Chapter 4
Coverage

The method of stem rule reduces the number of ARs under the
condition of certain minimum support. Minimum support is still a
major factor that influences the number of ARs. Setting minimum
support to a large value can reduce the number of ARs, but in the
meantime causes the problem of coverage as discussed in chapter
2. To reduce ARs without causing the problem of coverage, a con-
cept called coverage is discussed formally in this chapter. First,
the formal definition of coverage and minimum coverage are given.
Then a query refinement space based on coverage is defined. Fi-
nally, an algorithm generating query refinement space is proposed.
All concept of query, query evaluation, and query refinement can

be described within the query refinement space.

37

4.1 Preliminaries

The definition of coverage and so on, are given in this section,

Meanwhile, notations given in section 7?7 are used here as well.

Definition 4.1 (Coverage):
Let N ¢ 2V, D ¢ D. We say that N covers D, or N 15 a

coverage of D, iff

In a similar fashion, N is also called a coverage of N' (€ oMY it

U alg) € U ola)
qeN! =Ry
For example, in Table 2.2, let ¢ = {k1} be the original query,
then documents D(q) = {di,da, dy,de} will be retrieved. When
minimum support is set to 2 and maximum confidence is set to 0.8,

the set of refinement candidates based on stem rule is {{ka}, {ko}}.

Let) = {dl, dg, (14, dg}, N = {{/i,)}, {Ii(,}} Then

D = {dl,dz’dq.‘,d(j}' ¢ U olq) = {dy, dy, dy, ds, di }

qeN

Here, o({k2}) = {ds, d3, d5,dg }- o({ke}) = {d2,dy, do}.

Therefore, {{k2}, {ke}} is not the coverage of o({k1}) = {dy,d2, dy, de}.

N = {{ks},{ks}, {ks}} is the coverage of o({k}) = {di, ds, dy, ds}
because

D= {dlad'l:d*iadﬁ} - U O—(Q) = {dlvd'ﬁ:d:ﬁ(Lhd:}ydﬁ}-

G& N

38

N = {{ks}, {ks}} is also the coverage of o({k}) = {dy ds, dy ds).
A set of documents D or a set of keywords N might have more than

one coverage,

Definition 3.2 (Minimum Coverage):

A set of keywords, N, is called a minimum coverage of D ift
[) can not be covered by any N C N. That is, removing any
keyword from N will lead to D ¢ Uyev o(q).

In the example above, N = {{ks}, {kc}} Is & minimum coverage

of o(ky) = {dy, do, dy, dg} but N = {{ka}, {ka}, {ke}} is not.

4.2 Query Refinement Space

Based on the coverage relationships among sets of keywords in the

keyword space, a directed cyclic graph ¢ can be defined as follows.

G = (N, & w7, C)

where
N={qlqe U2V A0<wq)}
deD
E={(q,q) a2 €N AN C @
A0 < wie) <)}
w: NUE - RY
6. is maximum confidence.

39

w is weight of nodes and edges. Let ¢, g1, 0 € AN e = (g, q0) € &.
wois defined by o as the follows.

wlg) o) wle)2|ZL] =

Here, supports and confidences are a weight associated with a
node and an edge, denoted w(q,) and w{{q:, q,;)), respectively.

~v maps a rule from the pair of nodes. ¥(q, q) returus ¢y =
(@2 =) -

C N o N x 2V s lower cover , which will be explained in
Definition 4.3.

When v(gi, g2) is a rule, gy is called upper node of gz or ¢z is called
lower node of ¢;. If ¢, is an upper node of ¢u, then ¢, — ¢ # ¢, and

hence

olq) = 0 o({k})

= (0 o({k)N(0 o (k1)
¢ 0 a({k})
= o(q)

This means that any node covers any of its lower nodes.
According to this property, user can choose the lower nodes of
his/her original query to reduce the size of result set. But in order
to cover a upper node, the union of low nodes has to be computed.
The coverage of query ¢ of Definition 4.2 is essentially divided

40

Table .10 A sample of docmment. ditabase

D Kevword N
dy |k ko ko

dy ik ko

iy ks ke Ay

dy ky ks
dy |k ko ks

into two parts. One is the coverage of document set I".“),, “dld e
D A p(d) = ¢} which only contains query ¢ itsell, the other is the
coverage of remained document set o (q) — f)q
Definition 4.3 (Lower Coverage):
Let K C K and Cq) = Uper (¢ U p) be minimum coverage of
o(q) — Dq.
(6(g), C(q)) is a lower coverage of q, where
B, D,=10
6(q) = ,
{q}, otherwise
For example , in D of Table 4.1, let ¢ = {ky, ka} and o(q) =
{di,dy, ds}, Clg) = {{ks}, {ks}} covers {di,d;}, D, = {da} can

be only covered by ¢ itself. Therefore, the lower coverage of ¢ is

({a}, {{ks}, {ks}})-

41

4.3 Generation of Query Refinement Space

This section introduces an algorithm generating query refinement
space G from document database D.
First, the algorithm generating query refinement space by usual

methods [Agrad3] is summed up as follows.

1. Specified thresholds of minimum support and minimum confi-

dence are decided

9. 1-Itemsets that have support exceeding minimum support are
generated from keyword set K. Then generate 2-Iterusets that
have support exceeding minimum support are generated from

each pair of 1-ItemSets Until |K|-Itemsets, the process is same.

3. For each Itemset, all the rules that have confidence exceeding
minimum confidence are generated by checking p = ¢ —p of

each item q.
4. The rules that can be derived by other rules are removed.

5. For each node, lower coverage is computed and the nodes that

are not in lower coverage are removed.

In this algorithm, combinations of xChn have to be checked to

o C inations
generate n-Itemset. In order to generate all [temsets, combinatic

2K need to be checked. Moreover, in the process of generating next

rules, combinations 2" of ¢ — p and p have to be checked for each

42

Table 4.2: Symbols for algorithin

Symbols | meaning Symbols | meaning
D set of all documents K set of all keywords
D set of documents K set of keywords
q query o query evaluation
) coverage of DQ ' P get keywords
D, |set of documents C(q) | olg)-coverage of f).«;
only contain g

item ¢ of n-Itemsets and combinations of 2" X |n-Ttemset] have to
be checked for n-Itemsets. The calculation cost of all Itemsets may

he computed as the following formula.

T
25(2‘r x |t-Ttemset|) = 02" (4.1)
t=1

Moreover, this algorithm generates not only a large number in-
termediate rules but also causes the problem of coverage. In order
to solve the problem above, we propose the following Algorithm
that calculates only stem rule to form minimum coverage, which
can reduce the number of rules. And minimum coverage will be
used as the condition of generating ARs instead of minimum sup-
port.

Symbols used in the algorithm are listed in Table 4.2.

43

Algorithm (generate query refinement space(A, £))
Input:D, maximum confidence 6.
Output: N, &
No=0N =0, E=0
/* generate candidate notes */
forall d € D
begin
got p(d)
forall ¢ C p(d)
Ny =Ny U {q}
end
/* generate N, & */
1 while Ay # 0 do
begin
9 select ¢ that satisfies || = mingen;, {Ip[}
D=o(q) - bf{
/* generate lower coverage of ¢ (5(q),C(q))*/
(6(¢), C(g)) = MC(q, D, b.)
3 No=No—{a} — {gUplp € 8(a)}
4 N=NuU{g}u{qUplp € ()}
5 E=8U{(g, qUp) | p€ClgUd@)}

end

44

function MC(q, D, 6.)

begin

&

-] <

10

11
12

Clg) =0, 4(q) =1
g = {k | enf(q = {k}) > 0}
while D # 0 do
begin
select ky that satisfies | D No({ko})] = Maxye, {|D N a({kDI}

if enf(q = {k}) < 6, then
Clg) = Clo) U {{ko}}

else

begin
¢ = qU {ko}
D'=Dnol(d) - Dy
if Dy # ¢ then

&(q) = 6(q) U {{ko}}

/* expand ¢’ by reflexive */
(6(),C(¢)) =MC(d, D', 6.)
Clg) = Clg)VU C(¢)
5(g) = 6(q) U({)

end

q0 = go — {ko}

D=D-o({k})

/* in order to assure minimum, remove
lower coverage of ky from C'(¢). */
13 Clg) =Cla) = {p|pe Clg)ApD h}
end
return (4(¢), C(q))

end

According to the definition, nodes of ¢ are requested to have
confidence under maximum confidence. ln order to assure cover-
age, this algorithm expands nodes that have confidence exceeding
maxirnum confidence instead of removing them.

Because both K and G are huge, the algorithm to exclude unnec-

essary nodes and edges in G, in order to reduce the time complexity.

Proposition:

The algorithm above stops and generates G that satisfies the
condition of the definition.
Proof: According to row 2, 3 in the main procedure, repetition of
row 1 on A will stop iff MC stops.

On the other word, considering row 1, 2 of MC, first, it can be
proved that o #0 = D # @.

Therefore, according to row 11, repetition of row 2 will stop
?

because g is limit.

46

By row 5, 6 of main procedure, obviously (q1,¢2) €& = @ €
Clq). Hence, all the lower nodes of ¢ forms the lower coverage of
g. The lower coverage of a leaf node ¢ is ({q},0).

In this algorithm, A is generated from p(d) instead of K. This
means that the number of combinations that have to be checked is
average values of number of keyword sets in a document because
combinations that exist in d € D need be only calculated.

The calculation cost of generating A is

3 2 2 |D| x ole(d)
deD

The cost of generating A is put down because combinations of Ay
become less.

According to |p(d)| < ||, it can seen that calculation cost is
dramatically reduced by comparing the formula above with formula,
(4.1)

The algorithm is explained using the document database in Ta-
ble 4.1 as follows.

The coverage of {k»} with 8, = 0.5 is computed as same as the
coverage of D = o({ks}) = {d1,ds,d3,d;}. Figure 4.1 shows the
generation of the part of §. Exactly, the generation of a lower
coverage of {ky} (solid line in the figure) is shown.

All the upper-lower relationship of {k;} is shown in the left side
of the figure. Lower coverage of {k:}, generated by this algorithm,
is shown in the right side of the figure. (k2k1k3 is the omission of

47

sl K qgmseemremeemennens > kok1k3

k2k1k3 '

mp k2

k2k1k5
k2k1k5

k2k3k4 k2k3

Y

' ¢
.
A4 ’
k3 k3¢
14 -
- .
N N
\\

Figure 4.1: Example of the Algorithm

(k2, k1, k3}).

First, k¢ is chose from gy = {ki, k3, k4, k5}. Because the confi-
dence of {ko} = {k1} is % which is large than 8, = 0.5, {kg,. ki1}is
expanded. That is,

MC({k, k1}, D N o ({ks, k1}) — {dlo(d) = {k1, k2}},0.5)
=MC({ks, b1}, {d1,d5}, 0.5), is called.

The calling of MC results in C({ks, k1}) = {{ks}, {ks}} and D
becomes D — o ({k;}), that is {ds}.

Second, as ks in gy covers {ds}, {k3} isadded to C(q) = {{k1, ks3},
{ki,k5}} and lower node {ki,k3} of {k;} is removed from C(g).
Now ID becomes empty, so finally C({ks}) = {{k1,ks},{ks}} .

48

Then 6({k, k1}) = {{ks,k1}} is merged to d({ka}). With 8({ks, k1 })
and C({kz}), the coverage of £y which is shown in the eraph in the
right side of figure 4.1, is generated according to row 4, 5 of the

algorithm.

Some observations can be made on this algorithim. First, the
number of nodes in G’ will never exceed Luep 279, This number
is considerably small in comparison with that generated by those
algorithms that will generate Itemsets from 2 where K is the set
of keywords (see [Agra93]). In our experiment with a medium-size
document base, the number of nodes in G’ is only about several
times of O(]K|). Second, from the definition, we know that ¢’
contains no derivable nodes. Unnecessary edges have also been
pruned.

In this chapter, minimum coverage is used as the condition of
generating ARs instead of minimum support, which is different
with stem rule. A query refinement space based on coverage still
uses concept of maximum confidence and stepwise refinement. The
algorithm generating query refinement space assures the coverage

under the condition of maximum confidence.

49

