ラット肝発がんにおける遺伝子発現及びDNAメチレーションの網羅的解析

<table>
<thead>
<tr>
<th>著者</th>
<th>大村 功</th>
</tr>
</thead>
<tbody>
<tr>
<td>発行年</td>
<td>2015</td>
</tr>
<tr>
<td>学位授与大学</td>
<td>筑波大学 人文環境学部 生命科学科</td>
</tr>
<tr>
<td>学位授与年度</td>
<td>2014</td>
</tr>
<tr>
<td>報告番号</td>
<td>SPA第165号</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/00128870</td>
</tr>
</tbody>
</table>
ラット肝発がんにおける遺伝子発現
及びDNAメチレーションの網羅的解析

筑波大学大学院
生命環境科学研究科
生物機能科学専攻
博士（学術）学位論文

大村 功
目次

第一章 序論 ... 1

1.1 医薬品開発における安全性評価 ... 1

1.2 医薬品安全性評価における発がんリスク検出 .. 2

1.3 発がんにおけるエピジェネティクス ... 3

1.4 DNA メチレーション解析手法 .. 4

1.5 研究の目的 ... 6

第二章 遺伝毒性物質，非遺伝毒性発がん物質，非発がん物質に関する二段階肝発がん試験 7

2.1 緒言 ... 7

2.2 結果 .. 8

in vivo 試験結果 ... 8

病理組織学的検査結果 ... 13

GST-P の免疫組織学的解析 ... 14

酸化ストレスおよび DNA ダメージ関連遺伝子の遺伝子発現解析 16

2.3 考察 .. 23

2.4 実験方法 .. 26

動物 ... 26

試薬 ... 26

実験デザインおよび処置 ... 26

免疫組織化学的検査 ... 27

公共データ取得 ... 27

統計解析 ... 27

第三章 二段階発がん試験ラット肝臓の網羅的遺伝子発現および DNA メチレーション解析 28

3.1 緒言 ... 28
3.2 結果
前がん病変の発生頻度 ... 29
DEN処置ラット肝臓において変動が見られたDNAメチレーションおよび遺伝子発現 30
DEN暴露と免疫反応パスウェイの関連 .. 35
DNAメチレーションと遺伝子発現で共通する変動と発がんの関係の可能性 39
GST-P陽性巣におけるRT1-CE5タンパク質の発現 45
RT1-CE5遺伝子のメチレーション状況 ... 45

3.3 考察 ... 47

3.4 実験方法
動物および処置 .. 53
免疫組織化学的検査 .. 53
MeDIP-sequence ... 53
マイクロアレイ解析 .. 54
公共データ取得 .. 55
統計解析 ... 55
Ingenuity Pathways Analysis (IPA)を用いたIn silicoパスウェイ解析 55

第四章 総括.. 56
4.1 要約 ... 56
4.2 薬剤が生体に及ぼす作用の評価におけるオミクス技術応用について .. 57

謝辞 ... 60

参考文献.. 61
本論文中に用いた省略形

APAP acetaminophen
COBRA combined bisulfite restriction analysis
DEN diethylnitrosamine
EMA European Medicines Agency
FDA Food and Drug Administration
GLP good laboratory practice
GST-P glutathione S-transferase pi 1
ICH International Conference on Harmonisation
LINE long interspersed nuclear element
MeDIP methylated DNA immunoprecipition
MHC major histocompatibility complex
MP methapyrilene
NGS next generation sequencer
PB phenobarbital
PCR polymerase chain reaction
PTEN phosphatase and Tensin Homolog Deleted from Chromosome 10
ROS reactive oxygen species
sER smooth-surfaced endoplasmic reticulum
TAA thioacetamide
TGP Toxicogenomics Project in Japan
TGP2 Toxicogenomics Informatics Project in Japan
TG-GATEs Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system
第一章 序論

1.1 医薬品開発における安全性評価

医薬品は開発過程において薬効のみならず、化合物の構造、物性、生体内での動態、代謝、製剤そして安全性の評価など数多くのハードルを越えて上市に至ることから、多大なコストが必要となる。したがって、医薬品開発における様々な懸念は可能な限り早期に払拭しておくことが、製薬会社のみならずその薬を待ち望む患者にとっても有益である。開発を断念する理由として安全性の課題は非常に大きな割合を占め、新薬開発中止理由の30%を超えるとされている(1)。また、医薬品の審査においては、米国FDAや欧州EMA、厚労省はsafety first という概念をもって安全性を重視している(http://www.fda.gov/downloads/Drugs/DrugSafety/UCM300944.pdf)。そのため、医薬品開発において安全性の課題を軽減することは特に大きな意味を持つ。しかしながら、適応症によっては求められる安全性レベルが異なり、リスクとペネフィットのバランス、例えば致死性の疾患における医薬品の安全性に対する考え方などは別途考慮される。医薬品申請に必要な毒性試験は審査当局や日米EU医薬品規制調和国際会議（ICH）が発行するガイドラインに定められている。これらの試験はある程度定型のものであり、GLPに従った信頼性の高い試験が求められる。これらの試験は、臨床試験の実施や医薬品の上市のためのデータとしてヒトでの安全性を担保するために必要であり、安全に投与できる化合物であるか、許容される投与量や標的臓器等を判断するために不可欠である。これらの試験の実施には適切な試験方法だけでなく化合物の特性、安定性、投与状況の安定性等、様々な観点からの信頼性を保証することが求められる。これらの試験に従ったGLP毒性試験に供する化合物選択には多大な注意を払う必要がある。このような高コストの試験を効率的に進めるために、製薬会社各社は安全な化合物を選ぶための様々な手法を取り入れている。各社多様のアプローチがあるが、投与された薬物が代謝される肝臓は毒性発現が最も起こりやすく、特に重視されている。肝毒性には様々なメカニズムや所見があり、肝細胞壊死、脂肪化、胆汁鬱滞、線維化、リン脂質症、発がん等共通のメカニズムがその発現機序として存在する。それらの機序は明らかになっているものだけではなく、化合物特有の
である場合もある。しかし、共通するメカニズムがあれば、そのメカニズムを評価する系の構築により、より安全な化合物を広く探索することが可能なスクリーニング系となりうる。

1.2 医薬品安全性評価における発がんリスク検出

医薬品の毒性・副作用は可能な限り軽減すべきであるが、何らかの指標（バイオマーカー等）でモニターできるものであれば、毒性や副作用の発現を管理できるものとしてある程度許容される。しかし、モニターが難しい毒性、回復性が期待できない毒性については回避しない。例えば、化合物が有する発がん性は懸念すべき重大な毒性の一つである。

化学物質による発がん性には主に二種類が挙げられる。一つは DNA を直接障害するような遺伝毒性物質によるものである。DNA に障害を受けた細胞から、自立した増殖能を有する集団が発生するようになる。このような作用を示す物質はイニシエーターと呼ばれる。もう一つは細胞の増殖を活性化するような物質である。細胞は DNA 障害に対して修復する能力を持つが、細胞増殖の活性化は微細な障害を持つ細胞を増殖させることによって発がんに至る機会を増大させる。このような作用を持つ物質はプロモーターと呼ばれ、フェノバルビターールやエストロゲン、たばこの煙などの物質が知られている。

遺伝毒性物質は簡易な in vitro 試験で検出が可能である。一般的な方法としては、細菌を用いた Ames 試験が広く知られている。この試験では、化合物暴露によって試験菌株の表現型が栄養要求性から非要求性に復帰する作用を検出する。一方で、非遺伝毒性発がん物質は遺伝毒性を持たないことから、このような評価系ではその発がん性を検出することができない。そのため、そのような物質の発がん性の検出については 2 年の反復投与毒性試験や別の in vivo 試験系など高コストな試験が必要となる。この試験自体は長期にわたって使用される医薬品については必須の試験であり、早期のステージにおいて発がん性の懸念の低い化合物を選択しておくことが医薬品開発における重要なアプローチであるといえる。

非遺伝毒性発がん物質の検出について、様々なアプローチが研究されてきた。近年ではトキシコゲノミックス手法を利用した予測モデル開発が主流であった。本邦では、2002 年に国立医薬品食品衛生研究所と製薬企業 17 社からなるトキシコゲノミックスプロジェクト（TGP）が発足し、150 種類の肝毒性物質を 4 週間まで投与したラット肝臓の遺伝子発現データとそれに
付随する毒性学的データを取得し、データベース化した。さらに後継プロジェクトとして、トキシコゲノミクス・インフォマティクスプロジェクトが発足し、TGPで取得された大量のデータをもとに様々な毒性に関する解析や毒性の予測モデル、メカニズム解析ツールが報告された（2-17）。この中で、発がん物質と非発がん物質をそれぞれ投与したラット肝臓での遺伝子発現データから、発がん物質に特異的な発現変動を示す遺伝子群を探索し、多変量解析や判別分析などの方法で構築したモデルを利用し、毒性未知の化合物を投与したラット肝臓での遺伝子発現データを適用した時の毒性予測に関する方法論について多くの報告がなされた。

これらの方法は比較的短い投与期間によって、将来的に起こりうる発がん性を予測することから、その有用性が認識されつつある。一方で、医薬品は生体にとっては異物でありそれに対応するような反応は正常な生理的な反応であることから、遺伝子発現の変動と毒性反応の関係性の定義は難しく、遺伝子発現データをもとにした発がん予測の活用にはさらなる研究が必要と考えられる。

1.3 発がんにおけるエピジェネティクス

エピジェネティクスは、塩基配列によらない遺伝情報の発現制御であると定義される。そして、エピジェネティックな変動は発生から疾患に至るまで様々な生理反応と密接な関連があるが、近年の目覚ましい研究成果から明らかになりつつある。エピジェネティックな変動には、最も早く見出されたDNAメチル化修飾に加え、ヒストン化学修飾、ポリコーカム群タンパク質、クロマチンリモデリング因子、そしてmicroRNAなどがある。がんにおいては、まずゲノムワイドなDNAの低メチル化が見出された（18）。また、ゲノム上に多く存在する繰り返し配列であるLINE1やAlu配列といったレトロトランスポゾンが、がんにおいては低メチル化されているという報告がなされている（19-26）。早くから見出されたDNAメチル化修飾であるが、がん抑制遺伝子がDNAメチル化異常によって不活化されることや、メチル基欠乏食で飼育したDNA低メチル化マウスではがんが促進されることから、発がんとDNAメチル化修飾の異常に関与していることは明らかになってきている。DNA異常メチル化の発がんにおける役割としては、細胞周期チェックポイント遺伝子、WNTシグナル制御遺伝子、Rasシグナル関連遺伝子、DNA修復遺伝子、microRNAなどの発現に影響を及ぼすと言われており、
エピジェネティック修飾によるこれらの遺伝子発現の異常が発がんの背景にあることが明らかになりつつある。

1.4 DNA メチレーション解析手法

DNA メチレーション解析方法は古くから研究され、単一の CpG サイトのメチレーションを検出する方法と、網羅的に検出する方法がある。特に、メチル化されていない CpG のシトシンをウラシルに変換するバイサルファイト処理は、DNA メチレーション解析に必須の方法となっている。単一の CpG サイトの評価においては、簡便なものとしてはメチル基感受性制限酵素による処理後の DNA 増幅が挙げられる。これはメチル化 DNA を切断しない制限酵素で消化することにより、その領域をアンプリコンとする PCR の増幅の多寡が生じ、結果的にその制限酵素が認識する CpG サイトのメチル化状態を検出できる。類似した方法としては、COBRA と呼ばれるバイサルファイト変換後の DNA に対して PCR で増幅し、その産物について制限酵素処理を行うものである。また、バイサルファイト変換後にその DNA の塩基配列を決定するバイサルファイトシーケンスも広く利用されている。一方、網羅的に解析する場合は、マイクロアレイによる方法、質量分析による方法、次世代シーケンサー (NGS) による方法などが挙げられる。それぞれの手法の概要について、図 1 および 2 に示した。網羅的な方法においては、MeDIP（Methylated DNA immunoprecipitation）と呼ばれるメチル化 DNA の特異的な濃縮を行うことで、比較対象の DNA との差を見出すことが可能である。この手法はクロマチン免疫沈降 (ChIP) と同様のものである。この前段階処理はマイクロアレイでも NGS による方法でも同じである。マイクロアレイでは特定の領域についてしか検討できないのに対し、NGS による方法はゲノム全体となり、得られるデータが飛躍的に増加するが、NGS は実施のコストが比較的高額であり大量のデータについて効率的な解析が課題となる。コストに関しては、安価な機器の利用もできるようになってきている。
図1. メチル化マイクロアレイでの解析原理

メチル化DNA免疫沈降法（MeDIP）

ゲノムDNA → 超音波破砕（断片化） → メチル化DNA特異的抗体により免疫沈降 → ラベル化（Cy5） → ハイプライダイゼーション → メイクロアレイ（2色法） → スキャン → スキャンデータ

データの統計解析、可視化など → 抽出データ → QCレポート

図2. MeDIP-seqの解析原理

ゲノムDNA → 超音波破砕（断片化） → メチル化DNA特異的抗体により免疫沈降 → NGSによるシーケンス → ゲノムへのタグのマッピング → サンプル

メチル化DNAタグの分布を調べる
1.5 研究の目的

DNA メチル化異常を初めとするエピジェネティック修飾の変化と発がんとの関係性が明らかになってきているが、医薬品の毒性試験のように正常な動物に対しての反復の処置による発がん機序に関してもさらなる研究が求められており、発がんに至る遺伝子発現の変動について背景にある制御機構の理解は十分に進んでいない。そこで本研究では、ラット短期肝発がんモデルにおける肝臓を材料として、発がんの過程で遺伝子発現が、あるいは DNA メチレーショングどのように変化するのかを調べ、その変動が認められた遺伝子群から想定される発がん初期の反応に関する考察を行った。第二章では、DNA メチル化解析の起点となる二段階発がん試験の検討結果についてまとめ、遺伝毒性発がん物質、非遺伝毒性発がん物質および非発がん物質がそれぞれどのような反応の違いから前がん病変を生じるかをについて病理組織学的検査と網羅的遺伝子発現解析結果を踏まえて考察した。

第三章では、二段階発がん試験から得られたラット肝臓サンプルを用いた網羅的 DNA メチレーショング解析および遺伝子発現解析結果をまとめて、前がん病変のある肝臓において影響を受ける遺伝子群の同定、それらの遺伝子群の機能、さらにこれらの遺伝子群の発現を変動させる化合物のタイプから、同定した遺伝子が発がんに関連するものであることを見出した。特にこの中で特徴的な変動があった免疫反応関連遺伝子の発現とタンパク質局在から、発がんとの関連が推察される発がん初期の反応を見出した。
第二章 遺伝毒性物質、非遺伝毒性発がん物質、非発がん物質に関する二段階肝発がん試験

2.1 緒言

発がんメカニズムには多くの説がある。変異原性、ゲノム不安定性、非遺伝毒性発がんなどが可能性のある原因として報告されている (27)。化学物質による発がんメカニズムは十分に明らかにされていない部分があるが、イニシエーション、プロモーション、プログレッションの各段階からなる多段階発がん説が広く受け入れられている (28, 29)。一般的に、DNAに作用するような化学物質は、付加体の形成や、酸化的変性、鎖切断といったダメージをDNAに与えうる (30)。これらの損傷は通常細胞自体が持つ機能によって修復されるか、あるいはダメージを受けた細胞として免疫系によって排除される。しかし、このイベントを潜り抜けた細胞においては、増殖能活性化によって変異を獲得する確率が高まり、他の正常な細胞よりも成長が有利になりうる。このような状況を生じさせる遺伝毒性物質はイニシエーターと呼ばれる。イニシエーターには、diethylnitrosamine（DEN）(31), acetamidofluorene（2-AAF）(32), アフラトキシンB1 (33), 紫外線 (34), 放射線 (35)などの部分がある。DNAに作用しない、あるいは直接的に変異をもたらさないが発がん作用を有する物質は、非遺伝毒性発がん物質と呼ばれる (36)。これらには、xenobiotic mitogen、分裂促進作用のあるホルモン類、そして持続的に細胞障害を惹起する物質が含まれる。非遺伝毒性発がん物質は直接DNAを障害しないが、細胞増殖活性化を通じて自然発生性の変異の頻度が高まる (37)。これらの物質をプロモーターと呼び、phenobarbital（PB）(38), thioacetamid（TAA）(39), methapyrilene（MP）(40), clofibrate (41)や tamoxifen 等 (42)が含まれる。また、活性酸素種（ROS）もまた発がんにおいて重要な役割を有する (43)。ROS はミトコンドリア、ペルオキシゾーム、炎症細胞活性化などの様々な内在性由来の他、医薬品や環境物質、工業的物質のような外来性のものもある。

ROS 産生は酸化ストレスを惹起し、DNA、タンパク質、脂質へのダメージを引き起こしやすい。それは結果的に染色体不安定性、変異誘発、細胞増殖への影響につながり、発がんに至る可能性がある (37)。いくつかの研究では、非遺伝毒性発がん物質である TAA や MP は肝細胞において ROS を産生による酸化ストレスを惹起すると報告されている (44, 45)。
低分子医薬品はその開発過程において、遺伝毒性やがん原性を評価する。変異原性を有する物質は復帰突然変異を示すAmes試験のようなin vitroでの評価系で検出することができるが、非遺伝毒性物質は検出できない。非遺伝毒性物質の発がん性ポテンシャルは長期投与を行うか、特定のin vivo発がん性試験でしか検出できない。いずれのアプローチも多数の動物を必要とし、いわゆるがん原性試験は完了するまでに2年もかかる。そのため、速く且つ信頼できる発がん性ポテンシャルを評価する方法が求められている。トキシコゲノミクスアプローチによって多くの研究がなされている。

その中で、TGPでの研究において肝臓の遺伝子発現データをもとに予測モデルが構築された(16)。このモデルは遺伝毒性発がん物質を構築に用いていないが、化合物の遺伝毒性の有無に関わらず発がん性を予測しうる。このモデルのsignature geneはmitogen-activated protein kinase p38, phosphatidylinositol-kinase-centered interactome, v-myc myelocytomatosis viral oncogene homolog-centered interactomeと関連のあるものであった。そしてこれらの遺伝子は遺伝毒性、非遺伝毒性に関わらず発がん物質で変動が認められた(16)。非遺伝毒性発がん物質TAAおよびMPは、このモデルにおいて反復投与のある時点で陽性と予測された。このモデルで選択した遺伝子は早期発がんと関連があると考えられたことから、非遺伝毒性発がん物質においても直接的な遺伝毒性ではないイニシエーションポテンシャルがこれらの物質にも存在する可能性が考えられた。

この章では、遺伝毒性発がん性物質DEN、非遺伝毒性発がん物質TAA、MP、非遺伝毒性非発がん物質acetaminophen(APAP)を対象とし、これらの物質のイニシエーション活性を調べるために多段階発がん誘導に基づく二段階肝発がん試験を実施し、その結果を解析した。なお、この実験はイニシエーション活性の検出のためだけでなく、化学物質による発がんの過程で変化するDNAメチレーションと遺伝子発現の解析をするための肝サンプル取得の目的も含まれる。

2.2 結果
in vivo試験結果
二段階発がん試験のデザインを図1に示した。イニシエーターとして用いた物質の反復投
与時の肝臓の病理組織学的検査結果は、表1-4に示した。30 mg/kgのDEN、45 mg/kgのTAA、100 mg/kgのMP、1000 mg/kgのAPAPをイニシエーション処置として投与した群では、イニシエーション処置なしでPBのみを投与した群に比べて体重が軽い期間があった（表5）。剖検時の肝臓の絶対および相対重量は、イニシエーション処置を行った群と無処置群と比較して明確な差はなかった。さらに、プロモーション期間の摂水量は各イニシエーション処置群においてほぼ等同であった（表6）。この結果は、イニシエーション処置に関わらず、飲水投与によるPBの暴露が等しくなされたことを示している。30 mg/kg DEN処置群の1例および45 mg/kg TAA処置群の2例は、部分肝切除の際に死亡した。プロモーション期間中には、100 mg/kg MP処置群と1000 mg/kg APAP処置群の各1例が死亡した。死亡した動物は試験から除外した。生存例では、散発的に一般状態の変化が見られたが、いずれも重篤なものはなかった。

図1. 二段階発がん試験における動物への処置プロトコール

<table>
<thead>
<tr>
<th>Week</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Group 3-7</td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental protocol for the 2-stage carcinogenesis study. Animals underwent partial hepatectomy 1 week after starting promotion. Initiation was carried out by daily administration of each compound for 1 or 2 weeks. After 2-week withdrawal, promotion was conducted with drinking water containing 500 ppm of PB for 6 weeks. Animals in Group 1 were treated with vehicle only. Animals in Group 2 underwent PB-treatment without initiation. Groups 3-7 were treated with 3 or 30 mg/kg of DEN, 45 mg/kg of TAA, 100 mg/kg of MP, or 1000 mg/kg of APAP, respectively.
表 1. ラットにおける DEN 反復投与後肝臓病理組織学的検査結果（TG-GATEs）

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose level</th>
<th>Time point</th>
<th>3 mg/kg</th>
<th>30 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 4</td>
<td>Day 8</td>
<td>Day 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Change, acidophilic/ Centrilobular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±5</td>
</tr>
<tr>
<td>Necrosis/ Centrilobular</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±5</td>
</tr>
<tr>
<td>Anisonuleosis/ Hepatocyte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anisonuleosis/ Hepatocyte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Disarrangement/ Hepatic cord</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cellular foci</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ND: no data, ±: very slight, +: slight, ++: moderate, +++: severe

表 2. ラットにおける TAA 反復投与後肝臓病理組織学的検査結果（TG-GATEs）

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose level</th>
<th>Time point</th>
<th>45 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 4</td>
<td>Day 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hypertrophy, centrilobular</td>
<td>+5</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>Single cell necrosis, hepatocyte</td>
<td>±1, +4</td>
<td>+5</td>
<td>-</td>
</tr>
<tr>
<td>Degeneration, granular, eosinophilic</td>
<td>+5</td>
<td>++5</td>
<td>++5</td>
</tr>
<tr>
<td>Cellular infiltration, inflammatory</td>
<td>±5</td>
<td>±5</td>
<td>-</td>
</tr>
<tr>
<td>Cellular foci</td>
<td>-</td>
<td>-</td>
<td>±2</td>
</tr>
<tr>
<td>Alteration, nuclear</td>
<td>-</td>
<td>-</td>
<td>+5</td>
</tr>
<tr>
<td>Proliferation, oval cell</td>
<td>-</td>
<td>-</td>
<td>±5</td>
</tr>
<tr>
<td>Proliferation, bile duct</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

±: very slight, +: slight, ++: moderate, +++: severe
表 3. ラットにおける MP 反復投与後肝臓病理組織学的検査結果（TG-GATEs）

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose level</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time point</th>
<th>Day 4</th>
<th>Day 8</th>
<th>Day 15</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of animals</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hypertrophy, Hepatocyte</td>
<td>+5</td>
<td>+5</td>
<td>+5</td>
<td>+4</td>
</tr>
<tr>
<td>Single cell necrosis, Hepatocyte</td>
<td>+5</td>
<td>+5</td>
<td>+5</td>
<td>+4</td>
</tr>
<tr>
<td>Increase in mitosis, Hepatocyte</td>
<td>+4</td>
<td>+3</td>
<td>-</td>
<td>+3</td>
</tr>
<tr>
<td>Cellular infiltration, mononuclear cell, Periportal</td>
<td>+4</td>
<td>+4</td>
<td>+2, ++3</td>
<td>+4</td>
</tr>
<tr>
<td>Proliferation, bile duct, Interlobular</td>
<td>+5</td>
<td>+5</td>
<td>+4, ++1</td>
<td>++4</td>
</tr>
<tr>
<td>Anisonucleosis, Hepatocyte</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+4</td>
</tr>
<tr>
<td>Hyperplasia, Hepatocyte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+4</td>
</tr>
<tr>
<td>Alteration, cytoplasm, Hepatocyte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+1</td>
</tr>
<tr>
<td>Deposit, pigment, Periportal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+3</td>
</tr>
</tbody>
</table>

±: very slight, +: slight, ++: moderate, +++: severe

表 4 ラットにおける APAP 反復投与後肝臓病理組織学的検査結果（TG-GATEs）

<table>
<thead>
<tr>
<th>Compound</th>
<th>APAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose level</td>
<td>1000 mg/kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time point</th>
<th>Day 4</th>
<th>Day 8</th>
<th>Day 15</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of animals</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Increase in mitosis of hepatocyte: central</td>
<td>±3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Increased eosinophilia of hepatocyte: central</td>
<td>±2, +2</td>
<td>-</td>
<td>±2</td>
<td>±1</td>
</tr>
<tr>
<td>Necrosis of hepatocyte: central</td>
<td>±3</td>
<td>±1</td>
<td>-</td>
<td>±1</td>
</tr>
<tr>
<td>Cellular infiltration: central</td>
<td>±3, +1</td>
<td>±2</td>
<td>±1</td>
<td>±2</td>
</tr>
<tr>
<td>Ground glass appearance of hepatocyte: central</td>
<td>-</td>
<td>-</td>
<td>±5</td>
<td>±4</td>
</tr>
<tr>
<td>Swelling of hepatocyte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±3</td>
</tr>
</tbody>
</table>

±: very slight, +: slight, ++: moderate, +++: severe
Table 5. Effects of Various Animal Groups on Body Weight and Liver Weight

<table>
<thead>
<tr>
<th>Group no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator</td>
<td>0.5% MC</td>
<td>DEN</td>
<td>DEN</td>
<td>TAA</td>
<td>MP</td>
<td>APAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>45</td>
<td>100</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promoter</td>
<td>Water</td>
<td>PB 500 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal no.</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>192.7</td>
<td>195.2 ± 9.7</td>
<td>193.0 ± 9.0</td>
<td>192.7 ± 9.0</td>
<td>194.2 ± 9.0</td>
<td>191.4 ± 9.0</td>
<td>194.0 ± 8.5</td>
</tr>
<tr>
<td>Day 3</td>
<td>212.3</td>
<td>213.3 ± 12.0</td>
<td>211.9 ± 9.7</td>
<td>203.4 ± 8.6</td>
<td>209.2 ± 8.6</td>
<td>210.4 ± 10.7</td>
<td>220.5 ± 9.0</td>
</tr>
<tr>
<td>Day 6</td>
<td>241.4</td>
<td>243.9 ± 10.7</td>
<td>239.5 ± 8.5</td>
<td>209.2 ± 8.5</td>
<td>210.4 ± 10.7</td>
<td>209.2 ± 10.7</td>
<td>220.5 ± 10.7</td>
</tr>
<tr>
<td>Day 9</td>
<td>264.2</td>
<td>270.2 ± 13.9</td>
<td>263.9 ± 13.1</td>
<td>213.7 ± 10.7</td>
<td>227.2 ± 10.7</td>
<td>210.4 ± 10.7</td>
<td>239.1 ± 9.0</td>
</tr>
<tr>
<td>Day 12</td>
<td>287.7</td>
<td>292.6 ± 15.6</td>
<td>285.8 ± 15.6</td>
<td>246.9 ± 15.7</td>
<td>220.5 ± 15.7</td>
<td>213.8 ± 20.6</td>
<td>262.7 ± 15.0</td>
</tr>
<tr>
<td>3w</td>
<td>350.9</td>
<td>360.4 ± 16.1</td>
<td>346.9 ± 16.1</td>
<td>325.6 ± 17.1</td>
<td>309.6 ± 17.1</td>
<td>316.8 ± 22.3</td>
<td>338.5 ± 20.6</td>
</tr>
<tr>
<td>4w</td>
<td>379.3</td>
<td>384.7 ± 18.9</td>
<td>371.0 ± 18.4</td>
<td>350.6 ± 17.7</td>
<td>340.0 ± 17.7</td>
<td>354.3 ± 28.3</td>
<td>377.4 ± 25.2</td>
</tr>
<tr>
<td>5w</td>
<td>400.7</td>
<td>414.8 ± 31.1</td>
<td>401.6 ± 22.4</td>
<td>384.7 ± 19.1</td>
<td>375.6 ± 19.1</td>
<td>390.0 ± 30.2</td>
<td>412.6 ± 26.6</td>
</tr>
<tr>
<td>6w</td>
<td>412.7</td>
<td>417.6 ± 24.9</td>
<td>404.2 ± 22.4</td>
<td>380.1 ± 21.5</td>
<td>383.8 ± 21.5</td>
<td>391.1 ± 27.3</td>
<td>410.6 ± 27.3</td>
</tr>
<tr>
<td>7w</td>
<td>441.4</td>
<td>445.0 ± 25.2</td>
<td>428.0 ± 22.0</td>
<td>416.0 ± 22.0</td>
<td>413.9 ± 22.0</td>
<td>424.3 ± 30.7</td>
<td>438.0 ± 30.7</td>
</tr>
<tr>
<td>8w</td>
<td>467.4</td>
<td>465.4 ± 25.2</td>
<td>446.3 ± 22.1</td>
<td>436.5 ± 22.5</td>
<td>438.0 ± 22.5</td>
<td>445.8 ± 35.4</td>
<td>456.7 ± 35.4</td>
</tr>
<tr>
<td>9w</td>
<td>482.8</td>
<td>483.3 ± 28.7</td>
<td>462.3 ± 24.0</td>
<td>450.5 ± 24.0</td>
<td>457.1 ± 24.0</td>
<td>463.8 ± 38.8</td>
<td>479.9 ± 38.8</td>
</tr>
<tr>
<td>10w</td>
<td>497.3</td>
<td>494.9 ± 27.1</td>
<td>476.1 ± 26.3</td>
<td>467.7 ± 30.8</td>
<td>475.2 ± 30.8</td>
<td>482.4 ± 40.5</td>
<td>500.1 ± 40.5</td>
</tr>
<tr>
<td>Absolute liver weight (g)</td>
<td>13.7</td>
<td>18.2 ± 0.6</td>
<td>18.4 ± 0.9</td>
<td>19.6 ± 1.5</td>
<td>19.6 ± 2.2</td>
<td>19.0 ± 2.2</td>
<td>18.9 ± 2.1</td>
</tr>
<tr>
<td>Relative liver weight (g/100g BW)</td>
<td>2.7</td>
<td>3.6 ± 0.6</td>
<td>3.8 ± 0.9</td>
<td>4.1 ± 2.2</td>
<td>4.0 ± 2.2</td>
<td>3.9 ± 2.2</td>
<td>3.7 ± 2.2</td>
</tr>
</tbody>
</table>

* **: Significant difference from Group 2 (p<0.05, 0.01, respectively; Dunnett's test). #: Significant difference from control (p<0.05; Steel's test)
表 6. 各群のプロモーション期間中摂水量

<table>
<thead>
<tr>
<th>Group no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator</td>
<td>0.5 % MC</td>
<td>DEN</td>
<td>DEN</td>
<td>TAA</td>
<td>MP</td>
<td>APAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>45</td>
<td>100</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Promoter</td>
<td>Water PB 500 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal no.</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Water (mL/day/animal)</td>
<td>1w</td>
<td>43.2 ± 35.5 37.2 ± 36.8 ± 34.7 ± 8.2 ± 2.2 4.5 6.6 3.0 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2w</td>
<td>35.7 ± 27.0 27.9 ± 23.9 ± 27.2 ± 14.8 ± 8.2 ± 2.5 1.2 11.3 11.1 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3w</td>
<td>49.5 ± 29.9 30.5 ± 31.5 ± 30.2 ± 29.2 ± 10.7 ± 3.3 3.9 4.6 3.0 2.3 8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4w</td>
<td>46.2 ± 29.5 31.5 ± 32.2 ± 34.1 ± 29.0 ± 31.5 ± 13.0 ± 2.5 1.5 5.6 2.9 3.0 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5w</td>
<td>46.0 ± 29.2 32.8 ± 35.0 ± 37.8 ± 28.1 ± 30.8 ± 11.3 ± 1.3 2.4 8.6 5.9 1.9 5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6w</td>
<td>45.2 ± 34.6 37.7 ± 46.5 ± 37.6 ± 33.3 ± 33.5 ± 12.2 ± 2.6 4.0 6.7 4.1 3.3 4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

病理組織学的検査結果

肝臓の病理組織学的検査結果を表 7 に示した。PB を飲水投与した群のすべての動物において小葉中心性肝細胞肥大、くもり死子様変性、好酸性細胞質内封入体、肝細胞空胞変性が認められた。これらの結果は、PB が等しく継続的に暴露され、プロモーション作用をもたらしたことを示している。さらに、DEN 处置群では、全例で前がん変でる変異細胞巣が認められた。PB のみあるいは APAP 处置群では変異細胞巣は認められなかったが、TAA および MP 处置群では少数例で認められた。分裂像増加や線維化は全てのインシエーション処置群で認められた。核大小異常は DEN 処置群に比べると TAA 処置群では低頻度であり、MP や APAP 処置群ではほとんど認められなかった。公的データベース TG-GATEs に格納されている DEN の 1 週間投与と TAA の 2 週間投与の肝臓病理組織標本における変異細胞巣は、この二段階がん試験で認められたものより明らかに少なかった（表 1, 2）。
表7. 各群肝臓の病理組織学的検査結果

<table>
<thead>
<tr>
<th>Group no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator</td>
<td>0.5 % MC</td>
<td>DEN</td>
<td>DEN</td>
<td>TAA</td>
<td>MP</td>
<td>APAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 mg/kg</td>
<td>30 mg/kg</td>
<td>45 mg/kg</td>
<td>100 mg/kg</td>
<td>1000 mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promoter</td>
<td>Water</td>
<td>PB 500 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal no.</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Focal granuloma</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Centrilobular hepatocellular hypertrophy</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ground glass appearance</td>
<td>0</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Eosinophilic intracytoplasmic inclusion</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Hepatocellular vacuolar degeneration</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Focal hepatocellular vacuolar degeneration</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Extramedullary hematopoiesis</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hepatocellular single cell necrosis</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Increased mitotic figures</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Bile duct proliferation</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Anisokaryosis</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Altered hepatocellular foci</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

GST-Pの免疫組織学的解析

DEN によるイニシエーション群では前がん病変マーカータンパク質の GST-P 免疫組織学的検査において、GST-P 陽性変細胞巢は用量依存的な増加が見られ、30 mg/kg の DEN 処置群においてはその数と面積の増加は顕著であった（表 4）。DEN と TAA 処置群における代表的な染色像を図 2 に示した。他の化合物（TAA, MP, APAP）処置群においても、イニシエーション無処置群との比較において GST-P 陽性巣のわずかな増加が認められた（表 8）。TAA や MP 処置群においても GST-P 陽性巣は認められたが、その数やサイズの増加は DEN 処置群に比べるとかなり小さいものであった。
<table>
<thead>
<tr>
<th>Group no.</th>
<th>Treatment</th>
<th>Altered hepatocellular foci</th>
<th></th>
<th>GST-P</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HE</td>
<td>GST-P</td>
<td></td>
<td>No.</td>
<td>cm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. of animals</td>
<td>No. of animals</td>
<td>No./cm²</td>
<td></td>
<td>mm²/cm²</td>
</tr>
<tr>
<td>1</td>
<td>0.5 % MC + water</td>
<td>0/12</td>
<td>0/12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5 % MC + PB</td>
<td>0/12</td>
<td>0/12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DEN 3 mg/kg + PB</td>
<td>12/12</td>
<td>12/12</td>
<td>3.078**</td>
<td>0.063**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DEN 30 mg/kg + PB</td>
<td>11/11</td>
<td>11/11</td>
<td>22.642**</td>
<td>1.144**</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TAA 45 mg/kg + PB</td>
<td>2/10</td>
<td>4/10</td>
<td>0.193</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MP 100 mg/kg + PB</td>
<td>1/11</td>
<td>2/11</td>
<td>0.052</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>APAP 1000 mg/kg + PB</td>
<td>0/11</td>
<td>1/11</td>
<td>0.025</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

**p<0.01. Significantly different from values of Group 2 by Steel’s test.
Immunohistochemical analysis of GST-P of rat liver treated with TAA and DEN. Two-week administration of 45 mg/kg of TAA and 3 mg/kg of DEN, or 1 week of 30 mg/kg of DEN caused positive staining of GST-P protein. 30 mg/kg of DEN induced a higher number of and larger GST-P-positive foci than other groups.

酸化ストレスおよびDNAダメージ関連遺伝子の発現解析

二段階発がん試験において、各イニシエーション処置が酸化ストレスおよびDNAダメージに関連する遺伝子の発現にどのように影響したかを確認するために、肝臓の網羅的遺伝子発現解析を行った。解析にはTG-GATEsに格納されたデータを用いた。図3Aは酸化ストレス関連の遺伝子について階層的クラスタリング解析結果である。使用した遺伝子リストは表10に示した。各遺伝子の発現はそれぞれの処置において類似したパターンであった。抗酸化反応経路を制御する転写因子である Nuclear factor, erythroid 2-like 2（Nfe2l2）はAPAP処置群以外の群で発現量が増加していた。しかし、NFE2L2によって制御される多くの遺伝子は、いずれ
れの処置群においても共通して発現増加が認められた。例を挙げると, NAD(P)H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase alpha 5 (Gsta5) といった還元や摂合に関わる酵素遺伝子や, glutamate-cysteine ligase, modifier subunit (Gclm), glutathione peroxidase 2 および 3 (Gpx2, Gpx3), peroxiredoxin 2 および 3 (Prdx2, Prdx3) などの抗酸化酵素遺伝子である。また, 酸化ストレスに反応する転写因子である nuclear factor of kappa light polypeptide gene enhancer in B-cells (Nfkb2), activating protein-1 を構成する jun proto-oncogene (Jun), FBJ murine osteosarcoma viral oncogene homolog (Fos) の発現増加も認められた。

DNA ダメージに関連する遺伝子に関して階層的クラスタリング解析結果を図 3B に示した。使用した遺伝子は表 11 に示した。30 mg/kg DEN 1 週投与は特に明確な発現変動を惹起し, cell cycle inhibitor cyclin-dependent kinase inhibitor 1A (Cdkn1a), E3 ubiquitin protein ligase (Mdm2) の発現誘導が認められた。これらの遺伝子の発現変動は APAP 処置群以外で認められた。DNA ダメージに反応して誘導される Growth arrest and DNA-damage-inducible, alpha (Gadd45a) 遺伝子は, MP, TAA および DEN 高用量処置群において増加が認められた。しかし, 他の DNA ダメージ反応遺伝子である TP53 dependent G2 arrest mediator candidate (Rprm) は DEN 処置群のみで増加が認められたが, breast cancer 1, early onset (Brcal) 遺伝子はいずれの群においても明確な発現変動は認められなかった。CDC28 protein kinase regulatory subunit 2 (Cks2), topoisomerase (DNA) II alpha (Top2a), cyclin B1 (Ccnb1), cyclin B2 (Ccnb2), polo-like kinase 1 (Plk1) は TAA および DEN 高用量処置群で増加が認められた。そのほかの遺伝子は, 全体的に TAA, MP および DEN 高用量処置群で増加の傾向が認められた。
表9. 細胞の遺伝子発現解析に使用したDNAダメージ関連遺伝子

<table>
<thead>
<tr>
<th>Category</th>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Probeset ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell cycle</td>
<td>BTRC</td>
<td>beta-transducin repeat containing E3 ubiquitin protein ligase</td>
<td>1374654_at</td>
</tr>
<tr>
<td></td>
<td>CCNB1</td>
<td>cyclin B1</td>
<td>1370345_at, 1370346_at</td>
</tr>
<tr>
<td></td>
<td>CCNB2</td>
<td>cyclin B2</td>
<td>1389566_at</td>
</tr>
<tr>
<td></td>
<td>CDC25B</td>
<td>cell division cycle 25B</td>
<td>1370034_at</td>
</tr>
<tr>
<td></td>
<td>CDC34</td>
<td>cell division cycle 34</td>
<td>1371278_at, 1388286_a_at, 1388400_at</td>
</tr>
<tr>
<td></td>
<td>CDK1</td>
<td>cyclin-dependent kinase 1</td>
<td>1367776_at</td>
</tr>
<tr>
<td></td>
<td>CDK7</td>
<td>cyclin-dependent kinase 7</td>
<td>1388171_at</td>
</tr>
<tr>
<td></td>
<td>CDKN1A</td>
<td>cyclin-dependent kinase inhibitor 1A</td>
<td>1387391_at, 1388674_at</td>
</tr>
<tr>
<td></td>
<td>CDKN2A</td>
<td>cyclin-dependent kinase inhibitor 2A</td>
<td>1369194_a_at</td>
</tr>
<tr>
<td></td>
<td>CHEK1</td>
<td>checkpoint kinase 1</td>
<td>1387062_a_at</td>
</tr>
<tr>
<td></td>
<td>CHEK2</td>
<td>checkpoint kinase 2</td>
<td>1369010_at</td>
</tr>
<tr>
<td></td>
<td>CKS1B</td>
<td>Cdc28 protein kinase regulatory subunit 1B</td>
<td>1371480_at, 1376346_at</td>
</tr>
<tr>
<td></td>
<td>CKS2</td>
<td>Cdc28 protein kinase regulatory subunit 2</td>
<td>1373823_at</td>
</tr>
<tr>
<td></td>
<td>CUL1</td>
<td>Cullin 1</td>
<td>1388855_at</td>
</tr>
<tr>
<td></td>
<td>SKP1</td>
<td>S-phase kinase-associated protein 1</td>
<td>1372437_at</td>
</tr>
<tr>
<td></td>
<td>SKP2</td>
<td>S-phase-associated protein 2</td>
<td>1390823_at</td>
</tr>
<tr>
<td></td>
<td>WEE1</td>
<td>Wee1 G2 check point kinase</td>
<td>1370663_at, 1397409_s_at</td>
</tr>
<tr>
<td>Transcription regulator</td>
<td>EP300</td>
<td>E1A binding protein p300</td>
<td>1369307_at, 1373916_at</td>
</tr>
<tr>
<td></td>
<td>MDM2</td>
<td>MDM2 oncogene, E3 ubiquitin protein ligase</td>
<td>1383288_at, 1383485_at, 1384427_at</td>
</tr>
<tr>
<td></td>
<td>MDM4</td>
<td>Mdm4 p53 binding protein homolog (mouse)</td>
<td>1382417_at</td>
</tr>
<tr>
<td></td>
<td>MYT1</td>
<td>Myelin transcription factor 1</td>
<td>1392332_at, 1395161_at</td>
</tr>
<tr>
<td></td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>1367830_a_at, 1367831_at, 1370752_a_at</td>
</tr>
<tr>
<td></td>
<td>YWHAB</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta</td>
<td>1386999_at, 1398800_at</td>
</tr>
<tr>
<td></td>
<td>YWHAE</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon</td>
<td>1398851_at</td>
</tr>
<tr>
<td></td>
<td>YWHAG</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma</td>
<td>1386866_at</td>
</tr>
<tr>
<td></td>
<td>YWHAH</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta</td>
<td>1367693_at</td>
</tr>
<tr>
<td></td>
<td>YWHAQ</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta</td>
<td>1370168_at, 1387862_at</td>
</tr>
<tr>
<td></td>
<td>YWHAZ</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta</td>
<td>1387774_at</td>
</tr>
<tr>
<td>Category</td>
<td>Gene symbol</td>
<td>Gene name</td>
<td>Probeset ID</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>DNA damage inducible</td>
<td>BRCA1</td>
<td>breast cancer 1, early onset</td>
<td>1387540_at</td>
</tr>
<tr>
<td></td>
<td>GADD45A</td>
<td>growth arrest and DNA-damage-inducible, alpha</td>
<td>1368947_at</td>
</tr>
<tr>
<td></td>
<td>RPRM</td>
<td>reprim, TP53 dependent G2 arrest mediator candidate</td>
<td>1390672_at</td>
</tr>
<tr>
<td>Protein kinase-related</td>
<td>PKMYT1</td>
<td>protein kinase, membrane associated tyrosine/threonine 1</td>
<td>1392626_at</td>
</tr>
<tr>
<td></td>
<td>PLK1</td>
<td>polo-like kinase 1</td>
<td>1370297_at</td>
</tr>
<tr>
<td></td>
<td>PRKCZ</td>
<td>protein kinase C, zeta,</td>
<td>1370197_a_at</td>
</tr>
<tr>
<td></td>
<td>PTPMT1</td>
<td>protein tyrosine phosphatase, mitochondrial 1</td>
<td>1369990_at</td>
</tr>
<tr>
<td></td>
<td>SFN</td>
<td>stratifin</td>
<td>1374806_at, 1375096_at</td>
</tr>
<tr>
<td>Topoisomerase</td>
<td>TOP2A</td>
<td>topoisomerase (DNA) II alpha 170kDa</td>
<td>1372186_a_at, 1388650_at</td>
</tr>
</tbody>
</table>
表10. 網羅的遺伝子発現解析に使用したDNAダメージ関連遺伝子

<table>
<thead>
<tr>
<th>Category</th>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Probeset ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine</td>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
<td>1369983_at</td>
</tr>
<tr>
<td></td>
<td>CSF2</td>
<td>colony stimulating factor 2 (granulocyte-macrophage)</td>
<td>1371228_at</td>
</tr>
<tr>
<td></td>
<td>IL10</td>
<td>interleukin 10</td>
<td>1387711_at</td>
</tr>
<tr>
<td></td>
<td>IL6</td>
<td>interleukin 6</td>
<td>1369191_at</td>
</tr>
<tr>
<td></td>
<td>TNF</td>
<td>tumor necrosis factor</td>
<td>1387691_at, 1391384_at</td>
</tr>
<tr>
<td>Enzyme</td>
<td>CAT</td>
<td>catalase</td>
<td>1367995_at</td>
</tr>
<tr>
<td></td>
<td>CYP2E1</td>
<td>cytochrome P450, family 2, subfamily E, polypeptide 1</td>
<td>1367871_at</td>
</tr>
<tr>
<td></td>
<td>GCLC</td>
<td>glutamate-cysteine ligase, catalytic subunit</td>
<td>1370688_at, 1372523_at</td>
</tr>
<tr>
<td></td>
<td>GCLM</td>
<td>glutamate-cysteine ligase, modifier subunit</td>
<td>1370030_at</td>
</tr>
<tr>
<td></td>
<td>GGT1</td>
<td>gamma-glutamyltransferase 1</td>
<td>1368374_a_at</td>
</tr>
<tr>
<td></td>
<td>GLRX2</td>
<td>glutaredoxin 2</td>
<td>1373675_at</td>
</tr>
<tr>
<td></td>
<td>GPX1</td>
<td>glutathione peroxidase 1</td>
<td>1367576_at</td>
</tr>
<tr>
<td></td>
<td>GPX2</td>
<td>glutathione peroxidase 2 (gastrointestinal)</td>
<td>1374070_at</td>
</tr>
<tr>
<td></td>
<td>GPX3</td>
<td>glutathione peroxidase 3 (plasma)</td>
<td>1369926_at</td>
</tr>
<tr>
<td></td>
<td>GPX4</td>
<td>glutathione peroxidase 4</td>
<td>1386871_at, 1391529_at</td>
</tr>
<tr>
<td></td>
<td>GSR</td>
<td>glutathione reductase</td>
<td>1369061_at</td>
</tr>
<tr>
<td></td>
<td>GSS</td>
<td>glutathione synthetase</td>
<td>1370365_at</td>
</tr>
<tr>
<td></td>
<td>GSTA2</td>
<td>glutathione S-transferase alpha 2</td>
<td>1368180_s_at</td>
</tr>
<tr>
<td></td>
<td>GSTA4</td>
<td>glutathione S-transferase alpha 4</td>
<td>1372297_at</td>
</tr>
<tr>
<td></td>
<td>GSTA5</td>
<td>glutathione S-transferase alpha 5</td>
<td>1371089_at</td>
</tr>
<tr>
<td></td>
<td>GSTM1</td>
<td>glutathione S-transferase mu 1</td>
<td>1386985_at</td>
</tr>
<tr>
<td></td>
<td>GSTM2</td>
<td>glutathione S-transferase mu 2 (muscle)</td>
<td>1370952_at</td>
</tr>
<tr>
<td></td>
<td>GSTM3</td>
<td>glutathione S-transferase mu 3 (brain)</td>
<td>1369921_at</td>
</tr>
<tr>
<td></td>
<td>Gstm6</td>
<td>glutathione S-transferase mu 6</td>
<td>1394730_at</td>
</tr>
<tr>
<td></td>
<td>ME1</td>
<td>malic enzyme 1, NADP(+)‐dependent, cytosolic</td>
<td>1370067_at, 1370870_at</td>
</tr>
<tr>
<td></td>
<td>MGST1</td>
<td>microsomal glutathione S‐transferase 1</td>
<td>1367612_at</td>
</tr>
<tr>
<td></td>
<td>NQO1</td>
<td>NAD(P)H dehydrogenase, quinone 1</td>
<td>1387599_a_at</td>
</tr>
<tr>
<td></td>
<td>PRDX1</td>
<td>peroxiredoxin 1</td>
<td>1367613_at</td>
</tr>
<tr>
<td></td>
<td>PRDX2</td>
<td>peroxiredoxin 2</td>
<td>1367578_at</td>
</tr>
<tr>
<td></td>
<td>PRDX3</td>
<td>peroxiredoxin 3</td>
<td>1367591_at</td>
</tr>
<tr>
<td></td>
<td>PRDX4</td>
<td>peroxiredoxin 4</td>
<td>1387891_at</td>
</tr>
<tr>
<td></td>
<td>PRDX5</td>
<td>peroxiredoxin 5</td>
<td>1367677_at</td>
</tr>
<tr>
<td></td>
<td>PRDX6</td>
<td>peroxiredoxin 6</td>
<td>1367969_at</td>
</tr>
<tr>
<td></td>
<td>SOD1</td>
<td>superoxide dismutase 1, soluble</td>
<td>1367641_at</td>
</tr>
<tr>
<td></td>
<td>SOD2</td>
<td>superoxide dismutase 2, mitochondrial</td>
<td>1370172_at, 1370173_at</td>
</tr>
<tr>
<td></td>
<td>SOD3</td>
<td>superoxide dismutase 3, extracellular</td>
<td>1368322_at</td>
</tr>
<tr>
<td></td>
<td>TXNRD2</td>
<td>thioredoxin reductase 2</td>
<td>1368309_at</td>
</tr>
<tr>
<td></td>
<td>XDH</td>
<td>xanthine dehydrogenase</td>
<td>1369973_at</td>
</tr>
</tbody>
</table>
表 10. 網羅的遺伝子発現解析に使用した DNA ダメージ関連遺伝子（続き）

<table>
<thead>
<tr>
<th>Category</th>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Probeset ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription regulator</td>
<td>BRCA1</td>
<td>breast cancer 1, early onset</td>
<td>1387540_at</td>
</tr>
<tr>
<td></td>
<td>FOS</td>
<td>FBJ murine osteosarcoma viral oncogene homolog</td>
<td>1375043_at</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>jun proto-oncogene</td>
<td>1369788_s_at, 1374404_at, 1389528_s_at</td>
</tr>
<tr>
<td></td>
<td>NFE2L1</td>
<td>nuclear factor, erythroid 2-like 1</td>
<td>1375253_at, 1390068_at</td>
</tr>
<tr>
<td></td>
<td>NFE2L2</td>
<td>nuclear factor, erythroid 2-like 2</td>
<td>1367826_at</td>
</tr>
<tr>
<td></td>
<td>NFKB1</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells 1</td>
<td>1370968_at</td>
</tr>
<tr>
<td></td>
<td>NFKB2</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)</td>
<td>1375989_a_at</td>
</tr>
<tr>
<td></td>
<td>RELA</td>
<td>v-rel avian reticuloendotheliosis viral oncogene homolog A</td>
<td>1372853_at</td>
</tr>
<tr>
<td></td>
<td>STAT3</td>
<td>signal transducer and activator of transcription 3 (acute-phase response factor)</td>
<td>1370224_at, 1371781_at</td>
</tr>
<tr>
<td></td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>1367830_a_at, 1367831_at, 1370752_a_at</td>
</tr>
</tbody>
</table>
Hierarchical clustering analysis of oxidative stress (A) or DNA damage-related genes (B). Mean value of fold change to the corresponding control groups. Data for 1000 mg/kg of APAP for 2 weeks, 45 mg/kg of TAA for 2 weeks, 100 mg/kg of MP for 2 weeks, 3 mg/kg of DEN for 2 weeks and 30 mg/kg of DEN for 1 week were obtained from TG-GATEs. UPGMA (unweighted average) and Euclid distance were applied to clustering.
2.3 考察

TAA および MP は酸化ストレスを惹起する肝毒性物質であり、一般的に非遺伝毒性発がん物質であると考えられている。しかし、トキシコゲノミクスによる肝発がん予測モデルはこれらの物質が遺伝毒性発がん物質投与と類似した性質を持つことを示唆している（16）。このことより、これらの発がん物質はその遺伝毒性の有無に関わらず発がんインシエーターとしてのポテンシャルを有する可能性が考えられた。そのため、本研究では二段階肝発がんモデルを用いて TAA と MP のインシエーション活性の検出を試みた。二段階発がん試験の一般的な方法としては、DEN などの遺伝毒性物質を単回投与し、その後プロモーション処置を行った。しかし、本研究では Ames 試験では検出できない化合物のイニシエーション活性を捉えるため、化合物の反復投与による継続的な暴露方法を用いた。前述の報告において、TAA および MP の 2 週間反復投与は予測モデルの signature 遺伝子を変動させ、そしてこの変動は DEN の 1 週間投与と類似していた。このことより、TAA や MP のインシエーション活性を捉えるには 1~2 週間の投与が適していると考えた。さらに、30 mg/kg DEN 1 週間投与では変異細胞巣を誘発するが、3 mg/kg 2 週間投与および 30 mg/kg 1 週間投与では認められなかった。これに対し、本試験においては二段階発がん試験として DEN の 3 および 30 mg/kg のインシエーション処置に加えて PB プロモーション処置を行ったところ、全例で変異細胞巣が認められた（表 7）。同様に、本試験の TAA 処置群における変異細胞巣の数は反復投与試験よりも多くなかった（data not shown）。このことより、TAA によってイニシエートされた肝細胞における変化は、PB 飲水投与によって増幅されたと考えられた。一方、MP 処置群では変異細胞巣の数や面積が限定的であり、同群における PB 投与による増幅は明確ではなかった。これらの結果から、この二段階肝発がん試験によって少なくとも 2 週間の TAA 投与が肝臓において細胞のインシエーションを引き起こすことを示唆していると考えられた。また、この結果は DNA 障害関連遺伝子の発現変動解析によっても部分的に説明ができると考えられた。図 3B が示すように、DNA ダメージ関連遺伝子の発現解析において DEN、TAA、MP の投与は全体的に類似していったが、APAP 処置群では異なっていた。特に、DNA 障害誘導遺伝子である Gadd45a や Top2a...
誘導は TAA や DEN 処置群で認められ、このことは非遺伝毒性物質である TAA が DNA 障害を惹起している可能性を示唆している。さらに、細胞周期関連遺伝子である Mdm2 や Cdkn1a も APAP 処置群以外で誘導が認められた。これらの遺伝子は DNA 障害に対する保護において重要な役割を持つ p53 との相互作用によって制御される (48-51)。そして、野生型 p53 によって発現が抑制される Cenb1 や Cenb2 の発現誘導が DEN と TAA 処置群で認められたことも、TAA がイニシエーション活性を有することを支持する結果であると推察された (51, 52)。さらに、TAA や MP の代謝活性化は肝障害の一因であり、DNA を障害しうる酸化ストレスを惹起するという報告があり (44, 45, 53, 54)，且つ本検討でも認められた酸化ストレス関連遺伝子の発現誘導もそれを示唆していると考えられた (図 3A)。また、Nfe2l2-Keap1 システムは抗酸化ストレスのメカニズムであり (37)，このシステムの活性化は、酸化ストレスの存在・発生を示唆する。本研究における結果でも、このシステムの制御によって、glutathione S-transferase や glutathione peroxidase の発現誘導を介して内在性の抗酸化物質である glutathione の代謝が活性化した可能性が考えられた。また、還元反応に関与する Nqo1 や peroxiredoxin 遺伝子の発現も増加していた。さらに、ROS によって変動しうる Nfkb2, Jun, Fos 遺伝子の発現誘導が認められたことから、TAA や MP 処置によって酸化ストレスに対する反応があったことを示唆していると考えられた (55)。これらのことから、TAA や MP は DNA 障害をもたらすような酸化ストレスの蓄積を惹起し、細胞増殖を亢進させることが考えられた。そして、TAA や MP は肝臓で DNA 障害を惹起するが、そのメカニズムは DEN によって惹起されるような直接的な作用ではないことが考えられた。本研究では、MP 処置群では明確な変異細胞巣誘導には至らなかった。DNA ダメージ関連の遺伝子発現の誘導は認められたものの、MP のイニシエーション活性検出においてはより長い処置が必要であることが考えられた。

本実験から TAA と MP について直接的なイニシエーション活性の有無を議論するのは困難である。しかし、いくつかの報告では、これらの化合物が遺伝毒性を有するとされている。Fahrig らは、TAA が遺伝毒性物質と同様に、形質転換 CO631 細胞における SV40 virus DNA を増幅させたと報告している (56)。MP もまた一般的には非遺伝毒性物質であると考えられているが、DNA 鎖切断を検出する方法である Comet アッセイにおいて遺伝毒性がある可能性が示されている (57)。さらに、DEN 処置群で顕著に認められた核大小不同は TAA 群でも認められた。肝細胞の核におけるこの形態的変化を直接的に肝発がんと結び付けて考えることは難し
いが，肝発がん初期の変化であり TAA による DNA 障害を反映した変化である可能性が考えられた。

以上，結論として，本章の実験から非遺伝毒性発がん物質である TAA は二段階肝発がんモデルにおいて肝細胞のイニシエーションポテンシャルを有する可能性が示唆された。詳細なメカニズムは不明であるが，酸化ストレスが関連する DNA ダメージがその一部に関わっている可能性が示された。
2.4 実験方法

動物

5週齢の雄性Crj:CD(SD)ラットを日本チャールスリバー株式会社より購入した。動物は紙製の床敷を入れたプラスチックケースに入れ、12時間ごとの明暗サイクルとして室温23±3℃、相対湿度55±15%を保った部屋で飼育した。水と餌は飼育期間中自由に与えた。餌はオリエンタル酵母株式会社よりOriental MFを購入した。7日間の予備飼育後、動物は体重をもとに12匹ずつ7群に分けた。

試薬

DENは東京化成工業より購入した。TAA、MPおよびAPAPは、シグマアルドリッチジャパン合同会社より購入した。PBは、和光純薬株式会社より購入した。メチルセルロースは、信越化学工業株式会社より購入した。抗GST-P抗体は、株式会社医学生物学研究所より購入した。

実験デザインおよび処置

動物は東京農工大学の動物実験ガイドに従って取り扱った。各群においてイニシエーション処置として0.5%メチルセルロース（MC）に懸濁したDEN3、30mg/kg、TAA45mg/kg、MP100mg/kg、あるいはAPAP1000mg/kgを経口投与した。対照群には媒体のみを2週間投与した。投与容量は5mL/kgとした。各イニシエーション処置における投与用量は、TG-GATEs(http://toxico.nibio.go.jp/english/datalist.html)に格納された反復投与毒性試験の結果と上原らの報告をもとに設定した(16)。飲水中のPB濃度は前川らの報告をもとに設定した(58)。図1に示すように、1週間あるいは2週間のイニシエーション処置処置後に2週間の休薬期間を設定した。続いて、1週間のプロモーター処置（500ppmPBの飲水投与）を行い、その後全動物についてジエチルエーテル麻酔下において部分肝切除を行った。さらに残りの5週間はPBを含む飲水の自由摂取下で飼育を行った。その後、エーテル麻酔下で放血による安楽死を行い、肝臓を採取して病理組織学的検査に供した。一般状態、体重、肝重量、剖検および病理組織学的検査結果を記録した。顕微鏡による観察および免疫組織化学的検査のため、肝臓は採取後10%中性緩衝ホルマリン液で固定した。固定した臓器
はパラフィンに包埋し、病理組織学的検査および免疫組織化学的検査用に3–5 µmの切片を切り出した。病理組織学的検査用切片はヘマトキシリンエオジン染色を行った。

免疫組織化学的検査

以下の手順は全て室温で行った。ホルマリン固定パラフィン包埋肝臓切片をスライドガラスに載せ、0.3%過酸化水素-TBS溶液で15分処理した。スライドは1:1000希釈した抗GST-P抗体で60分処理し、西洋ワサビペルオキシダーゼ結合抗マウスIgG抗体および3,3’-diaminobenzidineによる発色を行った。

公共データ取得

DNA障害や酸化ストレスに関連する遺伝子の発現変動プロファイルを解析するため、TAA、MP、APAPとDENをそれぞれ1あるいは2週間反復投与したラット肝臓の遺伝子発現データをTG-GATEsより取得した。シグナル値は各GeneChipシグナル平均値で標準化し、同一試験内の対照群との倍率を計算した。選択した遺伝子リストは表9と10に示した。

統計解析

体重および肝重量の解析では、Bartlett’s testによって群間の分散の均一性を検定した。分散が均一であった場合、Dunnett’s multiple comparison testによる群間比較を実施した。分散の違いが認められた場合には、Steel’s testを用いた。飲水量はKruskal-WallisおよびDunnett’s multiple comparison testsで解析した。GST-P陽性巣（φ0.2mm以上）の解析では、まず三谷商事株式会社のWinRoof Software v5.7.2を用いて数と面積の計測を行った。Levene’s testの分散解析の結果に基づき、非イニシエーション/PBプロモーション群との比較をSteel’s testによって解析した。
第三章 二段階発がん試験ラット肝臓の網羅的遺伝子発現および DNA メチレーション解析

3.1 緒言

DNA メチル化はエピジェネティックな修飾の一つであり、真核生物の遺伝子発現制御において重要な役割を果たしている。ゲノム DNA の CpG サイトのうち 70-90% はメチル化されていると言われている (59)。細胞の種類や組織によってそのメチル化のパターンは異なり、特異的なものがある (60)。CpG アイランドのメチル化の程度は遺伝子発現と関連があり、CpG アイランドショアや Exon 1 の hypermethylation は遺伝子発現抑制に関与していると言われている (61, 62)。

近年の研究から、異常なエピジェネティック修飾が発がんにおける特徴の一つであることが示唆されている。これについては多くの研究結果があり、様々な種類の腫瘍細胞において細胞周期チェックポイント遺伝子である CHFR の異常なメチル化があり、増殖異常と関連があることが報告されている (63)。他には、大腸がんにおいて WNT シグナル制御が secreted frizzled-related protein genes (SFRPs) 遺伝子の hypermethylation によって抑制される (64)。RASSF2 の異常なメチル化による遺伝子発現抑制は K-ras による発がん形質転換を促進する (65)。さらに、DNA アルキル修復遺伝子である O(6)-methylguanine-DNA methyltransferase 遺伝子の hypermethylation によって、DNA 修復が障害される (66)。microRNA においても、p53 ネットワークの一部を構成する miR-34b や 34c においては大腸がんの検体の多くで過剰にメチル化されており、結果として p53 シグナル伝達異常が起こるという報告がある (67)。単一のがんを有する患者に比べ、複数の胃癌を有する患者では単一の胃癌患者よりも DNA メチル化レベルが高いという報告もあることから、DNA メチル化異常の蓄積は発がんと関連があることが示唆されている (68)。以上の報告を踏まえると、化学物質によって惹起される発がんにおいてもエピジェネティックな変化があるものと予想され、その役割を明らかにすることは、発がんポテンシャル評価に用いることができるような指標を同定し、安全な医薬品候補の選択を促進できる可能性がある。

遺伝毒性を有する化合物は復帰突然変異を検出する Ames 試験によって評価ができるが、
非遺伝毒性発がん物質ではそれができない。非遺伝毒性発がん物質の発がんポテンシャルは，長期暴露が特定な発がん試験の実施によって検出することになる。しかし，試験実施には多くの動物を必要とし，その完了には数年を要する。それゆえ，速く且つ信頼性の高い発がんポテンシャルの効率的なスクリーニング方法が医薬品開発の現場では求められている。これに関して従来の研究は，主に毒性発現と遺伝子発現の変動をもとに考察を行うトキシコゲノミクスアプローチによるものであった。例を挙げると，肝臓の遺伝子発現プロファイリングをもとにした多くの予測モデルが作成されてきた(16, 69, 70)。これとは別に，欧州のコンソーシアムである MARCAR プロジェクトでは，非遺伝毒性発がん物質を予測する早期の指標を同定することを目的とした研究を進めている。このプログラムでは，エピゲノムとトランスクリプトミクスプロファイリングを組み合わせ，非遺伝毒性発がんの早期発がんメカニズムの解明とバイオマーカー探索を PB の 13 週投与による動物モデルを用いた報告をしている(71, 72)。

本章では，同目的のためラット二段階発がんモデルから採取した前がん病変が生じた肝臓を用いて網羅的遺伝子発現および DNA メチレーション解析を行い，従来のトキシコゲノミクス手法にエピジェネティックな観点も加えて肝発がんにおけるメカニズムの推察を行った。本研究で使用した二段階肝発がんモデルは従来の報告のように単純な PB の反復投与に比べ，前がん病変を惹起した肝臓を用いていることから，より生物学的に発がん研究に適したものであると考えられる。

3.2 結果
前がん病変の発生頻度

本章の研究で用いたサンプルは，前章で述べた二段階発がんモデルから採取したものである。投与と 500 ppm PB 飲水投与の組み合わせでは肝臓の免疫組織化学的検査において GST-P 陽性変異細胞巢は確認されなかったのに対し，DEN 処置を加えた群においては，DEN の用量依存的に GST-P 陽性変異細胞巢の誘導が認められた。
DEN処置ラット肝臓において変動が見られたDNAメチレーションおよび遺伝子発現

部分肝切除時（5w）および最終剖検時（10w）の肝臓を網羅的遺伝子発現およびDNAメチル化解析に供した。DNAメチル化解析では、転写開始点上流4500bpから下流1125bpを便宜的にプロモーター領域として扱った。まず、DEN30mg/kg処置によって各遺伝子領域におけるDNAメチレーション状態への影響を確認するために、DNAメチレーションのピーク数をカウントした（表1）。その結果、プロモーション初期（5w）に起こるDNAメチレーションピークの変動は、プロモーション後期（10w）よりもかなり多いことが明らかとなった（5wで29791個、10wで6440個）。また、遺伝子プロモーター領域を示すupstreamでもDNAメチル化変動ピーク数が多く、CDS-Exon、Intron領域において変動ピーク数は比較的多かった。図1Aは染色体ごとのDNAメチレーションの変化領域数を示している。染色体番号が小さいほど染色体が大きいため、より大きい染色体ほどDNAメチレーションピーク変動数が多く、概ね染色体番号に相関したメチル化変動が見られた。また、5wではhypermethylationが亢進し、10wではhypomethylationが亢進するということが明らかとなった。

図2AおよびBはDNAメチレーション、図2CおよびDは遺伝子発現に関するスキャッタープロットを示している。イニシエーション非実施群とDEN30mg/kgによるイニシエーション群の比較において、メチル化に変動のあったプロモーター数は5w（部分肝切除時）で894個であり、そのうち高メチル化684個、低メチル化210個であった。一方、10w（剖検時）では変動数407個のうち、高メチル化で304個、低メチル化103個であった。同様に変動のあった遺伝子数では、5wでの921個のうち発現増加が646個、減少が275個、10wでは811個のうち増加が567個、減少が244個であった。各時点においてDNAメチレーションと遺伝子発現変動が共通していた遺伝子のリストを表1に示した。高メチル化-低発現、低メチル化-高発現というような典型的な関係性のあった遺伝子数は5wで20個、10wで7個であった。この結果は、プロモーターのDNAメチル化がいつも遺伝子発現制御に役割があるわけではないが
いことを示している。明確な DNA メチレーション状態の変動のある領域は散見されたが、特に明確な変動があったのは RT1-CE5 遺伝子のプロモーター領域であり、いずれの時点でも変動が認められた。遺伝子発現に関しても、RT1-CE5 の発現誘導がいずれのタイムポイントでも認められた。
Table 1. Comparison of DNA methylation between 30 mg/kg DEN treated and PB control groups for various genetic regions

<table>
<thead>
<tr>
<th>Region</th>
<th>5w hyper</th>
<th>5w hypo</th>
<th>11w hyper</th>
<th>11w hypo</th>
</tr>
</thead>
<tbody>
<tr>
<td>3' UTR</td>
<td>109</td>
<td>3</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>5' UTR</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>CDS-Exon</td>
<td>116</td>
<td>9</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>CDS-Exon, 3' UTR</td>
<td>23</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CDS-Exon, 5' UTR</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>CDS-Exon, Intron</td>
<td>645</td>
<td>28</td>
<td>63</td>
<td>93</td>
</tr>
<tr>
<td>CDS-Exon, Intron, 3' UTR</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CDS-Exon, Intron, 5' UTR</td>
<td>23</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Intergenic</td>
<td>15878</td>
<td>824</td>
<td>1135</td>
<td>2569</td>
</tr>
<tr>
<td>Intron</td>
<td>9877</td>
<td>403</td>
<td>683</td>
<td>1388</td>
</tr>
<tr>
<td>Intron, 3' UTR</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Intron, 5' UTR</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Upstream</td>
<td>1682</td>
<td>86</td>
<td>157</td>
<td>256</td>
</tr>
<tr>
<td>Sum of peak fluctuation</td>
<td>28422</td>
<td>1369</td>
<td>2080</td>
<td>4360</td>
</tr>
<tr>
<td>Total number of peak fluctuation</td>
<td>29791</td>
<td>6440</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図1A. DNAメチレーションに変動のあった染色体ごとの領域数

図1B. DNAメチレーションに変動のあった染色体ごとの領域比率
Scatter plot of DNA methylation and gene expression values obtained from MBD-seq or GeneChip for 5w and 10w. (A and B) Each dot represents average arbitrary DNA methylation values calculated using read number from 4500 bp upstream to 1125 bp downstream of transcription start site of each gene for PB-control group (horizontal axis) and 30 mg/kg of DEN group (vertical axis) on a log10 scale, and red large dots represent significantly different (Welch’s T-test, p<0.05) regions between two groups. Green dots represent the methylation values of RT1-CE5, which significantly differed from control values. (C and D) Each dot represents average normalized values of genes obtained from GeneChip analysis and 30 mg/kg of DEN group (vertical axis) on a log10 scale, and red large dots represent significantly different (Welch’s T-test, p<0.05) genes between two groups. Green dots represent values for RT1-CE5 probesets, which significantly differed from control values.
DEN暴露と免疫応答パスウェイの関連

30 mg/kg DEN処置によって影響を受ける遺伝子群に関連する機能を調べるために、Ingenuity Pathways Analysisを用いてカノニカルパスウェイ解析を行った。表2はPB処置群とDEN 30 mg/kg処置群との比較においてDNAメチレーション、遺伝子発現にそれぞれ変化があった遺伝子、およびそれらの共通遺伝子について関連が示唆された上位5個のパスウェイを示している。メチレーション変動遺伝子に関しては、5w時点において免疫応答関連であるcrosstalk between dendritic cells and natural killer cellsやOX40シグナリングパスウェイおよび発がん関連のPTENシグナリングパスウェイが示された。これらの免疫応答関連パスウェイには前項で述べたRTI-CE5遺伝子が含まれている。DNAメチレーションと遺伝子発現で共通した遺伝子については、10wの時点で同様のパスウェイが示された。すなわち、免疫応答関連遺伝子に関するDNAメチレーション状態は、それらの遺伝子発現の変動前に変化していたことが推察された。
表1A. 5wにおいて30 mg/kg DEN処置ラットにおいてDNAメチレーションと発現変動が共通した遺伝子リスト

<table>
<thead>
<tr>
<th>Probeset ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Methylation</th>
<th>Expression</th>
<th>Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>1367794_at</td>
<td>A2m</td>
<td>Alpha-2-macroglobulin</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1388810_at</td>
<td>Abce1</td>
<td>ATP-binding cassette, sub-family E (OABP), member 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1371230_x_at</td>
<td>Atplf1</td>
<td>ATPase inhibitory factor 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1368523_at</td>
<td>Cadps</td>
<td>Ca2+-dependent secretion activator</td>
<td>Inc.</td>
<td>Dec.</td>
<td></td>
</tr>
<tr>
<td>1371643_at</td>
<td>Cend1</td>
<td>Cyclin D1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1383075_at</td>
<td>Cend1</td>
<td>Cyclin D1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1378040_at</td>
<td>Chst14</td>
<td>Similar to carbohydrate sulfotransferase D4ST1 (Dermatan 4-sulfotransferase 1) (D4ST-1)</td>
<td>Dec.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1370864_at</td>
<td>Col1a1</td>
<td>Procollagen, type 1, alpha 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1388116_at</td>
<td>Col1a1</td>
<td>Procollagen, type 1, alpha 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1389274_at</td>
<td>Dcakd</td>
<td>Dephospho-CoA kinase domain containing</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1379480_at</td>
<td>Dgki</td>
<td>Nuclear factor of activated T-cells, cytoplasmic, Calcineurin-dependent 4</td>
<td>Dec.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1374527_at</td>
<td>Echdc2</td>
<td>Enoyl Coenzyme A hydratase domain containing 2 (predicted)</td>
<td>Inc.</td>
<td>Dec.</td>
<td></td>
</tr>
<tr>
<td>1387053_at</td>
<td>Fmo1</td>
<td>Flavin-containing monooxygenase 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1368117_at</td>
<td>Gphn</td>
<td>Gephyrin</td>
<td>Inc.</td>
<td>Dec.</td>
<td></td>
</tr>
<tr>
<td>1372125_at</td>
<td>Gpx7</td>
<td>Glutathione peroxidase 7 (predicted)</td>
<td>Dec.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1376892_at</td>
<td>Gria3</td>
<td>CDNA clone IMAGE:7313785</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1367900_at</td>
<td>Glyg1</td>
<td>Glycogenin 1</td>
<td>Inc.</td>
<td>Dec.</td>
<td></td>
</tr>
<tr>
<td>1368794_at</td>
<td>Haa0</td>
<td>3-hydroxyanthranilic acid 3,4-dioxygenase</td>
<td>Inc.</td>
<td>Dec.</td>
<td></td>
</tr>
<tr>
<td>1370871_at</td>
<td>Hnmpa3</td>
<td>Hypothetical gene supported by Y16641; Y16641 (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1386881_at</td>
<td>Igfbp3</td>
<td>Insulin-like growth factor binding protein 3</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1367921_at</td>
<td>Ilkap</td>
<td>Integrin-linked kinase-associated serine/threonine phosphatase 2C</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1387346_at</td>
<td>Itgb1</td>
<td>Integrin beta 1 (fibronectin receptor beta)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1376211_a_at</td>
<td>Kctd6</td>
<td>Potassium channel tetramerisation domain containing 6 (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1371350_at</td>
<td>Mat2a</td>
<td>Similar to S-adenosylmethionine synthetase isoform type-2 (Methionine adenosyltransferase 2) (AdoMet synthetase 2) (Methionine adenosyltransferase II) (MAT-II)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1368939_a_at</td>
<td>Ntrk3</td>
<td>Neurotrophic tyrosine kinase, receptor, type 3</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
</tbody>
</table>
表1A. 5wにおいて30 mg/kg DEN処置ラットにおいてDNAメチレーションと発現変動が共通した遺伝子リスト（続き）

<table>
<thead>
<tr>
<th>Probeset ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Methylation</th>
<th>Expression</th>
<th>Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>1373052_at</td>
<td>Pdc13</td>
<td>Transmembrane protein 33</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1386864_at</td>
<td>Pgam1</td>
<td>Phosphoglycerate mutase 1</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1373243_at</td>
<td>Pmvk</td>
<td>Phosphomevalonate kinase</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1373152_at</td>
<td>Prss23</td>
<td>Protease, serine, 23</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1383398_at</td>
<td>RGD15643</td>
<td>Similar to integrin alpha 8 (predicted)</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1390494_at</td>
<td>Rps24</td>
<td>Ribosomal protein S24</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1371209_at</td>
<td>RT1-CE5</td>
<td>RT1 class I, CE5</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1388255_x_at</td>
<td>RT1-CE5</td>
<td>RT1 class I, CE5</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1371210_s_at</td>
<td>RT1-CE5 / RT1-EC2</td>
<td>RT1 class Ib, locus Aw2</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1375652_at</td>
<td>Ssr3</td>
<td>Signal sequence receptor, gamma</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1389467_at</td>
<td>Tmem100</td>
<td>Similar to RIKEN cDNA 1810057C19</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1388103_at</td>
<td>Tmem37</td>
<td>Transmembrane protein 37</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1370785_s_at</td>
<td>Tomm20</td>
<td>Translocase of outer mitochondrial membrane 20 homolog (yeast)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1369970_at</td>
<td>Vamp8</td>
<td>Cat eye syndrome chromosome region, candidate 5 homolog (human) (predicted)</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1371842_at</td>
<td>Zmat2</td>
<td>Similar to zinc finger, matrin type 2</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1372288_at</td>
<td>Zmiz2</td>
<td>Similar to D11Bwg0280e protein</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1374670_at</td>
<td></td>
<td>Hypothetical protein LOC690617</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1378074_at</td>
<td></td>
<td>Transcribed locus</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1392480_at</td>
<td></td>
<td>Poly(A) binding protein, nuclear 1</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
</tbody>
</table>
表 1B. 10w において 30 mg/kg DEN 処置ラットにおいて DNA メチレーションと発現変動が共通した遺伝子リスト

<table>
<thead>
<tr>
<th>Probeset ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Methyl ation</th>
<th>Express ion</th>
<th>Matc hing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1387234_at</td>
<td>Azgp1</td>
<td>Alpha-2-glycoprotein 1, zinc</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1368146_at</td>
<td>Dusp1</td>
<td>Dual specificity phosphatase 1</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1388714_at</td>
<td>Ell</td>
<td>Elongation factor RNA polymerase II (predicted)</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1388223_at</td>
<td>Gnat3</td>
<td>Guanine nucleotide binding protein, alpha transducing 3</td>
<td>Inc.</td>
<td>Dec.</td>
<td>*</td>
</tr>
<tr>
<td>1373071_at</td>
<td>Lin37</td>
<td>Similar to RIKEN cDNA 1810054G18 (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1375857_at</td>
<td>Myof</td>
<td>Similar to Myoferlin (Fer-1-like protein 3) (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1371209_at</td>
<td>RT1-CE5</td>
<td>RT1 class I, CE5</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1388255_x_at</td>
<td>RT1-CE5</td>
<td>RT1 class I, CE5</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1371210_s_at</td>
<td>RT1-CE5/RT1-EC2</td>
<td>RT1 class Ib, locus Aw2</td>
<td>Dec.</td>
<td>Inc.</td>
<td>*</td>
</tr>
<tr>
<td>1392211_at</td>
<td>Sec24b</td>
<td>SEC24-related gene family, member B (S. cerevisiae) (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
<tr>
<td>1380131_at</td>
<td>Wdr37</td>
<td>WD repeat domain 37 (predicted)</td>
<td>Inc.</td>
<td>Inc.</td>
<td></td>
</tr>
</tbody>
</table>
表 2. 30 mg/kg DEN 処置ラットにおいて DNA メチレーションと発現変動が共通した遺伝子に関するカノニカルパスウェイ解析

<table>
<thead>
<tr>
<th>Gene list</th>
<th>5w Pathway</th>
<th>p-value</th>
<th>10w Pathway</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA methylation</td>
<td>Crosstalk between dendritic cells and natural killer cells</td>
<td>2.29E-05</td>
<td>FXR/RXR activation</td>
<td>9.55E-04</td>
</tr>
<tr>
<td></td>
<td>PI3K signaling in B lymphocytes</td>
<td>3.31E-04</td>
<td>PXR/RXR activation</td>
<td>5.89E-03</td>
</tr>
<tr>
<td></td>
<td>OX40 signaling pathway</td>
<td>1.07E-03</td>
<td>LPS/IL-1-mediated inhibition of RXR function</td>
<td>1.07E-02</td>
</tr>
<tr>
<td></td>
<td>PTEN signaling</td>
<td>1.26E-03</td>
<td>IGF-1 signaling</td>
<td>2.24E-02</td>
</tr>
<tr>
<td></td>
<td>April mediated signaling</td>
<td>2.24E-03</td>
<td>Telomere extension by telomerase</td>
<td>2.40E-02</td>
</tr>
<tr>
<td>Gene expression</td>
<td>RhoA signaling</td>
<td>6.17E-05</td>
<td>Complement system</td>
<td>1.48E-07</td>
</tr>
<tr>
<td></td>
<td>Axonal guidance signaling</td>
<td>1.51E-04</td>
<td>Acute phase response signaling</td>
<td>6.61E-04</td>
</tr>
<tr>
<td></td>
<td>Triacylglycerol biosynthesis</td>
<td>4.47E-04</td>
<td>Leukocyte extravasation signaling</td>
<td>2.75E-03</td>
</tr>
<tr>
<td></td>
<td>Ephrin receptor signaling</td>
<td>1.02E-03</td>
<td>Caveolar-mediated endocytosis signaling</td>
<td>3.72E-03</td>
</tr>
<tr>
<td></td>
<td>Ephrin B signaling</td>
<td>1.91E-03</td>
<td>Inhibition of matrix metalloproteases</td>
<td>3.72E-03</td>
</tr>
<tr>
<td>Intersecting between DNA methylation and gene expression</td>
<td>Caveolar-mediated endocytosis signaling</td>
<td>5.89E-04</td>
<td>Cytotoxic T lymphocyte-mediated apoptosis of target cells</td>
<td>7.76E-04</td>
</tr>
<tr>
<td></td>
<td>PTEN signaling</td>
<td>2.19E-03</td>
<td>Allograft rejection signaling</td>
<td>8.13E-04</td>
</tr>
<tr>
<td></td>
<td>Thyroid cancer signaling</td>
<td>3.55E-03</td>
<td>OX40 signaling pathway</td>
<td>8.71E-04</td>
</tr>
<tr>
<td></td>
<td>Hepatic fibrosis/hepatic stellate cell activation</td>
<td>3.55E-03</td>
<td>Cdc42 signaling</td>
<td>3.02E-03</td>
</tr>
<tr>
<td></td>
<td>Cdc42 Signaling</td>
<td>5.37E-03</td>
<td>Antigen presentation pathway</td>
<td>1.91E-02</td>
</tr>
</tbody>
</table>

DNA メチレーションと遺伝子発現で共通する変動と発がんの関係の可能性

30 mg/kg DEN 処置によって影響を受ける DNA メチレーションと遺伝子発現共通遺伝子（表 1A および B）についてその性質を確認するために、二段階発がん試験ラット肝臓における遺伝子発現の階層的クラスタリング解析を行った。図 2A および B で示すように、これらの遺伝子は低用量、高用量の DEN 処置においてともにいずれる時点においても類似した発現状況であった。これらの遺伝子の中で、特に RT1-CE5 と Gria3 遺伝子は特異的な誘導が認められた。さらにこれらの遺伝子について、様々な肝毒性物質投与ラット肝臓での反応を調べる
ために、公的トキシコゲノミックスデータベース TG-GATEs から取得した遺伝子発現データについても階層的クラスタリング解析を実施した（図 2C）。TG-GATEs からは、表 3 に示す化合物および投与量のデータを取得した。この解析では早いタイミングで反応する遺伝子として 5w 時点で共通する遺伝子（表 1A）を用いた。その結果、肝発がん物質のクラスターが形成され、それらは DEN 处置による遺伝子発現変動と類似したパターンを示すことが明らかになった。特に、このクラスターには異なる発がんメカニズムの発がん物質が含まれていた。例えば、2-acetamidefluorene と TAA はそれぞれ遺伝毒性発がん物質および非遺伝毒性発がん物質であるが、遺伝毒性発がん物質の DEN と同様の遺伝子発現パターンであった。Coumarin、PB、PPARα アゴニストといっかの遺伝毒性発がん物質は、そのような変動を示していなかった。これらの結果は、DEN 处置によって前がん病変が惹起された肝臓において DNA メチレーションの変化を伴って発現変動するこれらの遺伝子が、肝発がんポテンシャルの指標の一つになりうる可能性を示唆している。
Cross-sectional gene expression analysis for common genes with altered DNA methylation and expression. Heat map shows mean values of fold change to the corresponding control groups (red: 3-fold higher, blue: -3-fold lower expression). UPGMA (unweighted average) was applied to clustering. Intersecting genes listed in Table 1 between DNA methylation and expression were used. (A and B) Hierarchical clustering analysis in 2-stage carcinogenesis study at 5w and 10w. Intersecting genes at each time point were used for time point analysis. Cosine correlation as a measure of similarity and mean as an ordering function were applied. (C) Hierarchical clustering analysis for hepatic expression data obtained from TG-GATEs regarding the intersecting genes in 5w listed in Table 1 were used. Data for 125 compounds and each dose level are shown in Supplementary Table. Black bar: DEN 10 mg/kg for 4 weeks, 30 mg/kg for 2 weeks. Red bar: MHC gene-reactive genotoxic, non-genotoxic carcinogens, potential carcinogens. From left, CCL4, ET, TAA, MP, LS, TMX, AJM, DTL, CSP, CBP, AAF. Blue bar: MHC gene-non reactive non-genotoxic carcinogens CMA, PB, Rif, CBZ, HCB, PHE, SS, EE. Green bar: peroxisome proliferators, CFB, BBr, WY, GFZ, FFB. Purple bar: non carcinogens, except for above-mentioned compounds.
図2C. 共通変動遺伝子に関する階層的クラスタリング解析（続き）

C}

DEN 10 mg/kg for 4 weeks, DEN 30 mg/kg for 2 weeks
MHC gene-reactive genotoxic, non-genotoxic, potential carcinogens
MHC gene-non reactive non-genotoxic carcinogens
Peroxisome proliferators
Non carcinogens

Fold change
1/3

DEN 10 mg/kg for 4 weeks, DEN 30 mg/kg for 2 weeks
MHC gene-reactive genotoxic, non-genotoxic, potential carcinogens
MHC gene-non reactive non-genotoxic carcinogens
Peroxisome proliferators
Non carcinogens
表 3. 網羅的遺伝子発現解析に用いた化合物名と投与量

<table>
<thead>
<tr>
<th>Abbreviated name</th>
<th>Compound name</th>
<th>Dose level (mg/kg)</th>
<th>Abbreviated name</th>
<th>Compound name</th>
<th>Dose level (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAP</td>
<td>acetaminophen</td>
<td>1000</td>
<td>TRZ</td>
<td>thioridazine</td>
<td>100</td>
</tr>
<tr>
<td>INAH</td>
<td>isoniazid</td>
<td>200</td>
<td>ADP</td>
<td>adapin</td>
<td>100</td>
</tr>
<tr>
<td>CCL4</td>
<td>carbon tetrachloride</td>
<td>300</td>
<td>LBT</td>
<td>labetalol</td>
<td>450</td>
</tr>
<tr>
<td>PB</td>
<td>phenobarbital</td>
<td>100</td>
<td>MTS</td>
<td>methyltestosterone</td>
<td>300</td>
</tr>
<tr>
<td>VPA</td>
<td>valproic acid</td>
<td>450</td>
<td>GBC</td>
<td>glibenclamide</td>
<td>1000</td>
</tr>
<tr>
<td>CFB</td>
<td>clofibrate</td>
<td>300</td>
<td>GF</td>
<td>griseofulvin</td>
<td>1000</td>
</tr>
<tr>
<td>RIF</td>
<td>rifampicin</td>
<td>200</td>
<td>FT</td>
<td>flutamide</td>
<td>150</td>
</tr>
<tr>
<td>ANIT</td>
<td>naphthyl isothiocyanate</td>
<td>15</td>
<td>PH</td>
<td>perhexiline</td>
<td>150</td>
</tr>
<tr>
<td>AA</td>
<td>allyl alcohol</td>
<td>30</td>
<td>AZP</td>
<td>azathioprine</td>
<td>30</td>
</tr>
<tr>
<td>PhB</td>
<td>phenylbutazone</td>
<td>200</td>
<td>KC</td>
<td>ketoconazole</td>
<td>100</td>
</tr>
<tr>
<td>OPZ</td>
<td>omeprazole</td>
<td>1000</td>
<td>TC</td>
<td>tetracycline</td>
<td>1000</td>
</tr>
<tr>
<td>ET</td>
<td>ethionine</td>
<td>250</td>
<td>LS</td>
<td>lomustine</td>
<td>6</td>
</tr>
<tr>
<td>ASA</td>
<td>aspirin</td>
<td>450</td>
<td>CPX</td>
<td>ciprofloxacin</td>
<td>1000</td>
</tr>
<tr>
<td>CPZ</td>
<td>chlorpromazine</td>
<td>45</td>
<td>PML</td>
<td>pemoline</td>
<td>75</td>
</tr>
<tr>
<td>TAA</td>
<td>thioacetamide</td>
<td>45</td>
<td>CMN</td>
<td>chlormezanone</td>
<td>500</td>
</tr>
<tr>
<td>CBZ</td>
<td>carbamazepine</td>
<td>300</td>
<td>MFM</td>
<td>metformin</td>
<td>1000</td>
</tr>
<tr>
<td>DFNa</td>
<td>diclofenac</td>
<td>10</td>
<td>TMX</td>
<td>tamoxifen</td>
<td>60</td>
</tr>
<tr>
<td>NFT</td>
<td>nitrofurantoin</td>
<td>100</td>
<td>EE</td>
<td>ethinylestradiol</td>
<td>10</td>
</tr>
<tr>
<td>BBr</td>
<td>benzbromarone</td>
<td>200</td>
<td>MDP</td>
<td>methylidopa</td>
<td>600</td>
</tr>
<tr>
<td>HCB</td>
<td>hexachlorobenzene</td>
<td>300</td>
<td>MTZ</td>
<td>methimazole</td>
<td>100</td>
</tr>
<tr>
<td>DZP</td>
<td>diazepam</td>
<td>250</td>
<td>VA</td>
<td>vitamin A</td>
<td>100</td>
</tr>
<tr>
<td>CPA</td>
<td>cyclophosphamide</td>
<td>15</td>
<td>TAC</td>
<td>tacrine</td>
<td>30</td>
</tr>
<tr>
<td>MP</td>
<td>methapyrilene</td>
<td>100</td>
<td>MXS</td>
<td>moxisylyte</td>
<td>500</td>
</tr>
<tr>
<td>PHE</td>
<td>phenytoin</td>
<td>600</td>
<td>IPA</td>
<td>iproniazid</td>
<td>60</td>
</tr>
<tr>
<td>CMA</td>
<td>coumarin</td>
<td>150</td>
<td>CMP</td>
<td>chloramphenicol</td>
<td>1000</td>
</tr>
<tr>
<td>APL</td>
<td>allopurinol</td>
<td>150</td>
<td>NFZ</td>
<td>nitrofurazone</td>
<td>100</td>
</tr>
<tr>
<td>PTU</td>
<td>propylthiouracil</td>
<td>100</td>
<td>IMI</td>
<td>imipramine</td>
<td>100</td>
</tr>
<tr>
<td>WY</td>
<td>WY-14643</td>
<td>100</td>
<td>AMT</td>
<td>amitriptyline</td>
<td>150</td>
</tr>
<tr>
<td>GFZ</td>
<td>gemfibrozil</td>
<td>300</td>
<td>HYZ</td>
<td>hydroxyzine</td>
<td>100</td>
</tr>
<tr>
<td>BBZ</td>
<td>bromobenzene</td>
<td>300</td>
<td>IBUG</td>
<td>ibuprofen</td>
<td>200</td>
</tr>
<tr>
<td>AM</td>
<td>amiodarone</td>
<td>200</td>
<td>QND</td>
<td>quinidine</td>
<td>200</td>
</tr>
<tr>
<td>SS</td>
<td>sulfasalazine</td>
<td>1000</td>
<td>FUR</td>
<td>furosemide</td>
<td>300</td>
</tr>
<tr>
<td>CIM</td>
<td>cimetidine</td>
<td>1000</td>
<td>FFB</td>
<td>fenofibrate</td>
<td>1000</td>
</tr>
<tr>
<td>HPL</td>
<td>haloperidol</td>
<td>30</td>
<td>CPP</td>
<td>chloropropamide</td>
<td>300</td>
</tr>
<tr>
<td>FP</td>
<td>fluphenazine</td>
<td>20</td>
<td>NIC</td>
<td>nicotinic acid</td>
<td>1000</td>
</tr>
<tr>
<td>Abbreviated name</td>
<td>Compound name</td>
<td>Dose level (mg/kg)</td>
<td>Abbreviated name</td>
<td>Compound name</td>
<td>Dose level (mg/kg)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>EME</td>
<td>erythromycin ethylsuccinate</td>
<td>1000</td>
<td>CLM</td>
<td>chlormadinone</td>
<td>1000</td>
</tr>
<tr>
<td>EBU</td>
<td>ethambutol</td>
<td>1000</td>
<td>DNZ</td>
<td>danazol</td>
<td>1000</td>
</tr>
<tr>
<td>MEF</td>
<td>mefenamic acid</td>
<td>300</td>
<td>BDZ</td>
<td>bendazac</td>
<td>300</td>
</tr>
<tr>
<td>FAM</td>
<td>famotidine</td>
<td>1000</td>
<td>BZD</td>
<td>benziodarone</td>
<td>300</td>
</tr>
<tr>
<td>RAN</td>
<td>ranitidine</td>
<td>1000</td>
<td>ETP</td>
<td>etoposide</td>
<td>30</td>
</tr>
<tr>
<td>CHL</td>
<td>chlorpheniramine</td>
<td>30</td>
<td>CSP</td>
<td>cisplatin</td>
<td>1</td>
</tr>
<tr>
<td>NIF</td>
<td>nifedipine</td>
<td>1000</td>
<td>CBP</td>
<td>carboplatin</td>
<td>10</td>
</tr>
<tr>
<td>DIL</td>
<td>diltiazem</td>
<td>800</td>
<td>BEA</td>
<td>bromoethylamine</td>
<td>20</td>
</tr>
<tr>
<td>TAN</td>
<td>tannic acid</td>
<td>1000</td>
<td>NIM</td>
<td>nimesulide</td>
<td>100</td>
</tr>
<tr>
<td>CAP</td>
<td>captopril</td>
<td>1000</td>
<td>ETN</td>
<td>ethanol</td>
<td>4000</td>
</tr>
<tr>
<td>ENA</td>
<td>enalapril</td>
<td>600</td>
<td>PCT</td>
<td>phenacetin</td>
<td>1000</td>
</tr>
<tr>
<td>TEO</td>
<td>theophylline</td>
<td>200</td>
<td>BCT</td>
<td>bucetin</td>
<td>1000</td>
</tr>
<tr>
<td>CAF</td>
<td>caffeine</td>
<td>100</td>
<td>NPAAG</td>
<td>phenylalanilic acid</td>
<td>1000</td>
</tr>
<tr>
<td>PAP</td>
<td>papaverine</td>
<td>400</td>
<td>CLT</td>
<td>cephalothin</td>
<td>2000</td>
</tr>
<tr>
<td>PEN</td>
<td>penicillamine</td>
<td>1000</td>
<td>CSA</td>
<td>cyclosporine A</td>
<td>100</td>
</tr>
<tr>
<td>SUL</td>
<td>sulindac</td>
<td>50</td>
<td>PAN</td>
<td>puromycin</td>
<td>40</td>
</tr>
<tr>
<td>TRI</td>
<td>triamterene</td>
<td>150</td>
<td>AAF</td>
<td>acamidofluorene</td>
<td>300</td>
</tr>
<tr>
<td>DIS</td>
<td>disopyramide</td>
<td>400</td>
<td>DEN</td>
<td>nitrosodiethylamine</td>
<td>10 or 30</td>
</tr>
<tr>
<td>MEX</td>
<td>mexiletine</td>
<td>400</td>
<td>TCP</td>
<td>ticlopidine</td>
<td>300</td>
</tr>
<tr>
<td>TIO</td>
<td>tiopronin</td>
<td>1000</td>
<td>GMC</td>
<td>gentamicin</td>
<td>100</td>
</tr>
<tr>
<td>ACZ</td>
<td>acetzolamide</td>
<td>600</td>
<td>VMC</td>
<td>vancomycin</td>
<td>200</td>
</tr>
<tr>
<td>DSF</td>
<td>disulfiram</td>
<td>600</td>
<td>DOX</td>
<td>doxorubicin</td>
<td>1</td>
</tr>
<tr>
<td>PMZ</td>
<td>promethazine</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL</td>
<td>colchicine</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBL</td>
<td>tolbutamade</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td>sulpiride</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACA</td>
<td>acarbose</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td>simvastatin</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJM</td>
<td>ajmaline</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTL</td>
<td>dantrolene</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZM</td>
<td>triazolam</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>clomipramine</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMD</td>
<td>trimethadione</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBF</td>
<td>terbinafine</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GST-P 陽性巣における RT1-CE5 タンパク質の発現

図 1 で示すように、低メチル化と遺伝子発現誘導という明確な関係が見られたことに加え、発がんポテンシャルのある様々な化合物投与によって肝臓での発現誘導が見られた（図 2）。RT1-CE5 遺伝子について注目し、肝臓での発現分布を調べるために、免疫組織化学的検査を行った。図 3 に、RT1-CE5 のホモログである RT1-Aw2 に対する抗体を用いた 30 mg/kg DEN 処置ラット肝臓の染色結果を示した。この抗体で認識されるタンパク質は、肝臓の小葉中心性に主に発現が認められた。この発現傾向は PB のみの処置群でも認められたが、DEN 処置群の肝臓では GST-P と RT1-Aw2 の両方が発現しているような foci もいくつかの領域で認められた。

図 3. 30 mg/kg DEN 処置群肝臓における GST-P および RT1-Aw2 の免疫組織化学的検査

Immunohistochemical analysis of liver treated with 30 mg/kg of DEN regarding GST-P (a) and RT1-Aw2 (b) using serial sections. Bar shows magnification scale (200 μm). In both figures, black arrows represent GST-P-positive foci with RT1-Aw2 expression while open arrows represent RT1-Aw2-positive regions without GST-P expression.

RT1-CE5 遺伝子のメチレーション状況

RT1-CE5 遺伝子プロモーター領域において認められた DNA メチレーションの低下について、他の非遺伝毒性発がん物質や非発がん物質投与群での状況を調べた。この解析では、
MeDIP-seq のリード数を既知遺伝子配列にマッピングし、その大きさをピークとして示した（図 4）。その結果、前がん病変を顕著に惹起した 30 mg/kg DEN 処置群においてエクソン 1 および 2 周辺に低メチル化が認められたが、TAA や MP といった非遺伝毒性発がん物質や非発がん物質の APAP においてはそのような明確な傾向は認められなかった。

図 4. RT1-CE5 遺伝子周辺の DNA メチレーション状態

DNA methylation profiles around RT1-CE5 coding region in livers treated with each compound. Each line indicates arbitrary DNA methylation values calculated from summed mapped tags of 5 animals. Arrow indicates specifically hypomethylated regions in 30 mg/kg DEN group.
3.3 考察

本章では、化学物質投与による肝発がん初期に起こる反応を調べるために、二段階発がんモデルラット肝臓を用いた DNA メチレーショーンおよび遺伝子発現の網羅的解析を行った。この解析では、前がん病変である変異細胞巣を有する肝臓を解析に供し、発がん初期の特徴的な変化を捉えることができた。

基礎的な解析においては、DEN 30 mg/kg 处置によって変動が見られるゲノム全体においての変化を調べた。その結果、変動数としてはプロモーション初期（5w）の方が後期（10w）よりも多かった。特にプロモーター領域やエクソン・インتروン領域での変動が多いことから、その領域で何らかの遺伝子発現制御げなされている可能性が考えられた。また、染色体においては、各染色体で同程度の比率で変動が認められたことより、発がん初期の反応として起こる DNA メチレーショーンの変動は特定の染色体に偏ったものではないことが明らかとなった。また、プロモーション初期である 5w では hypomethylation が亢進しプロモーション後期である 10w では hypermethylation が亢進していた。肝障害における hypermethylation は肝臓線維化の進行と関連がある所見であることが報告されている (73)。Komatsu らは、線維化進行の過程において肝臓の DNA メチレーショーンがあることを報告している (74)。第 2 章の表 7 に示すように、DEN によるイニシエーション処置は線維化を惹起したことから、プロモーション初期に見られた DNA メチレーショーン亢進は既報と一致する結果であると考えられた。一方、Eden らは腫瘍組織においてはゲノムワイドな hypomethylation があると報告している (18)。発がんの状態がより進んでいると考えられる 10w において hypomethylation となっていたから、プロモーションの過程において肝臓 DNA では hypermethylation から hypomethylation への転換が起こっていたことが推察された。以上の結果より、本研究で使用した 30 mg/kg DEN をイニシエーション処置に用いた二段階発がんモデルの肝臓は DNA メチレーショーン状態として発がんの特徴を有しているものと考えられた。

この研究においては、30 mg/kg DEN によるイニシエーション処置を行ったラット肝臓において、DNA メチレーショーンと遺伝子発現に共通して変動が見られた遺伝子が発がんやそれに関連するポテシシャルを示すものと関連があることを示唆する結果が得られた。まず初めに、共通して変動が見られた遺伝子は二段階発がん試験肝サンプルで明確な変動プロファイルを持っているが、さらにこの遺伝子群は様々な発がん物質を投与したラット肝臓でも特徴的なプロ
ロファイルのクラスターを形成した。このクラスターに含まれる物質には、遺伝毒性物質である 2-acetamidofluoren (32), carboplatin (75)および cisplatin (76), 非遺伝毒性で酸化ストレスを誘発する TAA (77)や MP (44), アルキル化剤でニトロソウレア類に含まれる lomustine (78), Ames 陽性の dantrolene (79), メチル基の欠乏をもたらす ethionine (80), 抗エストロゲン薬である tamoxifen (81), 生体内でニトロソ化合物に変換しうる ajmaline (82)が含まれていた。これらの化合物は必ずしも肝発がん物質として認識されているわけではないが、それぞれ異なるメカニズムによる発がんポテンシャルを持これらの化合物が同様の遺伝子発現プロファイルをもってクラスターを形成したということは、DEN 30 mg/kg によるイニシエーショニング処置ラット肝臓において DNA メチレーションおよび発現変動が共通した遺伝子群は、発がんの機序において遺伝毒性に限定しない何らかの共通するメカニズムとの関連を示唆するものであると考えられた。ただし、様々な肝発がん物質、遺伝毒性物質、酸化ストレス惹起型非遺伝毒性発がん物質の中で、遺伝毒性と酸化ストレス誘導型の物質はクラスターを形成したものの、PB や carbamazepine, phenytoin, rifampicin, hexachlorobenzen や sulfasalazine といった酵素誘導型の化学物質や、clofibrate, Wy-14643, gemfibrozil や fenofibrate といったペルオキシソーム増生剤、ホルモン調節タイプの ethinylestradiol はそれらのクラスターには含まれなかった。従って、クラスターに含まれたこれらの物質は、遺伝毒性物質や第二章の解析で DNA ダメージが示唆された物質に類するものであることが考えられた。これらの化合物の特徴を踏まえると、これらの遺伝子の発現変動は肝細胞における DNA ダメージに起因する可能性が考えられた。

変動遺伝子に関するパスウェイ解析においては、DNA メチレーションと発現量に共通して変動が認められた遺伝子群は発がんに関連する PTEN シグナル、cytotoxic T lymphocyte-mediated apoptosis of target cells, allograft rejection signaling, OX40 signaling や antigen presentation といった T 細胞関連免疫反応との関連があることが示された。近年、DEN 投与によって誘発される肝発がんにおいては PTEN シグナルの関与があることが報告されており (83), この結果は生物学的に関連があると考えられた。MHC class I b 遺伝子である RT1-CE5 は T 細胞による免疫反応において抗原提示に関与するが、この遺伝子は変異細胞巣がある肝臓で発現増加が認められていました。さらに、様々な肝発がん物質あるいはそのポテンシャルのある物質を投与したラット肝臓でも顕著な発現誘導が認められた。特に遺伝毒性物質や酸化ストレスを誘発する物質がこのクラスターを形成するのに寄与していることが示唆される。
ストレス誘導化合物でその反応は明確であった。この RT1-CE5 遺伝子のプロモーター領域は DEN 処置ラット肝臓で有意に低メチル化状態であった（図 1A および B）。ヒト肝がん由来細胞である HepG2 における実験において、DNA メチル化を阻害する 5-aza-2'-deoxycytidine の暴露によって、RT1-CE5 のホモログである HLA-B 遺伝子の発現誘導が惹起されるという結果が報告されている（Gene Expression Omnibus Link）。この結果と本研究における実験結果を踏まえ、RT1-CE5 遺伝子はプロモーターの低メチル化状態によって発現が増加するエピジェネティックな修飾による制御を受ける可能性が考えられた。
図 4. HepG2 での 5-aza-2’-deoxycytidin 処置における HLA-B 遺伝子の発現変動

これらの結果から、T 細胞が介する免疫応答が、エピジェネティックな変動を通じて肝発がんの初期反応として関わっている可能性が考えられた。MHC class I 分子によって抗原を提示している腫瘍細胞はその細胞を除去するような免疫応答を引き起こすことが知られている (84)。この腫瘍免疫による認識から逃れた細胞が前がん病変を形成するのかかもしれない。一つの可能性として、DEN よのような発がん物質あるいはそのポテンシャルのある物質を投与した場合、RT1-CE5 遺伝子プロモーターの低メチル化が惹起され、結果として DNA ダメージに
対する反応として恒常的に RT1-CE5 を発現する状態にシフトする機構があることが推察された。RT1-CE5 タンパクと前がん病変マーカータンパクである GST-P が DEN 处置ラット肝臓で同じ領域で発現している箇所が散在しているという結果は、RT1-CE5 の機能と前がん初期の反応との関連が考えられるが、この MHC class I 分子の発現変動によって起こる結果を明らかにするには更なる検討が必要と考えられた。

DNA メチレーションと発現変動が共通する遺伝子に関して DNA ダメージとの関連の示唆について前段で述べたが、仮に DNA ダメージが異常タンパク質合成につながるとすれば、発がん初期に起こる変異細胞の除去を担う腫瘍免疫機能と RT1-CE5 誘導は矛盾しないように思われる。さらに、この腫瘍免疫は発がんにおいてよく知られたメカニズムであるが、化学物質による発がんや DNA ダメージなど関連する反応においてエピジェネティックなイベントが発がん初期に関与するという報告は多くない (73, 74, 85)。しかし、図 4 で示したように、この遺伝子周辺に生じた DNA メチレーションの変化は前がん病変発現が顕著であった30 mg/kg DEN 処置群でのみ認められ、他の群では明確な傾向がなかったことから、高用量の遺伝毒性物質の暴露によって DNA に多くのダメージが蓄積したことと関連があることを示唆する結果であると考えられた。

従来の網羅的遺伝子発現プロファイルを用いたトキシコゲノミクス予測モデルとは対照的に、本研究では発がんの反応において明確に反応する遺伝子について DNA メチレーションプロファイルを組み合わせて探索した。この併用アプローチは、従来の方法とは異なる特定の遺伝子に焦点を当て、その結果他の多くの顕著な変化の中で特定の反応に注目することができた。この手法は、発がんに限らず様々な生体反応における研究に適用できると考えられた。

本章の結論として、ラットを用いた二段階肝発がん試験において、発がん物質処置後に起こる初期段階のエピジェネティックな変動がプロモーション期間中に認められた。前がん病変のある肝臓に関して実施したパスウェイ解析からは、DNA メチレーションと発現に共通した変動が見られる遺伝子が、PTEN シグナルや免疫反応に関連するものであることが示唆された。さらにこれらの遺伝子のうち、抗原提示に関与する MHC class Ib 遺伝子の RT1-CE5 が 30 mg/kg DEN 处置を行った肝臓で低メチル化状態となっており、その肝臓において前がん病変マーカータンパクである GST-P と同じ領域での発現も認められた。この遺伝子の発現制御
メカニズムの詳細は十分に明らかにされていないが、本研究から示された知見からは発がんとの何らかの関連が想定された。また、これらの結果はDNAメチレーションパターンと遺伝子発現プロファイルが化学発がんにおける初期マーカーの候補となる可能性を示唆し、開発段階にある医薬品候補化合物の発がんポテンシャルを評価する指標となる可能性も示された。
3.4 実験方法

動物および処置

ラットへの処置、組織採取方法および肝臓での前がん病変の発生頻度などは、第2章での研究結果を示した。簡単には、Crj:CD(SD)ラットに対し、3あるいは30 mg/kgのDENを経口投与した。イニシエーション処置期間としては、動物の体重減少を考慮し、3mg/kgは2週間、30mg/kgは1週間とした。イニシエーション期の後、500ppmのPBを含む飲水を1週間与えた。その後すべての動物において部分肝切除を施し、残りの5週間について同様にPBを含む飲水を自由に与えて飼育した。この後、ラットは安楽死させ、部分肝切除時の肝臓と最終剖検時に摘出した肝臓をそれぞれマイクロアレイによる遺伝子発現解析、DNAメチレーショ

免疫組織化学的検査

以下の操作は全て室温で行った。ホルマリン固定パラフィン包埋肝臓切片をスライドグラスに載せ、0.3％の過酸化水素-TBS溶液で15分間処理した。スライドはGST-P陽性巣の解析には1000倍希釈した抗GST-P抗体で60分間インキュベートし、GST-PとRT1-Aw2の共発現領域を解析するためには100倍希釈した抗RT1-Aw2抗体を用いた。インキュベーション後には、スライドをセイヨウサピックスキシンダーゼ標識二次抗体EnVision+(Dako North America Inc.)と3,3’-diaminobenzidine（武藤化学株式会社）を用いて発色させた。

MeDIP-sequence

肝臓のゲノムDNAは各群5匹ずつQIAamp®DNAMiniKit（株式会社キアゲン）を用いて
添付の説明書に従って抽出した。アガロース電気泳動を行って抽出した DNA の質を確認した後、DNA はソニケーションによって 50 から 500-bp 程度の大きさになるようにランダムに断片化した。断片化した DNA は MethylMiner Methylated DNA Enrichment Kit (Life Technologies) を用いてメチル化 DNA の濃縮を行った。この操作において、2000 mM NaCl を含む High-Slat Elution Buffer を溶出しに使用した。続いて SOLiD Fragment Library Construction Kit (Life Technologies) を用いてスタンダードフラグメントライブラリを構築した。各断片の末端にアダプターをライゲートした後、ニックトランスレーション、PCR 増幅、ビーズアタッチメントおよびエマルジョン PCR の前に DNA ライブラリはインサートサイズおよそ 250 bp を SOLiD Library Size Selection Kit (Life Technologies) を用いて選別した。得られたタグ配列は、既知のラットゲノム配列 (NCBI Rn4) に BioScope 1.3.1 (Life Technologies) を用いてマッピングした。タグはプロモーター領域について解析しやすい任意のカウンターにのために次に示す数式でタグカウンターとして変換した (DNA methylation state: normalized values = (number of sequences read from 4500 bp upstream to 1125 bp downstream of transcription start site of each gene) × 50,000,000/total coverage number)。遺伝子発現データおよび DNA メチレーションデータに関するスキャッタープロットは、TIBCO Spotfire (TIBCO® Software Inc.) を用いて作成した。ゲノム全体の解析において、Avadis NGS version 1.4.5（Strand Life Sciences®）を使用し、ChIP 解析用ピーク検出アルゴリズムを用いて、有意に変動のあったタグ数を次の設定をもとに測定した。Detecting condition: algorithm: enrichment peak detection, enrichment factor: 5, Window size (bp): 100, Minimum reads in window = 10, Window slide size (bp): 50, Minimum region size (bp): 150, Minimum reads in region = 15, Upstream padding distance for genes: 5000。

マイクロアレイ解析

RNAlater（Life Technologies）で保存していた肝臓サンプルは QIAzol Lysis Reagent with TissueLyser (株式会社キアゲン) を用いてホモジネットを調製した。トータル RNA は RNeasy® Mini Kit（株式会社キアゲン）を用いて抽出した。抽出した RNA はアガロース電気泳動で質を確認し、NanoDrop ND1000 spectrophotometer（Labtech International）を用いて濃度を測定した。マイクロアレイ解析は各群 4~5 匹の動物について行い、およそ 30000 プローブセットを搭載した GeneChip® Rat 230 2.0 probe arrays (Affymetrix) を使用して遺伝子発現データを取得
した。これらの手順は既報にあるようにメーカーの説明書に従って行った (10)。得られたイメージファイルは Affymetrix data suite system, Microarray Suite 5.0（MAS 5.0）を用いて解析した。得られたシグナル値は各チップの平均値で標準化し、その値を統計解析に用いた。

公共データ取得

同定した遺伝子セットの特徴を解析するために、様々な肝毒性物質を4週間投与したラット肝臓の遺伝子発現データを Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system (TG-GATEs) (http://toxico.nibio.go.jp/english/)から取得して使用した。30 mg/kg DEN の4週間投与では動物の死亡によりデータが存在しないため、DEN については30 mg/kg の2週間投与および10 mg/kg の4週間投与についてデータを取得した。化合物の略称と用量については表3に示した。DNA メチレーション阻害剤である 5-aza-2'-deoxycytidine を暴露した HepG2 細胞 の遺伝子発現データは、Gene Expression Omnibus link より取得した。

統計解析

30 mg/kg DEN 処置によって有意に変動が認められた遺伝子を同定するために、DNA メチレーションと遺伝子発現データについて統計的に解析した。標準化した値を用いて、イニシエーター処置群と PB のみ投与群との間で Welch’s T-test (p<0.05)によって有意に変動が認められた遺伝子を同定した。TG-GATEs より取得した DNA メチレーション-遺伝子発現共通変動遺伝子について TIBCO® Spotfire® 3.3.1 を用いて対照群との fold change の値についての階層的クラスタリングを実施した。

Ingenuity Pathways Analysis (IPA)を用いた In silico パスウェイ解析

発現量、DNA メチレーションに変動が認められた遺伝子セットについてそれぞれ IPA (Ingenuity® Systems Inc.) を用いたパスウェイ解析を実施した。変動が認められた遺伝子について、生物学的にどのような機能との関連性を予測するカノニカルパスウェイ解析に供した。片側フィッシャー正確確率検定により各パスウェイに対して確率の p 値を計算し、p<0.05 の場合に有意な相関があるとした。
第四章　総括

4.1 要約

本研究は、ラット二段階発がん試験における肝臓の網羅的遺伝子発現解析および DNA メチレーション解析の中で、非遺伝毒性発がんにおけるイニシエーションポテンシャルの検出とそのメカニズムの考察、さらに遺伝子発現データと遺伝子プロモーター領域の DNA メチレーションの状態を総合的に解析することにより、肝発がんの初期の反応を捉えた。以下にその研究成果を要約する。

第 2 章には、非遺伝毒性発がん物質である TAA と MP、遺伝毒性発がん物質の DEN、非発がん物質である APAP をそれぞれイニシエーション処置に用いた二段階発がん試験の結果と、その肝臓における遺伝子発現解析の結果について述べた。本検討の結果から、非遺伝毒性発がん物質においても反復投与による継続的な暴露が肝細胞のイニシエーションを惹起する可能性を見出した。その背景において、イニシエーション処置に用いた各物質が酸化ストレスに関連する遺伝子の発現変動を惹起していたのに対し、APAP 以外の物質は DNA ダメージに関連する遺伝子の発現変動を惹起していた。すなわち、TAA や MP といった非遺伝毒性発がん物質は、その暴露によって生じる酸化ストレスが DNA ダメージをも惹起しうる可能性が考えられた。この研究においては、MP 処置では明確な前がん病変の誘発には至らなかったことから、非遺伝毒性発がん物質によるイニシエーション作用は遺伝毒性物質に比べ弱く、持続的な DNA ダメージがその誘発には必要であることが推察された。本研究で取り入れた反復投与によるイニシエーション処置は、従来の二段階発がんモデルとは異なる方法であったが、弱い DNA ダメージ作用を持つ物質のイニシエーションポテンシャルを検出するために、有用な方法であることが考えられた。

第 3 章には、遺伝毒性発がん物質 DEN によるイニシエーション処置によって誘発した前がん病変を伴う肝臓を用いて、網羅的遺伝子発現解析および DNA メチレーション解析の結果を述べた。DEN 処置群では、遺伝子発現および DNA メチレーションに共通する遺伝子が、PTEN シグナルや免疫反応、特に抗原提示に関わるものであることがバスウェイ解析の結果から明らかとなった。さらに、この共通遺伝子群について様々な肝毒性物質投与ラット肝臓で
の遺伝子発現変動プロファイルを調べたところ、遺伝毒性、非遺伝毒性それぞれの発がんポテンシャルを有する化合物においても類似した変動が認められた。このことから、これらの遺伝子が発がんポテンシャルに関連する部分があることが考えられた。また、この変動遺伝子のうち、有意な DNA メチレーションの低下および発現上昇が認められた RT1-CE5 は抗原提示反応に関わる分子の遺伝子であるが、この遺伝子産物が前がん病変と同じ領域で発現している部位が存在したことより、発がん初期における反応であることを示唆する結果であることを示した。

本研究でとったアプローチでは、顕著な遺伝子発現の変動に DNA メチレーションの情報を加えることで、従来のトキシコゲノミクスアプローチ単独では焦点が当たらなかった反応についても注目することができると考えられた。したがって、多くの研究がなされてきたトキシコゲノミクスアプローチに加え、遺伝子発現の制御に関与するエピジェネティックな情報を加味することで、発がんに限らず様々な毒性反応検出への応用が期待される。

4.2 薬剤が生体に及ぼす作用の評価におけるオミクス技術応用について

オミクスとは、生体内の分子あるいは反応等、全体の変化を網羅的に調べる学問領域である。医薬品の開発においては、特に転写産物を網羅的に評価するトランスクリプトミクスが特に用いられてきた。特に毒性発現における網羅的遺伝子発現解析は、トキシコゲノミクス（トランスクリプトミクス）と呼ばれている。DNA マイクロアレイの開発が進んだ 2000 年台前半から、トキシコゲノミクスは注目を集めてきた。従来の評価方法（病理組織学的検査、血液学・生化学などの臨床検査など）にはない細胞内で生じる変化を捉えることから、毒性発現に先行した変化を捉えることで、毒性の予測に関する期待が非常に高かった。本邦では 2002 年 6 月に、国立医薬品食品衛生研究所と国内製薬企業 17 社からなるトキシコゲノミクスプロジェクト（TGP）が発足し、肝毒性物質および 150 種類に関するラット 4 週間までの反復毒性試験、ラット初代肝細胞における暴露試験、ヒト初代肝細胞における暴露試験が実施され、それぞれ肝臓や細胞における網羅的遺伝子発現データが Affymetrix 社の GeneChip を用いて取得された。さらに、TGP の後継としてトキシコゲノミクス・インフォマティクスプロジェクト
クト（TGP2）が2007年に独立行政法人医薬基盤研究所、国立医薬品食品衛生研究所、国内製薬企業13社によって発足した。TGP2では、特にTGP時代に取得した大量の遺伝子発現データとそれに付随する様々なin vivoデータ（体重、摂餌量、一般状態、臨床検査、剖検、臓器重量、肝臓の病理組織学的検査結果）を組み合わせ、肝毒性を予測する数理的なモデルの構築が行われた。TGP、TGP2において肝臓に焦点を当てて研究がなされた理由としては、肝臓が薬物の代謝の第一の場であり、毒性の発現しやすい臓器であるからである。異物の代謝反応に大きな寄与のあるシトクロムp450の誘導の結果、滑面小胞体（sER）の増生が医薬品の毒性試験では散見される。このsERの増生の検出には、遺伝子発現解析が非常に有用であった。すなわち、シトクロムp450の誘導はその分子種の遺伝子発現と密接な関係にあり、またその上流の核内受容体の関与も推定することができた。一方、発がんのように非常に多くのメカニズムが関与する複雑な反応については、予測が難しいチャレンジであった。本論文の研究の項でも述べた通り、遺伝毒性物質はそのもの自体が遺伝子に障害をもたらし、異常なタンパク質の発現を促進し、結果的に変異細胞の発現と増殖をもたらすことにより発がんに至ると考えられる。一方、遺伝毒性を持たないと考えられる物質の中にも発がん性を有する物質があり、長期の毒性試験や特殊な試験によってしか検出できないことから医薬品開発の場では精度の高い予測方法が求められている。

核酸に関するオミクス技術の発展には、近年進化が目覚ましい次世代シーケンサー（NGS）の存在がある。従来のサンガー法によるDNA塩基配列決定法とは異なる遺伝子配列の決定と、計算科学の発展の両者がその発展に大きく寄与している。NGSは単なる塩基配列決定に留まらず、従来の技術の中心であったマイクロアレイもNGSによって置き換わる可能性がある。遺伝子発現解析のRNA-seq、クロマチン免疫沈降とNGSを組み合わせたChIP-seq、メチル化DNA免疫沈降とNGSを組み合わせたMeDIP-seq、未知のDNA配列を網羅的に決定するde novoシーケンス、腸内細菌叢のメタゲノム解析等、様々なアプリケーションがある。TGPが発足した2000年台初頭では考えられなかった手法が新たなオミクスとして確立され、現在では毒性に関する国際学会、論文においてもNGSを利用した網羅的なデータ解析が主流になりつつある。化学物質投与によって発現する未知の転写産物の存在も見出されたという報告もあり、これらの新しいオミクス技術が医薬品候補化合物がもたらす生体反応をくまなく拾い上げ、生体にとって有害な反応のない安全な医薬品開発に寄与していくことが期待される。
生物の発生は一つの受精卵から細胞分裂を繰り返し、様々な組織・臓器を構成する細胞に変化を遂げて、最終的に一つの個体となる。医薬品候補化合物の中には、催奇形性のような発生毒性を惹起する物があるが、そのポテンシャルは医薬品の安全性評価ガイドラインにあるような毒性試験によって検出可能である。しかし、なぜそのような作用をもたらすのかを示すには不十分である。受精卵という一つの細胞が、分化していく中で組織特有の機能を発揮するためにはそれぞれの組織特有の遺伝子発現制御が必要である。化学物質が有する催奇形性も、精密な反応である発生におけるエピジェネティック修飾に影響を与えることが一因である可能性があり、エピジェネティクス手法を用いた評価は今後発生毒性の研究においても成果が見込まれる。本研究で行った化学物質による発がんにおける変化検出アプローチもその一助となることを期待したい。
謝辞

本研究を行うにあたり、終始ご指導、ご鞭撻を賜りました、筑波大学大学院生命環境科学研究科　馬場　忠　教授に深く感謝の意を表します。また本論文を査読していただき、ご指導いただきました筑波大学大学院生命環境科学研究科　深水　昭吉　教授、柏原　真一　准教授、木村　圭志　准教授に深謝いたします。

また本研究を行うにあたり、多くのご指導、ご討論いただきましたトキシコゲノミクスプロジェクトのメンバーである塩野義製薬株式会社　創薬・開発研究所　上原　健城　博士および森川　裕二　研究員、小野薬品工業株式会社　筑波研究所　南　圭一　博士、国立医薬品食品衛生研究所　小野　敦　博士、医薬基盤研究所　山田　弘　博士、同志社女子大学　薬学部　漆谷　徹郎　教授、アステラス製薬株式会社安全性研究所　神吉　将之　研究員に心より感謝の意を表します。さらに、二段階発がん試験の実施および結果についてご指導を頂きました日本化薬株式会社　林　仁美　博士、東京農工大学　獣医病理学研究室　三森　国敏　教授に深く感謝の意を表します。

また、本研究を行う機会を与えていただき、常にご理解、ご鞭撻を賜りました、アステラス製薬株式会社　安全性研究所　中川　壯一　所長および分子毒性研究室　宇波　明　室長に心より感謝の意を表します。さらに、本研究の途上においてご協力いただいた、アステラス製薬株式会社　安全性研究所の方々に心より感謝の意を表します。

最後に、私の研究生活に常に理解を示し、支援してくれた家族に感謝の意を表します。
参考文献

8. Omura, K., Kiyosawa, N., Uehara, T., Hirode, M., Shimizu, T., Miyagishima, T., Ono,

between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. *Mutat Res*

63. Toyota, M., Sasaki, Y., Satoh, A., Ogi, K., Kikuchi, T., Suzuki, H., Mita, H., Tanaka, N.,

71. Lempiainen, H., Couttet, P., Bolognani, F., Muller, A., Dubost, V., Luisier, R., Espinola
Adel, R., Vitry, V., Unterberger, E. B., Thomson, J. P., Treindl, F., Metzger, U.,
Wrzodek, C., Hahne, F., Zollinger, T., Brasa, S., Kalteis, M., Marcellin, M., Giudicelli,
F., Braeuning, A., Morawiec, L., Zamurovic, N., Langle, U., Scheer, N., Schubeler, D.,
Goodman, J., Chibout, S. D., Marlowe, J., Theil, D., Heard, D. J., Grenet, O., Zell, A.,
Templin, M. F., Meehan, R. R., Wolf, R. C., Elcombe, C. R., Schwarz, M., Moulin, P.,
cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.
Toxicol Sci 131, 375-386

72. Lempiainen, H., Muller, A., Brasa, S., Teo, S. S., Roloff, T. C., Morawiec, L.,
Zamurovic, N., Vicart, A., Funhoff, E., Couttet, P., Schubeler, D., Grenet, O., Marlowe,
the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of
B6C3F1 mice. PLoS One 6, e18216

1655-1669

74. Komatsu, Y., Waku, T., Iwasaki, N., Ono, W., Yamaguchi, C., and Yanagisawa, J.
Genomics 5, 5

carboplatin-DNA adducts in rats. Cancer Chemother Pharmacol 38, 273-280

after transplacental cisplatin exposure. Carcinogenesis 18, 93-96

77. Akbay, A., Cinar, K., Uzunalimoglu, O., Eranil, S., Yurdaydin, C., Bozkaya, H., and
treated thioacetamide hepatotoxicity of rats. Hum Exp Toxicol 18, 669-676

O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A 87, 5368-5372

