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Abstract

A compartment model representing the chernical transmission process of acetylcholine (ACh)
at the neuromuscular junction for generation of the miniature endplate current (MEPC) is
constructed as a reaction-diffusion system (RD system) in a two-dimensional space of axis-
symmetrical disc of the synaptic cleft. The model is defined as the standard to have the
critical radius of 500nm and the respective compartment numbers of 3 and 10 on the trans-
verse and radial coordinates. Besides the transverse and radial diffusion processes, the model
can include the release mechanism of ACh as the release rate and the release area of ACh,
and the junctional fold as a concentric cylinder attached to the disc at the postsynaptic
membrane. The model might be regarded as the two-dimensional extension of the simi-
lar models proposed previously, which essentially behave as one-dimensional compartment
models because the diffusion process in either of two directions is simplified.

This two-dimensional compartment model is effectively applied to analysis of the func-
tional and structural correlations in the transmission process. The simulation analysis with
the model demonstrates that the diffusion coefficient for isotropic diffusion in the disc is eval-
uated to be 1.0 x 10~%cm?sec™?, with which the model reproduces the behavior of the MEPC
from the empirical analysis with respect to the characteristic parameters. It further follows
that in the RD system with anisotropic diffusion the radial diffusion has more distinctive ef-
fects on the MEPC than the transverse diffusion. The neurotransmitter release mechanisms
of the expanding pore and the acceleration release are examined to reveal that the expanding
rate more than 10nm/msec and the acceleration rate 10 times of the natural diffusion with
the diffusion coefficient around 1.0x10~%cm?sec™? could reproduce the empirical MEPC. The
effects of the junctional fold and the synaptic vesicle are further analyzed to elucidate their
unknown functions associated with the specific structures at the neuromuscular junction.
The width of the junctional fold has more distinctive effects than the depth in enlargement
of the reacting area of the postsynaptic membrane. The quantal release mechanism raises
significantly the amplitudes of MEPC and the endplate current (EPC). The localized release

of ACh has the similar effect on EPC compared with the homogeneous release of ACh.
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Chapter 1

Introduction

[ntensive studies of the relationships between the structures and functions of living systems
in biochemistry and molecular biology have revealed that the biological functions all stem
from biochemical reactions within the systems such as cells, tissues, organs, and individual
organisms. On processing of the neuronal signals, investigation of the molecular events in
the synaptic chemical transmission has led to the neurotransmitter theory [17). The best
understood chemical synapse with a typical neurotransmitter is that called neuromuscular
junction at which acetylcholine (ACh) is engaged in the chemical transmission between a
motor neuron and muscle cells.

An action potential arrives at the end of the motor neuron in nerve fiber, and depolarizes
the synaptic terminal to induce the quantal release of ACh stored inside the terminal. It is
now widely accepted that a quantum of ACh is released by exocytosis, that is, the fusion
of a synaptic vesicle with the presynaptic membrane. The ACh molecules released diffuse
in the synaptic cleft, undergoing hydrolysis by acetylcholinesterase (AChE), and then bind
with ACh receptor (AChR) to alter the ionic permeability of the muscle cell membrane,
producing depolarization of the muscle cell membrane fo cause the contraction of the muscle
cells. Presumably, AChEs are homogeneously distributed in the synaptic cleft and AChRs
are concentrated on the postsynaptic membrane.

The depolarization of the muscle cell membrane has been measured as the current through
the membrane called endplate current (EPC) or miniature endplate current (MEPC) which
is the EPC responding to a quantal release of ACh. The MEPCs are observed as the sponta-

neous generation under the normal physiological condition, which occurs due to occasional



and small depolarization without any presynaptic action potential. The generation of MEPC
at the neuwromuscular junction has been studied as an elementary process of the chemical
transmission process and a lot of empirical data have been accumulated. In this study a
model representing the elementary process is proposed on the basis of these empirical data,
and applied to reveal some of the functional and structural correlations in the chemical
transmission process employing the computer simulation method [10, 16].

The dynamic behavior of neurotransmitter in the processes of diffusion through the synap-
tic cleft and action at the synaptic membranes is associated with a fundamental function
for the chemical transmission process. Analysis of such behavior can be performed most
appropriately with representation of the transmission process as a reaction-diffusion system
(RD system) for neurotransmitter because the experimental analysis still is practically diffi-
cult for the molecular processes in the synaptic cleft. Some mathematical models have been
proposed for the dynamic behavior of ACh in generation of the MEPC at the neuromuscular
junction. In the RD system representing the transient process of ACh at the neuromuscular
junction, the ACh concentration varies with time and position in the space of the synap-
tic cleft, due to transverse and radial diffusion of ACh and its interaction with AChR and
AChE. In the model of Rosenberry [26] the radial diffusion process of ACh is simplified as
the two axis-symmetrical compartments with homogeneity assumed in the transverse direc-
tion. Wathey et al. [32] extended the model to a one-dimensional compartment model in the
radial direction by discretization of the radial coordinate of the RD system. In the model of
Friboulet et al. [7] the transverse coordinate is discretized and the radial diffusion undergoes
simple efflux of ACh due to concentration gradient.

The behavior of the RD system of ACh responsible for generation of the MEPC is math-
ematically expressed by a two-dimensional diffusion equation with nonlinear reaction terms
for ACh and a set of nonlinear ordinary differential equations governing the rate processes
for AChR and AChE. The analysis of temporal behavior of the RD system employs the
computer simulation, that is, numerical integration of partial differential equation by means
of discretization of both the transverse and radial coordinates in the space, which results in

a two-dimensional compartment model for full representation of both of the transverse and



radial diffusion processes of ACh. It thus follows that the one-dimensional compartment
models previously proposed are regarded as the special cases of the two-dimensional com-
partment model with either of the transverse or radial diffusion process embedded in one
compartment. The validity of the reduction of dimension may depend on the phenomenon
to be analyzed, and is examined in this study by determination of the appropriate number
of the compartments for the two-dimensional compartment model.

With the compartment numbers determined, the model is applied to analyze the dynamic
behavior of ACh in the synaptic cleft in generation of the MEPC responding to a quantal
release of ACh at the neuromuscular junction. The effect of the diffusion cocfficient of
ACh in the cleft and the release mechanism of ACh from the synaptic vesicle are chosen
to be analyzed for characterization of the mechanisms in the chemical transmission process
because the experimental analysis is still difficult on these problems. The effects of the
specific structures at the neuromuscular junction such as the junctional fold and the synaptic
vesicles are also analyzed to elucidate their unknown functions.

The contents in the chapters of this dissertation are summarized as follows. In Chapter 2
the structures of the synaptic region and the mechanism of generation of the MEPC at the
neuromuscular junction are described on the basis of reported observations with electron
microscope technique and various experimental studies. The neuromuscular junction has a
structural feature of superficial gutters called junctional folds aligned at regular intervals
on the muscle fiber. Mathematical models of the RD system which have been proposed to
reveal some features are also described. The models are classified into two categories by
simulation methods, that is, Monte Carlo method and differential equation method. The
models previously proposed in the class of differential equation method may be derived as
the special cases of the compartment model constructed in this study.

In Chapter 3 a compartment model in a two-dimensional space of axis-symmetrical disc
is constructed for analysis of the chemical transmission processes of ACh in the synaptic
cleft at the neuromuscular junction. The behavior of the RD system is expressed by a two-
dimensional diffusion equation with nonlinear reaction terms due to the rate processes with

AChR and AChE. The method of lines is then applied to discretize the partial differential



equation with respect to the space variables, resulting in a set of nonlinear ordinary differen-
tial equations called a compartment model with spacial compartments in the disc. Numerical
integration of the system of ordinary differential equations by the Gear method now yields
the temporal behavior of ACh in the RD system. The validity of the reduction of dimension
is also examined in considering the appropriate number of the compartments.

In Chapter 4 the compartment model is applied for characterization of the mechanisms
in the chemical transmission process by the computer simulation of the RD system. The
dynamic behavior of the RD system is characterized with its parameters such as kinetic
parameters for the reactions in the cleft and the release mechanism of ACh, diffusion co-
efficient of ACh in the cleft, and structural parameters of the synaptic cleft. In this study
the diffusion coefficient of ACh and the release mechanisms are examined for the effects on
generation of the MEPC at the neuromuscular junction. The simulations are performed
with the various values of these parameters for quantitative characterization of the dynamic
behavior of the RD system, estimating the suitable values of the parameters with respect to
reproduction of the empirical MEPC.

Another aspect of application of the compartment model is demonstrated in Chapter 5.
The biochemical systems have been developed through the long lasting evolution process,
implying that sorts of quantitative optimization might have been accornplished with respect
to the parameters associated with the functions of the systems. Hence, the parameters in the
chemical transmission process would be optimal with respect to the generation of MEPC.
The structural parameters, such as the width and depth of the junctional folds and the local-
ization of the release area of ACh due to the structure of the synaptic vesicles, are examined
with regard to the generation of MEPC to lead to elucidation of the significance of the spe-
cific structure of the neuromuscular junction and the quantal release of neurotransmitter.
The evaluation of the size of the release area is further atternpted with regard to the EPC

responding to arrival of the action potential at the nerve terminal.



Chapter 2

Mechanisms for Chemical Transmission
Process

Much effort has been made on the purpose of elucidation at the molecular level of the rela-
tionships bet ween structures and functions of neurons and synapses. There exist two general
classes of synapses: the electrical and chemical synapses. The neuromuscular junctions
(sometimes also called the myoneural junction) are the best clarified chemical synapses with
which the motor nerve terminal connects to the muscle fiber. In this chapter the structures
of the neuromuscular junction and the chemical transmission mechanism for generation of
the MEPC are described to summarize the reported observations with electron microscope
technique and various experimental studies.

At the neuromuscular junction the motor nerve terminal lies in a shallow “gutter”, that
is, depressions formed on the muscle fiber where the superficial gutters are aligned at regu-
lar intervals called junctional folds. The synaptic terminal contains a large number of tiny,
membrane-bound structures called synaptic vesicles which are filled with the neurotransmit-
ter of ACh. The chemical transmission process is comprised of three basic processes for ACh:
release from the presynaptic membrane, diffusion and hydrolysis by AChE in the synaptic
cleft, and interaction with AChR for the EPC generation at the postsynaptic membrane.
On arrival at the end of the motor neuron nerve fiber, an action potential depolarizes the
synaptic terminal, and induces the quantal releases of ACh stored inside the synaptic vesi-
cles with their fusion to the presynaptic membrane. The ACh molecules released diffuse in
the synaptic cleft, and bind with AChE for hydrolysis and with AChR to alter the ionic

permeability of the muscle cell membrane, resulting in depolarization of the merbrane and
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contraction of the muscle cells. The generation of MEPC works as an elementary process of
the chemical transmission process.

This chapter is concluded to describe some mathematical models which have been pro-
posed to analyze the transient process of the synaptic chemical transmission by representing
the dynamic behavior of ACh in generation of the MEPC at the neuromuscular junction.
The models are classified into two categories by simulation methods, that is, Monte Carlo
method and differential equation method. The practical limitations of computational costs
are much different in the two methods, depending on the complexity of the problem to be
solved. The models by the differential equation method are further classified with respect
to the dimension of the space in which ACh diffuses. The compartment model proposed in
this study is a model by the differential equation method in a two-dimensional space of the
synaptic cleft. The models described in this chapter may be derived as the special cases of

this compartment model.



2.1 Structures of the neuromuscular junction

One of the well-known neuromuscular junctions is associated with “fast” skeletal muscle
fibers in the frog, where the myelinated motor axon approaches to the muscle fiber, and
gives off an array of non-myelinated terminal branches which spread along the fiber surface
in both directions. The terminal branch runs parallel to the axis of the muscle fiber, and lies
in a shallow “gutter”, that is, depression formed on the fiber surface. Figure 2.1(a) shows
a diagram of a small part of a terminal branch facing the muscle cell with an additional
structure called junctional folds which form the superficial gutters in regular intervals at a
right angle to the fiber axis with openings to the external space at both sides of the nerve
terminal. The longitudinal spacing of the folds is rather regular: approximately 3 to 4 per
sarcomere, while the width of the fold varies between about 50nm and well over 100nm [5].

The schematic view of the longitudinal section of a terminal branch in Fig. 2.1(b)
illustrates that the pre- and post-synaptic membranes are juxtaposed closely to form the
synaptic cleft of about 50nm [24]. The region of muscle membrane for the synaptic contact
is called the endplate region, which possesses the special characteristics. In particular, the
endplate membrane is rich in a trans-membrane protein of AChR as indicated by thick line
in Fig. 2.1(b). The receptor acts as an ionic channel which opens when it binds with ACh. In
the frog muscle AChR is localized on the postsynaptic membrane and approximately the top
50% of the junctional folds, and the receptor site density is about 26,000 4+ 6000 sites/pm?,
which falls sharply to about 50 sites/um?® within 15um from the synaptic region [19]. On
the other hand, the AChE activity appears to be not only on the pre- and post-synaptic
membranes but also homogeneously in all the space in the synaptic cleft 6].

The synaptic terminal contains a large number of tiny, membrane-bound structures called
synaptic vesicles which are filled with ACh molecules. The diameter of the vesicle is of the
order of 50nm [3]. It is natural to assume that the vesicles represent the packets of ACh which
are released in response to an action potential. Indeed, it is observed that these vesicles are
depleted by any manipulation causing release of large amount of ACh, such as prolonged
depolarization or firing of large numbers of action potentials. It is now generally accepted

that ACh is released by the fusion of the vesicle membrane with the plasma membrane of the
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Fig.2.1. Structures of a neuromuscular junction. (a) Diagram of a small part of the ter-
minal branch at a neuromuscular junction. (b) Schematic longitudial-sectional view of the
neuromuscular junction with some characteristic components.

synaptic terminal, dumping the content of the vesicle into the synaptic cleft. The vesicles
fuse only at specific membrane regions called release sites or active zones. The active zone of

the presynaptic terminal appears in the freeze-fracture electron microscopy as a double row

of large membrane particles which are probably membrane proteins involved in the fusion

[17].



2.2 Generation of miniature endplate current

1. Release of chemical transmitters

The fact that the quanta consisting of many molecules of ACh are released from the motor
nerve terminal implies that the basic unit of release is not a single molecule of ACh but the
quantum. At the neuromuscular junction, it is estimated that a single quantum contains
about 10,000 molecules of ACh and a single action potential normally causes the release of
more than a hundred quanta from the synaptic terminal [17].

It is now widely accepted that a quantum of ACh is released by the fusion of a synaptic
vesicle with the presynaptic membrane, which is called exocytosis [18, 31]. During the early
stages of exocytosis, vesicles in neurons and other secretory cells appear to be connected
to the extracellular space by narrow pores but the details of the mechanism of the fusion
process are unknown. For the study of the release mechanism the empirical data obtained
from secretory vesicles in the mast cells have been used since the biophysical mechanisms
underlying membrane fusion and pore expansion for synaptic vesicles and secretory granules
have common features. Measurement of the conductance of the fusion pore of the mast cell
infers that the pore must have molecular dimensions, that is, its length and diameter are
to be 10-15nm (thickness of two membranes) and about 2nm, respectively and the diameter
increases with the median rate of 0.8nm/ms after the pore opens, with the assumption of
cylindrical form of the pore [28].

A recent study of the ACh release mechanism with the parameters of the mast cell
mentioned above suggests that the growth time of the MEPC is too long to agree with
the time course empirically known and those generated by the previous models with the
instantaneous spread of ACh assumed [12]. The study also described the possibility of the
active release mechanism coupled with the ion exchange to explain the empirical data. It
is further proposed as another possibility to justify the empirical data that ACh molecules
would be released through the pore expanding rapidly with the rate of about 25nm/ms which
is much faster than that of the mast cell [29]. On the other hand, Van der Kloot [30] has
a doubt in the empirical data for the mean growth time from 20% to 80% of the MEPC to

be too short, and reports 250us as the growth time of the MEPC obtained from the new



measurement procedure instead of 100xs used in the previous studies.

2. Diffusion and reactions in the synaptic cleft

The ACh molecules released from the synaptic terminal diffuse across the synaptic cleft with
simultaneous undergoing of the hydrolysis by AChE, and then reach the AChR-distributed
postsynaptic membrane where AChE and AChR compete for binding with ACh. On double
binding with ACh the functionally dimeric AChR transforms between the open and closed
channel forms so that opening of the channel leads to generation of the MEPC. In the cleft
AChE rapidly hydrolyzes ACh into choline (Ch) and acetate, which are then taken up into
the nerve terminal for use in the metabolic loops.

The diffusion process of ACh is formulated by Fick’s second law as follows:

%—‘f = DV?4 (2.1)

where A denotes the concentration of ACh at a position in the cleft and at time ¢, and
the coefficient I is called the diffusion coeflicient. The value of D for ACh is estimated to
be 9.8 (s.e.£:0.42) x107%cm?sec™! at 20 & 1°C in agar gels, and in the rat diaphragm the
value is only 1/7 of that expected from diffusion in agar gel [13]. However, the accurate
value of the diffusion coefficient of ACh in the milien of the synaptic cleft is still unknown.
As experimental measurement of the diffusion coefficient of ACh in the cleft is virtually

impossible at present, the value has been evaluated through the mathematical models with

! causing

the other empirical data. It is reported that the value of about 8 x 10~ 7"cm?sec™
10 times slower than free diffusion [19] and a higher value of 4 x 10~%cm?sec™* {14, 15] are
predicted by kinetic simulation models, and the value of 2 x 10~%cm®sec™?! is calculated [20]
from the data of electrophysiological observations [11].

The interaction of ACh with functionally dimeric AChR follows the minimal mechanism

[7, 14] as given in:

ACh+RZ R,  ACh+R, 2;'“—“-1 RZ%RO (2.2)

-r

where R and R, indicate the AChR species free and singly bound with ACh, respectively.
The Ry is an AChR species doubly bound with ACh for the closed channel form, which

10



interconverts to the open channel form R,. The ks (¢ = r, —r,0,¢) are the rate constants
for the respective steps in the mechanism. It is assumed in this study that the time course
of the total number of the open channel form of AChR (i.e., R,) represents the transient
evolution of the MEPC. The desensitization of AChR with ACh is not included in the
minimal mechanism because it evolves much more slowly than the generation of MEPC and
the hydrolysis of ACh by the AChE reaction.

The reaction of AChE proceeds in the following mechanism originally proposed by Rosen-

berry [25]:

ACh+EZ X, B X, +Ch Xz BE + acetate (2.3)

where E, X and X, denote the AChE species free, complexed with ACh and acetyl group,
respectively. The ks (i = 1,—1,2,3) are the rate constants for the respective steps in the

mechanism.

The behavior of the MEPC responding to the quantal release of ACh may becharacterized
quantitatively with the amplitude (maximum value of MEPC), growth time (time to increase
from 20% to 80% of the amplitude) and decay constant (time constant for exponential decay
of MEPCQ). It is known from the experimental analysis of the typical MEPC [26] that the
amplitude is about 10% of the total number of ACh molecules released, either in the frog or
rat junctions. The growth time is quite variable but the average value is about 120usec in
frog as well as in eel electroplax. The decay phase is very sensitive to both temperature and
the postsynaptic membrane voltage. The average value of the decay constant is 1.7msec in
frog and 0.6msec in eel electroplax. With AChE inhibition, relative amplitude for MEPC
increases about 1.5- to 2-fold in the frog junctions; the growth time shows little increase,
and the decay phase is prolonged two- to four-fold. It is also reported that the number of
the open channel form of AChR at the peak of MEPC is 1500 [7] and the mean growth time

is about 250usec for frog [30].
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2.3 Mathematical models of the chemical transmission process

1. Overview

Analysis of the dynamic behavior of neurotransmitter in diffusion and reactions in the synap-
tic cleft can be performed most appropriately with representation of the transmussion process
as a reaction-diffusion system (RD system) for the neurotransmitter as illustrated in Fig. 2.2
because the experimental analysis still is practically difficult for the molecular process in
the cleft. Some mathematical models for the dynamic behavior of ACh in generation of the
MEPC at the neuromuscular junction have been proposed to analyze the transient process
of the synaptic chemical transmission.

The models may be classified into two groups with respect to the methods employed;
one is the differential equation method so that the models are represented with simultaneous
differential equations to characterize the dynamic behavior of ACh and the other reactants in
the RD system with the respective functions of the concentrations of space and time, and the
other approach is the ”Monte Carlo method” which characterizes the behavior by specifying
the position of each of a number of ACh molecules at a given time (and the state of the
receptor molecule if ACh molecule is bound toit). The practical limitations of computational
costs are quite different in the two methods, and dependent on the complexity of the problem
to be solved; the differential equation method is preferable if the geometry and chemical
kinetic scheme used are simple and if high numerical accuracy and analytical generalization

are required, while the Monte Carlo method is more practical if one requires realistic modeling

presynaptic membrane ACh
i radial
Simfetlpﬂc l diffusion
ce €emmrmmmmrn ACH ey
AChE
transverse
1 diffusion AChE

AChR AChR

postsynaptic membrane

Fig.2.2. Reaction-diffusion system for the chemical transmission process in the synaptic
cleft.
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of specific geometry and chemical kinetics [2]. The models by the differential equation
method are further classified with respect to the dimension of the space in which ACh
diffuses. On the other hand, the dimension of the space in the Monte Carlo method is
usually three because of little effect of the dimension on the computational cost.

The models by the Monte Carlo method are developed by Bartol et al. [2] to analyze
the effects of three-dimensional structure of the neuromuscular junction on the generation of
MEPC. The analysis is performed with regard to the effect of the spacing of the junctional
folds and the release of multiple quantal packets of ACh, concleding that increasing the
spacing between folds raises the peak current and decreasing the spacing of adjacent quantal
release sites increases the potentiation of peak current. The models are also applied to
predict the AChE density and the turnover number at frog neuromuscular junction [1} and
to analyze the ACh release mechanism called the expanding pore mechanism {29].

The model constructed in this study is the one by the differential equation method with
two dimensions in the space, that is, the transverse and radial directions, and the earlier
models in the same group provide the basic frames for extension to this two-dimensional
compartment model. In the rest of this section representation of RD system for ACh in

these earlier models is reviewed.

2. The model of Rosenberry
Two kinetic models for the RD system of ACh are introduced by Rosenberry [26] to predict
the amplitudes and time courses of EPC and MEPC at the neuromuscular junctions. In the
simpler model with homogeneous reaction space by “zero-dimensional” differential equation
method, it is assumed that all the reactants (ACh, AChR and AChE) are distributed homo-
geneously throughout the synaptic reaction space at all times. The diffusion process of ACh
in the cleft is approximated with the simple efflux of ACh due to the concentration gradient.
In the models the following scheme is assumed for the interaction of ACh with functionally

dimeric AChR:

ACh + Rfi Ri  ACh+R, £ R, (2.4)
where R and R, indicate the AChR species free and singly bound with ACh, respectively,

13



and the AChR species doubly bound with ACh is denoted by Re. Ry corresponds to closed
channel form of AChR, and R, to an open assembly. Each receptor site in dimeric AChR
binds with ACh equivalently and independently by the rate constants of k, and k_,. The
reaction of AChE follows the mechanism of Eqn. 2.3. The ACh release into the cleft is
assumed to be instantaneous.

Application of the mass-action law to the scheme of AChR and the steady-state approx-
imation to the scheme of AChE leads to a set of rate equations for AChR species. With
the further assumption that the concentration of AChR and AChE are in excess of the total
ACh released, Rosenberry derives the analytic form of the solution for the time course of R,
concentration, which is supposed to be linearly correlated to generation of EPC or MEPC,

as given in:

Ry (1) (ker(e'””’ — e“”“‘)) ’ (2.5)

Ry ol -1 !
where Ap and Ry denote the initial concentration of ACh and total concentration of AChR
species, respectively. 7, and 75 are constants derived from rate constants ks (2 = r,—r, 1,
~1,2,3), diffusion coefficient of ACh in the cleft, and other constants such as Ay, Ay, and Ly
(total concentration of AChE species). Equation 2.5 accurately predicts the decay constants,
but its prediction of the amplitudes and growth times is inaccurate.

Rosenberry improves the homogeneous reaction model to a two-reaction-space model in
which the ACh reactions are postulated to occur in two compartments: the first compart-
ment initially contains all the released ACh, while the second compartment receives ACh by
diffusion from the first. According to the classification mentioned in the preceding section,
the improved model becomes a differential equation model with one dimension in the radial
direction.

An analog computer is used to yield the time course of R,(t) instead of the analytic
formula because of the intrinsic nonlinearity contained in the rate equations representing
the RD system of the two-compartment model. The model could predict amplitudes and
time constants of the EPC within a factor of two in agreement with those observed experi-
mentally. The simulation analysis of the model showed that the amplitudes and time course

are primarily determined by the chemical reaction rate of ACh associated with AChR and
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AChE and that these interactions occur under nonequilibrium conditions.

The dynamic behavior of ACh in generation of the EPC (or the MEPC) may be appro-
priately formulated with a diffusion equation with nonlinear reaction terms, accompanied
by the rate equations for AChE and AChR as described in the following chapter. The two-
compartment model is regarded as a model of the reaction-diffusion equations discretized to
just two compartments. Though the time courses generated by these models are still inac-
curate because of truncated errors due to numerical analysis method, the ideas introduced

with these models are important as the basis of the models followed.

3. The model of Wathey
Wathey et al. [32] proposed the model classified into the category by the differential equa-
tion method with one dimension in space parallel to the pre- and post-synaptic membranes
to examine the known quantitative features of nicotinic transmission. In the model the
synaptic cleft is represented as the space within the disc of radius L bounded at the top by
the presynaptic membrane and at the bottom by the postsynaptic membrane. The radial
coordinate r corresponds to the distance from the axis of the disc at which ACh is released
instantaneously. It is assumed that AChR and AChE are distributed homogeneously in the
disc, and ACh diffuses radially from the center of the disc to the edge of the disc at which
ACh flows out due to the concentration gradient. The model is considered as the extension
of the two-compartment model by Rosenberry to have enough number of compartments in
the radial direction to achieve the accurate analysis.

The same scheme as in the model of Rosenberry is assumed for the interaction of ACh

with AChR, while the scheme for the hydrolysis of ACh by AChE is simplified as follows:
ACh+E 5 X B E + Ch + acetate (2.6)

where the first reaction is not reversible and X represents several intermediate states,
Application of the mass-action law to the schemes of AChR and of AChE leads to a

one-dimensional diffusion equation and rate equations for AChR species as given in:

BA _(9*A 184 ,
“5? = ('5;2— + ;E) — klAE — 2k, AR+ (k_,. — kTA)Rl + Qk_ng
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dR

E = —szAR + k_,-Rl (27)
dR,

= 2, AR ~ (k_, + b, A)Ry 4 2k_, Ry

dR

d—t? =k AR, — 2%_, R,

where the italic capital letter denotes the concentration of the respective chemical species
at point r and time ¢ and A expresses the ACh concentration. D indicates the diffusion

coefficient of ACh in the cleft. The total number of Ry at time ¢ is obtained by
L
C(t) = 2n ] Ro(r,t)rdr (2.8)
0

which is assumed to be linearly correlated to generation of the MEPC.

A numerical integration method (finite difference method) is employed to calculate the
dynamic behavior of RD system for generation of the MEPC. The simulation with the
known parameters reproduces the experimentally measured amplitude, growth time, and the
decay constant. The model also simulates voltage and temperature dependencies and effects
of inactivating AChE and AChR, dermonstrating that the neurotransmitter is buffered by
binding to AChR and the postsynaptic response can be potentiated in the absence of AChE.

This model provides a good description of the quantal event at the neuromuscular junc-
tion and reassurance of collection of a reasonably complete and self-consistent set of data.
Though there remain some limitations such as analysis of the junctional fold and ACh re-
lease mechanism because of the assumptions of homogeneous distribution of reactants in the
transverse direction and of the instantaneous release of ACh, the model is so useful practi-
cally that the similar model is used by Land et al. to study the rising phase of an MEPC
to derive diffusion coefficient and forward rate constants controlling ACh in the intact neu-
romuscular junction [15], and is applied to the similar analysis with the empirical data of
the falling phase of an MEPC [14]. The model is also employed to analyze the ACh release

mechanism, especially to ensure the new data for the growth time of MEPC of 250 us [30].

4. The model of Friboulet
Friboulet et al. [7] constructed the model classified into the category by the differential

equation method with one dimension in space along the transverse direction from the presy-
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naptic membrane to the postsynaptic membrane. Though it is assumed that the reaction
and diffusion occur in the disc representing a space of the cleft as same as for the model
of Wathey, the radial diffusion process of ACh is simplified as the homogeneous distribu-
tion and the simple efflux at the edge of the disc, while the transverse diffusion process is
formulated with diffusion equation. The transverse coordinate z denotes the distance from
the presynaptic membrane. The model takes into account the anisotropic distribution of the
individual components participating in generation of the MEPC, that is, the homogeneous
distribution of AChE and localized distribution of AChR on the postsynaptic membrane.
ACh release into the cleft is assumed to be instantaneous.

The schemes expressed by Eqns. 2.2 and 2.3 are assumed for the interaction of ACh with
AChR and the hydrolysis of ACh with AChE, respectively. Application of the mass-action
law to these schemes leads to a one-dimensional diffusion equation and rate equations for

AChR and AChE species as given in:

dA J*A

o = D3 = BAE + kaXy = 26 AR+ (b = k AV Ry + 26 By
E
‘z_t =k AE + k1 X1 + ks Xy
dX
?E'}“ =k AE — (ko1 + k)X,
dX
—gf = ko X1 — ks Xa (2.9)
dR
T -2k, AR+ k_, R,
dR
Wi = QkTAR - (k—'r + rlcrA)-l%l ‘l‘ karR2
%E = kaRl - (Qk_r + ko)Rz + cho
R,
E‘ - koRZ - cho

where D indicates the transverse diffusion coeflicient. Under the assumption of the hormoge-
neous distribution of components in a compartment, the total number of the open channel
form of AChR and hence the generation of MEPC are linearly correlated to K.

A numerical integration method (finite difference method) is employed to solve the dif-
ferential equations. The model predicts the amplitude and time constants in agreement with

those observed experimentally, in all the conditions of inhibition of the enzyme or the recep-
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tor tested. The model is also applied to examine the influence of the width of the cleft in
order to understand what happens when ACh diffuses in junctional folds, When the width
is increased by two- and four-fold, the amplitude decreases by about two- and eight-fold,
respectively. The response to ACh thus is rapidly reduced when the width increases.
Though this model represents all the interactions of ACh related to the generation of
MEPC, it does not include the radial diffusion process in the diffusion equation which has
significant effects on generation of the MEPC as demonstrated in Section 4.1. It should be
noted that the inclusion of the transverse diffusion process in the model makes it possible to

analyze the effect of the junctional fold.
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Chapter 3

Construction of Compartment Model

As mentioned in Chapter 2, the chemical transmission process of ACh is comprised of the
three basic processes: release from the presynaptic membrane accompanied with fusion of the
synaptic vesicle, diffusion in the cleft and hydrolysis by AChE, and interaction with AChR
for the MEPC generation at the postsynaptic membrane. In this chapter a compartment
model for the RD system of ACh in a two-dimensional space of axis-symmetrical disc is
constructed for analysis of the diffusion and reaction processes of ACh in the synaptic cleft
at the neuromuscular junction. The action of the ACh release mechanisms is formulated as an
additional differential equation to express the kinetics of the expanding pore mechanism and
the active release mechanism. In the model the junctional fold is simnplified as a concentric
cylinder with its top surface attached to the bottom of the disc to open a hole to the synaptic
cleft at the postsynaptic membrane.

In the RD system ACh concentration varies with time and position in the space of
the synaptic cleft, due to transverse and radial diffusion of ACh and its interaction with the
AChR and AChE. The behavior of the R system is expressed by a two-dimensional diffusion
equation with nonlinear reaction terms due to the rate processes for AChR and AChE.
For simulation under the specified boundary and initial conditions, the method of lines is
applied to discretize the partial differential equation with respect to the space variables
on the transverse and radial coordinates, resulting in a compartment model represented
by a set of nonlinear ordinary differential equations. Based on an optimal selection of the
subdivision numbers and critical radius for the simulation, the model for the synapse without

the junctional fold minimally comprises a single compartment in the transverse direction and
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ten compartments in the radial direction in a disc with 500nm of radius and 50nm of height
which specifies a space of the synaptic cleft for generation of the MEPC. In the model for
the synapse with the junctional fold the transverse diffusion of ACh needs to be taken into
consideration instead of hormogeneous concentration in one compartment.

The ordinary differential equations governing the RD system of ACh are numerically
integrated with respect to time by the Gear method to yield the spatial and temporal changes
in concentrations of ACh in the disc and of the open channel form of AChR at the bottom
of the disc. Total number of the open chaanel form of AChR is assumed to be linearly
correlated to generation of the MEPC. Hence, the general idea in the method of lines and

the Gear method is also explained in this chapter.
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3.1 Two-dimensional compartment model

1. Formulation of the reaction-diffusion system for ACh

The RD system for ACh as illustrated in Fig. 3.1 is defined for modeling and analysis
of the chemical transmission process at the neuromuscular junction for generation of the
MEPC. A synaptic vesicle is fused with the presynaptic membrane as a sphere, so that
ACh is released through a pore on the presynaptic membrane from the synaptic vesicle of
the radius of R, with the center at r = 0. The radius and length of the pore are denoted
as p and [, respectively. The junctional fold is simplified as a concentric cylinder with its
top surface attached to the bottom of the disc to open a hole to the synaptic cleft at the
postsynaptic membrane, in order to avoid the additional dimension for the RD system. The
ACh concentration is assumed to vary with time ¢ and point (z,r) in a two-dimensional

space of axis-symumetrical disc of the synaptic cleft (the range of space variables: 0 <z < w,

synaptic
vesicle

R

v

release

postsynapiic
membrane

junctional
fold

—>| Fu b

0 r '1_
Fig.3.1. Reaction-diffusion system for ACh in a two-dimensional space of axis-symmetrical

disc of the synaptic cleft. A quantum of ACh molecules is released on the release area with
the radius of d from the synaptic vesicle.
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0 < r < L) and the concentric cylinder of the junctional fold (the range of space variables:
w <z < w+Fy, 0<r<F,). The radius L of the disc is defined as the extent of a quantal
packet of ACh to generate the MEPC, and referred to critical radius [7]. The concentration
function A{z,r,*) now represents the behavior of ACh due to influx of ACh through a circular
area on the presynaptic membrane (r < d [< L] on the top surface boundary at x = 0),
transverse and radial diffusion in the synaptic cleft and the junctional fold, and interactions
with AChE (in the light grayed area) and AChR (in the dark grayed area).

The RD system for ACh in the synaptic cleft is thus expressed by a two-dimensional
diffusion equation with nonlinear reaction terms, accompanied by the rate equations for

ACHE and AChR as follows:

JA 9*A FA 104 dS
B~ D TP (5* ’ ;a) ol =rlg

—kyAE + k1 Xy — 2k, AR+ (k—y — k, A)Ry -+ 2k_ Ra

‘fif ek AE + ko1 X1+ ks X
dX
S = RAE = (ko + k) Xy
dX
d—t2 = kzXl - ngz (3'1)
dR

= k

=2k AR+ kR,
d
% = %k, AR — (k_, + by A) Ry + 2k_. Ry
% = &, ARy — (%K, + ko) Ry + koR,
dR,

pra k. Ry — kR,

where D, and D, indicate the diffusion coefficients for ACh in the transverse and radial
directions, respectively. It is supposed that the release of ACh from a synaptic vesicle takes
place in the circular area with the radius of d. §{z) and u(r) represent a delta function
and a step function, respectively. The reaction terms are derived from Eqns. 2.2 and 2.3 by
application of the mass-action law. The behavior of Ch and acetate is not considered in the
formulation because this analysis is mainly concerned with the dynamic behavior of ACh in
the RD system which is most relevant to evolution of the MEPC.

The ACh release mechanisms of the expanding pore and the acceleration are formulated
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in a following differential equation to represent the change of ACh concentration in the

synaptic vesicle, that is, the influx rate of ACh to the circular area:

digt) _ GDp;n‘;(t)z(S(t) — A(0,7, 1)) p(t) = min(bg + bt, R,) (3.2)

where A(0,7,t) and S(t) express the mean concentrations of ACh at time ¢ over the release
area (A(0,r,t) for r < d) and in the synaptic vesicle, respectively. D, is the diffusion
coefficient of ACh in the pore. V is the constant volume of the vesicle of 4/37R5 and I is
the length of the pore. p(t) denotes the radius of the pore at time ¢ which extends at a
rate b from & to R,, the radius of the synapiic vesicle. The parameter a designates the
acceleration rate for the active release mechanism.

The boundary conditions for ACh are expressed by

A [
L;’r’——)—=0 atz=0,z=wforr 2 F,, c=w+Fyiorr < F,
z
&;’T’on atr=0,r=F,forw<e<w+F, (3.3)
r

A(z,r,t)=0 atr=Lforz<w

so that ACh cannot leak out at the boundaries of the disc and the cylinder other than the
side surface of the disc where ACh is removed by radial diffusion. There initially exist no

ACh inside the disc. The total number of the open channel form of AChR is obtained by
L w4 Fyg
O(t) = or fF Ro(w,r,tyrdr + 2 F, f Rz, Fy, t)de (3.4)

which is assumed to be linearly correlated to generation of the MEPC,

2. Discretization of the reaction-diffusion system

The partial differential equation governing the RD system for AChin Eqgn. 3.1 is numerically
solved under the specified boundary and initial conditions to reveal the behavior of thesystem
after the release of ACh into the synaptic cleft. For this simulation the method of lines [27]
is applied to discretize the partial differential equation with respect to the space variables for
the transverse and radial coordinates. The set of rate equations thus derived for ACh, AChE
and AChR comprises a compartment model, which is numerically integrated with respect to

time by the Gear method [8, 16] to yield for the analysis the spatial and temporal changes
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in concentrations of ACh in the disc and in the cylinder, and of the open channel form of
AChR at the bottom of the disc and at the side surface of the cylinder. The procedure of
the discretization is described below in a rather simple case of F;, = 0 (foldless) and & = oo
(instantaneous release of ACh). The representations of the other cases of the compartment
models are described in the form of MatLab’s S-functions [16] in Appendix.

The system of differential equations representing the RD system for ACh (Eqn. 3.1) may

be expressed in a simplified form:

1
Ay = alps+ B(AL+ ;A,,) + f(AY:,. .., 1) (3.5)

(Yk)t = gk(Aayla"‘:Yn) k=1,2,...,'n

with the boundary conditions

Ay 0 at z=0 and z=w;

A, = 0 at r=0 and A=0 at r=1L

The function A(z,nt) is discretized to N; x N, functions {A;;(1); i =1,2,..., N, j =
1,2,..., N, } with N;—1 points spaced by éz = w/N; on the transverse coordinate and /V, —1
points spaced by ér = L/N, on the radial coordinate. Replacement of the space derivatives

with the following standard finite-difference approximations,

Ainyj— 2455+ Ay

Ay =
(6z)*
A,‘,'__ -—QA,','-{—Ai,'
S ) 69
Ar — 2,741 2,5—1
267

leads to the system of ordinary differential equations as follows:

x
(i = (&v)?(Af-lvi =245+ Aipr,)
X fA oA A, Aijp — Aij—1
+((5?°)2 {Aij1 — 2Ai; + Ay + W} (3.7)

+f(Ai;, (Migs - (Ya)ig)

(Y}n‘,j)t = gk(Ai,jv (Yl)i,ja ceey (Yn)i,j)
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fori = 1,2,...,N, 5 =1,2,...,N,and k = 1,2,...,n. The boundary conditions are

treated as the values of A at the additional points:

Ao () = A;(t) and Apn41() = A;(t) for all jand >0

Aip(t) = Ap(t) and Ajn{t)=0 for allzandi >0

3. Values of parameters
The following values of the kinetic parameters are used for the simulation throughout this

study:

k, = 30mM 'msec™!, k_, = 10msec™}, k, = 20msec™?, k, = 5.0msec™*;

kp =200mM 'msec™!, k_y = 1.0msec™!, &y = 110msec™, ks = 20msec™"

and the other parameters are summarized in Table 3.1 [7]. The following values of the

structural parameters [12] are also used:
bg = 1.0nm, R, == 18.5nm, [ = 10.0nm

Though it is natural that the radius of the ACh release area (d) is set to be the same
value of the radius (p(t)) of the pore formed on the presynaptic membrane, the value of
50nm is assigned for d because of the difficulty in the representation of its time dependency
in the compartment model. The value of 50nm for d is equal to the value of the width of
the cleft (w), and this assignment is based on the consideration that the ACh molecules

released through the pore of tiny radius spread over the cylindrical space in the cleft when

Table 3.1 Values of parameters for construction of the model

parameter notation  value used
Volume of the synaptic cleft V. 450 um’
Width of the synaptic cleft w 50nm
Total ACh released per MEPC Ny 10%molecules
Total AChE in the synaptic cleft Ng 2x107sites
Surface density of AChR Cr 2x10%m™2
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they reach the postsynaptic membrane by the diffusion process. The radius of the cylindrical
space could be estimated equal to the distance in which the ACh molecules diffuse in the
transverse direction. The value for the critical radius (L) is evaluated in the following section
in association with the effects of the diffusion coefficient of ACh.

The value for Ey (total concentration of AChE at a point; = F 4+ X7 + X3) 1s set to

74uM, which is derived by
= VN

where N indicates Avogadro’s pumber. The value for Ry (total concentration of AChR at

Er (3.8)

a point; = B+ By + R; + R,) in the disc is obtained from the surface density of the AChR
(Cr), the width of the synaptic cleft (w), and the subdivision numbers on the transverse

coordinate (V) so that

Cr x (Area of the disc) _ CgN,
(Area of the disc) x (w/N)x N wN

The value for Ry in the cylinder representing the junctional fold is dependent on the critical

Ry = (3.9)

radius (L), the subdivision number on the radial coordinate (M), and the radius of the

cylinder as follows:

Cr x (Area of the side surface of cylinder with AChR)
(Volume of space with AChR in cylinder) x &
CaN/N,

T (NTZO0B)IN (3.10)

where N/ (= N, x F,,/L} is the subdivision number on the radial coordinate in the cylinder.

Rr =

For example, the value of Ry is 2.0mM for the compartment model with the parameters of
L= 500 nm, N, =10, N, = 3, F,, = 0 (foldless) and ¢ = oo (instantaneous release of ACh)
which is employed for the analysis of the diffusion process of ACh i the synaptic cleft.

'The initial concentration of ACh in the synaptic vesicle (S(0)) is obtained by

5(0) = 75

(3.11)

where V (= 4/37 RJ) denotes the volume of a synaptic vesicle. For the special case of a = oo
(instantaneous release of ACh) assumed, S(0) is replaced with the initial concentration of

ACh for the release area (A(0,r,0) for 7 < d} as given by
NA Nf

Td?wN

A(0,r,0) = (3.12)
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which results in 127mM for the compartment model mentioned above as the example.
The accurate value of the diffusion coeflicient of ACh in the milieu of the synaptic cleft is
unknown, so that the analysis is performed in the range between 0.25 ~ 4.0 (x 10~8cm’sec™!)

for D, and D,, which contains all the presumable values described in Section 2.2.

4. Appropriate radius of the disc and number of compartments
In construction of a two-dimensional compartment model for the RD system formulated
above, the radius L of the disc and the subdivision numbers of NV, on the transverse coordinate
and N, on theradial coordinate are the parameters to be chosen for optimal representation of
the behavior of the model. The subdivision numbers are relevant to the validity for reduction
of the space dimension in the previous models described in Section 2.3. A single copartment
on the transverse coordinate (N; = 1) means the homogenous distribution of reactants in the
transverse direction as assumed in the models of Rosenberry [26] and of Wathey [32], while
a single compartment on the radial coordinate (N, = 1) indicates the homogeneity in the
radial direction as the case in the model of Friboulet [7]. Furthermore, the assumption of the
instantaneous release of ACh into the cleft corresponds to the case that the parameter @ in
the release mechanism described in the preceding section is set to be infinite. For example,
the one-dimensional compartment model of Friboulet arises as the case of L = 300nm (= d),
F,, =0 (foldless}, Ny = 10, N, =1, D; = 2.0 x 10~%cm®sec™?, D, = 5.9 x 10~ "cm’®sec™ (i.e.,
the apparent diffusion rate constant as 1.3 x 10™%sec™!), and a = co.

The optimal selection of L, Ny and N, is evaluated with reference to the relative variation
in C(t; @), the total number of R, (open channel form of AChR), due to parameter change

from o; to ay, 1.e., by a quantity,

J1C( ) — Cty oy )| dt
Y= T T Cand (3.13)

where C(t; ) is obtained by Eqn. 3.4 with the parameter value of o. The optimal value of
the parameter is determined to be oy when the value of V, becomes negligible. Details of

the error estimation by V; are discussed in the following section.
The evaluation of the optimal values for the parameters begins with the model without

the junctional fold. The radius L of the disc is defined as the extent of a quantal packet of
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Fig.3.2. Effect of the critical radius of the disc on the response of the open channel form of
AChR. The variation V; is evaluated for increase by 100nm in each of the radius L (in nm)
of 300, 400, 500 and 600 indicated on the abscissa. The number on a curve corresponds to
the value of Dy (= D,) (in 10~%cm®sec™!): 1: 0.25, 2: 0.5, 3: 1.0, 4 2.0, and 5: 4.0.

ACh to generate the MEPC, and referred to critical radius [7]. Figure 3.2 shows the behavior

of the variation V, with increase by 100nm in L (i.e, a; = c +100) at every 100nm for

o {as L) between 300nm and 600nm. Evaluation of V. results from the simulation of the

1.5

V, (%)

o N]

Fig.3.3. Effect of the compartment number in the radial direction on the response of the
open channel form of AChR. The variation V, is evaluated for increase in the compartment
number N, from 10 to 20 and from 20 to 30. The number on a curve corresponds to the
value of Dy (= D,.) (in 10~ %m®sec™): 1: 0.25, 2: 0.5,3: 1.0, 4: 2.0, and 5: 4.0.

28



V, (%)

o [N]

Fig.3.4. Effect of the compartment number in the transverse direction on the response of
the open channel form of AChR. The variation V, is evaluated for increase by one in each
of the compartment number of Ng of 1, 2, 3, 4 indicated on the abscissa. The number on
a curve corresponds to the value of D; (= D,) (in 10~8cm?ec™t): 1: 0.25, 2: 0.5, 3: 1.0, 4
2.0, and 5: 4.0.

RD system for each value of L (= 300, 400, 500, 600, and 700 in nm) and various diffusion
coefficients (i.e., D, = D, = 0.25 ~ 4.0 (x10~%cm®sec™")). For the simulation N, is sef
at 3; the three compartments correspond to the phases of release, diffusion, and generation
of the MEPC, respectively, while N, varies from 6 to 14 according to N, = L/d with the
rmaximum size of compartment fixed equal to d (= 50nm). It follows from the behavior of V;
decreasing to 0 in Fig. 3.2 that increase in [ has the temporal variation of C (t; L) converge
to a common curve, and that the higher diffusion coefficient requires the larger radius. It
is thus concluded that the appropriate value of L for the model is at least 500nm, at which
the variation in L causes the temporal change of C(#; L) to deviate merely within 1.2% for
most of the diffusion coeflicient in the variation range.

The compartment number in the radial direction is now determined by analysis of the
effect of subdivision number N, on V, with C(¢; N,). It should be noted that the compart-
ment number corresponds to the minimal element number resulting from discretization. of
the spatial coordinate in the method of lines [27] to assure an acceptable accuracy for the
simulation (numerical integration of the partial differential equation). For L = 500nm and

d = 50nm chosen, discretization of the radial coordinate in ten elements is at least required
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Fig.3.5. Effect of the critical radius of the disc on the response of the open channel form
of AChR in the cleft with the junctional fold. Solid lines: V; for the junctional fold with
F,, = 50nm and F; = 500nm; broken lines: V, for the junctional fold with F, = 50nm and
F, = 1000nm. The variation V, is evaluated for increase by 100nm in each of the radius L (in
nm) of 300, 400, 500 and 600 indicated on the abscissa. The number on a curve corresponds
to the value of Dy (= D,) (in 107%cm?sec™): 1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0, and 5: 4.0.

to analyze the behavior in the radial diffusion process. The effect of increase in N, from 10
(o) to 20 (az) and 20 (@) to 30 (a2) on V; is demonstrated in Fig. 3.3, where the variation
is noticeable for N, = 10, but seems to have no simple dependence on the value of diffusion
coefficient. The value of N, should thus be taken as at least 10 for the model and the value
of diffusion coefficient may be chosen arbitrarily since V; is always less than 1.33%.

As seen in Fig. 3.4, the subdivision number N; has the effect on the variation V, somewhat
similar to that by L. Increase of one element at every element (e;) between 1 and 4 on the
transverse coordinate leads to convergence of C(t; N;) to a common curve, but V, is less
than 2% with most of the diffusion coefficient in the variation range. For simpler modeling,
therefore, even the homogeneous state is apparently possible in the transverse direction.

It is hence concluded that the appropriate values of the parameters are L > 500nm,
N, >1 and N, > 10 with which the model sufficiently represents the dynamic behavior of
the RD system for the chemical transmission process in the two-dimensional space of the

synaptic cleft in the case without the junctional fold.

It is also assured that the compartment model with L > 500nm, N, > 3 and N, > 10
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Fig.3.6. Effect of the critical radius of the disc with the large ACh release area (d = 500rem)
on the response of the open channel form of AChR. The variation V; is evaluated for increase
by 100nm in each of the radius L (in nm) of 600, 700, 860 and 900 indicated on the abscissa.
The number on a curve corresponds to the value of Dy (= D) (in 10~%cm’sec™): 1: 0.5, 2:
1.0, 3: 2.0, and 4: 4.0.

represents properly the RD system of the synaptic cleft with junctional fold. It should be
noted that the cylinder representing the junctional fold is divided into the compartments
by the same size in the disc, that is, N; X Fi/w and N, x F, /L on the transverse and
the radial coordinates, respectively. The applicability of the model is evaluated against the
various diffusion coefficients and the different junctional folds (cylinders) with the radius
(F,; = 0 (foldless), 50nm or 100nm) and the depth (3 = 500nm or 1000nm) using the same
procedure for the system without the fold. Figure 3.5 demonstrates the behavior of the
variation V, with increase by 100nm in L (i.e., @2 = a; +100) at every 100nm for o (as L)
between 300nm and 600nm. The attachment of the cylinder to the disc reduces the value of
V. to almost half of that in the foldless case (as shown in Fig. 3.2) regardless of the depth
of the cylinder. For all the combinations examined on the diffusion coefficients of ACh and
the different junctional folds, the values of V; are lower than 3.5% with the parameters of
L= 500nm, N, = 3 and N, = 10, concluding that the model is applicable to the RD system
for the synaptic cleft with the junctional fold.

Though the radius d of the release area of ACh is 50nm in these compartment models,

the variation in d up to 500nm will be required for examination of the effect of the localized
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release of ACh in Section 5.2. It is expected that the larger radius of the release area
requires the larger critical radius (L), so that the optimal value for L is evaluated again with
d = 500nm. Figure 3.6 displays the behavior of the variation V; with increase by 100nm in
[ between 600nm and 900nm. For the simulation N, is set at 1 (homogeneous distribution
of ACh in the transverse direction), while N, varies from 24 to 40 according to N, = L/25.
This number of 25(nm) is the minimum radius of the release area of ACh for the simulation.
It follows from the behavior of V, decreasing to 0 in Fig. 3.6 that increase in L has the
temporal variation of C(¢;L) converge to a common curve, and that the higher diffusion
coefficient requires the larger radius. It is thus concluded that the optimal value of L for
the model is 800nm, at which the variation in L causes the temporal change of C(¢;1) to

deviate merely within 2% for any diffusion coefficient in the variation range.
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3.2 Simaulation method

1. General idea of method of lines
The method of lines has widely been accepted as a method for approximate solution of

partial differential equations [9, 27]. The general idea of the method is described as follows.

Let the problem to be solved be given by
wy = f(t, 2, U, tpy) for 0<2 <1 and £>0 (3.14)
with the initial conditions
u{z,0) = up(z) for 0 <<l
and boundary conditions
either: u(0,7) = a(t) or: u,(0,t)=gi{t,u) for t>0 at 2=10

and
either: u(1,t) = b(t) or: u(1,{) = g(t,u) for t>0 at x=1

In the method of lines the interval 0 < z < 1 is subdivided into m discrete elements
[Zj-1,2;] (7 = 1,2,...,m;zq = 0,2, = 1) and the solution w{z,?) is approximated by a
vector of m + 1 functions {ug(t),us(t),++,um(t)}’ where the u;(t) are functions of the
single variable ¢ to express u(z;,t). Derivatives with respect to z are approximated by finite
difference relationships between neighboring functions of u;(¢), resulting in a simultaneous
system of ordinary differential equations.

For example, consider the heat equation,

Up = Uy, Tor0< 2 <] andt>0 (3.15)
with
u(z,0) = wup(z), 0 <z<1,

u(0,t) = wu(l,t) =0, t>0

which is discretized to m — 1 functions {u;(f);7 =1,2,...,m — 1} with respect to m — 1

points spaced by éz = 1/m. The functions ug(%) and u,,(t) are known to be zero for all ¢

33



from the boundary conditions. (u;). are replaced by standard second-order finite difference

approximations,
—2u1 + uy
zr T T e o 3.1
g1 — 2U; + ,
(uj)ﬂffﬂ = L= (537;2 L J=2,3,--,m—12,
(u ) — _Qum—?: + um—l
m~1/xx (5:’3)2

leading to the equations in matrix-vector form

]
r_
u' = (6;1:)2Au’ {3.17)
where
(-2 1
1 -2 1 0
1 -2 1
A=

0 1 -2 1

\ 1 -2

Hence, an approximate solution to Eqn. 3.15 can be obtained by solving the initial value

problem in ordinary differential equations given by Eqn. 3.17 and the initial conditions
u(0) = {uo(@1), uo(z2); - - - suo(@m-1 )}

where z; = j/mfor j = 1,2,...,m— 1.

Considerable attention has been devoted to solution of initial value problems in ordinary
differential equations and many methods are available, including techniques for step size
modification to keep local discretization errors within a given tolerance and to ensure the
stability of the solution. It is difficult, however, to deal with these adaptive stepsize and
stability in the standard finite difference approach to partial differential equations.

Moreover, it should be mentioned that the derived syster of ordinary differential equa-
tions could be stiff. The stiffness of the system depends on the size of spacing between "the
lines”, or functions w;(¢), that is, 6z in Eqn. 3.17. A small local truncation error in the

space discretization requires a small 8z, resulting in the large negative eigenvalues of matrix
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A[(6z)? as obtained by

—4sin®*{jr/(2m)} .
= =1,2,---,m—1 3.18
)‘J (6.%')2 J ) m ( )
with a stiffness ratio r given by
. 2 .
. sin {(nzz D/ (2m)} (3.19)
sin®{7/(2m)}
or
_ 4m?
res ?‘

for large value of m. Choosing m = 10, corresponding to a space discretization of 0.1, leads
to the stiffness ratio of approximately 40, while, more practically, choosing m = 100 yields
approximately r = 4050. This value is certainly large enough to require a method specially

developed for the stiff problems.

2. Gear method

The functions f and gy in Eqn. 3.5 representing the reaction terms of ACh with AChE
and AChR give rise to the stiff problem, which is a common feature in kinetic expression
of chemical reaction systems to cause great difficulty in the numerical integration. The
method of lines itself also requires stiff stable method for the numerical integration of the
derived equations as mentioned in the preceding section. Stiff problems have been extensively
studied for many years and the most successful algorithms available at present are based on
the Gear method [9, 16], which is employed to solve the derived system of ordinary differential
equations in this study.

A system of ordinary differential equations is written as

%?—) = f(5.1) (3.20)

where y and f are vectors of {y*,y?,-+,y"}T and {f', %+, 2, respectively. The Gear
method is a kind of the predictor-corrector methods. The formulas of order ¢ for Eqn. 3.20

are given by

T
Predictor : ¥n0) = E Ci¥Yni + MY, (3.21)

=1

g
Corrector :  ¥nm4r = Za:yn—i + g kS (Yny(m) s tn)

i=1
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where the coefficients a;, o, 71 and 7} are evaluated in the text 8]. The valuesof [yn—1, hyy1,
Y > Yn_q) are used to determine the predictor (o) As the initial condition specifies
only yo and Ay}, the computation starts with the first-order formula (g = 1), then the order
increases subsequently up to 5 that is the maximum order assured for the stiff stability.

The convergent solution of the corrector equation is obtained using the Newton method

as follows:
Yims) = Ynimy F 1T — P05 IYmgomys ta)} (3.22)
s
X {E o Yn—i + hngf(yn,{m)stn) - yn,(m)}

i=1
where the iteration starts with y, (o) evaluated in the predictor. The Jacobian J of Eqn. 3.20

changes so slow that J would be computed only if the convergence of Eqn. 3.22 should not
be attained after three iterations.

The method thus provides the stable numerical solution of a stiff differential equation for
relatively large step-size h and the results accumulated so far have proved its applicability

to various problems.

3. Error estimation by the quantity V.
The method of global error estimation for the method of lines has been proposed especially
for parabolic equations in one-dimensional space 3, 4]. Though the method could be applied
with its extension to two-dimensional space, rather practical method is used in this study
to estimate the global error due to the subdivision numbers of N and N,. This method is
also applicable to estimate the global error induced by the critical radius of L by mean of
the difference between C(t) calculated in the model with the finite critical radius and that
with the ideal infinite space.

The quantity V, introduced in Section 3.1 is a local relafive error. Estimation of the

global relative error E(ar) may be possible by formulation similar to the local relative error

Vi:
_ [0 o) - C(t; 00) | dt
E(a)= (O o)t (3.23)
Let P(a) be defined as
P(a) = [ Cltj )t (3.24)
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Fig.3.7. Monotonic characteristics in the response of the total number of the open channel
form of AChR. The number on a curve corresponds to the critical radius of L (in nm): 1:
300, 2: 400, 3: 500, 4: 600, and 5: 700. The unit of C(¢) on the ordinate is the number of
the open channel form of AChR. D; (= D,) = 2.0 x 10™%cm®sec™.

and suppose that C'(t ) is a monotonically increasing function with respect to o for all ¢
as:

¥t (o < ap = Cltjay) < C(t; az))
Then P(a) too is a monotonically increasing function. This assumption is presumable for
C(t; @) yielded in this study. In fact, almost all of the behavior of C(t; @) calculated with
respect to variations in Ny, N, or L turn out to be monotonous as demonstrated in Fig, 3.7.

The case of the monotonically decreasing function is discussed later.

The local and global errors are expressed with the function P(a) as follows:

Voia) = Plo -|-;()CJ P(a) (3.25)
E(a) PL;;P_(“_)_ (3.26)

where a and P., denote the increment of & and P{00), respectively. The typical P(a) with

C{t) calculated in this study allows us to assurne

Ela+ a)=kE(a) (3.27)

37



1200

1100}

P(a)

1060

90200 400 500 600 700
o [L (nm)]

Fig.3.8. Relationship of P(e) with the critical radius L. C'(t) is obtained for the diffusion
coefficient Dy (= D,) = 2.0 x 10~ %cm?sec™t.

as demonstrated in Fig.3.8. By Eqns. 3.26 and 3.27, Eqn. 3.25 yields
(1L —k)E(a)

7 = .2
Vole) 1 — Ble) (3.28)
Let v; and vy be the values of V; at ¢y and @ (= +a), respectively:
(1—k)E(ay)
= N AR 3.2
Vi(ar) 1—E(a1) 51 (3.29)
(1 - k)kE(e)
d _ M T MR 3.30
Vrles) 1= kE(eq) 2 (3.30)
Elimination of & in Eqn. 3.29 and Eqn. 3.30 results in
E{ay) = e (3.31)

1- "E‘i’ + v — v
for the estimation of the global relative error.

In the case that C/(#; @) is a monotonic decreasing function with respect to c for all ¢ as
Vi (o < ag = Clt;0q) > Ot oa))

the errors are expressed by

Pla) — P(a-+a)
Pla)
Pla) - P,

(3.32)
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resulting in £(e) as
1-— Ef — 1+ v

Elay)

(3.34)

Supposing that vy = 1/2v; and v; < 1, the global error E(a) could be estimated to be
the double of the local error V,(«).
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3.3 Concluding remarks

A compartment model is constructed to represent the chemical transmission process of
ACh at the neuromuscular junction as an RD system in a two-dimensional space of axis-
symmetrical disc of the synaptic cleft for generation of the MEPC. The model might be
regarded as the two-dimensional extension of the RD system models proposed previously
(7, 26, 32], which essentially behave as one-dimensional compartment models because the
diffusion process in either of two directions is simplified, so that these models are represented
as the special case of one compartment for either the transverse or radial diffusion process
in the two-dimensional compartment model.

The evaluation of the optimal values for the parameters of the compartment model reveals
that the model with L > 500nm, N; > 1 and N, > 10 sufficiently represents the dynamic
behavior of the RD system for the chemical transmission process in the two-dimensional
space of the synaptic cleft without the junctional fold. The finding of N, > 1 implies that
the homogeneous state is possible in the transverse direction, so that the model proposed by
Wathey [32] might be appropriate for modeling of generation of the MEPC at the synapse
without the junctional fold. It should be noted that N, > 10 does not mean the requirement
of at least ten compartments in the radial direction. In fact N, less than 10 might be possible
because of quite small value of V, (<1.33%) for V, = 10. The minimum ten compartments
in the radial direction is due to the method of uniform discretization as in elements of equal
size used in this study. The nonuniform discretization would lead to different evaluation of
the minimum values for the parameters.

The release mechanisms of ACh from the synaptic vesicle are modeled by expression of
the release rate with the parameters of a and p in Eqn. 3.2 and of the localization of the
release area with the radius of d. Though it is natural that d is set to be the same as p,
that requires so many number of compartments, demanding the huge computational cost or
the nonuniform discretization. In the model the junctional fold is simplified as a concentric
cylinder with its top surface attached to the bottom of the disc so as to open a hole to
the synaptic cleft at the postsynaptic membrane. Inclusion of the shape of gutter needs

three-dimensional modeling of the space, which increases the computational costs.
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Chapter 4

Characterization of the Mechanisms in the
Transmission Process

The dynamic behavior of the RD system for ACh is characterized with its parameters, such
as kinetic parameters for the reactions in the cleft, diffusion coefficient of ACh in the cleft,
facilitation factors for release mechanisms of ACh and structural parameters of the synaptic
cleft. In this chapter the compartment model constructed in the preceding chapter is applied
t0 examination for the effects of the diffusion coefficient of ACh and the release mechanisms
on generation of the MEPC at the neuromuscular junction. The simulations are performed
under the various values of these parameters to lead to the quantitative characterization
of the dynamic behavior of the RD system with estimation of the suitable values of the
parameters for the reproduction of the empirical MEPC. It is justifiably assumed in the
simulation that the variation in concentration of the open channel form of AChR in response
to a quantal release of ACh corresponds to transient evolution of the MEPC.

The behavior of the RD system for ACh is naturally dependent on the value of diffusion
coefficient of ACh. Though it is difficult to experimentally measure the diffusion coeflicient
of ACh in the cleft, a rational evaluation is possible by simulation of the compartment
model with various values of Dy and D,. The simulation analysis of the RD system reveals
that the radial diffusion process of ACh has more distinctive effects on generation of the
MEPC than the transverse process. In fact, the anisotropic diffusion is effective in the RD
system since the diffusion coefficient of ACh in the radial direction is evaluated to be about
1.0 % 10~%cm?sec=! for appropriate characterization of the MEPC, on which the diffusion

coeflicient in the transverse direction larger than 2.0 x 10~%cmec! virtually has no effects.
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The compartment model is also applied for evaluating quantitatively the feasibility of the
expanding pore mechanism and the active release mechanism in the generation of MEPC
at the neuromuscular junction. In the model the ACh release mechanisms are formulated
as an additional differential equation with the respective parameters of the pore expanding
rate for the expanding pore mechanism and of the acceleration rate for the active release
mechanism. The responses with the various parameters of the ACh release mechanisms are
compared with the empirical data of MEPC for evaluating the characteristic parameters in
the release mechanisms. In the expanding pore mechanism the expanding rate of the pore
more than 10nm/msec and the diffusion coefficient of ACh in the synaptic cleft (D,) of
about 1.0 x 10~ %cm?sec™! yield the amplitude, the growth time and the decay constant of
the MEPC in agreement with the empirical data. In the active release mechanism 10-fold
acceleration of the natural diffusion and a similar value of D, are required to suit for the

empirical MEPC.
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4.1 Diffusion process of ACh in the synaptic cleft

1. Isotropic diffusion of ACh

The compartment model constructed by optimal selection of the critical radius and the
numbers of compartments is applied to examination of the effects of the diffusion coeflicient
of ACh on generation of the MEPC with respect to the feasibility of the compartment
model and the estimation of the value of the diffusion coeflicient of ACh suitable for the
empirical MEPC. The two-dimensional compartment model with the parameters of L =
500nm, N, = 10, N; = 3, £, = O (foldless), and a = o0 (instantaneous release mechanism of
ACh) is employed for the simulation. Though /N, = 1 represents the minimum model, three
compartments in the transverse direction are assigned to the basic processes of the chemical
transmission, that is, the release of ACh, the diffusion in the cleft and the hydrolysis by
AChE, and the interaction with AChR for the MEPC generation, since the analysis of the
behavior in each compartment may characterize the respective basic processes.

The simulation of the responses is performed with concomiiant variation in the diffusion
coefficients for the transverse and radial diffusion processes, that is, for the case of isotropic

diffusion in the disc with D, = D, (denoted as D). The response of C(t) varies according to

1500

1000H]

C(t}

500

t {msec)

Fig.4.1. Effect of the diffusion coefficient of ACh on the response of the total number of
the open channel form of AChR. The number on a curve corresponds to the value of D (in
10 %cm?sec™!): 1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0, and 5: 4.0. The unit of C(#) on the ordinate
is the number of the open channel form of AChR.
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Table 4.1 Variation of the characteristic parameters of the MEPC with the
diffusion coeflicients

D (x107%cm?sec™!) Chuge (number) ¢, (psec) 7 (msec)

0.25 1478 202 1.10
0.50 1553 143 0.97
1.00 1517 105 0.91
2.00 1373 81 0.79
4.00 1126 63 0.72

various values of the diffusion coefficient as shown in Fig. 4.1. The maximum concentration
(peak) is attained around 0.5msec after the release of ACh, and all the channels close within
about 4msec. The larger diffusion coefficient decreases the times taken to attain the peak
and to fall from the peak to almost null concentration, and makes the response steeper. The
highest peak of C() is observed at D = 0.5 x 107%cm? sec™. The characteristic values of
C(t) for each of the diffusion coefficients are demonstrated in Table 4.1. It is thus revealed
that the diffusion coefficient around 1.0 x 10~®cm2sec™! yields these characteristic values
which are in good agreement with the empirical Cpq, value of 1500 described in Section 2.2.

The temporal change in radial distribution of ACh concentration in the middle com-
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5 &

o
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:

0. .
8.0 0.1 0.2 0.3 04
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Fig.4.2. Temporal change in the radial distribution of ACh concentration at the middle

compartment on the transverse coordinate. The number on a curve indicates the time in
10 'msec.

44



2000

1500

t (msec)

Fig.4.3. Effect of the AChE activity on the response of the total number of the open channel
form of AChR. The number on a curve corresponds to the relative AChE activity : 1: 1.0,
2. 0.75, 3: 0.50, 4: 0.25, and 5: 0.0. The unit of C(#) on the ordinate is the number of the
open channel form of AChR.

partment on the transverse coordinate is displayed in Fig. 42 for the system with [} =
1.0 x 10~%cm2sec™!, where a substantial gradient in concentration is formed after the release
and the peak decreases to about 10% in 0.5msec. The behavior is almost identical in other
two compartiments. Moreover, increase in the diffusion rate results in steeper concentration
gradient and quicker fall of the lower peak.

Furthermore, the effects of inhibition of AChE on the response characteristics have been
reported {7, 14], disclosing that the transmission process is also affected severely by the
activity of AChE. The behavior of the model with D = 1.0 X 10~ %cm?sec™! is examined
with variation in the density of AChE in the disc. As seen in Fig. 4.3, the more inhibition
of AChE (i.e., less density of AChE) makes the peak of C(t) higher and the falling curve
shallower. The characteristic values obtained as in Table 4.2 indicate good agreement with
the empirical observation of the effects of AChE inhibition that the amplitude Cpner gets
higher by a factor of 1.3 and the growth time ¢,, increases by afactorof 1.4, while the decay
constant 7 elongates by a factor of 3. It is thus inferred that the basic processes in the

chernical transmission are appropriately represented by this RD systern in the disc.
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Table 4.2 Variation of the characteristic parameters of the MEPC with the
ACHLE activity

AChE activity (relative) Cinaz(relative) n, (psec) 7 (msec)

1.00 1.00 105 0.86
0.75 1.05 111 1.00
0.50 1.10 117 1.18
0.25 1.18 127 1.56
0.00 1.27 141 2.63

Diffusion coefficient: I = 1.0 x 10~%cm?sec™

2. Anisotropic diffusion of ACh
Introduction of the anisotropic diffusion into the transverse and radial directions would
further reveal the effects of diffusion rates on the characteristic behavior of the MEPC. The
simulation with individual variation in Dy and D, between 0.25 and 4.0 (in 10~ %cm’sec™t) is
performed to examine these effects. Figure 4.4(a) illustrates theeffect on the amplitude Chros,
which gets higher with increase of D, in its variation range and D, up to 0.5 x 10~%cm?sec™?,
while increase in D, above 0.5 x 10 %cm?sec ™! reduces C,, against the opposite effect by D,.
It is noted that the effect of D, is more substantial than that of Dy, which is still enhanced
at larger D,. As seen in Fig. 4.4(b), the growth time ¢, decreases sharply as D, increases,
thus making C(t) reach the maximum more quickly. D, has little effect on ¢, in its variation
range, especially with D, less than 1.0 x 10 %cm’sec!, indicating that the radial diffusion
mainly determines the growth time. Figure 4.4(c) displays the effect on the decay constant
7, which decreases with larger D, to cause more rapid descent of C(t) from the peak. The
effect of increase in D,, which is weaker than that in D,, also tends to result in smaller 7.
It is thus revealed from the analysis of the effects of diffusion rates in this compartrnent
model that the radial diffusion process has more distinctive effects on generation of the MEPC

1 ap-

than the transverse one and that the radial diffusion with D, around 1.0 x 10~%cm’sec™
propriately yields the characteristics of the transmission process without significant effects of
the transverse diffusion with D; larger than 2.0x10~®cm?sec™!. In conclusion, the anisotropic

compartment model with L = 500nm, N, = 10 and N, = 3 in the two-dimensional space of
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Fig.4.4. Effects of the radial diffusion coeflicient on the response of the total number of
the open channel form of AChR. Effects on: (a) the amplitude, (b) the growth time, (c) the
decay constant. The number on a curve corresponds to the value of D (in 107%cm’sec™):
1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0, 5: 4.0. The unit of Cie on the ordinate is the number of the
open channel form of AChR.

axis-symmetrical disc of the synaptic cleft suitably represents the generation of MEPC at

the neuromuscular junction.
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4.2 Mechanisms for neurotransmitter release from the synaptic
vesicle

1. Expanding pore mechanism

The process of neurotransmitter release at the neuromuscular junction needs to be repre-
sented appropriately in modeling of the synaptic chemical transmission as an RID system.
As shown in Fig. 3.1, the compartment model constructed takes the release mechanism of
the expanding pore into consideration. The computer simulation is performed for analysis
of the behavior of the model with respect to the effects of the characteristic parameter in the
mechanism on generation of the MEPC. The compartment model with the parameters of
L = 500nm, N, = 10, N; = 1 and F,, = 0 {foldless) is chosen for the simulation. Assumption
of the homogeneous distribution of ACh in the transverse direction (N = 1) is justified with
the results of the dynamic behavior of ACh in Section 3.1. This also leads to reduction in
the dimension of the model.

Though D = 1.0 x 10~%cm®sec™! is proposed as the appropriate value for the isotropic
diffusion in the preceding section, the accurate valueis still unknown, so that the simulation
analysis is performed in the range of (0.5 ~ 4.0) x 10~%cm’sec™ for D, in order to examine
the effects of the radial diffusion on the release mechanism. The parameter of I} is not
required in this analysis because of the assumption of homogeneous distribution of ACh
in the transverse direction in the cleft. D, is set to the same value of D,. The effects of
the expanding pore is examined on the behavior of C'(t) (i.e., equivalent of the MEPC) by
variation in the values of the expanding rate (0 < b < 25nm/msec). The values of the other
parameters used are as given in Section 3.1.

The responses of C(t) to a quantal release of ACh are demonstrated in Fig. 4.5. The
release by natural diffusion through the fixed radius pore (b = 0) yields the curve of number
| in solid line, indicating that the peak of C(#) significantly decreases, and the times taken
to attain the peak and to fall to almost null concentration increase, compared with the curve
in dotted line corresponding to the instantaneous spread. The higher expanding rate of the
pore makes the response quicker, resuliing in the curve similar to the instantaneous spread

in the case of b = 25 nm/msec. It is noted that the ACh concentration in the synaptic
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Fig.4.5. Effect of the pore expanding rate on the response. Time courses of: (a) C(¢),
(b} the ratio of S(¢) to Sy (the initial consentration of ACh in the synaptic vesicle), (c)
expansion of the radius p of the pore. The number on a solid curve corresponds to the value
of b (in nm/msec): 1: 0.0, 2: 1.0, 3: 5.0, and 4: 25.0. The dotted curve indicates C(t) for
the instantaneous spread of ACh. The unit of C(#) is the number of the open channel form
of AChR.

vesicle () decreases to the almost null concentration at the time when C (t) attains the
peak except for the case of no expansion (b = 0) and that the time taken to empty the vesicle
is less than the time for expansion of p to the maximum. This implies that the upper limit
of p(#) might not be required for the model with the parameters adopted.

The effects of the expanding rate of the pore in the range of 0.025 <b < 100 (nm/msec)
on the characteristic parameters (Crpaz, tm and 7) with variation of the diffusion coefficients
D, (= D,) in the range of 0.5 to 4.0 (in 107%cm®sec™!) are demonstrated in Fig. 4.6. The
change of the expanding rate in the range of 0.1 < b < 10 (nm/msec) has significant effects
on C(#). The quicker expansion makes the amplitude C,; higher and the decay constant 7
lower. On the other hand, the effect on the growth time t,, is varied. In the case of D, = 0.5
or 1.0 (x107% cm?sec™!) the larger expanding rate up to the value of b about 0.5 increases
and then decreases it in the still larger value of 6. On the contrary, the value of ¢,

Ly
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monotonously decreases in the case of D, = 2.0 or 4.0 (x 10 %cm*sec™). The effects of the

expanding rate on the characteristic values safurate in the range of b over 10nm/msec. It is
also noticed that the change in b has the larger effects on the characteristic values with the
smaller diffusion coefficients.

It follows from Fig. 4.6{a) that the release mechanism of ACh with the slow expanding
rate of the pore less than about 10nm/msec including the natural diffusion through the

fixed-size pore (b = 0) cannot suffice the empirical data of the amplitude Cpq, (= 1500, as
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Fig.4.6. Effects of the pore expanding rate on the response of the total number of the open
channel form of AChR. Effects on: (a) the amplitude, (b) the growth time, (c) the decay
constant. The number on a curve corresponds to the value of D, (= D,) (in 10~ %cm?sec™1):
1: 0.5,2: 1.0, 3: 2.0, and 4: 4.0. The unit of C(t) on the ordinate is the number of the open
channel form of AChR.
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mentioned in Section 2.2) because the value is too low for the MEPC. The expanding rate

%sec™!) could yield the empirical

b more than 10nm/msec with D, = 0.5 or 1.0 (x10™°cm
MEPC, while with D, = 2.0 or 4.0 (%10~%cm?® sec™) the amplitude C\nay is too low for the
empirical data.

In conclusion, the expanding pore mechanism could reproduce the empirical MEPC with
the expanding rate b of about 10nm/msec and with the diffusion coefficient D, (= D,)

around 1.0 x 10~ %cm?sec™.

2. Active release mechanism

The feasibility of the active release mechanism such as an active transport coupled with ion
exchange is examined by the similar simulation with the same RD system. The active release
mechanism is represented with the acceleration coefficient ¢ in Eqn. 3.2 for the ACh influx
into the synaptic cleft. The simulation for the acceleration of the ACh influx rate in the
range of 1 < a < 100, that is, a-fold rate of the natural diffusion through the fixed-size pore
of by is performed with variation of the diffusion coefficients D, (= D,) between 0.5 and 4.0
(in 10~%cm?sec™!).

The change of the acceleration rate in the range less than 10-fold has significant effect on
all of the characteristic parameters in C'(t) as shown in Fig. 4.7. The quicker release makes
the amplitude Ch,q, higher and the growth time ¢, and the decay constant 7 lower. The
effects of the acceleration rate on the characteristic values saturate in the range of a over 10.
It is also noticed that the change in a has the larger effects on the characteristic values with
the smaller diffusion coefBcients, similarly to the effects of the expanding rate. It is revealed
that the acceleration rate more than 10-fold with D, = 0.5 or 1.0 (x10~%cm’sec™!) could
yield the MEPC characterized with the known values of Cpyz, tm, and 7 given in Section 2.2,
while with D, = 2.0 or 4.0 (x10~8cm? sec™!) the amplitude Cppnqs is too low for the empirical

data.
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Fig.4.7. Effects of the acceleration rate of the ACh release on the response of the total
number of the open channel form of AChR. Effects on: (a) the amplitude, (b) the growth
tirne, (c) the decay constant. The number on a curve corresponds to the value of D, (= D)
(in 10™%cm®sec™!): 1: 0.5,2: 1.0, 3: 2.0, and 4: 4.0. The unit of C(t) on the ordinate is the
number of the open channel form of AChR.

In conclusion, the active release mechanism could reproduce the empirical MEPC with

the acceleration rate 10 times of the natural diffusion and with the diffusion coefficient D),

of 0.5 or 1.0 (x 10 ®cim?sec™).
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4.3 Concluding remarks

The model for the simulation analysis in this study might be regarded as the two-dimensional
extension of the similar models proposed previously (7, 26, 32], which essentially behave as
one-dimensional compartment modeis because the diffusion process in either of two directions
is simplified. The Friboulet’s model [7] in which the radial diffusion undergoes simple efflux
of ACh due to concentration gradient, is not satisfactory now that the radial diffusion is
revealed to have distinctive effects on the dymamic behavior of the RD system for ACh [23].
The models with homogeneity in the transverse direction [26, 32] would be reasonable for
D, larger than 2.0 x 10~%cm?sec™, but the transverse diffusion has also to be taken into
consideration for probable case of D; smaller than 2.0 x 10~%cm?sec™!.

For the RD system with isotropic diffusion (i.e., D, = D,} assumed, the diffusion co-
efficient of ACh in the disc is evaluated to be about 1.0 x 10~%cm®ec™!, with which the
simulation yields the behavior of a typical MEPC characterized by the parameters in quan-
titative agreement with those from the empirical analysis. It is further demonstrated with
independent variation in D; and D, that the radial diffusion has more distinctive effects
than the transverse diffusion, that is, in the RD system with anisotropic diffusion, increase
in D, significantly reduces all of Cpus, £, and 7. Moreover, the effects of D, are still less
discernible at smaller D,.

It should be noted that the transverse and radial diffusion processes have the opposite
effects on C,y, resulting in the maximum in €., with D, of about 0.5 x 10-%cm?sec™.
Increase in D, with larger D; reduces Cpqz, and also makes the shape of C(t) sharper
because the radial diffusion plays an important role in conversion from AChR doubly bound
with ACh to AChR singly bound with ACh. Higher Cyner and shatper peak are suitable for
generation of the MEPC, while efficient generation of whole endplate current by summation
of the MEPCs needs some width in the peak of MEPC due to slight delay in release from:
each of the engaged vesicles.

The compartment model is also applicable to the analysis of neurotransmitter release
mechanisis in generation of the MEPC. The simulation analysis reveals that the natural

diffusion through a pore of a fixed radius of 1.0nm, which is evaluated as the initial radius
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(12, 29, 30], is not sufficient for reproduction of the empirical data. The amplitude Cpap
of the MEPC less than half of the known value is yielded by the model regardless of the
values of diffusion coefficient of ACh. The times characteristic to the peak are too long again
compared with the known values of ¢,, and 7 [7]. Although the growth time %, wouid be
acceptable for the diffusion coefficients greater than 2.0 x 10~8cm?ec™! with respect to the
data by Van der Kloot [30], C,ep is too low to agree with the empirical data. Therefore,
some mechanism additional to the natural diffusion through the fixed-size pore is required
for the model to appropriately represent the generation of MEPC.

The mechanism of the expanding pore thus is examined to reveal that it could reproduce
the empirical MEPC with the expanding rate more than 10nm/msec and with the diffusion
coefficient D, (= D,) of 0.5 or 1.0 (x10~%m?sec™"). This would be in good agreement
with the results of Stiles [29] that the mechanism with the expanding rate of 23nm/msec
generates the behavior like the empirical MEPC. On the other hand, the mechanism of slow
expanding at 0.4nm/msec is found to be unsatisfactory [12]. The behavior of the acceleration
mechanism for the release of ACh proposed by Khanin et ol. [12] is also analyzed with the
compartment model. The mechanism is found to work satisfactorily with the acceleration
rate 10 times of the natural diffusion and with the diffusion coefficient D, of 0.5 or 1.0 ( x1078

cm 2sec™1),

It follows that the assumption of instantaneous spread of ACh in the synaptic cleft, which
has been widely employed to simplify modeling, could be regarded as an extreme case of the
large value of the expanding rate b or the acceleration parameter a. The amplitude Cipgs
approaches up to that for the case of instantaneous spread, while the growth time ¢,, and
the decay constant 7 of the falling phase of C(t) decrease to the corresponding characteristic
values. Therefore, if the rapid expanding pore or the acceleration of release of ACh should
be the actual mechanism, the model with the instantaneous spread would overestimate the
amplitude, and underestimate the growth time and the decay constant of the MEPC.

The differentiation of the anisotropic effects is apparently due to the size and shape of
the disc of the synaptic cleft for the model. The structure of the cleft is crucial to the

chemnical transmission process. Variation in thickness of the cleft and the actual shape in
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three-dimensional space should be taken into account for modeling and analysis. Extension
of the two-dimensional compartment model to a three-dimensional model is required for
full elucidation of the chemical transmission process. For the analysis it 1s interesting to
examine whether formulation with the Michaelis equations for AChE and AChR are valid
in this two-dimensional RD system. The validity of the Michaelis equation is verified for
a simple Michaelis-Menten-type reaction in uniform distribution in one-dimensional space
[22]. 1t is further of interest to evaluate the relationship of Dy and D, with the distribution

of constituent materials in the cleft.
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Chapter 5

Effects of the Specific Structures on
the Transmission Process

The biochemical systems have been developed through the long lasting evolution process,
implying that sorts of quantitative optimization might have been accomplished with respect
to the parameters associated with the functions of the systems. Hence, the parameters in the
chemical transmission process would be optimal with respect to the generation of MEPC.
The significance of the specific structure of the junctional folds and the quantal release of
neurotransmitier at the neuromuscular junction might thus be elucidated by examination of
the effects of the structural parameters, such as the width and the depth of the junctional
folds and the size of the localized release area of ACh as a result of the quantal release from
synaptic vesicles, on generation of the MEPC.

The two-dimensional compartment model is applied to analyze the dynamic behavior
of ACh in the synaptic cleft with a junctional fold, demonstrating that the existence of the
junctional fold causes the substantial effects on generation of the MEPC at the neuromuscular
junction. Attachment of the cylinder of 50nm radius to the disc results in higher amplitude
of the MEPC, steeper rise and slower fall of the peak. The larger radius of the hole (100nm)
makes the amplitude lower than the foldless case regardiess of the values of the diffusion
coefficient. The higher value of the amplitude for 50nm radius of the cylinder than those
for 100nm radius and foldless case indicates that the maximal amplitude of the MEPC may
be attained with an optimal width of the junctional fold. The depth of the fold has less
distinctive effect on the MEPC than the radius.

For further application, the simulation analysis is performed with the compartment model
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to clarify the biochemical significance of the quantal release mechanism of ACh with respect
to generation of the MEPC. It is revealed that the mechanism raises the amplitude of MEPC
significantly. The evaluation of the size of the release area of ACh is further attempted with
regard to the EPC responding to arrival of the action potential at the nerve terminal. The
same effect of the quantal release mechanism is again assured in the case of EPC. The
localized release of ACh makes the amplitude of EPC higher by a factor about 2 compared
with that in the homogeneous release of ACh, implying that the quantal release mechanism

works as an amplifier of the EPC with the fixed amount of ACh available,
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5.1 Effects of the junctional folds

The junctional folds with some specific structure exist on the postsynaptic membrane at
the neuromuscular junction as described in Section 2.1. Though the effect of the junctional
fold on generation of the MEPC is analyzed with a one-dimensional compartment model
in the transverse direction [7], the conclusion that the existence of the folds reduces the
amplitude of the MEPC significantly is not reliable because the model simplifies the radial
diffusion process of ACh in the cleft which has the significant effects on generation of the
MEPC as clarified in Section 4.1. While in the one-dimensional model the attachment of
a fold is obliged to be treated as the change of the width of the clelt, the two-dimensional
compartment model includes the structure of the fold as the concentric cylinder with the
radius of F,, and the height of F} attached on the bottom of the disc.

The simulation analysis is performed to examine the effects of the junctional folds on
the behavior of C(#) (i.e., equivalent of the MEPC) by variation in the values of the radius
(F,, = 0, 50nm, and 100nm) and the height (Fy = 500nm and 1000nm) of the cylinder.
The two-dimensional compartment model with the parameters of L = 500nm, N, = 10,
N, = 3, a = co (instantaneous release mechanism of ACh) and the isotropic diffusion of
ACh (D, = D,[= D)) is employed for the simulation. The analysis is carried out in the
range of D between (0.25 ~ 4.0) x 10~%cm?sec™" and the values of the other parameters used
are as described in Section 3.1.

The responses of C(t) to a quantal release of ACh are demonstrated in Fig. 5.1. The
maximum concentration (peak) is attained around 0.5msec after the release of ACh, and all
the channels close within about 4msec. The curve of C(t) with £, = 50nm always locates
over the curve for the foldless case, which in turn is always above the curve with F, = 100nm,
regardless of the values of the diffusion coeflicient D).

As the responses are characterized quantitatively with the amplitude Cpax, growth time
¢ and decay conmstant 7 in this study, the effects of the junctional fold and the diffusion
coefficient on the characteristic parameters are presented in Table 5.1. Attachment of the
cylinder with F,, = 30nm to the disc results in about 5% higher Cp.s, steeper rise and

slower fall of the peak compared with the foldless case for whole the range of the diffusion
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Fig.5.1. Effects of the radius of the junctional fold on the response of the total number of
the open channel form of AChR. Duffusion coefficient D (in 107¢ cm?sec™): (a) 1.0, (b) 2.0.

The number on a curve corresponds to the value of the radius F,, (in nm): 1: 0, 2: 50, and
3: 100. The unit of C'(¢) on the ordinate is the number of the open channel form of AChR.
coefficient examined. The larger radius of the cylinder (F,, = 100nm) makes the amplitude
C.... around 15% lower than the foldless case regardless of the values of D, while the effects
of £, on the growth time ¢,, and the decay constant 7 are dependent on the value of D.
For D less than 2.0 x 10~8cm2sec™! the larger radius of the cylinder makes t, lower and
7 higher, while for D more than 2.0 x 10~%cm?sec™! the opposite effects arise. The higher
value of O, with F, = 50nm than with F,, = 100nm and 0 (foldless) indicates that the
maximal amplitude of the MEPC may be attained with an optimal width of the junctional
fold. It is also found that the depth of the fold has less distinctive effects on C(t) than the

radius, and that the junctional folds do not affect the effects of the diffusion coefficients on

the response of C(#) such that increase in D reduces all of Chaz, tn, and 7.
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Table 5.1 Effects of the junctional fold on the characteristic parameters of

the MEPC
wy dy D Cras tn T
(nm)  (om) (x107%cm’sec™) (psec) (msec)
foldless 0.25 1490 (L00) 205 (1.00) 116 (1.00)
0.50 1560 (1.00) 144 (1.00) 1.00 (1.00)
1.00 1520 (1.00) 105 (1.00) 0.89  (1.00)
2.00 1370 (1.00) 81 (1.00) 0.79  (1.00)
£.00 1130 (1.00) 65 (1.00) 0.70  (1.00)
50 500 0.25 1620 (1.09) 168 (0.82) 1.20 (L03)
0.50 1660 (1.07) 124 (086) 105 (1.05)
1.00 1600 (1.05) 94 (0.90) 095 (1.07)
2.00 1440 (1.05) 76 (0.94) 0.89 (L.13)
4.00 1190 (1.05) 65 (0.99) 0.81 (L16)
1000 0.25 1620 (1.09) 168 (082) 120 (1.03)
0.50 1660 (1.07) 124 (0.86) 104 (1.04)
1.00 1560 (1.05) 94 (0.90) 093 (1.05)
2.00 1430 (1.04) 75 (093) 0.8¢ (1.06)
4.00 1170 (1.04) 63 (097) 077 (110)
100 500 0.25 1370 (0.92) 147 (072) 100  (0.86)
0.50 1390 (0.90) 113 (0.79) 0.89 (0.89)
1.00 1320 (0.87) 91 (087) 0.84 (0.94)
2.00 1150 (0.84) 78 (0.96) 0.81 (1.03)
4.00 930 (0.83) 71 (1.09) 0.80 (1.14)
1000 0.25 1370 (0.92) 147 (078) 1.00 (0386)
0.50 1390 (0.90) 113 (0.78) 0.88 (0.88)
1.00 1310 (0.86) 90 (0.86) 0.82 (092)
2.00 1140 (0.83) 76 (094) 077 (097)
4.00 910 (0.81) 67 (1.03) 072 (1.03)

The value in parenthesis indicates the ratio relative to the value in the foldless case

with the corresponding diffusion coefficient D (in 10 %cm®sec™").

In conclusion, it is suggested that the structure of the junctional fold with the appropriate
size of the mouth opening to the synaptic cleft has the function to increase the amplitude

of the MEPC by about 5%. The appropriate radius of the mouth is around 50nm in the
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case that the structure of the fold is represented as the concentric cylinder attached on the

bottom of the disc of the synaptic cleft.
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5.2 Effects of the localized release of ACh due to the synaptic
vesicles

1. Effect on the miniature endplate current

ACh molecules are released by a unit of quantum through the pore formed by the fusion of
a synaptic vesicle with the presynaptic membrane as described in Section 2.2. This release
mechanism is relevant to the release rate of ACh into the cleft and to the release area in
the cleft. The effects on the release rate of ACh are analyzed in Section 4.2 to evaluate the
functional parameters governing the dynamic behavior of the RD system for ACh. In this
section the effects on the release area of ACh are exarnined with respect to the structural
aspect in generation of the MEPC. The quantal release mechanism of ACh localizes the ACh
release area in the cleft, which is assumed to be a cylindrical space with the radius (d), so
that the value of d could be considered to represent the localizability of the release area of
ACh due to the specific structure of the synaptic vesicles.

The simulation analysis is performed to examine the effects of the localizability of the
ACh release area on the behavior of €(t) (i.e., equivalent of the MEPC) by variation in
the values of the radius (25nm < d < 500nm) to reveal the biochemical functions for the
structure of the synaptic vesicles at the neuromuscular junction. The compartment model
with the parameters of L = 800nm, N, = 32, N, = 1, F,, = 0 (foldless), and ¢ = 00
(instantaneous release mechanism of ACh) is chosen for the simulation. The critical radius
(800nm) larger than that for the other analysis in this study is necessary to represent the
RD system appropriately in the case for the release area examined with the radius of 500nm
as the maximum radius. The analysis is carried out in the range of D, between (0.5 ~
4.0) x 10~%cm?sec™! and D; is not required in this analysis because of the assumption of
homogeneous distribution of ACh in the transverse direction in the cleft (N: =1).

The effects of the radius of the release area in the range of 25 < d < 500 (nm) on the
characteristic parameters of C(¢) are shown in Fig. 52. The change in the size of the ACh
release area has significant effects on C(t). Regardless of the value of D,, Croz holds a high
value for the values of d up to about 200nm, and then it decreases rapidly for larger values

of d. The value of t,, decreases for the values of d up to about 200rm, and then it increases
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Fig.5.2. Effects of the radius d of the ACh release area on the response of the total number
of the open channel form of AChR. Effects on: (a) the amplitude, (b) the growth time, (c) the
decay constant. The number on a curve corresponds to the value of D, (in 10~ %cm?sec™):
1: 0.5, 2: 1.0, 3: 2.0, and 4: 4.0. The unit of C{t) on the ordinate is the number of the open
channel form of AChR.

slowly for larger values of d. It is also noticed that the value of t,, for d of about 200nm is the
lowest. On the other hand, the effect on decay constant 7 is varied. In the case of D, =0.5
or 1.0 (%1078 cm?sec™!) the larger radius decreases 7 monotonously. In contrast, the value
of 7 monotonously increases in the case of D, = 4.0 (x108cm?sec™), and remains at almost
the same value in the case of D, = 2.0 (x 10~%cm?sec™t). It is also noticed that the change
in d has more effects on the characteristic values with the smaller diffusion coefficients. The

radius around 200nm seems optimal to produce the sharpest and highest response of C(%).
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Table 5.2 Effect of release area radius on variation of the characteristic
parameters of the MEPC with diffusion coefficients

D, (%10 8cm?sec™!) C oz (relative) tn (relative) 7 (relative)

0.50 2.47 1.54 1.26
1.60 2.55 1.16 1.09
2.00 2.54 0.93 0.99
4.00 2.41 0.83 0.95

“ralative”: ratios of the value with the release area of 50nm radius
to that of 500nm radius

The tatios of every characteristic parameters of C(¢) with the localized release area of
ACh (d = 50nm) to those with the area of 10-fold radius (d = 500nm) are presenied in
Table 5.2. It follows in the range of D, between (1.0 ~ 4.0) x 10-%cm?sec™! that the
localizability of the ACh release has significant effects on the amplitude of C(t), while the
other characteristic parameters (t,, and 7) are less affected. The amplitude Crqe produced
by the localized release area is about 2.5-fold to that by the release area of the 10-fold radius,
while the values of the other parameters are varied by about 10%.

In conclusion, it is suggested that the localization of the release area of ACh has significant
effects on generation of the MEPC, especially on the amplitude, which gets higher by afactor

about 2.5 compared with that with the large release area.

2. Effect on the endplate current

An arrival of the action potential to the nerve terminal induces the release of a few hundred
quanta of ACh into the cleft, resulting in depolarization of the muscle cell which is observed
as the endplate current (EPC). The EPC could be considered as the sum of the MEPCs
responding to each release of quantum of ACh both in time during evolution of an EPC
and in space for a certain area of the postsynaptic membrane. Therefore, it is expected
that localization of the release area of ACh related to the structure of the synaptic vesicles
also has significant effects on generation of the EPC. The similar analysis to the case of the

MEPC is performed to examine the effects of the localization of the ACh release area on the

64



behavior of C'(t) responding to many quantal releases of ACh with variation in the values of
the radius (25nm < d < 500nm).

Though three dimensions in space are required to represent the summation of MEPC
in time and in space, the compartment model with the parameters of L = 500nm, N, =
32, N, = 1, F,, = 0 (foldless}, and @ = oo (instantaneous release mechanism of ACh) is
employed with the assumption of simultaneous release of all quanta of ACh. Supposing
that a number of quantal release of ACh synchronously occur at the respective grid points
distributed uniformly on the presynaptic membrane, the ACh molecules movable in the
space corresponding to the grid point do not diffuse beyond the edge of the space because
the exactly same processes are proceeding in the neighboring spaces. Therefore, it could
be assumed that the EPC resulted from the spatial summation of the MEPC is linearly

correlated to the C(t) generated under the closed boundary conditions as follows:

M =0 at z=0 and z=w, (5.1)
dx

0A(z,1t) 0 at r=0 and r=1L
ar

so that ACh cannot leak out from the disc.

The effects of the radius of the release area in the range of 25 < d < 500 (nm) on the
characteristic parameters of C(2) are displayed in Fig. 5.3. The change in the size of the
ACh release area has significant effects on C(t). The behavior of C(f) with variation 1n the
radius of ACh release area is similar to the case of the MEPC, except for the corresponding
values at the radius of 500nm. Every characteristic values are the same regardless of the
values of D, at the radius of 500nm which corresponds to the homogeneous release of ACh.

The ratios of every characteristic values of C(t) with the localized release area of ACh
(d = 50nm) to those by the homogeneous release of ACh are given in Table 5.3, indicating
that the localization of the ACh release has significant effect on the amplitude of C{t), while
the other parameters (£, and 7) are less affected, equivalently to the case of generation of the
MEPC. The difference in the effect between the amplitude and the other two parameters is
obvious in the range of D, between (1.0 ~ 2.0) x 10~ ®cm®sec™ in which the amplitude Ciop

produced by the localized release area is about 2-fold of that by the homogeneous release of
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Fig.5.3. Effects of the radius d of the ACh release area on the response of the total number
of the open channel form of AChR in the case of generation of the EPC. Effects on: (a) the
amplitude, (b) the growth time, (c) the decay constant. The number on a curve corresponds
to the value of D, (in 10-8cm?ec™): 1: 0.5, 2 1.0, 3: 2.0, and 4: 4.0. The wnit of C(¢) on
the ordinate is the number of the open channel form of AChR.
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Table 5.3 Variation of the characteristic parameters of the EPC with dif-
fusion coeflicients

D, (x10=%cm?sec™?)  Cpa(velative) i, (relative) 7 (relative)

0.50 2.15 1.47 1.21
1.00 2.08 1.07 1.03
2.00 1.87 0.83 0.93
4.00 1.58 0.71 0.91

“relative”: ratios of the value with the release area of 50nm radius
to that by homogeneous release of ACh

ACh, while the values of the other parameters vary around 15%.

In conclusion, the similar effects of the quantal release mechamsm are also observed in
the case of generation of the EPC. It is suggested that the localization of the release area
of ACh has again significant effects on generation of the EPC, especially on the amplitude

which gets higher by a factor about 2 compared with that by the homogeneous release of
ACh.
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5.3 Concluding remarks

The two-dimensional compartment model is applied to the analysis of the effects of the
junctional fold on generation of the MEPC [21}. The simulation analysis reveals that the
junctional fold causes the substantial effects, which might be relevant to the phenomenon
of the notable spread of the growth time t, [30]. It is also found that the width of the
junctional fold has more distinctive effects than the depth, implying that the radial diffusion
process of ACh has more distinctive effects on the MEP C than the transverse process. This
is similarly observed in the analysis for the effects of the anisotropic diffusion process as
described in Section 4.1 [23]. The Friboulet’s model 7], in which the depth of the junctional
fold is represented with the thickness of the disc (w in this study), is not satisfactory because
the diffusion process in the radial direction is simplified as a simple efflux of ACh due to
concentration gradient.

In the two-dimensional compartment model the amplitude of the MEPC may be max-
imized at an optimal value of the width of the junctional fold, suggesting that the folds
enlarge the reacting area of the postsynaptic membrane. The Monte Calro procedure by the
three-dimensional model with a junctional fold in actually folded shape yields the opposite
results to this study that the amplitude Cp, o and the growth timet,, decrease but the decay
constant 7 does not change with addition of more junctional folds [2]. Possibly, the folded
shape of the junctional fold, instead of cylinder for the model in this study, may cause the
difference. The actual shape of the junctional folds in three-dimensional space should be
taken into account for modeling and analysis. Extension of the two-dimensional model to
a three-dimensional model is required for full elucidation of the correlations between the
functions and the structures of the chemical transmission process.

The compartment model is further applied to examine the effects of the quantal release
mechanism of ACh. The simulation analysis demonstrates that the localization of the ACh
release due to the structure of the synaptic vesicles has significant effect on the amplitudes
of MEPC and EPC. The amplitude of the EPC generated by the localized release of ACh is
about double of that by the homogeneous release of ACh. The effect of the localized release
might be due to the interaction mechanism between ACh and AChR since the dimeric AChR
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requires a certain concentration of ACHh to open the ion channel. It is considered that the
interaction mechanism also works for the rapid decline of MEPC, so that the cooperation of
the dimeric structure of AChR and the localized release of ACh due to the structure of the
synaptic vesicle is intrinsic for the optimal shape of the MEPC and EPC. This consideration
could be examined on the comparison of the dynamic behavior of RD system with imaginal
monomeric AChR.

The quantal release mechanism of ACh is represented with the radius of the pore (p) for
the release rate of ACh into the cleft in Section 4.2, and with the radius of the release area
(d) for the localization of the release area of ACh in the cleft in this section. Though it is
natural to assurme that the radius of the pore is equal to the radius of the release area, the
two parameters are analyzed independently because of the difficulty in the construction of
the compartment model as mentioned in Section 3.1. The integration of these parameters is

required for modeling of more realistic release mechanism.
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Chapter 6

Conclusion

A compartment model representing the chemical transmission process of ACh at the neu-
romuscular junction for generation of the MEPC is constructed as an RD system in a two-
dimensional space of axis-symmetrical disc of the synaptic cleft. The model is defined as the
standard for the critical radius of 500nm and the respective compartment numbers of 3 and
10 on the transverse and radial coordinates. Besides the transverse and radial diffusion pro-
cesses, the model includes the release mechanism of ACh as the release rate and the release
area of ACh, and the junctional fold as a concentric cylinder with its top surface attached
fo the bottom of the disc to open a hole to the synaptic cleft at the postsynaptic mem-
brane. The model might be regarded as the two-dimensional extension of the similar models
proposed previously [7, 26, 32], which essentially behave as one-dimensional compartment
models because the diffusion process in either of two directions is simplified.

This two-dimensional compartment model is effectively applied to analysis of the func-
tional and structural correlations in the transmission process, especially, quantitative charac-
terization of the RD system of ACh with respect to specific parameters, leading to estirnation
of unknown values of the parameters and elucidation of significance of the specific structures
and functions associated with the neuromuscular junction. The parameters of diffusion co-
efficients of ACh in the synaptic cleft and of the ACh release mechanisms are characterized
quantitatively by the simulation with the model. Another aspect of application of the model
is concerned with the specific structures of the neuromuscular junction such as the junctional

folds and the synaptic vesicles.

The simulation analysis for characterization of the diffusion cocflicients of ACh demon-
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strates that the diffusion coefficient for isotropic diffusion (i.e., D¢ = D,) in the disc is
evaluated to be 1.0 x 10~cm?sec=", with which the model reproduces the behavior of the
MEPC from the empirical analysis with respect to the characteristic parameters. It further
follows from individual variation in D, and D, that the radial diffusion has more distinctive
effects than the transverse diffusion, that is, in the RD system with anisotropic diffusion,
increase in D, significantly reduces all of Cpqg, n and 7. Moreover, the effects of D are
still less discernible at smaller D,.

The neurotransmitter release mechanism is also analyzed with the model to reveal that
the natural diffusion through a pore of a fixed radius of 1.0nm, which is evaluated as the
initial radius (12, 29, 30], is not sufficient for reproduction of the empirical data and that
some mechanism additional to the natural diffusion is required for the model to represent
appropriately the generation of MEPC. The mechanism of the expanding pore thus is exam-
ined to infer that it could reproduce the empirical MEPC with the expanding rate more than
10nm/msec and with the diffusion coefficient of 0.5 or 1.0 (x107%cm’sec™!). The accelera-
tion mechanism for the release of ACh is found to work satisfactorily with the acceleration
rate 10 times of the natural difusion and with the diffusion coefficient of 0.5 or 1.0 (x107°
cm?sec™).

The simulation analysis for the function of the junctional fold discloses that the junctional
fold causes the substantial effects on the generation of MEPC and that the width of the
junctional fold has more distinctive effects than the depth, implying again that the radial
diffusion process of ACh has more distinctive effects on the MEPC than the transverse
process. It is also found that the amplitude of the MEP C may be maximized at an optimal
value of the width of the junctional fold, suggesting that the folds enlarge the reacting area
of the postsynaptic membrane.

For further application, the simulation analysis is performed with the model to clarify the
biochemical significance of the quantal release mechanism of ACh with respect to generation
of the MEPC. It is revealed that the mechanism raises the amplitude of MEPC significantly.
The evaluation of the size of the release area of ACh is furthermore attempted with regard

to the EPC responding to arrival of the action potential at the nerve terminal. The same
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effect of the quantal release mechanism is again asswed in the case of EPC. The localized
release of ACh makes the amplitude of EPC higher by a factor about 2 compared with that
in the homogeneous release of ACh, implying that the quanial release mechanism works as
an amplifier of the EPC with the fixed amount of ACh available.

The two-dimensional compartment model constructed and applied n this study is thus

valuable for analysis of the functional and structural correlations in the chemical transmission
process. Further application and extention of the model would contribute more o elucidation

of the mechanisms in the synaptic signal transmmssion.

The author is grateful to Prof. Naoto Sakamoto of the University of Tsukuba for guidance

of the research and completion of the dissertation.
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Appendix

S-functions of the differential equations

The RD system representing the dynamic behavior of ACh in the cleft is formulated as a set
of partial differential equations, which is discretized on the space coordinates to lead to aset
of ordinary differential equations as given in Section 3.1. The Gear method is then applied
to the ordinary differential equations to yield the temporal variation in concentrations of the
chemical species in the R system. In this appendix the full representation of the derived
ordinary differential equations is provided in the form of S-function, which is syntactically
C language.

SIMULINK is employed for numerical integration of the ordinary differential equations
derived from the RD system. SIMULINK, one of the extensions of MatLab [16], consists of a

set of programs for simulating dynamic systems. T he procedure of the simulation analysis as

SIMULINK
S-function data
Gear method |__5.
differential]l = numerical matrix
equatins integration form
M-files
prlocedures > MatLab » | graph
with
Pparameters

Fig.A.1. The procedure of the analysis using SIMULINK.
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shown in Fig. A.1 begins with formulation of the set of ordinary differential equations as the
S.function which is the executable form of SIMULINK. T'he kinetic and structural parameters
of the RD system and the initial conditions are processed with the M-files in SIMULINK.
Operation of the function of Gear, which is one of the numerical integration algorithm of
SIMULINK, vields the time courses of the concentration in the respective chemical species
in the RD systemn as the matrix forms of MatLab. Such data are easily visualized with the
graphic feature of MatLab.

Two versions of the S-functions are formulated in this study. The version for the in-
stantaneous release of ACh is applied for the analysis in Sections 4.1, 5.1, 5.2, and the
corresponding analysis in Section 3.1. The other version for the ACh release mechanisms
without the junctional fold is employed for the analysis in Section 4.2.

The executions of numerical integration are performed on the interactive interface of the
MatLab or on scripts written as the form of M-files of MatLab. The procedures with the
set of the parameters and the initial conditions for the respective analysis are shown as the

{form of M-files in the last section.
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1. The model for the instantaneous release of ACh

The following S-function formulates the RD system with the open boundary conditions as
expressed in Eqn.3.3. For the simulation of the EPC, one of the define-staternents should be
replaced with a define-statement corresponding to the closed boundary condition as expressed

in Eqn.5.1 according to the comment in the program list.

/s sk sk ok ok sk o kR R Rk ok R oR ko ek ok kiR sk ki tokok ok ok ok
*
The model of the RD system for the chemical tramsmission process
at the neurcmuscular junction with a juncional fold,
assuming the instantaneous release of ACh.
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O K % W N X % K F X ¥ OF X A OE XK K N O O O % R E R R R N R F K F KR KK E KKK K H K

Differential equations

alal /sde

+ KM1[AE] - Ki[A][E]
+ Exist_ach(x,r)*={ KMR*{ [AR] + 2[AAR] )
- Kp+a*( 2[R] + [4R) ) )

d[AE] /at = Ki[aJ[E] — ( XM1 + K2 ) [AE]
da[Eacl/dt = K2[AE] - K3[Eac]

alAR] /dt = KR[A1+( 2[R] - [aR] ) + KMR+( 2[AAR] - [AR] )

d[AAR]/dt = KR[A][AR] - 2KMR[AAR] + KC[O] - KOLAAR]
4afol  /at = Ko[aarl - Kc¢lod

Consevation

ET
AT

It

]

laws

[E] + [AE] + {Eac]
[R] + [aR] + [AAR] + [O]

Boundary conditions

dA(x,*)/dx = 0
dA(*,r)/dr = 0
4 (*,RC) =0

Variables for chemical species

Alx,T)
E(x,7)
B(x,r)
F(x,z)
R(x)
Uixr)
v(x)
0(x)

A  Acetylcoline(ich)

E Free acetylcolinesterase(AchE}

AE Ach-AchE Michaelis complex

FEac Ach—AchE intermediate acetylated complex
R Acetylcoline recptor(AchR)

AR Ach-AchR closed channel assembly

AAR Ach-Ach-AchR closed channel assembly

0  Ach-Ach-AchR open channel assembly

Parameters (in mM-msec-microm system)

Rate constants for reactions

K1
KMi
K2
K3
KR
KMR
KO
KC

200 4 + E -> AE

1 A+ E < AE

110 AE -> Bac

20 Eac ~> E + acetate + H2
30 A+ R -> AR

10 A + R <- AR

20 AAR ->» 0

5 AAR <= 0

piffusion coefficients for Ach

DX
DR

0.1 Crossing
0.1 Radial

gtructure of synapse

WX
DF
RC
ST

0.05 Width of the cleft {t=0)
0.5 Depth of the fold (t=0)
0.5 Radius of the critical disc ( 1= 0 )
9000 Surface area of membrane

79

DR*( dd[Al/drr + 1/r*d[Al/dr ) + DX#dd[a]/dxx



# % K K X K % R M % K X K K F FH ¥ G ¥ K ¥ ¥ K K F ¥ X F ¥ F OF K * K ¥ ¥ ¥ ¥

Substrates

N&i 1e4 Total Ach released per MEPC
NE 2e7 Total esterase in the cleft
CR 2e4 Surface density of receptors

Kumber of discritizatins

Etc

VT
sC1
RF
bE
5C2
RV
sV
w
vci
ycz2

RT1
RT2
ET
AT

NXD 1 Crossing in the cleft

NFD 10 Crossing in the fold

NRD 10 Radial

RVN Radius of the synaptic vesicles
RFN Radius of the synaptic folds

DEN Depth of the folds with AchR & AchE

oo

PI
AVM

.1415 Pai
.022e5 Avogadro’s number in this units
6.022e23 / ( 1e1b * 1e3 )

ielb t liter = CL mivro-m~3

ie3 1 M = CM mM

o w

Prived constants

STHWX Volume of the cleft

Area of membrane with AchR in zonel
RC*RFN/NRD Radius of the fold
DF*DEN/NFD Depth of the fold with AchR & AchE
2%PI*RF+DE Area of membrane with AchR in zonel
RC*RVN/NRD Radius of the synaptic vesicle
PI#RV~2 Area of the Ach influxing disc
SV+WX/NXD Volume of the release area of ACh
SC1#WX/NXD Volume of a compartment with AchR in zonel
PI*RF~2#(2%RFE-1)*+DE/RFN"2 in zone2
CR*SC1/(VCi*AVM)= CR*KXD/(Wi*AVH) AchR conc¢.in zonel
CR*SC2/ (VC2%AVM)= CR*RFN*NRD/( (RFN~1/2)*RC*AVM}  in zone2
NE/(VT*AVM) = NE/(ST*WX*+AVH) AchE conc.
NA/(VV+AVM) = NA*NXD/(SV*WX#AVE)  Ach conc. per MEPC

****************************#******************************#****************/

#include

#define
#define

#define

#define
#tdefine
#define

static

#tdefine
#define
#define
#define
#define
#define

“matrix.h"

AVM 6,022eb

PI 3.1415

NSTATES 2380 /* NRD#NXD*4 + (NRD-RFN)*4 */
/% + RFN+NFD + RFN+DEN#3 + DEN#4  */

NCOEFFS 1

NINPUTS 0

NOUTPUTS 1 /+ Number of open channels */

Matrix *Coaf£s [NCOEFFS];

K1 mxGetPr (Coeffs [01) [0]

KM1 nxGetPr{Coeffs [0]) [1]

K2 nxGetPr{Coetts [01) [2]

K3 nxGet Pr{Coetts [0]) [3]

%R nxGetPr(Coeffs [0]) [4]

KMR nxGetPr(Coeffs [0]) (5]
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#define

#define
#idefine
#define

#define
#define
#define
#define
#define
#define
#define
#tdefine

#define
#define
#define
ttdefine
ttidefine
f#tidefine
f#idefine
#tdefine

#tdefine
#define
#tdefine
#define
#define
#define
#tdefine
#tdefine

#tdefine
#tdefine
#define
#define
#define
#define
#tdef ine
#tdefine

K
KC
RX
DR
WX
DF
RC
ST
NA
NE
Ch
RNXD
RNFD
RNRD
RRVN
RRFN
RDEN

I2(X,R)
I3(X,R)

I4i(X,R)
IBi(X,R)
IFi(X,R)
IEL(X,R)
IU1(R)
IVi(R)
101(R)
IRi(R)

IA2(X,R)
IB2(X,R)
IF2(X,R)
IE2(X,R)
TU2(X)
Iv2(x)
102(X)
IR2(X)

A10(X,R)
B10{X,R)
Fi0(X,R)
E10(X,R)
u10(R)
v10(R)
010(R)
R10{(R)

A420(X,R)
B20(%,R)
F20(X,R)
E20(X,R)
y20(X)
v20(X)
020(X)
R20(X)

mxGetPr{Coeffs[0]) [6]

mxGetPr{Coeffs{0]) [7]

mxGetPr (Coeff£s[0]) [8]

mxGetPr (Coeff£s[01) [8]

mxGetPr (Coeffs[0]) [10]
mxGetPr (Coef£s[0]) [11]
nxGetPr(Coeffs[0]) [12]
mxGetPr (Coeffs[0]) 133
meGetPr (Coeffs[0]) [14]
mxGetPr(Coeffs[0])) [15]
mxGetPr(Coeffs[03) [16]
nxGetPr{Coeffs0]) [17]
mxGetPr(Coetfs0]) [18]
nxGetPr{Coeffs{0]) [18]
nxGetPr(Coefts[0]) [20]
mxGetPr{Coeffs[0]) [21]
nxGetPr(Coeffs[0]) [22]

(NRD*(X)+(R))
(NFD*(R)+(X))
(DEN*(R)+(X))

(T1(X,R))
(OF11+It(X,R))
(OF12+11(X,R))
(OF13+I1(X,R))
(OF14+(R))
(OF15+ (R))
(OFi6+(R))
(OF17+(R))

(OF21+I2(X,R))
(OF22+I3(X,R))
(OF23+I3(X,R))
{OF24+I3(X,R))
(OF25+ (X))
(OF26+(X))
(OF27+(X))
(OF28+(X))

x0[T481(X,R}]
x0[IB1(X,R)]
x0[TF1(X,R)]
x0[IE1(X,R}]
x0[IU1(R)]
xO[IV1(R)]
x0[101(R)]
x0{IR1(R)]

x0[1a2(X,R)]
x0[1B2(X,R)]
xO[IF2(X,R)]
xO[IE2(X,R)]
x0[TU2(X)]
xO[IV2(X)]
x0[I02(X)]
xO[IR2(X)]
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#define AtP(X,R) ((R)<RFN?x[IA2(0,R)] :x[Ia1(NXD-1,R}])

#define 41Q(X,R) ((X)<07x[TIA1(0,R)]: ((X)<¥XD7x[1A1(X,R)] :A1P(X,R}))
/% For the simulation of EPC, the following define statement should be */
Iz replaced with: */
/% #define 41(X,R) ((R)>=NRD741Q(X, (NRD-1): ( (R)<07A1Q(X,0) :A10(X ,R})) */
#define AL(X,R) ¢ (R)>=NRD?0: ( (R)<0?A1Q(X, 0) :41Q(X,R)))

#define B1(%,R) x[IB1(X,R)]

#define F1(X,R) x[IFi1(X,R)]

#define E1(%,R) x[IE1(X,R)]}

#define Ui(R) x[IUL(R)]

#idefine Vi(R) x[IVi(R}]

#define 01(R) x[T01(R)]

#define R1(R) x[IR1(R)}]

#define A2P(X,R) ((X)<NFD?x[TA2(X,R)]:x[TA2(NFD~1,R}])

#defire A29(X,R) ((X)<0?7x[IA1(NXD~1,R)]:A2P(X,R))

#tdefine A2(%,R) ((R)>=RFN?A2Q(X ,RFN~-1) : ((R)<0742Q(X,0) : A2Q(X,R)))
#define B2(X%,R) x[1B2(X,R)]

#define F2(X,R) x[IF2(X,R)]

#define E2(X,R) x[IE2(X,R)]

#define y2(x%) x[IU2(X)]

#define v2(X) x[Iv2(X)]

#define 02(x) x{T02(X)]

#define R2{X) x[IR2(X)]

#define dA1(X,R) dx[Ta1{X,R)]

#define dB1(X,R) dx[IB1(X,R)]

#define dF1(X,R) dx[IF1(X,R)]

#dsefine dE1(X,R) dx[IE1(X,R)]

#idefine dUi(R) dAx[IU1(R)}]

#define dvi(Rr) dx[Ivi(R)]

#define d01(R) dx[101(R)]

#define dRi(R) dx[IR1(R)]

#define da2(X,R) ax[Ia2(X,R}]

#define dB2(X,R) dx[IB2 (X,R)]

#define dF2(X,R) dx [IF2(X,R)]

#define dE2(X,R) dx[IE2(X,R)]

tdefine duz(X) ax[IU2(X)]

#define dava(x) dx[Iv2{X)]

#define da02(x) dx[102(X)]

#define dR2(X) dx[IR2(X)]

static int NXD;

static int NFD;

static int NRD;

static int RVN;

static int RFN;

gtatic int DEXN;

static int TNCL; /* Total number of compartments in zone i */
static int TNCZ2; /+* Total number of compartments in zone 2 */
static int TNRi; /% Total number of compartments for AchR in zone 1 *f
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static int TNEZ2;

static int OFil,
static int OF21,

static double UlX;
static double U2ZX;
static double UR;

static double DI1I2;
static double D2X2;
static double DR2Z;
static double OCE1;
static double O0OCEZ;

/*

Total number of compartments for AchE in zone 2 */

OFi12, OF13, 0OF14, OFi5, OFi16, OF17;
OF22, 0F23, 0F24, OF25, OF26, O0F27, OF28;

/% Delta x in zonel */

/* Delta x in zone2 */

/% Delta r %/

/* DI/ (U1X+U1X) */

/* DX/ (U2X*U2X) */

/* DR/{UR*UR} */

/* for outputs in zone 1 #/
/* for outputs in zome 2 %/

void init_conditions(x0)
double *x0;
{
double RT1 = CR*RNXD/{WX*AVM);
doubls RAT2 = CR*RRFN#ENRD/{(RRFN-1.0/2.0)*RC#AVH);
double ET = NE/(ST*WixAVM);
double RV = RC*RRVN/RNRD;
double AT = NA*BRNXD/(PI*RV+RV#WX*AVM);
int i,3;
NXD = RNXD + 0.5;
NFD = RNFD + 0.5;
NRD = RNRD + 0.5;
RVE = RRVN + 0.5;
RFE = RRFN + 0.5;
DEN = RDEN + 0.5;
TNC1 = NRD*NXD; /* Total number of compartments in zome 1 */
TNC2 = NFD*RFN; /* Total number of compartments in zone 2 */
TER: = NRD - RFN: /#* Total number of compartments for AchR in zone 1 %/
THNE2 = DEN*RFN; /% Total number of compartments for AchE in zone 2 #/
0F11 = TNCi; /* Offsets for references to variables */
GFi2 = OFil + THNC1;
OF1i3 = 0OF12 + TNCi;
OF14 = OF13 + THCi;
OF15 = OF14 + TNR1;
QFris = OF15 + TNR1;
OFi7 = DF16 + TNR1;
OF21 = OF17 + THR1;
OF22 = 0F21 + TNCZ;
QF23 = 0OF22 + TNEZ2;
OF24 = 0F23 + TREZ2;
0F25 = OF24 + TNEZ;
OF26 = 0OF26 + DEN;
OF27 = 0F26 + DEN;
OF28 = 0OF27 + DEX;
UiX = WX/NXD;
U2X = DF/NFD;
UR = RC/NRD;
D1X2 = DX/(U1X#UiX};
D2X2 = DX/(U2X*U2X);
DR2 = DR/(UR*UR);
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OCE1
QCE2

PI*UR*UR*U1X*AVH;
PI#UR*UR* (2%RFN-1)*U2X*AVM;

It

foxr( i = 0 i < NXD; i++ )
for( j = 0; j < NRD; j++ )

/% for outputs in zone 1 */
/* for outputs in =one 2 */

/% for zome 1 */

{
A10(i,j) = B10(1,j) = F10(i,j) = 0.0;
E10(i,j) = ET;
}
for{ j = 0; j < THNR1; j++ )

{

U10(3) = v10(3) = 010(j) = 0.0;

R10(j) = RTi;

¥

for( j = 0; j < RVN; j++ )
£10(0,j) = AT;

for( i = 0; i < DEN; it++ )

{

for( j = 0; j < RFN; j++ )
{
420(i,j) = B20(i,j) = F20(i,3) = 0.
E20(i,3) = ET;
}

U20(i) = v20(4i) = 020(i) = 0.0;

R20{i) = RT2;

¥

for( i = DEN; i < NFD; i++ )
for( j = 0; j < RFN; j++ )
420(i,3) = 0.0;
iy

void derivatives(t,x,u,dx)
double t,%x,%u;
double *dx;
{
double
int i,3;

f1, f2, £3, f4, £5, 16;

For( i = 0; i < NXD; i++ )
for( j = 0; j < NRD; j++ )
{
1
12
13
da1(i, i)

K2#B1(i,i);
K3%F1(i,3);

/* for zone 2 */

0;

/% for zome 1 */

_ K1*E1(i,j)*A1(i,]) + KM1*B1(i,j);

= £1 + DiX2#( A1(3=-1,j) - 2*#a1(i,j) + AL1(i+1,3) )

+ DR2*( A1(di,j-1) - 2*A1(i,j) + a1(i, j+1)
+ ( A1(E,j+1) - A1(E,5-1) 2+ g+ 0.5) ) );

- f1 - £2;
£2 - 13;
£1 + £3;

dB1(i,j)
dFi(i,j)
aei(i,j)
¥
for( j = 0; j < TNR1; j++ )
{

£4 = - 2%KR*A1(NXD-1,j+RFN)*R1(j) + KMR+U1(3);
£5 = — KR+A1(NXD-1,j+RFN)*UL(3) + 2#KMR*V1(j) ;

£f6 = KO*V1(j) - KC*01(j);
dA1(NXD-1,j+RFN) += f4 + £5;
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aui(j) = - £4 + f£5;
avi(j) = - f6 - 16;
a01(j) = f6;
dri(j) = £%;
}
for( i = 0; i < DEN; i++ ) /% for zone 2 ¥/
{
for( j = 0; j < RFN; j++ )
{
£1 = - K1*E2(i, j)*A2(d,j) + KM1%B2(i,J);
£2 = K2#B2(i,j);
f3 = K3*F2(i,j):

ak2(i,j) = £1 + D2x2x( A2(i-1,3) - 2%A2(1,J) + A2(i+1,3) )
+ DR2%( A2(i,j-1) - 2+%a2(i,j) + 42(i,j+1)
+ ( A2(i,j*1) - A2(i,j-1) M/ { 2%( j+ 0.5 ) ) );

ap2(i,j) = - f1 - £2;
ar2(i,j) = £2 - £3;
dE2(i,j) = f1 + £3;
¥
if{ RFN > 0 )
{
f4 = - 2*KR*A2(i,RFN-1)*il2(i) + KMR*U2(i);
5 = — KR*A2(i,RFN-1)#U2(i} + 24KMR*V2(1) ;
£6 = KO#V2(di) ~ KC+02(i);

da2(i,RFN~-1) += f4 + £5;

du(i) = - f4 + 15;
dva({i) = - £b — £6;
daoz(i) = 16;

dR2(i) = £4;

¥

}
for{ i = DEN; i < NFD; i++ )
for( j = 0; j < RFN; j++ )
d42(i,3) = D2X2x( A2(i-1,j) - 2%A2(i,j) + A2(it1,3) )
+ DR2*( A2(i,j-1) - 2#A2(i,j) + A2(i, j+1)
+ ( A2(i,j*1) - A2(i,3-1) )/ 2+( j+ 0.5) )
3

double outputs(t,x,u,y)
double 1©,%x,%u;

double *y;
{
int i, j;

double osum;

for( j = 0, osum = 0.0; j < TNRi; j++ )
osum += ( 2+¢( j + RFN ) + 1 »*01(j);
y[03 = osum*0CE1;
if( RFN >0 )
{

for( i = 0, osum = 0.0; i < DEN; i++ ) osum += 02(i);
y[0] += osum*OCEZ2;
¥

#include "simualink.h"
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2. The model for the release mechanism of ACh

The following S-function formulates the RD system with the mechanisms for ACh release

from the synaptic vesicle without the junctional fold.

okt e sk ook o ok o sk ok ok o o e R R R o ok o Rk Rk Ok e e Rk Rk O KK
*

*# The model of the RD syatem for the chemical transmission process

* at the neuromuscular junction

with the release mechanisms of ACh.

Differential equations

d[A] /dt = DA*( dd[Al/dxx + dd[al/drr + 1/r*d{al/dr )
+ KM1[{AE] - K1[a] [E]
£ dlt( x - WK )*#( KMR#( [AR] + 2[44R) )
- KR+a*x{ 2[R] + [AR] ) )
- dle( x, r )*D8S*yv/vs+( [A] - [4s] )

d[A8] /dt = Dss*( [4] - [48]1)
d[AE] /dt = K1[AJ[E] - ( KM1i + K2 )[AE]

d[Eacl/dt = K2[AE] - K3[Eac]

d[AR] /dt = KR[AI*( 2[R] - [AR] ) + KMR+( 2[A&R] - [AR] )
da[CAAR]/dt = KRTAJ[AR] - 2KMR[AAR] + KC[0] - KO[AAR]

alfol /dt = kKo[aaR] - Kc[o]

Conservation laws

[E] + [Ae] + [Eac]
fR] + [AR] + [AAR] + [O]

Et
AT

Boundary conditions

ha

da(0,*) /dx
dA (WY, *) /dx
dA(*,0) /dr
A (*,RC)

nm n
o O 0O

Equation for the release maechanisms

VCxA(0,0) = -VVss >
d4a{0,0) = —~YV/VS*dS
= -VV/VS*DSS#( 4 - S )
= —VV/VS*DS#PI+RP 2/ (VV+LP)*( A ~ S )
= ~DS*PT#RP"2/ (VS#LP)*( A - S )
= —DS*PI*RP~2/ (PI*UR"2*UX+LP)*( 4 = S }
= -DS*RP-2/(UR“2%UX*LP)*( A — S )
NA/(VVAVM)
NA/(4/3+PI#RV "~ 3+AVM)

S(0)

Yariables for chemical species

Alx,T) A Acetylcolina{Ach)
s AS Ach in vesicle
E{x,r) E Free acetylcolinesterase(kchE)

FOoE O A O OE R O OF X R K N KR K K XK OFOE K W K R F R H K K E K O K F X K E KKK KKK KN

86



HOX R O O W O W M M W M M W N M o B W W N M A R % % R R R N R R K % R K S R % e e % S W N W N N W A %

B(x,r) AE Ach-AchE Michaelis complex

F(x,r) Eac Ach—AchE intermediate acetylated complex
R{r) R Free Acetylcoline recptor(4chR)

u{r) AR Ach—-AchR closed chammel assembly

v(r) AAR Ach-Ach-AchR ciosed channel assembly
o(xr) 3] Ach—Ach-AchR open channel assembly

Parameters (in mM/m—sec/micro-m system)

Rate constants for reactions

Ki 200 A +# E -> AE

KM1 1 A+ E <- AE

K2 110 AE -> Eac

K3 20 Eac -> E + acetate + H2
KR 20 A+ R -> AR

KMR 10 A + R <~ 4R

KO 20 AAR > 0D

KC 5 AAR <- 0

Diffusion coefficients for Ach
DA 0.1 in the cleft
DS 0.i in the pore betwsen the vesicle and the cleft

Structure of synapse

WX 0.05 Width of the cleft
RC 0.5 Radius of the critical disc
RV 1.85e-2 Radius of the wvesicle
RP 1.00e-3 Initial radius of the pore
ER 2.50e-2 Expanding rate ¢f the pore
FR 1.0 Factor of the outflow from the vasicle
LP 1.00e-2 Length of the pore
VC 450 Volume of the cleft
Substrates

NA 1le4 Total Ach released per MEPC
NE 27 Total esterase in the cleft
CR 2e4 Surface density of receptors

Fumber fo discritizatins
NXD 1  Crossing
NRD 10 Radial

Etc
PI
AVM

.1415 Pal
.022e5 Avogadro’s number in this units
6.022e23 / ( el * 1e3 )

lels 1 liter = CL mivro-m~3

o w

1

1e3 1M = CH mM
Drived constants
YV  4/3%PI*RV°3 Volume of the vesicle
RT CR#NXD/(UX*AVM) AchR concentration
ET NE/(VC*AVM) AchE concentration
AT NA/(VV=AVM) Ach concentaration per MEPC

DSS DS*PI*FR*(RP+ER*t) "2/ (VV+LP)
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*aj:*************************#*********#*************t****k*t***#*********/

$#tinclude "matrix. h"

#define AVM 6.022eb

#define PI 3.141%

#define NSTATES 81 /% Max Value of (NRD*(4+NXD+4)+1) */
#define NCOEFFS 1

#define NINPUTS 0

fidefine NOUTPUTS 3 /% Number of open channels */
static Matrix #*Coeffs[NCOEFFS];

#tdefine Ki mxGetPr(Coeffs[0]1)}[0]
ftdefine KM1 mxGetPr{Coeffs{013[1]
#define K2 mxGetPr{Coeffs[0])[2]
#define X3 mxGetPr{Coeffs[0])[3]
#tdefine KR mxGetPr(Coeffs[01)[4]
#tdefine KMR mxGetPr(Coeffs[0])[5]
#define K0 mnxGetPr{Coeffs[0])[6]
#tdefine KC mxGetPr(Coeffs[0])[7]
#define DA mxGetPr(Coeffs[0])[8]
f#define DS mnxGetPr(Coeffs[0])[9]
#define WY mxGetPr(Coeffs[01)[10]
#define RC mxGetPr(Coeffs[0J)L11]
#define RV mxGetPr{Coeffs[0]){12]
#define RP mxGetPr{Coeffs{0]1)[13]
#define ER mxGetPr{Coeffs[0])[14]
#define FR mxGetPr{Coeffs[0])[15]
#define LP mxGetPr{Coeffs[0])[18]
#define VC mxGetPr{Coeffs[0])[17]
#define Ni mxGetPr(Coeffs[0])[18]
#define NE mxGetPr(Coeffs[0])[18]
#define CR mxGetPr(Coeffs[0])[20]
#define RNXD mxGetPr(Coeffs[0]) [21]
#define RNRD mxGetPr (Coeffs[0]) [22]
#define A0CX,R) xOLNRD*(X)+(R)]

#define BO(X,R) x0[NRD*(NXD+(X))+{R)]
#define FO(X,R) xO[NRD*(2*NXD+(X))+(R)]
#define EO{X,R) xC[NRD*(3*NXD+(X})+(R)]
#define Uo(R) O [NRD*(4+«NXD)+(R)]
#define VO(R)  xOINRD#{4*N{D+1)+(R)]
#define DOCR)  xO[NRD*(4%NXD+2)+(R)]
#define RO(R) %0 [NRD* (4*NXD+3) +(R)]
#define S0 xO[NRD*(4*NXD+4 )]
#define BCX(X) ((X)<070:((X)>=NXD?¥KD-1:(X}))
fdefine BCR(R) {((R)<070:(R))

#define ACX,R)  ((R)>=NRD?0:x[NRD*BCY(X)+BCR(R)]}
#define B(X,R) x[NRD*(NXD+(X)}+(R}]
#define F{%,R) x[NRD*(2#NXD+(X))+(R)]
#define E(X,R) x[NRD*(3*NXD+(X))+(R)]
#tdefine U(R) x [NRD#* (4*NXD}+(R)]
#define V(R) x [NRD* (4*NAD+1)+(R)]
ttdef ine 0(R) x [NRD* (4%NXD+2)+(R)]
#tdef ine R(R) % [NRD# (4*NXD+3)+(R)]
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#define S x [NRD*(4*NXD+4)]
#define da(X,R) dx [NRD*(X)+(R)]
#define dB(X,R) dx[BRD+(NXD+(X))+(R)]
#define dF(X,R} dx [NRD*(2*NXD+ (X)) )+(R)]
#define dE(X,R) dx [NRD*(3*NXD+(X) )+(R) ]
#define du(R) dx [NRD*{4*NXD)+(R}]
#define dV(R)  dx [NRD#(4*NXD+1)+(R)]1
#define d0(R)  dx[NRD*(4*NXD+2)+(R)]
#define dR(R)  Ax[NRD*(4*NXD+3)+(R)]
#define ds dx [NRD*(4*NXD+4)]
static int NXD;
static int NRD;
static double DX2; /* DA/(UX*UX)
static double DR2; /% DA/(UR*UR)
static double DSF; /* DS#*pi/(VV+LP)
static double VPV; /* Ratio of VTV to VS
static double OCE; /* Volume of first critical disc unit
stati¢c double AT,
void init_conditions{x0)
double *x0;
.{
doubie RT = CR*RNXD/(WX+AVH);
double ET = NE/(VC*AVM);
double VV = 4./3.*PI+RV*RV*RV;
double UX; /% Delta x
double UR; /* Delta r
double VS; /* Volume of A(0,0)
int i,3;
AT = NA/(VV*AVM);
NXD = RNXD + 0.5;
KRD = RNRD + 0.5;
UX = WX/Nib;
UR = RC/NRD;
DX2 = DA/ {(UX~VUX);
DR2 = D4/ (UR*UR);
DSF = DS*FR*#PI/(VVsLP);
VS = PI*URxUR*UK;
VPV = VV/VS;
QCE = VS*AVH;
for( i = 0; i < WXD; i++ )
for( j = 0; j < NRD; j++ )
{
20(i,j) = Bo(i,j) = Fo(d,j) = 0.0;
E0{i,j) = ET;
¥
for( j = 0; j < NRD; j++ )
{
Uo(§) = vo{3) = 00(3) = 0.0;
RO{(j} = RT;
}
S0 = AT,

8%

*/
*/
*/
*/
*/f

*/
x/
*/



void derivatives(t,x,u,dx)
double t,%x,%*u;
double *dx;
{
double rop(};
double f1, £2, £3, £4, £5, 16, I7;
int i,3;

for{ j = 0; j < NRD; j++ )
{
for( i = 0; i < NXD; i++ )
{
f1 - K1*E(4,j)*A(i,3) + KM1+B(4,j);
2 K2*B(1i,3j};
13 K3+F(1,j);
da(i,j) = £1
+ DX2+( A(i~1,j) — 2¢A(5,3) + a(i+L,j) )
+ DR2*( A(i,j-1) ~ 2*%a(i,j) + A(4,j+1)
+ ( A(i,3+1) - a(d,j~1) )/ 2.0%( j + 0.5) ) )3
- f£1 - £2;
f2 - £3;
f1 + £3;

aB(i, )
aF(i, j)
dE(i, j)
¥

__i;

f4 = - 2#KR*A(i,j)*R{j) + KMR*U(j);

6 = - KR*A(i,j)*U(j)} + 2*KMR*V(j);

f6 = KO*V(j) - KCx0(j);

dA(i,j) += £4 + £5;

I

au{jy = - f4 + £5;
av(jy = - £5 - £6;
do(j) = 16;

ar(j) = £4;

1

7 = rop{ t );

dS = DSF#ET+£7+( A(0,0} - S };
dA(0,0) -= VPV*dS5;

}

double outputs(t,x,u,y)
double t,%*x,%n;
double *y;

{

double rop();

int j;

double osum = 0.0;

for( j = 0; j < NRD; j++ )

osum += ( 2%j + 1 }*0(j);
y[0] = osum*OCE;

y{1] = S/AT;
y[2] = rop{ t );
}

static double rop( t )
double t;
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{
double rp;
return{ ( rp = RP + ER*t ) <RV ? vp : RV );

}

#include "simulink.h"
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3. The procedures of the simulations

The following list defines the functions for the execution of numerical integration in the form

of M-files:

s gets.ir: for the execution of the model for the instantaneous release of ACh.

plot : for the plotting of C(2).

seti_ir: for the setting of the parameters for the instantaneous release of ACh.
getsrm: for the execution of the model for the ACh release mechanisms.

seti_rm: for the setting of the parameters for the ACh release mechanism.

Sk ke ok ok ok ok b ok sk skok ok ko s ek o ke sk e sk koo ok ook sl ok e el ek s e koke ko A Aol ok e o ok ook Rk

)

% geta_ir: for the execution of the model for the instantanecus
release of ACh.

%
%

R e i
function TC = gets_ir(plst)

if "margin
disp(’
disp(*®
disp(®
disp(?®
disp(?
disp(?
return

and

global pli

DP = seti_

while “issg

Usage: lt,s,Col

i1: Ki 2:
6: KMR T:
11: WX 12:
16;: NE 1i7:
21: RVN 22:
st dfunc;
ir;
mpty(plst)

KM¥1 3:
KO 8:
DF 13:
CR 18:
RFN 23:

DP{plst(1)) = plst(2);
plst = plst(3:length(plst));

K2 4:
KC -
RC 14:
KXD 19:
DEN 24:

gets([il v1

X3 B:
DX 10:
ST 15:
§FD 20:
TEND’);

i2 v2

IO H
KR?);
DR’);
NA?);
NRE'};

NRD#KXD#4 + ( NRD — RFE )*4 + RFN*NFD + RFN+DEN#3 + DEN*4;

end

NXb = DP(48);

HFD = DP(19);

HRD = DP(20);

RFE = DP(22);

DEN = DP(23);

plist = [NXD NFD NRD RFN DEN1;
nstates =

YRerxr = le-3;

Rerr = je~5;

%Tmin = DP(24)/B00;

Tnin = DP(24)/1000;

Tmax = DP(24)/20;

GPT = [Rerr,Tmin,Tmax,0,0,0];
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if isempty(dfunc)
dfunc = 'diffun’;
end
[t,s,Col= gear(dfunc,DP(24),[],0PT,{J,DP(1:23));
TC = [%,Co0,a(:,1:nstates)];

Yordkosk koo ok ko ok ok ok ok kak ok ok sk ok ok ook ko o ook sk ok sk s ok sk ok e ko
%

% seti_ir: for the setting of the parameters for the instantaneous

% release of ACh (mM msec micro-m system).

pA

»

'/,*********** el se e ok ofe e o s sk Sk ek e ok ke o kb ke ok ok e e ok ok sk sl e sk ook sk e ok skok ok ok ok o ok ol ok o kol o ook

function d = seti_ir
Ki = 200; w1
KMl = 1; % 2
K2 = 110; % 3
K3z = 20; % 4
KR = 30; % B
KMR = 10; % 6
KO = 20; 6T
KC = 5; %8
DX = 0.1; %o
DR = 0.1; %10
WX = 0.05; %11
DF = 0.5; %12
RC = 0.5; %13
ST = 9000; %1a
NA = le4d; %18
NE = 2e7; %16
CR = 2e4; %17
NXD = 3; %18
NFD = 30; %19
NRD = 10; %20
RVN = 1; %21
RFN = 1; %22
DEN = 15; %23
TEND = 5.0; Y24

d = [K1,KMi,K2,K3,KR,KNR,KO,KC,DX,DR,WX,DF,RC,ST,NA,NE,CR, ...
NXD,NFD, NRD,RVN ,RFN,DEN,TEND] ;

Yarkwdk sk ok kkorokoksok ok ok sk sk sk ok sk ko ol ook o sk o ok o sk sk ok o ek ok
%
% gets_rm: for the execution of the model for the ACh releass
% mechanism.
%
o o s e ook s e s s ek o R R Ao o Rk ok o ok el o o ook ko sk ook ok kK R K
function TC = gets_rm(plst)
if "nargin
disp(’ Usage: [t,s,Co] = gets([il vi i2 v2 ...])*);
disp(’ 1: K{ 2: KMl 3: K2 4: K3 &: KR');
disp(’ 6: KMR 7: KO 8: KC 9: DA 10: DS');
disp(’ 11: WX 12: RC 13: RV 14: RP 15: ER’):
disp(? 16: FR 17: LP 18: VC 19: NA 20: NE’);
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disp(’ 21: CR 22: NXD 23: NRD 24: TEND’);
return;
end
global t s DP dfunc;
DP = seti_rm;
while ~isempty(plst)
DP(pist{1)) = plst(2);
pist = plst(3:length(plst));

end

%Rerr = 1e—3;

Rertr = 1le—5;

YTmin = DP(24)/500;
Tmin = DP(24)/1000;
Tnax = DP(24)/20;

OPT = [Rerr,Tmin,Tmax,0,0,0];
if isempty(dfunc)
dfunc = ’diffun’;
end
[t,s,Col= gear(dfunc,DP(24), [1,0PT,[],DP(1:23));
TC = [t,Col;

8 stk s b ok ook o sk kel dok ook sk ook sk s bk ok ke ok ok Rk ok sk ok kR b kokk
A

% seti_rm: for the setting of the parameters for the ACh release

% mechanism (nM¥ msec micro-m system).

A

8 ks ok kR sk sk R Rk koo sk sk Rk ook R Rk ks ok
function d = seti_rnm

K1 = 200; %1
KM1 = 1; %2
K2 = 110; %3
K3 = 20; %4
KR = 30; % 5
KMR = 10; %8
KO = 20; %
KC = 5; %8
DA = 0.1; %9
DS = 0.1; %10
WX = 0.05; %1l
RC = 0.5 %1z
RV = 1.85e-2; %13
RP = 1.00e-3; %4
ER = 2.50e-2; %ib
FR = 1.0; %16
LP = 1.00e-2; %17
VC = 4b0; %18
NA = 1le4; w19
NE = 2eT; %20
CR = 2e4; %21
NiD = 1; %22
NRD = 10; %23
TEKD= 7.0; %24

d = [ Ki,KH1,K2,K3,KR,KHR ,KO,KC,DA,DS, WX, ...
RC,RV,RP,ER,FR,LP,VC,NA,NE,CR,NXD,NRD,TEND];
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Y,k ok sk sk ko sk ook ok ko o o o ko sk ok ok ok e ok ok ok ook ok o ek ok Ak ol
%

% plot : for the plotting of C(t)

%

Utk ke ok ek o sk sk ol ekl ke AR o s o A R o b R sk Rk sk ke ek sk
function plot(plst,cn)

color = [:yx m? g 2y Jg’ th? ’W’];

TC = gets(plst);

plot(TC(:,1),TC(:,2),color(cn));

xlabel{'Time (msec)’);

ylabel(’0Open channels/quantum’);
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