Ⅵ 考 察

1 実習の意義

実習直後の感想では、30名中9名が「生命に対する感動」、8名が「心臓のやわらかさへの驚き」、18名が「教科書でわからないことが体験できた」として、生体を用いた実習ではじめてわかったとする生徒が少なかった。また実習終了後7ヶ月以上経て行った意識調査では、25人中12名（60%）の生徒が「もう一度実習に参加したい」としている。その理由として「生物を使うと理解しやすい」、「教科書だけでは限界があるから」と示された。大沢・佐藤（1995）が行った視覚障害の大学生を対象に実施した生理学実習に対する意識調査と同様の傾向を示している。これらの結果から、本実習で生体を観察し課題に沿って学習を行うことで、生体の機能への関心と興味を高める効果があることが伺える。筑波大学附属盲学校で実施している生理学基礎実習は、一般的な生理学実習とは異なり、課題で示したように、生徒が臨床で使用する鍼通電刺激装置を利用して心機能を観察していること、全盲生徒が触覚および音声情報を利用して事象を観察することができることが特徴である。日常利用する道具を用い、イメージするだけの世界から現実の事象を観察するという作業に参加できたことが生徒の興味を高めたと考えられる。

学習指導案（Table 2 - 1）に示すように、ウシガエルの心臓標本を用いて、設定された課題に沿ってデークを集積し、結果の分析・解析を行い、レポートにまとめることができる実習の作業であり、これにより、生体の観察を通じて、生理学的に探求する能力と思考を育むことが本単元の目的である。実習の意義は、指導案に示した評価の観点に沿った知識の習得、理解、思考、関心、意欲の達成度を確認することで得られると考える。今回の報告から、評価の観点の「関心」「意欲」について一定の成果が得られた。今後は、「知識の習得」、「理解」、「思考」の成果について調査を行う予定である。

2 実習の問題点と今後の対策

今回の調査で明らかになった問題点は、(1)スタニウスの結紮の理解が不十分な生徒、(2)再び実習に参加したくないとする生徒が存在することである。

(1) スタニウスの結紮：実習直後の感想で、30名中7名がスタニウスの第1結紮がよくわからなかった。指導案（Table 2 - 5）の評価の観点に示すように、「心房と心室の違いの観
察ができるか」については、触察情報の項目で説明するように、心臓を参照して観察する方法で、
つまんだり押したりして観察する方法を工夫し
て行ったが、「静脈線と心房の間のスタニス
ウスの第1結密において各自が理解したか」という
点の確認がなされなかったという要項上の問題点も
浮かび上がった。この場合、スタニスの結密部位が触察や観察でよくわからないなかの
か、スタニスの結密をした結果が理解できなかっ
たのかという点で整理して考えなければならない。
理解できなかった7名のうち、点字に
転向したばかりの生徒が2名、拡大読書器使用
の強度弱視の生徒が3名いた。このことから結
密部位がよくわからないという可能性が高い。
触察の力が弱い生徒に対して、カエルの心
臓の形状と結密の部位をどのように理解させるか
工夫していく必要があります。実際の心臓は親指
の爪ほどの大きさであり、やわらかくて変形し
やすい。形状を理解するために、指でかじった形や動
くものを触察で理解するのではなくて “…” 聖前指導
（指導に示す小単元の1段階）として、
これまで心臓の形状を次元の立体コピーおよ
び拡大図諸で説明してきた。しかし先天盲の生
徒にとっては、立体構造のものを2次元図形に
置き換えても理解するより、立体構造のままで理
解する方がわかりやすい。そこで、デフォルメ
した大型の心臓模型を作成し、実習前指導にこ
れを用いて心臓各部の確認をさせて、後の
実習で行う心臓の形状の理解、スタニスの結
密部位の理解が図れることではないかという仮
説に基づき、模型を使った実習前指導を実施し
た場合と従来の指導を行った場合の、生徒の理
解度を調査することを計画している。また視
力を失って間もない生徒は触察能力がありません。
このような生徒については、大型の模型を
実習中に用意して、事象の確認をイメージさせる工夫が必要と考える。

（2）参加を希望しない：再度実習に参加する
tことを望まない生徒のうち、実習に対して否定的意見を持つ者は25名中5名、一度実習に参
加したからもういいとする者が5名いた。否定的
意見の内容は、「興味がない」が2名、「カエル
が嫌い」、「意義がわからない」、「生命を奪うのが心苦しい」がそれぞれ1名であった。意義が
わからないと述べた生徒に再度調査を行った
ところ、「生命を奪ってまでする意義がわからない」という回答であった。未経験者9名中1
名は「カエルが嫌い」と回答している。従って、
経験者、未経験者含め、「カエルが嫌い」「生命
を奪うのが心苦しい」という理由から参加を希
望しないものが、34名中4名いたことになる。
今回の調査結果の結果から、未経験者の場合は
1度実習に参加することで意義が変化する可能
性があるので、触察を行わないにも実習を完
学するという「積極的参加」を促すとともに、
高等学校理科教育（生物）で行われている事例
報告などを参考に考えていきたい。

今回は1名の教員が盲学校で実施し得る生理学
実習の事例を報告し、実習の意義と問題点に
について考察した。今後は、点字生徒がクラスの
6割以上を占めるケースの事例報告、実習の理
解を深めるための事前指導の在り方とその評
価、指導案の評価の観点に基づく達成度につい
て調査報告する予定である。

参考文献
1）林秀生（1988）人体機能生理学．栃木書
籍，南江堂，東京，430。
2）文部科学省編（2003）盲学校，聾盲学校及び養護
学校高等部学習指導要領 改訂版．大蔵省印刷局，
高37。
3）日本生理学会編（1996）循環：新・生理学実習実
施参考書．南江堂，東京，39-48。
4）Oakley, B. & Schafer, R. (1978) Experimental
Neurobiology: A laboratory Manual. The University
of Michigan, U.S.A., 小原昭作・丸井隆之・長井孝
紀（監訳，1986）東海大学出版会，127-189。
5）大沢秀雄・佐藤健子（1994）視覚障害学生に
に対する生理学実験実習．筑波技術短期大学テクノ
レポート1，157-159。
6）大沢秀雄・佐藤健子（1995）視覚障害学生に
に対する基礎生理学実験実習の実際．筑波技術短期
大学テクノレポート1，159-161。
7）佐々木愛（2005）全国盲学校における生理学
A Technique of Physiology Experiments for the Students with the Visually Impaired in Japan: The Observation of Cardiac Contractility of bullfrog

Mayura SHIMURA, Satoshi KUROIWA, Ai SASAKI, and Yoshiko TORIYAMA

This paper reports on the cases of “observation of the cardiac contraction function of bullfrogs” utilizing auditory, tactile, and visual information, in fundamental physiology practice targeted at students in the physical therapy department (which trains future professionals of Japanese traditional massage, massage, acupressure, acupuncture, and moxa treatment) of blind schools. In addition, questionnaire surveys were conducted with the purpose of clarifying the meanings and problems of such practice, and its results are reported herewith. From a questionnaire survey targeted at the students who have experienced the practice and those who have not experienced it (response rate: 75%), it was found that more than half of the students tend to become interested in vital observation after attending the practice. A named questionnaire survey conducted just after the practice (response rate: 81%) indicates that 7 students among 30 could not understand sufficiently “the first Stannius’ ligature”. Among the 7 students, 2 have just started to use braille and 3 were with serious amblyopia and employed character enlargement devices called closed-circuit television (CCTV). This study indicates that the challenging issue in our future will be how teachers should demonstrate the methods for observing the specimen’s anatomy and ligature parts.

Key Words: the visually impaired, technique of physiology experiments, cardiac contractility, bullfrog