Chapter 2

On Induction

2.1 Introductory remarks

In concept learning, a learner is given a training set containing labeled in-
stances, which are typically represented by a list of feature-value pairs. Its
task is to inductively construct a hypothesis that accurately predicts the
label of novel instances. Past studies have provided a number of success-
ful algorithms such as ID3[67] or C4.5[68]. Unfortunately they degrade in
performance, both in terms of prediction accuracy and of speed, when they
are given data with many features that are not necessary for predicting the
desired label. Because raw data in real-world applications usually contain a
lot of irrelevant features, feature selection is crucial for successful application
of machine learning algorithms to the real-world applications. That fact has
boosted studies in the area[31, 1, 35, 72, 7, 36, 40]. The author will examine
some of them later in this chapter.

In section 2.2, the author defines the problem dealt in this chapter, while
giving some notational conventions. Section 2.3 presents a new feature subset
selection algorithm called EBFS. Section 2.4 evaluates EBFS’s performance
through experiments. Section 2.5 discusses relationship between EBFS and
some previous works, comparing EBFS’s performance with other two feature
subset selection algorithm. In section 2.6 theoretical background of EBFS is
discussed. Finally in section 2.7 the author gives conclusions and remarks
for future works.

2.2 Feature subset selection problem

First let us make some notational conventions. A particular learning al-
gorithm is denoted by M. The input to the algorithm is a multiset of

9

10 CHAPTER 2. ON INDUCTION

training instances and called a training set. Each instance X is a vector
(1,22, ...,%m), where x; denotes a value of the i-th feature X;. X denotes a
set of the features { X1, Xs, ..., X;n}. The training instance is a tuple ()Z, Y)
where y is the label, or output. X is called a feature set of the training
instance (X,) or the instance X.

T* denotes a multiset of the training instances whose feature sets are X.
For W C X, T"X denotes a multiset of training instances whose feature
set is W, which is obtained by shrinking each element of TX. Namely, there
are one-to-one correspondences between TX and TWX and for each element
(W,y1) in T"X if the corresponding element of 7% is (X, y5) then y; = ys
and if W; = X then w; = z;.

The task of the learning algorithm is to induce a structure (e.g., a decision
tree, a set of rules, a neural network) such that, given a new instance, it is
possible to accurately predict the label of the instance. The structure that
the algorithm M yields is denoted S(M,TX), where TX is given to M as a
training set.

Intuitively the feature subset selection problem is defined as follows. Let
A = {A,...,A,} be a set of features potentially available to a learning
algorithm M. Suppose there is a performance measure g for S(M, T%4), by
which ¢(S1) < g(S2) means that Sy’s performance is better than or equal to
Sy’s.

Let us use a term test set to denote a set of instances whose labels are
known and are used to evaluate the algorithm’s performance. The test set
is represented by the same symbol as a training set because they share the
equivalent structure. Let gl(S,T") denote a structure S’s performance which
is measured using 7" as a test set.

The feature subset selection problem is to find a minimal subset A* of A
which achieves the best g(S(M, T4 4)).

From the definition we can say that an irrelevant feature is a feature such
that performance of the learned structure is worsened by adding it to the
original feature set.

There are several ways to define ¢g. In this chapter we focus on the
structure’s predicting ability to unseen data and its relative simplicity.

2.3 New explanation-based method

2.3.1 The heuristic function H

First let we start from why irrelevant features can worsen performance of
learned structure. The irrelevant features can worsen the prediction ability

CHAPTER 2. ON INDUCTION 11

of the structure for unseen data because they can help the induced structure
overfit to the given training set. A feature subset selection algorithm should
prevents the overfitting happening from the very beginning by removing those
features which help the induction algorithm only for a certain training set.!

Then we need to estimate to possibility that each feature will cause the
problem. Suppose our M is an ID3-like decision tree induction algorithm,
which takes the divide-and-conquer approach, in each step a feature is chosen
based on its property excluding its relationship to the other features, and does
not perform any pruning.

When an induced decision tree is given a test instance, it will yield a label
prediction and an explanation path for the instance, i.e., a decision path in
the tree where the instance follows from a root node to a leaf node. If the
prediction is correct then the explanation path is called a successful path,
otherwise a failed path.

Let us think about frequency of feature appearing in failed paths. Because
a failed path must contain an irrelevant feature?, the feature’s frequency of
appearance in the failed paths, normalized by its frequency of appearance in
the successful paths, is likely to reflect how irrelevant the feature is. This is

a heuristic that the author presents here. Namely, for a training set Tpx ;.
and feature X;, the heuristic H(X;, T;\,;,) is defined as follows.

rain

H(X;, TX.)™ G — F such that
G dif 0 lf |TEST|G’ = 0
o m otherwise
def 0 lf |TEST|F == 0
F = Fx.)
m otherwise

where G x; denotes the number of successful paths which include a node that
tests X;, |TEST|g denotes the number of elements in the test set whose
labels are accurately predicted by the structure, Fx, denotes the number of
failed paths which include a node that tests X;, and |TEST|r denotes the
number of elements in the test set whose labels are not correctly predicted
by the structure. A feature X; with low H(X;,T.X ..) can be expected to

be irrelevant. Changing the test set by means of cross validation (CV),

accumulation of H(X;, T;X..) can be more reliable.

'In the case of decision tree induction the overfit problem is usually solved by pruning,
i.e., simplifying a decision tree after it is created. The author will show that the feature
selection can be as effective as the pruning on the problem, with experimental results.

2Theoretical discussion will be shown later.

12 CHAPTER 2. ON INDUCTION

2.3.2 Greedy algorithm

The algorithm shown in figure 2.1 is based on backward stepwise elimination
which is commonly seen in statistics literature. It starts from the whole set of
features and greedily removes features which are most likely to be irrelevant
in each step.

Algorithm 2.1 EBFS(X, TX, M, m)
1 (e, h) < EBFS_induction(X, TX, M, m)
2 best + EBFS_sub(X, TX, M, m, e, h)
3 return best
Algorithm 2.2 EBFS_sub(X, 7%, M, m, e, h)
h_array[X] < e
worst < miny (h[Y])
rej < {X;|h[X;] = worst}
if rej = X then
return argmax h_array[X]|
else
N+ X —rej
(¢/,h') + EBFS_induction(N, TNX, M, m)
if ¢ < e then
return argmax h_array[X]
else
return EBFS_sub(N, TVX, M, m, ¢/, /)
13 end
14 end

Algorithm 2.3 EBFS_induction(X, TX, M, m)
for X; € X do

h[X;] + 0
end
E+0
for j =1 tomdo

ﬂfam <+ a training set for the j-th

block of m-fold CV

© 0 O Ot W+

—_ =
—_ O

—
\V)

SO W N =

7 € < gl(S(M7Tt§ain)7TX - T't)r(ain)
8 E+ FE+e

9 for X; € X do

10 h[Xi] = hIXi] + H (X3, T i)
11 end

12 end

13 return (h, E)

Figure 2.1: Greedy algorithm based on H(X;, T

train)

CHAPTER 2. ON INDUCTION 13

Each time average performance of the remaining feature subset is esti-
mated by CV. This CV is the same CV that is used to accumulate the value
of H. The iteration continues until X — {X;} yields much worse result than
X. At that time the algorithm returns a feature subset which yields the best
result so far.

Because the heuristic is essentially based on explanation created by a de-
cision tree, the author calls the feature subset selection method explanation-
based feature subset selection, or EBFS for short.

2.4 Experimental results

In order to evaluate the explanation-based feature subset selection, the au-
thor has conducted experiments on several datasets. C4.5, which comes with
Quinlan’s book[68], is used as the induction algorithm. As for the CV to ac-
cumulate the heuristic H and evaluate a feature subset, 10-fold CV is used.

The algorithm is evaluated through CV. Note that this CV is purely used
for evaluation of the algorithm, not a feature subset. To avoid confusion let
us call the CV used for evaluation of the algorithm outer-CV[37].

The experiments were performed using 30 datasets, with 22 of them are
taken from the UC-Irvine repository[45].

Two datasets are created by extending UCI datasets Vote and Credit.
Votel00 is created by adding 100 features, which randomly take a value from
three candidates, to Vote. Credit100 is created by the same procedure from
Credit. Votel00 and Credit100 are intended to be tougher problems for
feature subset selection algorithms.

The other six datasets are artificial and created by the author, to study
effects of noisy, correlated and dependent features on the algorithm.

In each case data obtained from four algorithms are shown, i.e., C4.5
without the pruning, C4.5 with the pruning, the EBFS with C4.5 without
the pruning, and the EBFS with C4.5 with the pruning. Each algorithm
is denoted as C4.5, C4.5P, EBFS and EBFSP respectively. When the
results are shown in a bar graph, the following legends are used.

— C4.5 ma EBFS
m C4.5P = EBFSP

2.4.1 UCI and UCI-derived datasets

In this subsection, the author show results from the UCI datasets, Credit100
and Votel00. For each dataset the author shows error rates on a test set

14 CHAPTER 2. ON INDUCTION

and complexity of induced decision trees in terms of the number of nodes
they have.

Error rates

Figure 2.2 shows the result on the error rates.

Error Rates (%)

201
151 1

101

Breast-w. Car Creditl00 Credit Ionosph. Flare

o T

Datasets

Error Rates (%)

104
8 .
6 .
4 .
2 .
0 | L o O e [MEm
FlareM FlareX Dis Hypoth. Iris Sick Datasets

Error Rates (%)

20
154
104
S0 L B
O Soybean-1. Tic-t. Votel00 Vote Wine Zoo p.tasets
40 Error Rates (%)
50
il W T
O I Bupa Ecoli Heart Hepatitis Lenses Pima 4ot

Figure 2.2: Error rates for UCI datasets

In most cases EBFS improved the error rate in a sense that EBFS and
EBFSP are better than C4.5 and C4.5P respectively. EBFS was outper-
formed by C4.5 only in 6 cases out of 24 cases. For EBFSP that is 5 out of
24. Even in those cases the degradation is insignificant, with an exception of
Lenses dataset. A possible explanation to this is the number of instances of

CHAPTER 2. ON INDUCTION 15

the dataset. Lenses has only 24 instances, significantly fewer than others.
In that case one failed path can create too much impact to the heuristic H.

Although improvements are also insignificant in most cases, in cases like
Credit100, Credit, FlareC, FlareM and Soybean-1. EBFS made a sub-
stantial contribution.

It is interesting to see which one of C4.5P and EBF'S performed better,
because the pruning is a usual choice to avoid overfitting in decision tree
learning. Among 24 confrontations, C4.5P won 12 and EBFS won 10. We
should not jump to any conclusion from here. However, the fact that EBFSP
is generally better than C4.5P suggests EBFS’s worth.

Number of Nodes

140
120 1
100+
80+ -
28] ‘l. E i
201 | [hig@ 0
Credit100 Credit Dis Ecoli FlareC FlareM Datasets
80 _Number of Nodes

60 -
40+
28_ 1 —H_'LI-_D[DE- HWEI H”EI T

FlareX Heart Hepatitis Hypoth. Ionosph. Iris

Datasets

Number of Nodes

Lenses Sick Votel00 Vote Wine Zoo

Datasets

Number of Nodes

Car Pima Soybean-l. Tic-t.

Datasets

Figure 2.3: Number of nodes for UCI datasets

16 CHAPTER 2. ON INDUCTION

Size of the decision trees

Figure 2.3 shows the result on the size of the decision trees, in terms of the
number of nodes of the tree. Like the case of error rates, EBFS and EBFSP
resulted smaller trees than C4.5 and C4.5P respectively. That is true even
for the dataset where EBF'S improved the accuracy greatly.

2.4.2 Artificial datasets

In this subsection, the author show results from the artificial datasets. All
six dataset belong one family. The base dataset Myd60 is created as the
following.

e There are six features a, b, c,d, e, f. They are all three-valued, take one
of {0,1,2}.

e The class is two-valued (0,1). The classis 1 if (d=0Ae=2)V (d =
2 A e =0) and otherwise 0.

e Value of e depends on a and b. e =1ifa =1Vb =1 e = 2 if
(a=0Ab=2)V (a=2Ab=0) and otherwise e = 0.

e cis correlated to the class. Its value is equal to the class in 75% of the
cases, otherwise random.

e f’s value is randomly taken from {0,1,2}.

e 500 instances are created by choosing a, b and d randomly from {0, 1, 2}.

The other datasets, Myd61, Myd62, Myd63, Myd64 and Myd65 are
derived from Myd60 by adding noise to a feature e, whose noise levels are
10%, 20%, 30%, 40% and 50% respectively. The aim of this experiment is to
see how EBF'S handles dependent features (a, b,), a correlated feature (c),
an irrelevant feature (f) and a noisy feature (e). For each dataset the author
shows error rates and the number of nodes. Furthermore, probabilities of
removing unwanted features are shown as functions of the noise level.

Error rates

Figure 2.4 shows error rates on the artificial datasets.

We can see improvements by EBFS in Myd62 to Myd65. However the
improvements are very small. This can be explained as follows. In these
experiments with the artificial datasets, plain C4.5 performed pretty well,

CHAPTER 2. ON INDUCTION 17

seldom choosing ¢, e, or f. That means few failed paths were available to
EBFS in the backward stepwise elimination loop. Because the heuristic H'’s
power essentially comes from the failed path, EBFS cannot make a good
estimate for usefulness of each features.

Error Rates (%)

Myd60 Myd61 Myd62 Myd63 Myd64 Myd65

10+

ON PO
| | 1 1
—
T
[

Datasets

Figure 2.4: Error rates for artificial datasets

Size of the decision trees

Figure 2.5 shows the number of nodes of the decision trees on the artificial
datasets. Again, we have to see almost the same trend as we saw in figure
2.4.

Number of Nodes

@
£
<
P e
>
kS
£
<
a
I
o

Myd60 Myd61 Myd62 Myd

Datasets

Figure 2.5: Number of nodes for artificial datasets

Probability of removing unwanted features

It is difficult to say anything about EBFS’s ability in this domain from the
previous two graphs. Figure 2.6 shows if EBFS removed unwanted features
in each noise level. The y-axis shows probability of EBFS removing each
unwanted feature, calculated from 10-fold CV.

18 CHAPTER 2. ON INDUCTION

Removing unwanted features

100 T T T
Correlated (c) <—
Noisy (e) -+~
A Irrevant (f) -2--
80 - R
S , ,
2 60 |- o g
= s ; ey \
]
Qo
[
a
[=2)
£ R / SN e
3 40 - SN A
Q
x
e — 4
& & o
40 50

Noise Level (%)

Figure 2.6: Probability of removing unwanted features

EBFS failed to remove the correlated feature, because C4.5 did not pick
it in most cases. If C4.5 does not pick a feature, then there will be no failed
path includes the feature, and EBFS will not regard it as bad. This can be
said as shortcomings of EBFS. However, if an induction algorithm itself can
avoid a bad feature, there are no need for any feature subset selection. At
least from the viewpoint of accuracy, it does not hurt not to remove those
features.

2.5 Related works

As the author mentioned in figure 2.1, there are a lot of studies in the area
of feature subset selection. In the following sections the author reviews two
existing studies on the feature subset selection problem. Then the author
compares their performance with EBFS’s. After that the author briefly dis-
cusses relationship between EBFS and explanation-based learning.

2.5.1 “Relief”

The Relief algorithm|[35] assigns a weight to each feature, which is aimed to
represent degree of relevance of the feature to the label. First Relief randomly
picks an instance. The algorithm then searches a near-hit and a near-miss

CHAPTER 2. ON INDUCTION 19

of the picked instance, which means the nearest instance to the picked one
whose label is the same and opposite respectively. Relief updates the weight
of features according to the following motto: the more the difference in the
feature between the picked one and near-miss, the more weight the feature
gets; the more the difference in the feature between the picked one and near-
hit, the less weight the feature gets. In this way Relief assigns high weights
for features which have high power to discriminate an instance from its near-
miss and to classify the instance and its near-hit to the same class. After
enough iteration Relief returns a set of features which have weights larger
than given threshold.

Because Relief’s non-deterministic nature makes comparative study dif-
ficult, its deterministic version, ReliefD, which tries all the instances, is
proposed[31]. The author uses ReliefD, instead of original Relief, in ex-
periments shown later.

2.5.2 “Wrapper model”

John et al.[31] presented the wrapper model. According to them algorithms
such as Relief are classified as the filter model, because the algorithm is
used as a preprocess step to filter out irrelevant features independent of the
learning algorithm. On the other hand, they used the learning algorithm
itself to evaluate usefulness of candidate feature subsets.

Their basic algorithm is based on backward stepwise elimination, similar
to one used in EBFS. In each step where n features are remaining, all feature
subsets of size n — 1 become a next candidate feature subset. In order to
evaluate the candidate feature subset they used CV.

In their experiments they made a comparative study of the wrapper
model, ReliefD and plain C4.5. As for accuracy to unseen data, the algo-
rithm sometimes gave good results, but the effects of feature selection were
generally insignificant. As for size of induced decision trees, the wrapper
model gave the best results in reducing the size. However Relief sometimes
yielded almost as good results as the wrapper model.

The wrapper model has an apparent shortcoming: it is computationally
expensive. Using the backward algorithm the wrapper model with m-fold
CV for an initial feature set with size n has to call the induction algorithm
for mn(n + 1)/2 times in the worst case. For large n, e.g., n > 100, it is
prohibitive.

20 CHAPTER 2. ON INDUCTION

2.5.3 Experiments for comparison

In this subsection the author compares the three feature subset selection
algorithm — ReliefD, the wrapper model and EBFS — each other and with
C4.5. Two experiments were conducted. The first one employs 3-fold CV
to evaluate the wrapper model and EBFS. Three UCI datasets along with
Votel00 and Credit100 are used. 3-fold CV is chosen due to slowness of
the wrapper model. The second one employs 10-fold CV to evaluate ReliefD
and EBFS. Six UCI datasets along with Votel00 and Credit100 are used.
Again each algorithm is compared with C4.5, and both cases with /without

pruning are studied. In addition to the algorithms shown in section 2.4, data
produced by ReliefD with C4.5 without the pruning(RD), ReliefD with C4.5
with the pruning(RDP), the wrapper model with C4.5 without the prun-
ing(WM) and the wrapper model with C4.5 with the pruning(WMP) are
shown. Legends for them follow.

= RD =~ WM

g RDP = WMP

3-CV experiments

Error Ra‘te§6'/6)

15+
i N
10 N
51 IR CER
N
0 4 "
Credit100 Votel00 Datasets
Error Rates (%)
50+
40+
NN
304 §
20- S
101 TR
0
Soybean-1.

Datasets

Error Ratei g%)

.

Credit Vote

Datasets

Figure 2.7: Error rates for 3-CV experiments

CHAPTER 2. ON INDUCTION 21

Error rates Figure 2.7 shows the error rates for the algorithms in the 3-CV
experiment.
The wrapper model generally outperforms the other, with an exception

of Soybean-l.. EBFS is almost as good as the wrapper model except in
Credit100.

Size of the decision trees Figure 2.8 shows the number of nodes of the
decision trees in the 3-CV experiment. The wrapper model is better than
EBFS as a single method. Probably it was too aggressive to remove features
for Soybean-1. and resulted poor accuracy.

However, combined with the pruning EBFSP is as good as, or sometimes
outperforms, WMP. Regarding the speed of each algorithm, this is the huge
advantage of EBFS over the wrapper model. As the author told in section
2.5.2, while the wrapper model with m-fold CV has to call the induction
algorithm for mn(n + 1)/2 times for a n-feature dataset in the worst case,
EBFS needs only mn times. For example, the saving for Votel00 whose
n = 116 is more than 50 times.

Number of Nodes

1009 —
801
60
40+
204
0 :: [T
Credit100 Votel00 Datasets
Number of Nodes
200
150
100
50
O Soybean-1. Datasets
100 _Number of Nodes
80+
60
401
20+
0 i i w
Credit Vote Datasets

Figure 2.8: Number of nodes for 3-CV experiments

22 CHAPTER 2. ON INDUCTION

10-CV experiments

Error rates Figure 2.9 shows the error rates for the algorithms in the
10-CV experiment.

Here ReliefD and EBF'S are performing similarly, with occasional bursts
of ReliefD such as Lenses and Tic-t.. As the author showed earlier, EBF'S
also bursted for Lenses, but its degree is smaller than ReliefD’s.

Error Rates (%)

401
30

o e

[Credit100 Credit Lenses Soybean-l1.

Datasets

Error Rates (%)

N
o o
!

T T T

o
1
I

i

Figure 2.9: Error rates for 10-CV experiments

Tic-t. Votel00 Vote Zoo Datasets

Size of decision trees Figure 2.10 shows the number of nodes of the deci-
sion trees in the 10-CV experiment. Now we can see that poor performance
of ReliefD for Tic-t. was caused by too aggressive feature removal. As we
saw in the 3-CV experiments, EBFS alone does not achieve a simple-enough
tree. EBFS does milder removal and results a simple tree when the pruning
is used.

CHAPTER 2. ON INDUCTION 23

Number of Nodes —

i |

[Credit100 Credit Lenses Soybean-1.

'_L
N
(@]
1
T

Datasets

Error Ra (%)

60
301 P ==

Tic-t. Votel00 Vote Zoo

Datasets

Figure 2.10: Number of nodes for 10-CV experiments

Size of the feature subset

In above experiments we saw that the wrapper model and ReliefD sometimes
remove features very aggressively. Those behavior of feature subset selection
algorithm can be directly seen by examining the size of the output of the
feature subset selection algorithms, namely, the number of features given by
EBFS/ReliefD/the wrapper model to C4.5.

Here three figures for each dataset are shown. Data corresponding to
EBFS, ReliefD or the wrapper model show the size of output of each algo-
rithm respectively. Data corresponding to C4.5 show the number of features
in the original datasets. They are shown for reference.

3-CV experiments Figure 2.11 shows the size of the feature subset in
the 3-CV experiment. Generally EBFS does relatively milder removal. In-
tuitively it removes harmful features only; useless but harmless features are
left intact. An exception is Votel00, in which EBFS removed all but one
features. Even in this extreme case, accuracy did not degrade (see figure
2.7).

24 CHAPTER 2. ON INDUCTION

Number of Selected Features

120
100
80
60
40
SE L o o
0+-— —)
Credit100 VotelO0 Soybean-1. Credit Vote

Datasets

Figure 2.11: Number of selected features for 3-CV experiments

10-CV experiments Figure 2.12 shows the size of the feature subset in the
10-CV experiment. Again EBFS is less aggressive at removal than ReliefD,
with exceptions of Vote and Votel00.

Number of Selected Features

120
100
80
60
40

28 N o ’—ﬁﬂ—n (& [tE

Credit100Credit LenseSoybean-1.Tic-t. Votel00 Vote Zoo

Datasets

Figure 2.12: Number of selected features for 10-CV experiments

2.5.4 Explanation-based learning

Explanation-based learning (EBL) is a kind of speed-up learning. An EBL
system is given a goal concept, a training example and domain knowledge.
The system explains why the example is an instance of the goal concept
using the knowledge. After the critical constraints in the explanation are
determined, the explanation is generalized preserving the constraints. The
result is a generalized recognition rule of the goal concept which may speed-
up reasoning later.

If the domain knowledge is inconsistent, or perception limits are involved,
it is possible to derive more than one plausible explanations for a training
example. As Doyle[12] suggested, one way to cope with the problem is to
conduct an experiment to gather an empirical justification which supports
one but not the others.

EBFS’s approach is similar in spirit to the EBL study. For a training set,
more than one decision tree can be constructed. Testing the tree using a test
set can be viewed as the experiment. When the experiment reveals that the
tree classifies an instance incorrectly, we have a negative justification for the
explanation. Each feature in the failed path is penalized so that the other

CHAPTER 2. ON INDUCTION 25

explanation will be offered for the instance next time, namely, the other tree,
which less likely to use the penalized features, will be constructed.

2.6 Theoretical background

A study of feature subset selection is strongly related to definition of irrel-
evancy of feature. The definition specifies what kind of features should be
removed by a feature subset selection algorithm.

In this chapter the author discusses theoretical background of EBFS,
namely, the target irrelevancy of EBF'S. First, there are several properties on
a feature which are helpful to discuss the feature subset selection problem.

2.6.1 Properties of feature

Definition 2.6.1 A feature is called strongly relevant iff it cannot be re-
moved without loss of prediction accuracy. A feature is called weakly relevant
iff it is not strongly relevant and it can sometimes contribute to prediction
accuracy. A feature is relevant if it is either strongly or weakly relevant, and
irrelevant, otherwise[31]. Note that these concepts are defined without having
a learning algorithm as a parameter.?

Definition 2.6.2 X; € X — W s called useful for M using W if

gl(S(M, TWX), UWX —TWX) < gl(S(M,TX),UX —TX) stands on average
over typical training sets T, where U4 denotes a set of all instances whose
labels are known.

By using these properties, we can say that Relief approximates the rele-
vant features and the wrapper model approximates useful features in a direct
manner.

2.6.2 Why the wrapper model works

John et al. argued that the wrapper model works better than the filter models
such as FOCUS][1] or Relief because the former selects the feature taking into
account the biases of the induction algorithm which is completely ignored by
the latter[31]. A similar argument is found in [7]. However this fails to
explain the unexpected good results by Relief in [31].

The author claims that the wrapper model works better, not only because
the model respects the biases of the induction algorithm, but also because

3More formal definitions are seen in [31].

26 CHAPTER 2. ON INDUCTION

the model partly solves an overfitting problem, which is not aimed to solve
in the filter models.

The viewpoint shown above also explains Relief’s good results in [31].
Relief gives the higher score to a feature that has the less difference of values
between the picked instance and its near-hit. In a sense Relief examines the
feature’s predicting ability using the instance and its near-hit as a training
set. Relief penalizes the feature if it has little difference of values between
the picked instance and its near-miss. Here the near-miss is acting as a test
set, ensuring that the feature useful to predict the label only for a certain
training set is not rewarded too much. By iterating the process, Relief is
performing implicit CV-like activity. However it largely differs from CV,
because in Relief an instance can be chosen as the near-miss (i.e., test set)
more than once, even if it is guaranteed that each instance is chosen as the
picked instance only once.

This view of the advantage of the wrapper model directly leads the author
to another property of feature: L-usefulness.

2.6.3 L-useful feature subset
General definition

A L-useful feature subset characterize a feature subset that is useful for a
particular learning algorithm when it is given a particular training set and it
is tested by a particular test set.

Definition 2.6.3 Let W;, X be a subset of A and W; = X —{X,}. Let TZ,,,
to be a proper subset of TX and give it to the learning algorithm M to obtain

S(M,TX). Then create Ty X according to T)X, , give it to M to obtain
S(M, Ty).
If gU(S(M, Ty), T = TI00) < gU(S(M, Tiksn), T = Tk) then

the feature X; is called L-useful for M using W; with respect to T;X

train*

If gU(S(M, Tiin), TX = Tikin) < gl(S(M, Tin), TVoX — T then

rain rain train train

the feature X; is called L-harmful for M using W; with respect to T;X

train "

For M, X, W; and TX . | the feature X; is called L-useless if it is neither

rain’

L-useful nor L-harmful.
GUS (M, T,i), TX = TX,i) — gU(S(M, T, TWeX — T,00%) s called

train train train

X;’s L-usefulness for M over W; with respect to T;X ;.. and denoted by
LUF(X;, W;, M, TX

train) :

A feature subset X C A is called L-useful for M with respect to T. . if
all X; € X is L-useful for M using X — {X;} with respect to T;X

train*
L-usefulness of feature subset X is denoted LUFS(X, M, TX .) and de-

train
fined as LUFS(X, M, T%,i,) € ¥y cx LUF(X;, X = {X;}, M, T,).

CHAPTER 2. ON INDUCTION 27

L-usefulness is a localized version of usefulness. Now the author can define
his version of usefulness, called U-usefulness.

Definition 2.6.4 Let proposition C(TX, M) denote that a training set T;X
satisfies constraints that are required by M in order to create a reasonable

structure.* U-usefulness of feature subset X for M with respect to TX is
denoted by UUF(X, M, TX) and defined as

UUF(X,M,TY) & S 0x LUFS(X, M, TX — T¥), where D(TX) «

2

(TX € TX AC(TX = TX, M)) and Vi, j(i # j > TX 0T} = ¢).

The definition says that UUF is the sum of LUFS over TX’s proper
subset which satisfies C.

Obviously m-fold CV for large m can be used to estimate UUF (X, M, T).
Such estimation of UUF (X, M,TX) is done by the wrapper model. The
wrapper model returns X with optimal estimated UUF (X, M, TX).

2.6.4 L-usefulness and the heuristic function

The author has explained why the wrapper model is superior than the filter
models and characterized a feature subset returned by it. Let us consider
how to reduce the wrapper model’s computationally expensiveness.

Suppose we are using the backward algorithm. When |X| = k features re-
main as a candidate subset, the wrapper model calls the induction algorithm
km times, because there are k possible next candidates and each candidate
requires m runs of the induction algorithm to evaluate its U-usefulness by
m-fold CV. If we can estimate X; € X’s L-usefulness just by constructing
S(M,TX..), we can reduce km to m, which yields a drastic improvement
from mn(n +1)/2 to mn in the worst case. The author made it possible by
using the heuristic H. In EBFS, H is used to estimate relative L-usefulness
of each remaining feature.

The following corollary serves as a base of the heuristic.

Let PL(S,I) denote a label that is predicted by a structure S for an
instance or a training instance I. EP(S,I) = (Ny,...,Nr) denotes an ez-
planation path of the decision tree S for I.

Corollary 2.6.5 Suppose X C A is a set of feature. Let X; be a L-harmful
feature for a decision tree induction algorithm M using X —{X;} with respect

4A typical example of the constraints is that the training set provides enough number
of instances.

28 CHAPTER 2. ON INDUCTION

to TX Lett e TX —TX

train - train

Then there exists t such that
PL(S(M, Tiuin),t) # y
A PL(S(M, Ty %), 1) = y
and EP(S(M, T

train

be an instance in the test set whose label is y.

),t) must include a node where X; is tested.

Proof Existence of ¢ is trivial from the definition of L-harmful fea-
ture. For such t obviously EP(S(M,TX.),t) # EP(S(M, T Y%y 1),
Assume that EP(S(M, T/ .),t) does not include a node where X; is tested.

The first element of EP(S(M, T .),t) does not test X; because of the as-

train

sumption. Then it must be equal to the first element of EP(S(M, ﬂfa;ixi}’x), t)

because at the root node the ID3-like algorithm must have selected the

same feature as for ﬂfa;iXi}’X it it was not X;. We can recursively re-
),t) to show

peat the same argument as we descends along EP(S(M,TX .
EP(S(M,TX,),t) = EP(S(M,Y}fa;iXi}’X),t). This leads contradiction.
|

train
From the corollary we can say that a L-harmful feature is expected to ap-
pear more in failed paths than in successful paths, under some normalization
on frequencies of appearance of features. This is what H is doing.

2.7 Discussions and concluding remarks

The author presented a heuristic H, which effectively estimates feature’s
expected irrelevance on a given training set, yet it is efficiently computed.
Using H as an evaluation function for features the author constructed a
greedy algorithm based on backward stepwise elimination. The algorithm,
called EBFS, was tested on many datasets and proven to be effective. The
comparative study revealed that EBFS is as much effective as the wrapper
model on the problem and much more efficient than the wrapper model.
Although EBFS is relatively less aggressive in removing features, its ability
to result a simple decision tree is excellent when combined with the pruning.
A key concept behind H is L-usefulness, a new concept that characterize
feature’s relevancy to a given learning problem. The point is that the feature
subset selection can contribute not only to simplify an induced structure
but also to avoid overfitting. This view explained the fact that the wrapper
model and Relief do a decent job on feature subset selection problems.
Future research should include investigation of search methods. As John
et al.[31] pointed, the wrapper model consists of feature subset search and
its evaluation, where the evaluation is done using an induction algorithm.

CHAPTER 2. ON INDUCTION 29

Other than the backward algorithm which has been focused in this chapter,
they mentioned about the forward algorithm based on the forward stepwise
selection and combination of the forward and the backward based on bidirec-
tional search. Their experiments revealed that the forward algorithm often
gives a better result than the backward algorithm. Because computing H
is computationally much cheaper than the evaluation in the wrapper model,
we should afford to employ complex search methods like best-first search or
genetic algorithm[72] with EBFS. Combining EBFS with other filter method
such as Relief should be also investigated. As we saw in section 2.4.2, EBF'S

can be unstable when little failed paths are available. In such case, using
Relief instead of EBFS can be helpful.

