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Abstract

Almost all decision making processes which we encounter in the real world have deadlines up to
when a decision must be made. Typical of these is the so-called optimal stopping problem, for

example:

Suppose a buyer must purchase an asset, say a house, a plot of land, or the like, within a given
number of days and he can find a seller every day by paying a cost. When a seller appears, the
buyer decides on whether or not to purchase the asset from him after considering whether the

offered price is acceptable or not.

To sum up, the optimal stopping problem is reduced to a problem of when and how to make a
decision to maximize the expected reward in the situation where an opportunity has to be taken
among ones appearing subsequently up to the deadline. Many different models of the problem
have been investigated so far. However, almost all of these assume that the future availability
of an opportunity appearing in the past is determined independently of the will of the decision
maker, in other words, little attention has been given to the question of what happens if the

decision maker himself can control the availability, or reserve an opportunity, by paying a cost.

The purpose of this thesis is to propose three models of a discrete-time optimal stopping prob-
Jem in which such control of availability for any opportunity, or reservation of an opportunity, is
taken into account and to examine the properties of the optimal decision rule for each of them.
A major finding in these studies is that no reserved opportunity should be accepted while it
remains available at the next point in time, in other words, the time when accepting a reserved

opportunity can become an optimal decision is restricted only to the maturity of its reservation.
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Chapter 1

Introduction

1.1

Conventional Optimal Stopping Problems

To begin with, let us consider the following two decision making problems:

¢ House Purchasing Problem: Suppose that you would like to purchase a house at as

low a price as possible before you have to move and have just found a house for sale. The
price of the house seems pretty good but you reject it on account that you feel you could
find a better deal within the periods remaining. If you continually repeated such rejections
and reached the deadline, you would face a dire situation where the price of the house just
found is too high while you may have no choice but to purchase it because the houses you
already rejected have been sold. However, if a too high purchasing price is accepted early
in the time frame hecause of the fear of the dire situation, there is every chance that better
houses which may have been found later would be missed. To avoid these extremes, when

and how do you select the house to be purchased?

Secretary Problem: Suppose that you are to employ the best person as a secretary
among a certain number of applicants with the provision that the result of acceptance or
rejection has to be told to each applicant just after his or her interview. The question that
bothers you at every interview is whether the best applicant is a person already rejected,

the person in front of you, or a person not interviewed yet.

The core of the above problems is given in the following three points: The first is that you

are searching for offers (say, houses for sale, applicants for the secretary, and so on) with the

intention to accept one of them up to the deadline (say, the date when you move house, the final

interview you can conduct, and so on). The second is that offers appear one by one and the

value of each is not known or cannot be estimated before the appearance. The third is that a

decision whether or not to stop the search must be made every time when you inspect an offer.



Chapter 1 Introduction 2

The decision making problem with these three properties is referred to as the optimal stopping

problem, and many models have been presented and examined ([11] [24] [9] {57] [18] [4]).

In general, models of optimal stopping problems can be categorized into two groups in terms
of the objective of the search: The first group aims to maximize the expected reward from the
search process where the value of an offer is considered like in the house purchasing problem
{[20] [21] [28] [27] [14]). The second group aims to maximize the probability of accepting the
best offer where only the relative rank of an offer is noted like in the secretary problem ([54]
[43] {331 [2] [10]). In addition, there are compound models of the two groups ({31] [26]) [53] [8]
13]). For example, in Lorenzen [26] it is assumed that each interview needs an interview cost,
and the objective is to minimize the sum of the expectation of the loss sustained depending on

the absolute rank of the accepted offer and that of the total interview costs.

In any model belonging to these groups, the question whether or not a rejected offer will
become available again in the future dominates the structure of the optimal decision rule. The
following three models, which are classified according to this viewpoint, roughly cover almost
all the models proposed so far:

Model with No Recall ([56] [29] (23] [28] {14]): Every offer once rejected is supposed to
disappear instantly and become unavailable forever, thus at any point in time, the latest offer
found is only the offer available then. Lippman et al. {23] treats a model where the offer value
distribution changes according to the progress of time. In Ikuta [14] there are several areas in

which you search for offers and the traveling cost is considered.

Model with Recall ([29] (28] [59] [41] [58]): Every rejected offer is supposed to stay there
forever, thus at any point in time, all the offers having appeared up to then remain available.
Kang [17] [16] assumes that the value of a rejected offer deteriorates as time goes by. In Morgan
et al. {29] two or more offers can be found at a point in time and the decision maker is allowed

each time to decide how many offers he draws at the next time.
The most simple models with no recall and with recall are described in [22] [15] [46] (7] [12).
Model with Uncertain Recall ([21] [25] {34] [32] [52]): The future availability of a rejected

offer is supposed to be determined by a certain probability, thus at any point in time, it is
uncertain whether an offer available then remains available at the next point in time. In Karni
et al. [19] the probability of a successful recall is assumed to decrease with the time elapsed since
the offer appearance. In Ikuta [13] the uncertainty is defined by the probability of a presently

available offer becoming unavailable at the next point in time.

Furthermore, there have been other different models proposed which relate to those cited
above. For instance, model with uncertain deadline ([55] [37] (5] [48] [35]) where the decision
maker does not know in advance when the deadline will come, model with unknown offer value
distribution ([19] [42] [40] [30] [49]) where the offer value distribution is unknown and is updated
by learning as the search process proceeds, model with multiple accepted offers ([36] [47] [6]
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[50] [1]) where more than one offer must be accepted, and model with a free search order ([56]
[41]) where a certain number of offers with unknown value are given in advance and the decision
maker inspects these one by one while considering the inspection order in addition to deciding

when to stop further inspection.

1.2 Our Models

The point to be emphasized here is that, in all the above conventional models, the recallability
of each offer is determined independently of the will of the decision maker. However, what if
the decision maker gets the right to keep any offer available, or to reserve any offer, for certain

periods in exchange for a certain compensation? Now, let us consider the following two problems:

¢ House Purchasing Problem: Suppose that you would like to purchase the best possible
house within this month and that today an estate agent has introduced you to a house
with potential. In order to contract the purchase of the house, or fo obtain a right to
purchase the house in the future, you have to make a deposit to the owner and pay a
brokerage fee to the estate agent. Of course, if you do not make the contract, it is likely
that the house will be sold to another person and a better house will not appear in the
search process ahead. However, having made the contract, as long as you are prepared to
give up the fees and cancel the contract, if necessary, you keep the option to continue the
search for other houses with the chance to purchase the house of your dreams. Now, do

you make the contract today? When and how do you stop your search?

¢ University Entrance Problem: Suppose that you, a high school student, have taken a
certain number of university entrance examinations and just got the news of the success in
University X. If X is the one you hope to enter, your ordeal will be happily over. Although
you can take an examination to another university by using X as insurance, the admission
to X requires a certain amount of entrance fee, which would be wasted money if you
succeeded in getting to a more favorable university. By not paying the fee, you will save
money but lose the chance of admission. You face a dire situation where you could end
up with no university to enter. Now, how do you decide whether or not to pay the fee to

University X? When and how do you decide what university to enter?

Like examples as the two above, we often encounter the problems that can be explained as
optimal stopping problems in which ideas of reservation are introduced. IHowever, only few
attempts have so far been made to solve such problems. In Rose [39} each offer is allowed to
be reserved for k periods in return for a cost bk with a given b > 0 where only one offer can be
reserved at any point in time and it is prohibited to renew the reservation of an offer at the time

of its maturity. A similar model is treated in Rose [38] where k = 1 and renewals are permitted.
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However, his models belong to secretary problems and the optimal decision rules presented are

characterized only by some numerical calculations.

In this thesis, in order to systematize optimal stopping problems from the viewpoint of re-
callability, we shall establish a mathematical method to treat optimal stopping problems where
the reservation of an offer is permitted by paying the reserving cost, which depends on the value
of an offer to be reserved. We shall also summarize the basic properties of the optimal decision

rule for these problems.

This thesis consists of the following three basic models: The first is a modified model of the
one treated in Saito [45], in which any offer once reserved is kept available at any point of time
in the future. The second is a modified model of the one treated in Saito [44], in which any
reservation holds effective for only finite & periods independently of the value of an offer or the
reserving cost. The last can be said to be the same as the first model except for the point that
the remaining time value is considered where the remaining time value is the expected reward
that can be gained at the time of stopping the search. The reason why such an idea is adopted
in the model is that as in the proverb “time is money,” if the search for offers stops eaily in
the process, we can ordinarily use the remaining periods for other economic activities and gain

some reward.

A major result from these three models is that you must not recall and accept any reserved
offer if it remains available at the next point in time, in other words, the time when recalling
and accepting a reserved offer can become an optimal decision is restricted only to the maturity

of its reservation.

This thesis only deals with basic properties of reservation in the three models above, in other
words, the results obtained will be useful only under some restricted situations. So that, in order
to fit the results to our activities in the real world and to check the sensitivity of the results with
respect to the parameters of the models, we have to add more realistic assumptions as stated
in Chapter 7 to our models. However, such generalized models will be treated by applying the

methodology utilized in this thesis.

In Chapter 2 definitions of the models in the thesis are clearly presented. Chapter 3 is devoted
to preliminaries for mathematical analysis over the thesis. Chapters 4 to 6 treat the first,
second, and third models, respectively. In Chapter 7, the final chapter, we will summarize the
conclusions obtained throughout this thesis and state some research subjects that have not been

dealt with and are thought to be worthwhile for future studies.



Chapter 2

Definitions of the Models

In this chapter we first present two standard models of optimal stopping problems and then
define the three models dealt with in the thesis.

2.1 Two Standard Models of Optimal Stopping Problems

2.1.1 Optimal Stopping Problem with No Recall

Consider a person who periodically searches for offers with the intention to accept one of them up
to the deadline. For convenience, let points in time f be equally spaced and numbered backward

from the deadline ¢t = 0, thus ¢ also represents the number of periods remaining.

Now, suppose that the person, the searcher, is at the point in time 2, simply called time 1 from
now on. Then he can find an offer with value w, simply referred to as offer w later on, if the
search cosi s > 0 was paid at the previous time, or time ¢ + 1 (Figure 2.1.1). He does not know
in advance, however, what offer will come up. The only information available for him is that
values of subsequent offers w, w’, w”, - -+ are independent and identically distributed random
variables following a known offer value distribution function F, salisfying

0 = F(w), w< a
0< Flw) <1, o< w<bh, (2.1.1)
Flw) =1, b < w,
where @ and b are real numbers such that 0 < e < b < oc. Obviously, there exists the expectation

of the offer value p with & < pu < b.

After inspecting the offer found at that time, the so-called current offer, the searcher has to
decide either to stop the search by accepting it or to continue the search by passing it up. If he
decides to accept the current offer w, the search stops with getting the value w. If he decides to
pass up the current offer w, it disappears instantly and become unrecallable forever. Here, it is
assumed that the present value of ¢ monetary units obtained at the next time,or time¢ — 1,is

given by A¢ monetary units where j is the discount factor such that § <3 < L.

5
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The objective of the search is to maximize the total expected discounted present net profit
which will be gained in the future search process, that is, the expectation of the present dis-
counted value of an accepted offer minus that of the amount of search costs paid over the periods
from the present point in time to the termination of the search by accepting an offer.

Since no offers passed up in the past are supposed to be unrecallable, only the current offer is
an available offer at any time. So, #;{w), the maximum total expected present discounted net
profit attainable by starting the search for offers from time ¢ with the current offer w, can bhe

expressed as

tp(w) = w, (2.1.2)
d(w) = max{w, —s + fip..1}, t>1, (2.1.3)

where )
¥ = f () F(w), t>0. (2.1.4)

Now, let § be the solution of

b
ﬁ/ max{w,z}dF(w) -z~ s= 0

where its existence and properties will be presented in Chapter 3.
Lemma 2.1.1 #,(w) — max{w,8} as{ — oc.

Proor. See Tkuta [13]. N

2.1.2 Optimal Stopping Problem with Recall

The model is exactly the same as the model with no recall except for the point that any offer

once passed up can be recalled at any time in the future, thus available offers at any time are the

,w2
4
‘lU3
F
,wl
w
1 ¢ + 1 t -1 il 01
I l deadline
8 - &

Figure 2.1.1: Offers and costs on the time frame: Model with no recall
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current offer and all the offers drawn in the past. Here note that, among all the offers found so
far, only the best of them is needed to be considered. So, #;(w, ), the maximum total expected
present discounted net profit attainable by starting the search for offers from time ¢ with the

current offer w and the best offer in the past z, can be expressed as

io{w,2) = max{w,z}, (2.1.5)
Gg(w,z) = max{w, r, —s + Bh1(max{w,z})}, t>1, (2.1.6)
where
b
fu(z) = [ die(w,2)dF(w), {3 0. (2.1.7)

Lemma 2.1.2 #(w,z) — max{w,z,f} ast — oco.

Proor. See Ikuta [13]. N

2.2 The Models in the Thesis

2.2.1 Commeon Assumptions

‘The general structure of the models dealt with in the thesis is the same as that of the standard
optimal stopping problem with no recall except for the condition that the searcher is allowed
each time not only to accept or pass up the current offer w hut also to reserve it by paying
the reserving cost r(w). The structure of the reserving cost 7{w) will be explained later. If he
reserves an offer, he gets the right to recall and accept it until its maturity (Figure 2.2.1). Of
course, if he does not pay the reserving cost for an offer, it is considered to be passed up, that

is, it disappears instantly and become unavailable forever.

Without loss of generality, the searcher is allowed to have a certain number of reserved offers

at the beginning of the search as initial offers given before entering the search.

Here, let the leading offer mean the most lucrative of all available reserved offers. Then, the

choices which can be taken at each time except for the deadline are the following four:

1. AS: Accepting the current offer and stopping the search,
2. RC: Reserving the current offer and continuing the search,
3. PS: Passing up the current offer and stopping the search by accepting the leading offer,

4. PC: Passing up the current offer and continuing the search,
where AS, RC, PS, and PC represent the above four choices, respectively. Of course, at the
deadline, only decisions AS and PS are permitted.

The objective here is to find a rule to guide us to which action should be taken for each offer

appearing so as to maximize the total expected discounted present net profit obtainable in the
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process ahead, that is, the expectation of the present discounted value of an accepted offer minus
that of the amount of search costs and reserving costs paid over the periods from the present

point in time to the termination of the search by accepting an offer.

2.2.2 The Reserving Cost

The reserving cost r(w) is assumed to be continuous and nondecreasing in the offer value w with

0 < r{w) < 0. (2.2.1)

The first assumption, continuity, is made only to avoid unnecessary complication.

The second assumption, nondecreasing property, indicates a natural situation such that the
better the offer is, the higher the reserving cost is incurred.

The final assumption, Eq. {2.2.1), allows the case w < r(w) for a certain w. Although it seems
strange, there does exist a case where you would have to require the searcher to pay the reserving
cost even if it is higher than the offer value in order to follow the designate procedure for the

reservation.

2.2.3 The Models in the Thesis

The thesis deals with the following three models:
1. Model with infinite-period reservation — The basic model ~ (Chapter 4).

In the model, any offer once reserved can be recalled and accepted at any time in the

future. Hence, the leading offer changes at ouly the time when a new offer with higher

wr
w3
4
,wl
w
Il t + IJ t t — 1 I: 01 t
r(wl){ deadline
s 5 1s
r(w?) r{w®)

(r(w") will be paid only for reserving the offer w")

Figure 2.2.1: Offers and costs on the time frame: Model with reservation
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value is reserved, Thus, no reserved offers except for the leading offer are needed to be
remembered at any time (the author [45]).

2. Model with finite-period reservation. (Chapter 5),
In the model, any reserved offer can be recalled and accepted at any time within only k
periods from its reservation to the maturity where & is finite and is fixed independently
of the offer value. In the model, it is possible that the leading offer changes to a reserved
offer with lower value because of the expiration of the leading offer. Hence, the latest k
reserved offers must be remembered at each time (the author [44]).

3. Model with the remaining time value. (Chapter 6).
The model is exactly the same as the model with infinite-period reservation in Chapter 4
except for the point that the remaining time value d; is considered where it is postulated
that d; > 0 and d, is strictly increasing in t. Note that the length of the remaining periods
is expressed by ¢ if we are at time . In the model, two types of the remaining time value
are treated. The one is convex typel, which indicates the case where the remaining time
value rises steeply as the remaining periods become longer. The other is a special case of
concave type, expressed by (3 + 42 + - + 3')o. We call it the f-additive type, implying
the case where a certain reward ¢ will be gained per period after the termination of the

search.

tIn this thesis, “d,; is convex (concave) in " means that d, — d,_; is nondecreasing (nonincreasing) in ¢,



Chapter 3

Preliminaries

In this chapter we present some properties of two functions .S and K, which will be often
used for analyses in the subsequent chapters.

3.1 Definitions

Let 3, s, a, and b denote real numbers such that 0 < 3 < 1,0 < s < o0, and 0 < a < b < oo,
Further, let F(w) be a distribution function, satisfying Eq.(2.1.1) on p.5.

Now, for any real number 2, let us define two functions S(z) and K{x) as follows:

b
S(z) = / max{w, «}dF(w), (3.1.1)
b
K(z) = ,B/a max{w,z }dF(w) -z — s (3.1.2)
= BS(z) ~2 —s. (3.1.3)

3.2 Analysis

Lemma 3.2.1

(a) $(2) =p forz < a,z < §(z) forz < b, and 5(x) =z for b <.
(b) §(z) — « is nonincreasing in x, and strictly decreasing in z <b.
(c) §(z) is nondecreasing in z, and strictly increasing in z > a.

(d) S(z) is continuous in x.
)

(e) Sz} is conver in x.

Proor.

(a) First, let x < a. Then, for any w € [a,b] we have z < w, thus
b b
S(x) :] max{w, z}dF(w) = / w dF{w)= p.

10
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Next, let z < b. Choose an z! so that 2 < z! < b and let z* = max{q¢,z'}. Then a < z? < b,
and thus F(b) — F(z?) = 1 — F(22) > 0 due to Eq.{(2.1.1). In addition, for any w > 2* (> 2!)

we obtain w — 2z > 2! —z > 0. Hence,

2

x b
S(x)—z = ja max{w— z,0}dF(w)+ sz max{w - z,0}dF(w)

v

]a " 0 R () + / i('w — 2)dF(w)

1A

0+ /Z(@l - 2)dF(w)

(' - 2)(1- Fz?) > o,

i1

from which we get 2 < S(z) for z < b.

Finally, let > b. Then, for any w € [a, b] we have w < z, hence

S(z) = /:) max{w,z }F{w) = /:x dF(w)= .

(b) It follows from (a) that if z < a, then S(x) —z=p —2z, andif b < z, then S(z)~ 2 =0
Thus, the cases ¢ < @ and & < & have been verified.

In order to complete the proof, it suffices to show that §(z) — 2 is strictly decreasing in
on the interval (a,b). Choose 2! and z? so that @ < a! < 2% < b. Then, 2 — &' > 0 and

1 — F(2?) > 0. Further, for any w € [2!,2%] we have w — 2! > 0. Thereby

S(zl) -2t - S(z?) + 2% = /j max{w — z',0}dF(w) — /;b max{w - 2%, 0}dF(w)

= f: (w - 2))dF(w) +£(w—m1)dF(w) —fjw a*)dF(w)

>0+ [ (0% - < )dF ()
= (% - ") (1- F(=Y) > 0, (32.1)

yielding S(z!) — 2! > S(a?) — 2%, We have thus confirmed the assertion.
(c) The case z < a or b < z can be easily proven by using (a).

For the case @ < z < b, let z! and z* be any numbers such that a < 2! < & < b. Then, in
almost the same way as in Eq. (3.2.1), we get S(z') - §(2*) < (2! - 2?)F(z) <0, which shows
that the assertion holds true.

(d) For any 2! and 2% with 2! < 2%, it follows from (c) and (b} that 0 < §(z?) — S(a') <
«? — z1. Hence, given any ¢ > 0, by letting § < ¢ we deduce that if [a' — 23| < §, then
|S(a) ~ S(x?)| < |a* — 2| < § < e. Thereby, the assertion proves to be true.

(e) For any z', 2%, and p € (0,1), we have

S(pzt + (1~ p)?) = /ab max{pw + (1 ~ pjw, pz* + (1 — p)a®}dF(w)
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p/ab max{w, 2 }dF(w) + (1~ p)/: max{w, 2 JdF'(w)

pS(z')+ (1 - p)S(2?),

A

thus the assertion holds true. 1

Here, let us define the following number « for analyses in subsequent discussions:

a=pBu—s (<p<b) (3.2.2)

Lemma 3.2.2

(a) K(z)=a—z forz<aand K{z)=(8-1)x—s forb< 2.
(b) K(2) is nonincreasing in & and strictly decreasing in x < b.
(¢) K(z) is continuous in x.

(d) K (z) is convex in 2.

Proor.
(a-c) Immediate from Eq.(3.1.3) and Lemma 3.2.1(a,b,d), respectively.

(d) In almost the same fashion as in the proof of Lemma 3.2.1(e), we get the assertion. W

Now, by # let us denote the root of K{x) =0, if it exists. Then,

K(8)= B85(8) —0—s=0. (3.2.3)

Lemma 3.2.3

(a) @ ewists uniquely in [a,b).
(b) 8 = « if and only if o < a.

Proor.

{a) Since S(=z) > p for any @ due to Lemma 3.2.1(a,c), it follows from Eq.(3.1.3) that K(a) =
BS(0)—(Bu—8)—s = B(5(a) - ) > 0. Due to Lemma, 3.2.2(a) we have K(b) = (F-1)b —5 <
—s < 0. From these two relations and Lemma 3.2.2(c,b) we deduce that K{a) =0 has a unique
root 8 € [a,b).

(b) First, if & < @, then K(a) = fp — a — s = 0 from Lemma 3.2.2(a) and Eq.(3.2.2),
thus § = o due to the uniqueness of §. Conversely, if ¢ < a, then g = §(a) < S{a) due to
Lemma 3.2.1(a,c), thus K{a) = B(S(a) — p) > 0 by Eq.(3.1.3). Hence, we get 8 € (a,b) in

almost the same manner as in the proof of (a). 1
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3.3 Technical Terms and Symbols

Finally, we shall confirm the main technical terms and symbols used in the thesis. First, let us

check the meanings of the terms, current offer and leading offer:

- current offer @ the offer found at the present point in time.

- leading offer

time and recallable at the present point in time.

Furthermore, we list the symbols used in the paper:

82 o

=

point in time (length of the remaining planning horizon},

the number of the periods for which a reservation is available (Chapter 5).

value of current offer.
value of leading offer,

z = 0 if there are no recallable offers (Chapters 4 and 6).

value of leading offer,

& = 0 if there are no recallable offers (Chapter 5).
distribution function of w.

minimum value of offers, 0 < a.

maximum value of offers, a < & < co.

expectation of w, thus ¢ < g < b.

search cost, s >0,

reserving cost for the current offer with value w,
continuous and nondecreasing in w with 0 < 7(w) < oc.
discount factor, 0< <1

o = fp — 3, defined on p.12.

unique root of equation K{z) = 0 where K () is defined on p.10.

the best of all the offers that are reserved prior to the present point in



Chapter 4

Model 1:
Infinite-Period Reservation

— The Basic Model —

This chapter is devated to the discrete-time optimal stopping problem where any of offers
appearing subsequently can be reserved by paying the reserving cost and any reserved offer
is allowed to be recalled and accepted at any time in the future. A major finding is that no
reserved offer should be recalled and accepted prior to the deadline of the search process.

4.1 Model

Suppose that a person periodically searches for offers with the intention to accept one of them
over the t periods from time ¢ to the deadline ¢ = 0. If he pays the search cost s > 0, an offer
with value w appears where the value wis a random variable following a known offer distribution
function F(w), which produces w € [a,b] and has the mean pg. For an offer, he can not only
accept or pass up but also reserve it if the reserving cost 7(w) > 0 is paid. The reservation of
an offer is effective forever independently of the reserving cost spent for it. His objective is to

maximize the total expected present discounted net profit.

4.2 Analysis

Without loss of generality, we can consider the value of an offer to be in (—oc0,b]. So, for
expressional simplicity, let “for any w” and “for any 2” mean “for any w with w <b” and “for
any # with z < b,” respectively.

4.2.1 Optimal Equation

In this model, each offer once reserved is assumed to be available at any time after its reservation.

Hence, the leading offer of each time is the highest of all offers reserved up to that time, and

14
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the other reserved offers can be forgotten.
By u:(w,2) let us denote the maximum total expected present discounted net profit attainable

by starting the search for offers from time ¢ with the current offer w and the leading offer «.

In addition, by w(z) let us denote the expectation of u;(w,2) with respect to w, that is,
b
wi(z) = / wi(w,2)dF(w), 13 0. (4.2.1)
@

So as to formulate u:(w, z), we shall calculate the profit attainable by taking four decisions,
AS, RC, PS, and PC, respectively.

Suppose that we are at time ¢ with the leading offer x and have just drawn an offer w.

AS: If we accept the current offer w, we receive the value w and the search is stopped.

RC: If we reserve the current offer w, we must pay the reserving cost r(w). Furthermore, since
we are to continue the search, the search cost s must be spent to find the next offer. Of course,
the leading offer of the next time becomes the more lucrative between the current offer w and
the present leading offer z, so let it be denoted by max{w,z}. Hence, Sv,_1(max{w,z}) is the
maximum total expected present discounted net profit attainable from time ¢ — 1. Therefore,
the maximum total expected present discounted net profit by reserving the offer w at time # is
given by —r(w) — s + fv_y(max{w, z}).

PS: If we pass up the current offer w and accept the leading offer @, we will stop the search
with getting the value z.

PC: If we pass up the current offer w and continue the search, the search cost s is incurred.
Since no offer is reserved, the leading offer of time ¢ — 1 remains to be z. Hence, —s+ fv,_1(z)
represents the maximum total expected present discounted net profit by taking the decision PC.

Of course, at the deadline { = 0, the search must be stopped, thus decisions RC and PC are
prohibited.

On these grounds, u(w, ) can be expressed as follows:

uo(w,z) = max{ 5w, }, (4.2.2)

PS : 2
AS @ w,
RC : - - -
uy(w,z) = max o3 r(w) = s + fr(max{w,z}), , t>1. (4.2.3)
Doz,

PC : -84+ fu(2)
Note that, due to Eqgs.(4.2.2), (4.2.1), and (3.1.1), we have

b
vo(z) = f wo(w, @ )dF(w) = /  mmax {0, s} dF(w) = S(z). (4.2.4)

Lemma 4.2.1 Let ¢ and d be real numbers with ¢ < a < b < d, hence [a,b] C [, d].
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(2} Suppose that u(w,z) s continuous in w on [a,b] and z on ¢, d], and nondecreasing and
conver in & on [c,d] for any w € [a,b]. Then, vi(z) is continuous, nondecreasing, and
conver in x on [¢,d].

(b) Suppose that v,_1(x) is continuous, nondecreasing, and convezin & on le,d]. Then, u(w, )
is continuous in w on [a,b] and ¢ on [c¢,d], and nondecreasing and convex in x on [c, d} for

any w € [a,b].

Proor.
(a) Let 2! and 2? be real numbers such that ¢ < 2! < 2% < d.

First, we shall show the continuity of v;(2) in «. Since u,(w,z) is assumed to be continuous
on the compact set [a,b] X [c,d] € R?, we find that u,(w,z) is uniformly continuous there.
Hence, given any ¢ > 0, there exists a § > 0 such that, for any points (w',z') and (w*, z*) in

[a,b] X [¢,d] C R?, it follows that
”(wl,:rl) — (wz,:c?)“ <6 = |ut(w1,a:l) - ut(w2,m2)| < & (4.2.5)

From Eq. (4.2.5) we deduce that, for any w € [a, 8], if |21 — 2%| < 6, then |(w,2') - (w,2?)| < §,

thus |u(w,z') — u(w,z%)| < €. Hence, it follows that if [z! — 22| < 4, then
b b
f wy(w, 21 )dF(w) — / ut(w,rl:?)dF(w)’
@ 3
/b
b
< 6/ dF(w) = e(F(b) - F(a)) = ¢

As a result, we conclude that v(2) is continuous in z on [¢,d].

(") —vi(a”)| =

A

ug(w,z') — ut(w,m2)| dF{w)

Next, for any w € [a,b], since u;(w,2) is assumed to be nondecreasing in z on [¢,d], we have
u(w, z') < ug(w,2?), thus
b b
velx!) :/ ut(w,a:l)dF(w)S] u(w, 2V )dF(w) = v(z?),
a a

which shows that v:(z) is nondecreasing in z on [c, d].

Finally, for any w € {a,b], since 2,(w,z) is assumed to be convex in & on [¢, d], it follows for

any p ¢ (01 I—) that ut(w,pml + (1 - p)$2) < Put(wa 3:1) + (1 - p)ut(wa mZ), thus

apat + (1= = [ wfew, oo + (1= p)e?F(w)

4]

[FAN

/: (put(w,xl) +(1- P)“t(w,mz))dF(w)

b
= p [ ww,AF@) + (1= ) [ o))

= pu(a') + (1~ purfa?),
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which indicates the convexity of vs(z ).

(b) Here, we shall show the continuity of w;(w,2) in w. For any 2 € [c,d] we know that
max{w,z} is continuous in w on {e, b} and satisfies ¢ < a < max{w,z} < d for any w € [a, b,
hence v;_1(max{w,z}) is continuous in w on [a,b] due to the premise of the assertion. From this
and the continuity of r(w), we find that —r(w) — s + Svi_1(max{w,z}), the second expression
in the braces of Eq. (4.2.3), is continuous in w on [a,b] for any z € [e,d]. In addition, the other
three expressions in the braces of Eq.(4.2.3) are also continuous in w on {a, b] for any z € [c, ]
due to the premise, thus so alsois u(w, ).

The other assertions, that is, continuity, nondecreasing property, and convexity of us(w, z)

with respect to z, can be proven in a like manner. 1

Corollary 4.2.1
(a) ue(w, ) is:
1. econtinuous in w and T,
2. nondecreasing in x,
3. convex in z,
4. nondecreasing int.
(b) ve(z) is:
1. continuous in z,
2. nondecreasing in x,
3. convez in z,
4.

nondecreasing in i.

ProoF. First, let us verify the properties 1 to 3 of assertions (a) and (b). Clearly, uo(w, z) has
the three properties of (2) due to Eq.(4.2.2). Thereby, applying Lemma 4.2.1(ab), and noting
that ¢ and d axe arbitrary numbers with [a, 8] C [c, d], we conclude that the properties hold true
for every t.

Next, we turn to the property 4 of assertions {a) and (b). From Egs.(4.2.2) and (4.2.3) we

have ug(w,z) = max{w, e} < uy(w,z) for any w and z, thus for any z we get

wle) = ]ab wo(w, 2)dF(w) < /: wi(,z) = 0 (2). (4.2.6)

Therefore, due to Eqs.(4.2.3) and (4.2.6) we deduce wuy(w,z) < ug{w,z) for any w and z.

Repeating this argument completes the proof. 1

Lemma 4.2.2 Forit > 0:
(a)z < wmfz) forz <b.

(b) ve(b) = b.

(e} it € vlz) < b for any .
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(d) Bu(z) — x is strictly decreasing in x.

Proor.

(a) From Lemma 3.2.1(a), Eq.(4.2.4), and Corollary 4.2.1(b4), we obtain & < S(z) = w(z) <
n(z) < -+ for any = < b.

(b) From Eq.(4.2.4) and Lemma 3.2.1(a) we get vo(b) = S(b} = b. Now, suppose v,-1(b) = b.
Then, for any w we deduce ve_;(max{w,b}) = ve—1(d) = b. From this and Eq.(4.2.3) we have,

for any w,

w,

—7r(w) - 8 + Bv—1(max{w,b}),
b,

~8+ Bre_1(b)

ug(w,b) = max

implying .
(b)) = / b dF(w)=b.

(c) Since w < uy(w, z) for any w and &, we get

o= fabw dF(w) < /but(w,w)dF(w) = v(a).

a

From assertion (b) and Corollary 4.2.1(b2) we claim »(z) < b for any z.
(d) Choose z! and 2? so that 2! < 2% < b. Then, it follows from Corollary 4.2.1(b3) that

vy(2?) — v (2) ve(b) — vy(at)
< . 4.2,
b x? ~ gl s# b— 2! (4.27)
Since v¢(b) = b and v;(x') > z! due to assertions (b) and (a), respectively, we get
ve(b) — ve(2l)  b—w(al)  b-—a!
= = 1. 4.2.8
b—at el S ho ! ( )
From Eqs. (4.2.7) and (4.2.8) we get SBu(2?) — Bvi(z") < 2% ~ 2!, which immediately implies
that the assertion holds true. #

Lemma 4.2.3 Forany w, z, and t > 1,
w, w,
—r{w) — 8+ fry_1(max{w,z}), ~r(w) — s+ Bre—i(w),

max = max . (4.2.9)
Z, T,

-5+ foi_y(z) —s+ Bv(z)

Proor. If 2 < w, then max{w,z} = w, thus Eq. (4.2.9) evidently holds true.
Let w < 2. Then, due to Corollary 4.2.1(b2) and r(w) > 0 we get

—r(w) — 8 + frp—y(w) < ~r(w) — s+ fos_y(max{w,z})
= () = s + Buics ()
< —s+ ,B’vt_l(w),
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which implies that either side of Eq. (4.2.9) becomes max{w,z, —s + fv;—1(z)}. Consequently,
Eq.{4.2.9) holds for any wand z. N

From Lemma 4.2.3 we conclude that w;(w, z), defined by Eq. (4.23), can be rewritten as

AS . w,
RC : ~ - - )
w{w,z) = max r(w) = s+ foy(w) , t2 L (4.2.10)
PsS : ua
PC : —s+ Bu_a{z)

4.2.2 Optimal Decision Rule

Let us define the two functions z{(a) and z]{w) as follows:
20 (z) = max{z, —s + fre_1(2)}, t>1, (4.2.11)
2l (w) = max{w, —r(w)— s+ fo(w)}, t>1, (4.2.12)

z8(z) = 2, and zj{w) = w. Notice that z§(z) is the latter term in the braces of Eq.(4.2.2),
and 2?(x) for ¢ > | consists of the third and fourth terms in the braces of Fq.(4.2.10). Hence,
z?(z) represents the maximum total expected present discounted net profit from the search by
passing up the current offer w at time ¢t with the leading offer is z. Similarly, since zj(w) is
the former term in the braces of Eq. (4.2.2), and z{(w) for t > 1 comnsists of the first and second
terms in the braces of Eq. (4.2.10), we know that 2J(w) means the maximum total expected
present discounted net profit from the search by either accepting or reserving the current offer
w at time ¢.

As a result, if we are at time { with the leading offer  and have just drawn an offer w such
that 2f(z) < 27 (w), a higher profit can be expected by either accepting or reserving the offer w
than by passing it up.

Now, by Wi(z) let us denote the set of current offers that should not be passed up at time {

with the leading offer z, that is,
Wiz) = {w| z{(z) < 2 (w)}, 120, (4.2.13)

By use of these notations, us(w, ), defined by Eqs.(4.2.2) and (4.2.10), can be rewritten as

max{z; (w), 2{(z)} (4.2.14)

~ { Awy i we Wiz,
S 2 i weWia),
and thus v(z), defined by Eq. (4.2.1), can be rewritten as

u(w, z)

>0, (4.2.15)

b
wlz) = / max{z} (w), 29(z)}dF(w) (4.2.16)
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- / ()P (w) + / 22(@)dF(w), 30, (4.2.17)
We(2) W (s}

Theorem 4.2.1 If o« < a, where a is defined on p.12, then w(w,z) = max{w,a} for any
w>a x>0, andt > 0.

Proor. Suppose a < a,or a—a < 0.

The assertion is evident for ¢ = 0 due to Eq.(4.2.2). Suppose w;—{w,z) = max{w,z} for any
w > a and z > 0. Then, v_1(z) = S(z) from Eq.(4.2.1), thus z{(z) = max{z, —s+ 35(z)} and
2 (w) = max{w, -r(w) — s + 8S5(w)} from Eqs.(4.2.11) and (4.2.12), respectively.

For z < a, Lemma 3.2.1{a) and Eq.(3.2.2) yield —s+4 85(z) = —s+ Bp = o <a, hence

z)(z) = max{z,-s + 85(2)} < a. (4.2.18)

Forz > «,Eq.(3.1.3}and Lemma 3.2.2(b,a) imply —s+35(z)~2 = K(z) < K(a) = a-a L0,
thus

z(z) = max{z,~s + fS(x)} = z. (4.2.19)

For w > a, from 7(w) > 0 and Eq. (4.2.19) we get —r(w)~ s+ S5(w) < —s +F5{w) < w, thus

2 (w) = max{w,—r(w) —~ s+ 5 (w)} = w > a. (4.2.20)

Consequently, from Eqs.(4.2.18) to (4.2.20) we obtain
#(z) <a <w=2w) f z<a (Lw)
2(z) = <w=2zw) if ez Zw, (4.2.21)
dlw)=w<e =) f(e<)w <.
Due to Eqs.(4.2.14) and (4.2.21) we arrive at
)= maeg() o= { 307 Y

2z) = if w<ue,

from which we find that the assertion holds true. B
From Theorem 4.2.1, the optimal decision rule for the case @ < a can be prescribed as follows:

$ Optimal Decision Rule: In the case where a < a, if w > =z, accept the current offer w

and stop the search, or else accept the leading offer x and stop the search.

From now on, let us assume ¢ < o,

Lemma 4.2.4

(a) 2/(z) is continuous, nondecreasing, and conver in x, and nondecreasing in .
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(b) 2{(w) is continuous in w, and nondecreasing in t.

(¢) Fpq(w) = 2 (w) < 2§ (w) = 27 (w) for any w and t > 0.

(d) 22(z) = z¥(a) for anyz <aandt > 1.

(e) Wi(z) is a closed set such that o  Wi(z) and b € Wi(z) for any x and £ > 1.

Proor.

(a,b) Both assertions are evident from Eqs. (4.2.11), (4.2.12), and Corollary 4.2.1(b).
(c) By definitions of 2{(z) and 2 (w) we have, for any w,
25 (w) - 2)(w) = max{0, ~r(w) — s + Bvo(w)— w}
< max{0, ~s + fvo(w) — w} = 27(w) — zg{w),
thus the assertion proves to be true for ¢ = 0. For ¢ > 1, note that the inequality of the assertion
is equivalent to z{(w) - z{(w) < 27y (w) — z{4,{w), that is,
max{w, A} — max{w, 4 — r} < max{w, B} - max{w,B —r} (4.2.22)
where 4 = —s 4 Bvi_1(w), B = —s + By (w), and » = r(w). From Corollary 4.2.1(b4) we get
A=-s+ fri-1(w) < —s 4+ pu{w) = B. (4.2.23)
Let I and R denote the left and right sides of Eq.(4.2.22), respectively. Then, clearly 0 < L
and 0 € R. If w < A, then w < B by Eq.(4.2.23), thus
L =A-max{w,A-r} = min{d - w,r}
< min{B ~ w,r} = B —max{w, B —~r} = R.
If A<w,then A—7 <w,thus L = 0 < R. Since Eq.(4.2.22) is verified, the assertion holds.
(d) If 2 < a, then vo(z) = §(2z) = S(a) = wla) (= u) from Eq. (4.2.1) and Lemma 3.2.1(a).
Suppose v;_1(2) = v;—1(a) for z < @. Then, due to ¢ < & and Lemma 4.2.2{c) we get
t<a<a=-s+ 8 < —s+ Prer{a) = —s+ Fu_1(z). (4.2.24)
Hence, it follows from Eqs.(4.2.11) and (4.2.24) that
zi(2) = —s + Bu1(z) = ~s + Pfry1(a) = zi(a). (4.2.25)
Since z (w) is independent of z, from Eqs. (4.2.16) and (4.2.25) we get v(z) = vi{a) forz < a.
Hence, v{a) < vy(z) holds for any = < a and { > 0, thus the assertion proves to be true.

(e) Given any z, let {w!, w*, .-, w™,. -} and w* be a sequence and a number, respectively,
such that w" € Wy(z) for all n and w™ — w* as n — co.
Suppose w* & Wy(z), that is, zf (w*) < z0(z). Then, due to 2{(z) — zf(w*) > 0 and (b), we

can pick an € > 0 such that if |w — w*| < ¢, then |z} (w) — 2] (w*)| < 2{(z) — 2] (w*). For such
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an € > 0 we have
lw—w i <e == zj(w)<z(z) <= wg W) (4.2.26)

Since w"™ € Wy(z) is assumed for every n, it follows from the contraposition of Eq.{4.2.26) that
Jw™ ~ w*| > € > 0 for all n, which contradicts the premise that w™ — w* as n — oo. Thereby,

we conclude that w* must be an element of W;(x), which implies that W (2} is a closed set.

Next, it follows from ¢ < o and Lemma 4.2.2(¢) that
a< a=-s+8p< —s+ Fri(z). (4.2.27)
Since (d) immediately implies v(a) < w(z) for any 2, it follows from r(e) > 0 that
—r{a) — s+ fri_1(a) < —s+ P (). (4.2.28)
Hence, due to Egs.(4.2.27) and (4.2.28) we arrive at
2 (a) = max{a, ~r(a) — s + Bo_1(a)} < —s + Bri_1(x) < 2/ (2),
which suggests ¢ € Wi(z) from Eq. (4.2.13).
Finally, due to Lemma 4.2.2(b,c) we get v—1(x) < v—1(b) = b forany z, thus
27(x) < max{b, —s + 8b} = b = max{b,~r(b) - s+ (b} = 2/ (b).

Therefore, b € W(z). 1

Here, we define the two functions g;(z) and fi(w) with ¢ > 1 as follows:

gl@) = =3 + -1 (z) — 2, t>1, (4.2.29)

fi(w) = —r(w)— s+ foig(w) ~w, ¢21 (4.2.30)

Corollary 4.2.2 fort > 1 :

(a) gi(x) is continvous and strictly decreasing in 2.

(b) fi(w) is continuous and strictly decreasing in w.

PROOF. Since r(w) is assumed to be continuous and nondecreasing in w, the assertions hold
true from Eqs. (4.2.29), (4.2.30), Corollary 4.2.1{b1), and Lemma 4.2.2(d). N
Let us introduce #; and A; with ¢ > 1 as the respective roots of g:(z) = 0 and fi{w)} = 0, if
they exist, that is,
9(8) = —s 4 frea(f) -6 = 0, t=>1, (4.2.31)

Jild) = =r(Ae) =5+ Boa(Me) - A = 0, =1 (4.2.32)

From Eq.(4.2.11) we find that ¢ is a point of indifference between accepting the leading offer &
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and continuing the search. From Eq.(4.2.12) we know that A; is a point of indifference between

accepting the current offer w and reserving it.

Lemma 4.2.5 Fort > 1:

(a) 8; exists uniquely with a < 6; < b.
(b) A exists uniquely with o — v(b) < Ay < 6,.

Proor.

(a) By using Lemma 4.2.2(c) and Eq.(3.2.2), we have
g:(0) = =3+ Poi(a) - @ = B(vii(e) ~ ) 2 0. (4.2.33)
Due to Lemma 4.2.2(b) we get
g(b)y = s+ Pre_1(B)—-b=-s+ 80— b=(F - 1)p —s < -5 <. (4.2.34)

From Egs. (4.2.33), (4.2.34), and Corollary 4.2.2(a), we conclude that equation g(z) =0 has a

unique root & € [a,b).

(b) Since a — r(b) < b, we get r(cx — 7(b)) < 7(b). From this and Lemma 4.2.2(c) we have
fila = 1)) = —r(ex = 7(b)) = s + Borea (e = () = (& = 7(8))
= r(b) = (o — () + Bloima(a ~ 7)) = ) > 0, (4.2.35)
Since g:(6¢) = 0 by Eq. (4.2.31), it follows from Eqs. (4.2.29) and (4.2.30) that
F:(82) = —1(8,) + g.(8,) = —7(8) < 0. (4.2.36)

Due to Eqs.(4.2.35), (4.2.36), and Corollary 4.2.2(b), we claim that equation f{w} = 0 has a
unique root A; € [a —r(b),8:). 1

Corollary 4.2.3

(a) Fort>1:
1. Ifa< 8, thena< —s+ Bu_y(z).
2. If 2 = 6;, then z = —s+ Bo,_y(z).
3. Ifz> 6;, then 2 > —s+ Brvea(z).

(b) Fort > 1 :
L Ifw< Ay, then w < —7(w) — s+ Bve{w).
2. If w= M then w= —r(w) — s+ Bri_1{w).
3. Ifw> A then w > —r(w) — s+ Bo_g{w).

PrROOF. Both assertions are evident from Corollary 4.2.2 and the uniqueness of #; and A;. B
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According to Eq.(4.2.15) and Corollary 4.2.3 we obtain, for £ > 1,

- w if w e Wi(zx) and Ay < w,
7(w) = _
—r(w) — s+ fo_y(w) if w € Wi(x) and w < Ay,
uw,z) = ) (4.2.37)
‘() x if wdW(z) and 8 < z,
2(x) =
' -8 + fve-1(x) if wd Wyzx) and ¢ <0,
Now, let fy = Ay = —oo for convenience. Then, in general, by Eq.(4.2.37) we can prescribe

the optimal decision rule as follows:

$ Optimal Decision Rule:  Suppose that you are at time ¢ with the leading offer z and
have just drawn an offer w. Then, the choices are:
(a) If w € Wy(x), then:
1. I A\ < w, then AS (accept the current offer w and stop the search).
2. If w < Ay, then RC (veserve the current offer w and continue the search).
(b) If w ¢ Wy(x), then:
1. If 8, < z, then PS (pass up the current offer w and stop the search by accepting the
leading offer z).

2. If © < 8,, then PC (pass up the current offer w and continue the search).

Lemma 4.2.8 Fort > 1 we have

2 w) < 8 if w<y, (4.2.38)
¢ = w if f; <w. o

ProoF. If w < 8, it follows from Corollaries 4.2.1(b2) and 4.2.3(a2) that
—r(w) — s+ foer{w) < —r(w) — s+ Bvi1(8) < —5 +PBvi-1(8:) = b,

from which
Zi(w) = max{w, —r(w) — s + fve1(w)} < max{;, b} = 0. {4.2.39)

If 8, < w, then A; < w since A, < & due to Lemma 4.2.5(b). Hence, it follows from Corol-
lary 4.2.3(b3) that
Z(w) = max{w, ~r(w) — s + Bv,_1(w)} = w. (4.2.40)

By using Eqs. (4.2.39) and (4.2.40), we immediately confirm Eq.(4.2.38). 1
Lemma 4.2.7 Fort > 1 we have 8; = 6441 if and only if v,_1(6;) = v,(6;).

Proor. If 6, = 9;+1, due to Eq. (4231} we obtain gt(gt) = { and gH_l(Bt) = gtu;.]_(gt.i_l) =40, so
91(0,) = gui41(64), or —38 + Bui_1(8y) — b = —5 + Bv(6;) — by, from which v_1(8:) = v:(8:).
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Conversely, if v;_1(8;) = v:(6:), it follows from Eq. (4.2.31) that
gt.H(Gt) = -84+ ﬁvt(ﬁt) - Bt = ~35 -+ ﬂvt,_l(ﬁt) - Bt = gt(gt) = (. (4241)

Since ;41 is the unique root of giy1(z) = 0, we deduce 8; = §;+q from Eq.(4.241). &

Theorem 4.2.2
(a) 6; = @ for eacht > 1 where ¢ is a unique root of () =0, defined onp.12.

(b) A; is nondecreasing int.

Proor.

(a) It follows from Eq.(4.2.4) that

vo(8) = f " mas{w, 61 JAF (w) = f;’ 6, dF(w) + /:wdF(w). (4.2.42)

From Corollary 4.2.3(a2) we have 29(6;) = 8;. Hence, due to Eq.(4.2.16) and Lemma 4.2.6 we
get

or(fy) = / " max{2] (w),8, }4F(w)
&1 b
= /ﬂ max{ 2] (w), 1 }dF(w) +/51 max{zi{w}, 0 }dF(w)

[ b
- ] by dF(w) + /g w dF(w). (4.2.43)

Since vo(fy) = v1(61) from Egs. (4.2.42) and (4.2.43), we find 8, = 6; from Lemma 4.2.7.

Next, assume #; = 611, or equivalently, v;_1(8;) = v;(#;). Then, in exactly the same way as
in Eq.(4.2.43) we obtain

b
vffi41) = ve(fh) = /ﬂ max{z;(w), ¢} dF(w)
N b
:f s, dF(wH/B w dF(w)
— / " Bpn dF () + /6 :1 w dF(w)

b
= [ max{ala (), 01 }AFw) = v (),
from which 8,14 = 8;5. Therefore, by induction we claim 8; = 6,41 forallt > 1.

Now, from Egs.(4.2.4) and (3.2.3) we have
g1(0) = —s + Bu(@) ~ 8= ~s+ 35(0) — 6 =0. (4.2.44)

Since #; exists uniquely, we get ¢, = 6 due to Eq.{4.2.44). Hence, we conclude 8; = 0 for each
£ > 1.

(b) Clearly, fi(w) is nondecreasing in ¢ due to Eq.(4.2.30) and Corollary 4.2.1{b4). Hence,
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from Eq.(4.2.32) we get 0= fip1(Ap1) = filA) < fepr(Ae), thus fig1(Ae) > fixa(Aea). From
this and Corollary 4.2.2(b) we get A; < Aey1, thus the assertion holds true. 8

Theorem 4.2.3 Fort >1:
(a) For anyx, if w € Wi(z), then z < w.
(b) If ' < 2%, then Wi(a!) D Wi(z?).

Proor.
(a) It is clear for ¢ = 0 by definitions of Wy(a), z5(x) and zj(w). The case for ¢t > 1 is
proven by contraposition. If w < =, then v 1(w) € wv.1{x) by Corollary 4.2.1(b2), thus

—r(w) ~ s 4 Brgm1(w) < =r(w) - s + Fr—1{x) < —s + Bvi—y(z), hence
2/ (w) = max{w, —r(w) — s+ fvi1(w)} < max{z, -5+ Pu_(z)} = 2{(z),

which indicates w ¢ W,(z). Thereby, the assertion proves to be true.

(b} Let z' < 2?. We shall show that any w € Wy(s?) is also an element of W;(z'). Choose
any w € Wy(z?). Then, from Eq.(4.2.13) we get

2(2?) < 2 (w). (4.2.45)

Due to Lemma 4.2.4(a) we obtain
2(2') < (22 (4.2.46)

From Eqs. (4.2.45) and (4.2.46) we arrive at 2{{(z') < /(w), which means w € W(z'). N

Theorem 4.2.4 FLet 6 <z. Then:
(a) Wi(z) = {w |2z < w}.
(b) w{w, ) = max{w,z}

(c) vi(z) = 5(=).
Proo?. Note that §; = 8 from Theorem 4.2.2(a). Then, since 8 < z is assumed, it follows from
Corollary 4.2.3(a2,a3) that

zf(2) = max{z, —s + Bre(z)} =2 > 6. (4.2.47)

(a) From Theorem 4.2.3(a) we have
Wi(z) C{w |z <w}. (4.2.48)

Suppose # <z < w. Then, Ay < w since A; < # by Lemma 4.2.5(b). Hence, due to Eq. (4.2.47)
and Corollary 4.2.3(b2,b3) we have 2{(z) = < w = z{(w), thus w € Wy(z). Consequently, if
@ < =z, then

[w|z <w} C Wiz). (4.2.49)
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Eqgs.(4.2.48) and (4.2.49) prove the assertion to be true.
(b) For t = 0, the assertion is clear from Fq.(4.2.2). Using Lemma 4.2.6, we get

< §<zx i —oco<w <8,

gw) { = w<a if 0<w<a,
= w if z<w<bh,
from which
< 2 if w<a,
2! (w) _ (4.2.50)
= w if z<w.

Hence, if w < x, then w ¢ Wy(z) due to (a), thus w(w, z) = 2f(z) = & from Eqgs.(4.2.15) and
(4.2.47). Contrarily, if z < w, then w € Wi(z) due to (a), hence w(w, ) = z/(w) = w from
Eqgs. (4.2.15) and (4.2.50). We have thus confirmed the assertion.

(c) It follows from Eq.(4.2.1) and (b) that, for any 2 with § < =,
b
n(e) = / max{w, e }dF(w) = $(),

thus the assertion proves to be true. N

From Theorem 4.2.4(b), the optimal decision rule for the case § < & can be prescribed as

follows:

¢ Optimal Decision Rule: In the case where 6 < z, if w > w, accept the current offer w

and stop the search, or else accept the leading offer z and stop the search.

Lemma 4.2.8
(a) vl z) — vi1{z) is nonincreasing inz < 8 for anyt = 1.

b) 28, (2) - 22(2) is nonincreasing tn ¢ for any t > 0.
t+1 t

Proor.
(a) Choose 2! and 2? so that z! < 2? < §, and let Wy = Wy(e!) and Wy = Wi(2?). Then,
from Eq. (4.2.17) we get

vzt _f 21 (w)dF( w)+/ 2()dF(w), (4.251)
wi(2?) _/ 2 (w)dF( w)-l—/ () dF(v). (4.2.52)

Since Wy 2 Wa due to Theorem 4.2.3(bh), we have Wy = W, U (W, NW5) and W= WU (Wi n
W$). Hence, due to Egs. (4.2.51) and {4.2.52) we get

%(:{:2) - U;(ml) = /ch (zé’(mz) e z?(:[:l )) dF(w) -+ lenWéc (z B~ 2] (w)) dF{w). {4.2.53)
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Since z2(x!) < 2] (w) for any w € Wy due to Eq.(4.2.13), we claim
2(2?) — #(w) < 20(x?) — 2(2') il we W nWj (€ W), {(4.2.54)
It follows from Corollary 4.2.3(al,a2) that if «! < 2 < 8 (= 6,), then
2(22) - 2(2") = —s+ B (2?) + 5 ~ fua(@?) = B(vo1(eh) — v (a))). (42.55)
Hence, by using Eqs.(4.2.53) to (4.2.55), we arrive at

wle?) = oel) < [ (5767 - () dF () + / (0% - 2p(ah) ) dF(w)

(2@ - 20") [ dF(w)

< pop(e?) = v (21,
from which v(21) ~ vs_1(al) > ve(@?) — ve_1(2?). We have thus confirmed the assertion.

(b) We have
23(z) — 23(2) = max{0, —s + Bvo(z) — 2} = max{0, g:1(x)}. (4.2.56)

From Corollary 4.2.2(a) and Eq.{4.2.56), the assertion proves to be true for ¢ = 0. Fort > 1,
since §; = ;1.1 = 0 due to Theorem 4.2.2(a}, it follows from Corollary 4.2.3(a) that

B(vt( )= vtwl(@')) if 2<9, (4.2.57)

2Zox)=2(2) =
tr1(@) — 7 (2) {0 .

Due to (a) and Eq.(4.2.57) we have completed the proof of (b). N
Theorem 4.2.5 Wy(z) D Wiyi(z) for any 2 and t > 0.

Proor. Suppose z < w. Then, due to Lemmas 4.2.4{c) and 4.2.8(b) we have
21 (w) — 2(w) < 2y (w) = 2/(w) < 24(2) — 2 (2),

yielding
zpa (W) — 24 (2) < 2 (w) — 2](2),
from which
0 < zia(w) = (z) == 0< z(w) - (),
or equivalently,

2 (z) € zu(w) = 7(z) < 7(w). (4.2.58)

By noting = < w for any w € Wi, () from Theorem 4.2.3(a), we conclude that anyw € Wi1(z)
also belongs to Wi(z) due to Eq.(4.2.58). The proof is completed. &
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(a) r(w) is concave (b} »(w) is not concave
Figure 4.2.1: Relations among z7(z), z{(w}, and W(x)

Theorem 4.2.6 If r(w) is concave, Wi(x) is a connected set for any x and t > 0.

Proor. We immediately get Wy(z) = {w | & < w} for any r(w) by Eq.(4.2.13), thus we have

confirmed the assertion for ¢t = 0.

Given any t > 1 and =z, suppose that W;(z) is a union of two disjoint sets. Then, since W(z)

is a closed set and a ¢ Wi(z) from Lemma 4.2.4(e), we can rewrite Wy(z) as
Wi(z) = [w®, w] U [w?,b] (4.2.59)
where w®, w! and w? are real numbers such that
a<uw® <wl <wt<b (4.2.60)

Due to Eqs.(4.2.13) and (4.2.59) we get

{ 2(0) < 2fw)  if w € [0 w!] U [w?b] (= W(=)), (4.2.61)
zi{w) < z(x)  otherwise.
It follows from Eq.(4.2.61) that if w' < w < w?, then
2 (w) < 28(2) < 2(w?). (4.2.62)
Since z] (w) is continuous in w by Lemma 4.2.4(b), we have
lim zf(w) = z;(w?). (4.2.63)

w—w?
From Eqs. (4.2.62) and (4.2.63) we deduce z2(z) = z(w®). Similatly, we get 2z{(z) = 2 (wh).
Due to Lemma 4.2.4(e) we obtain a ¢ Wi(z), or z{(a) < z{{z). Accordingly,
7(a) < F(e) = 27 (w') = 2{(w),
from which

z(w') — zj(a) 7 (w?) — 2 (wh)
0= . 4.2.64
o w? ~ w! ( )
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Since r{w) is assumed to be concave in w, we know that —r(w) — s+ o1 (w) Is convex in w

by Corollary 4.2.1(b3), thus so also is z/{w). Thereby, it follows from Eq.(4.2.60) that

wl —a = wl — 1wl ’ e

contradicting Fq. (4.2.64). Hence, it is impossible that I¥;(z) is a union of two disjoint sets.

Even though W(z) is assumed to be a union of more than three disjoint sets, we also have

contradiction in the same way as above. Therefore, the assertion proves to be true. W

4.2,3 Relationships between the Model and Standard Two Models

Although r(w) > 0 has been assumed in Eq.(2.2.1}, we allow »(w) = 0 only in the following
theorem so as to check the relationships between this model and standard models with no recall

and with recall, presented on p.6.

Theorem 4.2.7
(2) Ifr(w) > w for any w and there exist no initial offers, this model resulls in the conventional

model with no recall.

(b) If r(w) = O for any w, this model results in the conventional model with recall.

PRroor.
(a) Let v(w) > w for any w. Then, it follows from Lemma 4.2.2(d) and Corollary 4.2.1(b2)
that, for any w > 0 and £ > 1,

—r(w) — s+ Brimi(w) € —w - s+ Fuy_(w) < -0 -5+ Br—1(0) < —s + Bo_y(z), (4.2.66)

which means that decision PC is better than RC for any w and z. In other words, no offers should
be reserved throughout the search process. Hence, if initial offers donot exist, we shall have no
reserved offers throughout the search process, thus we cannot recall any offer at any time. Note

that the leading offer z of each time can be regarded as z = 0 in this case.

In order to complete the proof, it suffices to show us(w, 0) = &, (w) for any w. From Eqs.(4.2.2)
and (2.1.2) we get up(w, 0) = max{w,0} = w = Ho(w). If u,_(w,0) = @_1(w) for any w, then
v;-1{0) = %;,_y, thus it follows from Eqs.(4.2.10), (2.1.2), and (4.2.66) that

w?
w(w, 0) = max (“]:T(w) = s+ foia(w),
-5+ Pe.q(0)

= max{w, —s + Bv;-1(0)}

max{w, —s + Bd_1 }

i

te{w)-
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(b) It suffices to show that all offers should be reserved and that w(w,z) = 4;(w,z) for any
w and z. From Kqs.(4.2.2} and (2.1.5) we get uo{w, z) = tlo(w, ).
Assume u;_y(w,x) = @-1{w, ) for any w and z. Then, vi1(2) = B_y(r). Thus, it follows

from Corollary 4.2.1(b2) and the premise #(w) = 0 that, for any w and ,
—r(w) — s+ Br_y(max{w,z}) = —s + Sy (max{w, 2}) > —~s + Bvi_1(z). (4.2.67)

Hence, due to Egs. (4.2.3), {(4.2.67), and (2.1.6), we lead to

w,

—s + Bo_i(max{w,z}),

&,

—s+ Pu_y(x)

= max{w, z,-s + Bv;— 1 (max{w, z}) } (4.2.68)

w(w,x) = max

= max{w,z, —s + 31 (max{w, z}}}

i (w, ). (4.2.69)

il

Eq.(4.2.68) shows that any offer should be reserved when we continue the search. From this

and Eq. (4.2.69) we have confirmed the assertion. R
Lemma 4.2.9 #(w) < w(w,z) < @(w,2) for any w, T, andit > 0.

Proor. From Egs.(4.2.2), (2.1.5), and (2.1.2), we have %ig(w) = w < max{w,2} = w(w,z) =
fio(w,2). Suppose #iy1(w) < vy (w, ) < &—1(w, ) for any w and x. Then, ¥y < vey(2) <

Ts_1(x) for any z. Thus, it follows from Eqs. (4.2.30) and (2.1.3) that
t(w) = max{w, —s + f-1} < max{w, —s + Bve_1(2)} Sugw,a). (4.2.70)
Furthermore, due to Corollary 4.2.1(b2) we obtain
—r{w) - s + Pfvp-1{max{w,z}) < = + B0y (max{w,z}) (4.2.71)

and
—5+ fve1(z) € 5+ o1 (max{w,2}) € ~s + BE..q(max{w,z}). (4.2.72)
From Eqgs. (4.2.3), (4.2.71), (4.2.72), and (2.1.6), we get
w(w,z) < max{w, ~s + B~ (max{w,z}), &, —s + Fby.1(max{w,z }}}

= max{w, z,—s + S (max{w,z})} = @lw,z). (4.2.73)

Due to Fqgs. (4.2.70) and (4.2.73) we obtain #{w) < w(w,z) < @(w,z). 1



Chapter4 Optimal Stopping Problem with Infinite-Period Reservation 32

4.2.4 Infinite Planning Horizon

Theorem 4.2.8 w(w,z) converges to u(w,z) = max{w,z,0} ast — co.

Proor. It follows from Lemmas 2.1.1, 2.1.2, and 4.2.9 that u,(w,z) converges to a function

u(w, z) such that
max{w,8} < w(w,z) < max{w,z,8}. (4.2.74)

From Eq.(4.2.74) we get
w(w, ) = max{w,f} if z <8. (4.2.75)

Due to Theorem 4.2.4(b) we immediately obtain

u(w,z) = max{w,z} if 6 <e. (4.2.76)
From Eqs.(4.2.75) and {4.2.76) we have confirmed the theorem. 1
This theorem yields the optimal decision rule for an infinite planning horizon:

¢ Optimal Decision Rule: In the case of an infinite planning horizon, if # < max{w,z},
accept the more Jucrative between the current offer w and the leading offer z, or else continue

the search.

4.3 Numerical Example

We here depict an example of the optimal decision rule for t = 1 where F(w) is the uniform
distribution on [0,1} (,or ¢ = 0 and b =1}, 8 = 0.97, s = 0.005, and r(w) = 0.01 for w < 0.4,
0.9w — 0.35 for 0.4 < w < 0.6, and 0.19 for 0.6 < w (Figure 4.3.1). In this case it follows that
# = 0.760 and A; = 0.501. Figure 4.3.2 illustrates z{(w) and 22(0.300) = 0.523 where the thick

line on the horizontal axis indicates
W1(0.300) = {w | 27(0.300) < Zj(w)} = {w]0.333 <w <0449, 0524 < w}.

The line corresponds to the vertical thick line in Figure 4.3.3. Then, we find that the thick
curved line in Figure 4.3.3 is the locus of points (z, w) satisfving z{{z) = 2](w) and that the
areas on the left and right sides of the thick curved line represent the sets of {(z, w) |w € Wi(=)}
and {(z,w) | w & Wi(z)}, respectively. Accordingly, it follows that the entire region [0,1] x[0,1]
can be divided into two regions corresponding to “AS and RC” and “PS and PC.” Furthermore,
either region is divided into two regions corresponding to PS and P¢ by the horizontal line A,
and to PS and PC by the vertical line 8, respectively. Accordingly, when we have the leading
offer z = 0.300 at ¢ = 1, Figure 4.3.3 tells us that the best choice for a current offer w is:

If 0.524 < w < 1.000, 4S (accept the current offer w and stop the search).
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Figure 4.3.1: Reserving cost r{w)
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Figure 4.3.2: 27(0.300) and 2{(w) Figure 4.3.3: The optimal decision rule

If 0.449 < w < 0.524, PC (pass up the current offer w and continue the search).
1f0.333 < w < (.449, RC (reserve the current offer w and continue the search).
If 0.000 € w < 0.333, PC (pass up the current offer w and continue the search).

We further observe the optimal decision rule by other examples. In Figures 4.3.4 to 4.3.6 the

parameters except for r(w) are the same as those used in Figure 4.2.1. In Figure 43.7 it is also
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Figure 4.3.6: Example C.

used § = 0.97 and s = 0.005 but F(w) is such that Flw) = 9w for 0 < w < 0.1 and (w+ 8)/9
for 0l<w<1(,ora=0and b= 1)
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Figure 4.3.7: Example D.

4.4 Properties of the Optimal Decision Rule

A

If « < a, then the conlinuation of the search is not optimal at ol
This is a restatement of the optimal decision rule on p.20. In the model, & can be interpreted
as the expected discounted present net profit attainable from one more search. Hence, if it
is inferior to the lowest value of offers, or if @ < ¢, no oneis willing to engage in the search
process,

The following properties are obtained for the case of ¢ < .

If the leading offer x is such that 8 < z, then accepl the more lucrative between the leading
offer x and the current offer w.
This is already stated in the optimal decision rule on p.27. This implies that if an offer
with 8 < 2 is given as an initial offer before entering the search, we have to stop the search
by accepting it or the offer w found from the first search.

No offer reserved during the search process should be recalled and accepted except at the
deadline.
If the value of the initial leading offer, which is the best of offers given before entering the
search, is larger than or equal to 8, we will stop the search by accepting it due to Property B.

Below, suppose that the values of the initial leading offer is less than #. According to the
optimal decision rule (a2) on p.24 and Theorem 4.2.2(a), an offer w which should be reserved
must satisfy w < A,. Further, at any ¢t > 1, since & < ¢; = 8 holds due to Lemma 4.2.5(b)
and Theorem 4.2.2(a), the values of reserved offers are all less than 4. However, the optimal
decision rule (bl) indicates that when we can stop the search by accepting the leading offer
x is restricted only to the time satisfying # < 2. Consequently, we have not to recall and
accept the leading offer prior to the deadline ¢t = 0.

In the model it is allowed to recall and accept the leading offer at any time over the whole
planning horizon, and a search cost s > 0 must be spent in order to proceed the search.

So, it is natural to think that recalling and accepting the leading offer in the middle of the
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!

search can become an optimal decision. The above result, however, tells that such an action
is not optimal at all. Therefore, we conclude that the aim to reserve an offer is only to avoid
any dire situation which may be awaiting at the deadline.

At each time, any offer inferior to the leading offer should be passed up, and the range of
offers to be passed up should be spreed as the leading offer becomes better.

This result is derived from the optimal decision rule (b) on p.24 and Theorem 4.2.3. Since
each reserved offer is assumed to be available at any time in the model, there is no reason
for reserving an offer inferior to the leading offer. So, thisis a very convincing result.

The range of offers to be passed up should be wider as the remaining periods become larger.
This property is derived from Theorem 4.2.5. If there is a lot of periods to go, we can afford
to wait for an excellent offer to be found.

If r(w) is concave, the indifferent point between reserving and passing up an offer is
determined at one critical point.
If r(w) is concave in w, it follows from Theorem 4.2.6 that Wy(x) can be depicted as in
Figure 4.3.4 on p.34, which shows us an image of the property.

If »(w) is not concave, Wi(z) can be a union of some disjoint sets as in Figure 4.3.3. So,
there may exist more than two indifferent points between the two actions. According to
the numerical calculations the author made, this phenomenon tends to occur when r(w} is
steady or increases slightly up to a certain w and then rises steeply.

If the planning horizon is infinite, we should continue the search with reserving no offers
until an offer exceeding 0 is found.

This is a restaternent of the optimal decision rule on p.32. From Lemmas 2.1.2 (p.7) and
2.1.1 (p.8) we find that this property is almost the same as the optimal decision rule for an

infinite horizon of models with no recall and with recall.

From all the stated above, the optimal decision rule can be summarized as follows:

& Optimal Decision Rule:  Suppose that you are at time ¢ with the leading offer # and

have just drawn an offer w. Let 2° be the initial leading offer, thus z = z° if time ¢ is the start

point of the search process. Then, the choices are:

() If & < a or 8 < a°, then:

1. AS if the offer w found at the start is such that 2® < w (accept it and stop the search).
2. PS otherwise (accept the initial offer x¢ and stop the search).

(b) If @ < a and 2° < 6, then:

1. If ¢ = 0 (deadline), then:
i ASif z < w(accept the current offer w and stop the search).

ii PS otherwise (accept the leading offer & and stop the search).
2. Ift > 1, then:

i ASif w € Wz) and Ay < w (accept the current offer w and stop the search ).
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i RCif w € Wi(2) and w < A, (reserve the current offer w and coutinue the search).
iii PCif w & Wi{z) (pass up the current offer w and continue the search).

3. If t = co (infinite planning horizon), then:
i A8 if @ < w (accept the current offer w and stop the search).

i PC otherwise (pass up the current offer w and continue the search).



Chapter 5

Model 2:
Finite-Period Reservation

This chapter is devoted to the discrete-time optimal stopping problem where any of offers
appearing subsequently can be not only accepted or passed up but also reserved. Inorder to
reserve an offer we must pay the reserving cost but the reservation expires finite & periods
after. A major finding is that a reserved offer should not be recalled and accepted prior to
its maturity of reservation, howewver, it may be done so on the maturity.

5.1 Model

Suppose that a person periodically searches for offers with the intention to accept one of them
within ¢ periods from timet to the deadline where the value of an offer w is a random variable
following a known offer value distribution function F(w) having the mean p and producing
w € la,b]. If the search cost s > 0 is paid, an offer w will be found, and it can be not
only accepted or passed up but also reserved by paying the reserving cost r(w) > 0. The
reserving cost depends on the offer value and any reservation is effective only for given finite &
periods independently of the offer value. His objective is to maximize the total expected present

discounted net profit.

5.2 Analysis

Without loss of generality, we can consider the value of an offer to be in [—o0,b). So, for
expressional simplicity, let *for any w” and “for any @” mean “for any w with w < &” and “for

any ¢ € R* with # < b,” respectively.

38
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5.2.1 Notation

Let & denote a k-dimensional vector, that is,
@ = (21,29, ,25) € R (5.2.1)

Then, let x; denote the vector defined by removing the i-th element 2; from @, that is,

@i = (@1, Eis,Bign, o, 2x) € RFTL 1 <i<k (5.2.2)
Fspecially, let
Y =L = (.’b‘l,xg,---,:t‘k_i) Ekal. (523)
In addition, let
Y :(.T,‘l,---,.‘1,‘1‘__1.,:E;'.|.1,"',.’U}c__l)e Rk‘—z, 1 $£<k (524)

Let the maximum element of a vector be denoted by the character with hat ("), hence

& = max{ay, @9, ', 21}, (5.2.5)
&; = max{z, T 1, Bip1, Tk}, 1 <Pk, (5.2.6)
§ = max{ay, &g, ,Tr-1}, (5.2.7)
§i = max{ay,  ,Bim1,Lidl 0 EA—1), 1L i<k (5.2.8)
Then, it follows from Egs.(5.2.5) to (5.2.8) that
§ = max{f;, i} (5.2.9)
and
& = max{f, xx} = max{fi, =i, o} = max{&;, z;}. (5.2.10)

5.2.2 Optimal Equation

Suppose that we are at time £, let w; be the offer found ¢ periods ago, or at time {4 ¢, and let

w;  if w; was reserved,
7 = . (5.2.11)
0  ifit was not reserved.
Then, since each reserved offer is available for only finite & periods, the vector
@ = (1,22, . 24) € R (5.2.12)

represents all reserved offers available at time ¢ where z; = 0 can be regarded as a fictitious
reserved offer. We call the vector @ the reserved offer vector. Consequently, the leading offer of
time ¢ is given by &, that is,

& = max{zy, %2, ", Tk} (5.2.13)
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By w(w, ) we denote the maximum total expected present discounted net profit attainable
by starting the search for offers from timet with the current offer w and the reserved offer vector

2, and by v{z) we denote the expectation of u;(w,z) with respect to w, that is,
b
v(z) = ] welw, 2)dF(w), t320. (5.2.14)
a

If taking decision AS or PS, we will quit the search process by accepting the offer w or &,
respectively. If taking decision RC or PC, we are to continue the search. Then, since the oldest
available reserved offer 2 is on the maturity, the reserved offers which will be inherited from

time ¢ to time # — 1 are expressed as
y=2p = (T1,22, 0y Thet) € RF1. (5.2.15)
Hence, if the current offer w is reserved at time t, the reserved offer vector of time {— 1 becomes
(w,y) = (w, 1,22+, @4-1) € B, (5.2.16)

and if not reserved, then
(an) = ({}axlaw%"'awk-wl) € Rk- (5217)

In general, the relationship among the current offer and the reserved offer vector at each of

previous, present, and next time can be depicted as in Figure 5.2.1.

In view of the above, we find that u,(w,2) can be expressed as fotlows:

AS
wp(w, ®) = max{ v }, (5.2.18)

PS : 2
AS : w,
RC : —r{w)— s+ pve.glw,y),
w(w, ) = max . (w) fos-s(w,y) , t> 1. (5.2.19)
PS : =z,
PC : —s+ fvia(0,y)
(previous)
at time ¢4+ 1: w, = (Q?[, T2 sy Tiods By, T, 0ty Te-b :Lk
(present) \\ \ \ \ \ \ \ \
at time ¢ vy @h_y, zh, @y, ctts Thop %) expired
(next) \\\\\\\\\\
at time £—1: @, = (¥, =z, - @l e, wly, o i wp) expired

(2% =0 and 2f = 0if w and w’ are passed up at times ¢ + 1 and 2, respectively )

Figure 5.2.1: Reserved offer vector x € R
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Due to Eqgs. (5.2.14), (5.2.18), and (3.1.1), we have

& b
vo(@) :fa up(w, & )dF(w) :]; max{w, & }dF(w)= (&), (5.2.20)

Lemma 5.2.1
(a) w{w,z) is :
1. continuous in w and x,
2. nondecreasing in z,
3. conver in z,
4. nondecreasing in {.
(b) ve(z) is:
1. continuous in &,
2. nondecreasing in ¢,
3. conver in x,
4

. nondecreasing in 1.

Proor. In almost the same way as in the proofs of Lemma 4.2.1 (p.15) and Corollary 4.2.1

(p.17) in Chapter 4, we can easily confirm all the assertions. W

Lemma 5.2.2 fort >0

(a) & < ve(z) for any & with & <b.

(b) ve(x) = b for any = with & = b.

() p < w(z) <b for any x.

(d) Bu(0,y) — 2, is strictly decreasing in z; for any ¢ end ©; € RF-1,
)

(e) Bug(w,y) —~ w is strictly decreasing in w for any y € RE-1

Proor.

(a) If # < b, then & < §(&) = vo(z) < wi(z) < --- from Lemmas 3.2.1{a), 5.2.1(b4), and
Eq.(5.2.20).

(b) If & = b, then vo(2) = S(b) = b by Eq.(5.2.20) ard Lemma 3.2.1(a).

Assume the assertion to be true for t — 1, and let & = (b,b,---,b} € R*1. Since y < b, it

follows from Lemma 5.2.1(b2) and the assumption that, for any w >0,

vi—1(0,9y) < vi—1{w,y) < ve-1({w,b) = b. (5.2.21)
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Therefore, due to Egs. (5.2.19) and (5.2.21) we claim that, for any w > 0 and @ with & =,

w’
LN R v ) y
uy(w,2) = max b (w) = s+ fos(wry) =b. (5.2.22)
-8+ ﬁ‘Ug_l(O,y)
Hence, for any = with # = b, from Eqs. (5.2.20) and (5.2.22) we get
b
vex) = f b dF(w) = b. (5.2.23)

(c) For any «, since w < u(w,z) for any w by Eqs. (5.2.18) and (5.2.19), we obtain
b b
u= / w dF{w) < j w(w, @) F(w) = v(z).
a [+
We get vy(x) < ve(b,b, -+ ,b) = b due to Lemmas 5.2.1(b2) and assertion (b}.
(d) First, suppose ¢ = k. Then, since y € R*-1 is independent of 2}, so also is #(0,y), thus
Bv,(0,y) — xy is strictly decreasing in z; for any = (= y) € RF-L,
Next, suppose i < k and §; = b. Then, due to Bq.(5.2.9) we have j= max{x;, §i} = b for any
z;, thus from {b) we get v{(0,y) = b for any 2,;. Therefore, Bu(0,y) — 2; 1s strictly decreasing

inz;if g =5b

Finally, for the case of i < & and § < b, choose k-dimensional vectors 2!, 2%, and =¥ such
that
el <a?<al =0 (5.2.24)
and
m} = :cf = :ci’ <b, j#ik. (5.2.25)

Then, by Egs.(5.2.8) and (5.2.25) we get
@-;'l = @12 = gf = max{w{,- tr )‘T"}-«I?w}+la' "aw}:—l} < b. (5226)
From Eqs.(5.2.24) and (5.2.26) we deduce

max{z!, #} < max{z?, i} < max{e?,§}} (= max{b,§?}) =9,

that is, 4! < §2 < §# = b by Eq.(5.2.9). Hence, by assertions (b) and (a) we get ve(0,9°) = b
and z! < §' < v,{0,y"), respectively. Accordingly, by noting that v(0,y) is convex in & from
Lemma 5.2.1{b3), we obtain

(0, y%) ~ 2(0, 1 vO,b—”U 0,y b—x}
ﬁf(yg vtl(y)éﬁt(y) ‘:(y)<ﬁ L <,
xr— I; b_ﬂ'i b“".’L‘"

from which Bvs(0,y') — =} > Bu(0,9%) - z?. Thus we get the assertion.
(e) If § = b, then v,(w,y) = b for any w from assertion (b), thus we find that v (w,y) ~ wis
strictly decreasing in .

If § < b, choose w! and w? so that w! < w? < b. Then max{b,§} == b, thus vi(b,y) = b
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by assertion (b). Furthermore, max{w!,§} < b, thus w! < max{w',j} < n(w',y) due to (a).
Hence, from Lemma 5.2.1{b3) we get
1

vl(w?,y) - vl(wl,y) _ vdby) ~w(wly) b w
< <
b w? - w! <8 b—w! <ﬁb—'w1 <L

implying Bu{w!,y) — w' > Bog(w?, y) — w*. We have thus confirmed the assertion. W

5.2.3 Optimal Decision Rule

Let us define the two functions z{{(@) and 2{{w,y) as follows:

22(2) = max{#, -s+ fv-1(0,9)}, t>1, (5.2.27)

2w, y) = max{w, —r(w) - s+ v (w,y)}, t =1, (5.2.28)

z§(x) = &, and z§(w,y) = w. From Eqgs.(5.2.18) and (5.2.19) we know that zg(a) and z{(w,y)
stand for the maximum total expected present discounted net profits attainable after passing

up or not passing up the current offer w, respectively, at time {.

Therefore, the set of current offers that should not be passed up can be denoted by
Wi(z) = {w|2f(=) < z/(w,y)}, t=0. (5.2.29)

By using these notations, we have

u(w,2) = max{z (w,y), z/(x)} (5.2.30)
; if we Wyz),
[ Ay i weWil@), (52.31)
22(x) if w¢ W),
from which
b
v(x) z/ max{z, (w,y), 2{(z)}dF(w) (5.2.32)
- f 27w, y)dF (w) + j Se)dF(w), 2 0. (5.2.33)
Wi (x) Welz)e

Theorem 5.2.1 Ifa < a, then u(w,2) = max{w,2} for anyw > a, 2 20, and 1 2> 0.

Proor. Suppose a < a, or & —a < 0. Clearly the assertion holds true for ¢ = 0 by Eq. (4.2.12).
Assume w1 (w,x) = max{w, i} for any w > ¢ and & > 0. Then, we get »_y(2) = 5(&), thus
2¢(x) = max{&, ~s + B85 (max{0,7})} and z(w,y) = max {w,-r{w)— s+ A5 (max{w, §})}-
If § < a, then max{0,§} < @, thus it follows from Lemma 3.2.1(a) and Eq.(3.2.2) that
-5+ 3S(max{0,§}) = —s+ fp = o < g, from which we get

max{§, ~s + A5 (max{0,§})} < a. (5.2.34)
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If @ € §, then & < max{0,7} = §, thusit follows from Eq.(3.1.3) and Lemma 3.2.2(b,a) that
—s+ 8S(max{0,§}) — § = K(§) < K{a) = a —a <0, from which we arrive at

max{§,—s+ #5(max{0,7})} = . (5.2.35)
Since § < &, we can consider the three cases: (a) <& < a,(b) § <a < i,and (¢) a << 2.

Then, from Eqs. (5.2.27), (5.2.34), and (5.2.35), we obtain

<a if &<aq

zP(x) = max{&,§, —s + 85 (max{0, §})} { A (5.2.36)

=& if e < 2.
Let ¢ < w. Then a < max{w, §} for any vy, thus by Eq.(3.1.3) and Lemma 3.2.2(b,a) we get
—r(w) — s + 3S(max{w, §}) — max{w,§} < —s-+ S5 (max{w, ¥}) - max{w, j}
= K({max{w, §})

TAN

Ka) = a—a < 0,

from which we conclude

n A §oil w<g,
~r(w) — s+ 8S(max{w,§}) < max{w,§} = o
w il §<w,
producing
N <g if w<iy, ,
2 (w,y) = max{w, ~r(w) — s + 85 (max{w, §})} o {5.2.37)
=w if §< w.
Due to Eqgs.(5.2.36) and (5.2.37) we obtain the following three relations:
(a) If & < a (< w), then § < a, thus § Sw, hence
2(z)<ae<w=z(w) (5.2.38)
(b) Ifa < & < w, then § < w, hence,
Z(z)=2 <w= z(w). (5.2.39)
(¢) If (e <) w< &, then
(w,y) < ) < 3= of(e) i W< (S9) 52,40
Zlwy) =w < & =2(e) if j<w(<i)

Here, it follows from Eqs.(5.2.38) to (5.2.40) that

ztr(wfy) =w if &<w,

w(w,z) = max{z[{w,y),z(x)} = { L C s f wed

-
—_—
8
N’

{

We have thus confirmed the assertion. K

From Theorem 5.2.1, the optimal decision rule for the case & < a can be prescribed as follows:
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{ Optimal Decision Rule: In the case where o < @, if w > &, accept the current offer w

and stop the search, or else accept the leading offer & and stop the search.

Below, let us postulate ¢ < .

Lemma 5.2.3 For any x, let 2* € R be the veetor whose elements are

{:r;i if a<we,

a if z:< a.

(5.2.41)

Then:
(a) Fort > 1, we have z§(x) = 2{(x®) and z[(w,y) = 2 {w, ¥*) forv 2 a.

(b) Fort > 0, we have v{z) = v{x®).

Proor. From Eq.(5.2.41) we know z < &%, thus & < &* for any . Now, if @ < z; for at least
one 1, then & = &°. Hence, by contraposition, if & < 4%, then z; < afor all ¢, thus 2* = a due

to Bq.(5.2.41). Consequently, the relation between & and &7 is given by

a<i=i® if &=2°, ‘
(5.2.42)

a

&

F<it=a if t#
Since vo(z) = §(&)from Eq. (5.2.20), weget vp(x) = vp(2®) by Lemma 3.2.1(a) and Eq. (5.2.42).
Assume assertion (b) to be true for ¢ ~ 1, that is, vs-1(x) = v;—1(a*) for any =. Then, since
(0,9)* = (a,y*), we get v—1(0,y} = v-1(a,y*). Due to this and w—1(0,y) < n—1(0,9%) <
ve—1{a,y*), derived from Lemma 5.2.1(b2), we arrive at

Ug_l(ﬂ,’y’) = vt_l({),y“). (5243)

Hence, if & = &%, it follows from Eqs.(5.2.27) and (5.2.43) that
Zf(:l:) ma,x{s?:,-—s + ﬁvt—l(oay)}

= max{2®, —s + Bv—1(0,y*)} = 2{(a). (5.2.44)

il

If & < 2%, from Eq.(5.2.42), assumption ¢ < «, Lemma 5.2.2(c), and Eq.(5.2.43), we get
Fci*=ma<a=—s+Bu< s+ Bue-1(0,9) = —s+ fve1(0,3°). (5.2.45)
Hence, it follows from Eqgs.(5.2.27) and (5.2.45) that if & < 2%, then
2(x) = —s + v (0,y) = —5 + foe—1(0,3%) = 7 (a*). (5.2.46)

Due to Eqgs. (5.2.44) and (5.2.46) we get z (@) = z{(z") for any =.
Next, for any w > a we have v, 1(w,y) = v_1(w,y*) due to (w,y)* = {w,y*) and the

assumption. Hence, it {ollows from Eq.(5.2.28) that

zp(w,y) = max{w,—r(w) - s+ Bui—1{w,y)}
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= max{w, -r(w) — s + Bva(w,y*)} = z(w,y"), (5.2.47)

which completes the proof of assertion (a}.

By use of assertion (a) and Eq.(5.2.32), we can immediately prove the assertion (b). Hence,

both assertions prove to be true by induction. ®

Lemma 5.2.4

(a) z0(x) is continuous, nondecreasing, and convez in &, and nondecreasing in f.

(b) z{w,y) is continuous in w and y, nondecreasing and conver in y, and nondecreasing in
f.

(¢) Wi(z) is a closed set such that a & Wy(z) end b € Wi(z) for anyx and t 2 1.

PROOF.
(a,b) Both assertions clearly hold by virtue of Eqs. (5.2.27), (5.2.28), and Lerama 5.2.1(b).

(¢) By applying almost the same manner as in the proof of Lemma 4.2.4(e) on p.20, we can

verify that W;(x) is a closed set for any .

Due to the assumption ¢ < « and Lemma 5.2.2(c) we have
a<e=—s+ P < —s+fv1(0,y) (5.2.48)

Let 4* € R*~! be a vector defined by Eq.(5.2.41). Then, vi_1(0,9) < w1 (e, y) € v (e, y*) by
Lemma 5.2.1(b2), and v,—1(0, ¥) = vi—1 (¢, y*) from Lemma 5.2.3(b). Hence, we get v, (e, y) =
ve.1(0,3), from which

~r(a) = s+ Bui(a,y) < —s + Bvea (e, y) = —s + Pri1(0,9)- (5.2.49)
Therefore, due to Egs.(5.2.49) and (5.2.48) we get
2 (w, y) = max{a,~r(a) - s+ Bria(a,y)} < —s + Bu,1(0,y) < 2 (),
which indicates a ¢ W,(x).
For any @ € RF, since v_1(0,y) < vi—y(b,y) = b by Lemmas 5.2.1(b2) and 5.2.2(b), we get
22(z) < max{b,—s+ Gb} = b = max{b, -r(b) — s+ Bt} = z{ (b, y),

which indicates b € Wy(a). 1

Lemma 5.2.5

(a) Given any n with 0 < n < k, suppose that p € R", gl e R*" and ¢* € RF™ satisfy

ql < q2 (5259)

and
v(p,0) = vi(p,q)- (5.2.51)



Chapter 5 Optimal Stopping Problem with Finite-Period Reservation 47

Then, v;(p,q') = v(p,q*) (see Figure 5.2.2).
(b) Given any n with 1 < n <k, suppose that z' € R* and 2% € R* satisfy

il =l = g = gt (5.2.52)
and
e} =at i<an. (5.2.53)

Then, v(2') = vi(2?) (see Figure 5.2.3).
(¢) Given any t < k, suppose that ' € RF and 2? ¢ R* satisfy

max{a! |i <k —t}= max{z? i<k~ 1} (5.2.54)

and
b 02 k ; 59 R
¥ = @ L (5.2.55)

i

Then, v,(2') = v(a?) (see Figure 5.2.4).

Proor.

(a) Lemma 5.2.3(a) implies v(z) = v(0) (= wv(a)) for any = with @ < 0 (< a) where
e = (a,a,---,a) € R*. From this and Lemma 5.2.1(b2) we deduce that if ¢* < g2, then
ve(p,0) < v(p,q') < ve(p.g?). Hence, if ve(p,0) = v(p,g*), then v:(p,0) = ve(p,q') =
ve(p,q%)-

(b} If n = k, then 2! = 2%, thus the assertion holds true.

Let n < k below. The assertion holds true for t = 0 from &! = #? and Eq.(5.2.20).

Assume the assertion to be true for ¢ — 1. Choose 2! € R* and x? € R* to satisly Eqs.(5.2.52)
and (5.2.53) with n < k, and let p* = (w,y') € R* and p? = (w,¥?) € R* with a w> 0. Then,
by Eq.(5.2.16) we get

pl=w=p? (5.2.56)

and
p} = m}_l = -:c?_l = p?, 2<i<n+ 1. (5.2.57)

From Eqs. (5.2.56) and (5.2.57) we get

1 2 1 2 : 1 _ .2
= =g, =X if w<az, =5,
-1 _ 132 { pn-l—l p‘n+1 ( n n) - % n (5258)

pl=p? (= w) if zl =22 <w.

Eqs. (5.2.58) and (5.2.57) show that p' and p? satisfy Eqs.(5.2.52) and (5.2.53), respectively,
with either n + 1 or 1. Hence, v—1{w,y'} = v_y(w,y?) for any w > 0 by the assumption.
Consequently, since #' = 22, from Eq. (5.2.19) we get u(w, ®') = u;(w, 2*) for any w, implying
ve(x!) = vi(2?) due to Eq.(5.2.14).

(¢) Choose &' € R and 2® € R* to satisfy Egs.(5.2.54) and (5.2.55) where cleatdly gl o= 32,

The assertion holds true for £ = 0 due to Eq. (5.2.20) and &' = 2.



Chapter 5 Optimal Stopping Problem with Finite- Period Reservation 48

T

L

1 2 n—1 n n+1 n-+2 k-1

o

Figure 5.2.2: (p,g") € R* ... O, and (p,¢*) € RF..X
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Figure 5.2.3: @' € BF ... O, and 2? ¢ RF ... X
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Figure 5.2.4: @' € B* ... 0, and 2’ € RE ... X

k
Assume the assertion to be true for ¢ — 1, and let p' = (w, yl) e R* and p* = (w,y?) € R
with a w > 0. Then, p! =w = p?, and p! = ¢}_, and p} = x? 4 for 2< i <k. Hence,

max{p |i<k~t+1} = max{w,w{,---,zk_t}
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= max{w, max{x!|i<k~t}}

max{w, max{x?|i < k—t}}

= max{w, 2}, 2}_,}

max{p? |i <k -t + 1) (5.2.59)

t

and

pio=at =2t =9, k—t4+1 <. (5.2.60)

Egs. (5.2.59) and (5.2.60) show that p' and p? satisfy Eqs. (5.2.54) and (5.2.55), respectively,

with ¢ - 1. Hence, v,_3(w,y') = v.1(w,y?) for any w > 0 by the assumption. From ¢! = 3% and

Eq.(5.2.19) we get u(w,2') = w,(w, 2?) for any w, thus v,{z!) = v,(2*) from Eq. (5.2.14). B

Let g}(~t,t|mi) and fi(w|y) with t > 1 denote the following function of &; for given @; € RE-1
and function of w for given y € B*~1, respectively:

gi(zilei) = —5+ Bre(0,y) - a4, t>1, i<k, (5.2.61)

flwly) = —r(w) ~ s+ B (w,y) -w, 21 5.2.62)

Corollary 5.2.1 Fort > 1:
(a) gi(z;|@;) is continuous and strictly decreasing in z; for any i and @; € R,

(b) fi(w|y) is continuous and strictly decreasing in w for any y € RF1.

Proor.
(a) Evident due to Eq. (5.2.61), Lemmas 5.2.1(b1), and 5.2.2(d).

(b) Since r(w) is continuous and nondecreasing in w, the assertion holds true by Eq.(5.2.62),

Lemmas 5.2.1(b1), and 5.2.2(e). 1

Let 8i(z;) and A,(y) witht > 1 denote the respective roots of gi(z:|2;) = 0for given 2; € B+
and fi(w|y) = 0 for given y € R*~1, if they exist, that is,

N

gi(fi(m)|2:) = —s + fui(0,y) - i) = 0, t>1,  (52.63)

RO = —r(u(@)) = s + Bocr(Ae(@),y) = e(y) = 0, 21 (52.64)

We know that 83(x;) represents an indifferent point in terms of z; between accepting the reserved
offer z; and continuing the search under a given x; € RF-1 and A(y) an indifferent point in

terms of w between accepting the current offer w and reserving it under a given y € RE-1,

Lemma 5.2.8 Fort > 1:

(a) Bi(x;) exists uniquely with o < 6i(a;) <b for anyi and z; € R
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(b) Aily) exists uniquely with a — 7(6) < A(y) < b anyy € R¥1.

Proor. By using a method similar to those in the proofs of Lemma 4.2.5(a,b) on p.23, it follows
that, for any ¢ and ®; € RF!,
gi(ele:) > 0> gi(bla:) (5.2.65)

and that, for any y € R*1,
Sl = 1(0)|y) 2 0 > fi(dly). (5.2.66)

From Corollary 5.2.1, Eqgs. (5.2.65), and (5.2.66), the assertion proves to be true. 1

Corollary 5.2.2

() Forany i<k, z;€ R*", andt > 1:
1 If z; < 6i(x;), thenz; < —s+ Bv-1(0,y).
9. If ;= Oi(x;), thenz; = ~s + Bue.1(0,y).
3. If x> 8i(m;), thenx; > —s+ Bu_1(0,y).

(b) Fory e RFLandt > 1:
L Ifw< A(y), thenw < ~v(w) — s + Pv_1{w,y).
2. If w=A(y), thenw = —r(w) —s + Bve1{w,y).
3 Ifw> M(y), thenw > —v(w) —s + Bo—1 (1w, ¥).

Proor. Clear from Corollary 5.2.1 and Lemma 5.2.6(a,b). ¥

By use of Corollary 5.2.2(a) and Eq.(5.2.27) we get
Ef Hi(cc,,') <ri == —s+ fu-1(0,y) < max{zy,- -, ) = &
= zZ(z)=1
and
Vioia; < 9?:(:0,;) = &= max{x, -, Tx} < -5+ fre.1(0,y)
= z(®) =35+ Pu-1(0,9)

As a result, we obtain

w if we Wi(z) and A(y) < w,
Ay = { ~r(w) = s+ frea(w,y) if we Wi(e) and w < My),
ugw, ¢ ) = 3 if w¢ W) and #(z;) < a; foran i,
z(z) = { —s+ Bre-1(0,y) if wg Wi(z) and 1; < Bi(z;) for all 7.
(5.2.67)

Now, let 8i(x;) = Ao(y) = —oo for convenience. Then, in general, by Eq.(5.2.67) we can

prescribe the optimal decision rule as follows:
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& Optimal Decision Rule:  Suppose that you are at time ¢ with the reserved offer vector @
and have just drawn an offer w. Then, the choices are:
(a) If w € Wy(x), then:
L If Ai(y) < w, then AS {accept the current offer w and stop the search).
2. I w < A(y), then RC (reserve the current offer w and continue the search).
b) If w ¢ Wi(z), then:
1 If 8i(x;) < x; = & for a certain i, then PS (pass up the current offer w and stop the
search by accepting the leading offer ).

2. If #; < 8i(=;) for all i, then PC (pass up the current offer w and continue the search).

Theorem 5.2.2 Fort > 1:

(a) Fori <k, ifz; € R¥=1 s such that §; < 0, then 0i(z;) = 6.

(b) If y € R¥-! is such that § < 8, then j < 0F(y) = —s + Bop1(0,y) < 8.
(c) Ify € R¥"! is such that § < 8, then A(y) <#.
(

d) 95(y) and M\(y) are continuous and nondecreasing in y, and nondecreasing in 1.

PrROOF. Assertions (a-c) are shown together by induction. From Eq.(5.2.20) we have v(z) =

$(8) for any z with # = 8. Assume v;_1{2) = 5(f) for any z with & =8 throughout the proofs
of assertions {a-c).

(a) Given any ¢ < k, choose an = € R* so that §; < 4, and let

o' = (21, ,3im1,0, 241, 0, Tk} € R*.
Then, we get
@] = (@1, 0, Biop Big1, o Bk) = @ € RETY (5.2.68)
v = (xy,2im1,0, T, Tt ) € Rk“l,
¥ = max{zy, " Tl Big1, Bear ) = 5 SO (5.2.69)

Since § = max{#,8} = # due to Eq.(5.2.69), we have v,_1(0,¥) = 5(#) by the assumption,
thus it follows from Eg. (5.2.68) that

Gi(0l2) = gi(Blat) = ~s + Buea(0,y) b= —s 4+ BS(B)—6=K(®) =0.  (5.270)

From the uniqueness of 8:(z:) and Eq. (5.2.70), we get 8(z;) = 0 for any @, € R*1 with §; < 6.
(b} Since v;..;(0,y) is independent of x4, due to Eq.(5.2.63) we get

65 (y) = s+ Boia (0, ). (5.2.71)

Note that 0 = K (8) < K(§)if § < 8 due to Lemma 3.2.2(b). Then, it follows from Egs.(3.1.3),
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(5.2.20}, (5.2.71), and Lemma 5.2.1(b4) that, for any y € R*1 with §< 4,
J< K@) + 8= —s+855) = —5+Buo(0,y) < =5 + Bu-1(0,9) = 6;(y). (5.272)
Since § < 6 implies y < (6,8,---8) € R*~1, we have v;_4(0,y) < v¢1(0,6,---,8) = 5(8) due to
Lemma 5.2.1(b2) and the assumption, from which
0F(y) = —s + Br—1(0,3) < —s + BS(0) = K(0) + 6 = 6. (5.273)
Due to Egs. (5.2.71), (5.2.72), and (5.2.73), we complete the proof of the assertion.
(c) Since v,.1(8,y) = S(8) for any y € R¥~! with § <@ by the assumption, we get
fu(Bly) = —r(8) — s+ BS(8) — 0= —r(8) + K(8) = —1(8) < 0. (5.2.74)
Hence, by Corollary 5.2.1(b) we claim that A,(y), the unique root of fi(w|y) = 0, must be less
than # for any y € R*1 with § < 6.
(a-c) To complete the proofs, we shall show v,(z) = S(f) for any o with & = f. Suppose & = 8,
thus § < 8. Then, we have -3 + 8v,.1(0,y) < 6 from Eq.(5.2.73), thus
2(x) = max{, ~s + fvi—1(0,9)} = max{0, —s + Sfvi_1(0,y)} = 6. (3.2.75)
Since § < #, we have v, {w,y) < v,—1(8,y) = S(#) for any w with w < # by Lemma 52.1(b2)
and the assumption, thus
wr(w} =8 + Bo_1(w,y) < =5+ Po1(w,y) < —s+ B5(0) = K@)+ 0= 6. (5.2.76)

Hence, if w < 8, then 2 (w,y) < max{6,6} = @ from Egs.(5.2.28) and (5.2.76). Conversely, if
B < w, then Afy) < w due to M\(y) < 0 as in the proof of (c}, therefore z{(w,y) = w from
Corollary 5.2.2(b3). Consequently, if § <#, then
< 8 if w<é,
2 (w, y) { cw i i< (5.2.77)

Substituting Eqgs. {5.2.75) and (5.2.77) into Eq. (5.2.32), we arrive at
b
w(e) = [ max{z{(w,y).0}dF(w)
é b
= [ max{zi(w,y).0)4F () + [ max{=(w, 9)034F ()

= f:g dF(w)+/:wdF(w) = 5(8),

which guarantees the assertions (a-c) to be true.

(d) Since 85(y) = —s + Br.—1(0, %) due to assertion (b), we find that 8%(y}is continuous and

nondecreasing in y according to Lemma 5.2.1(b).

We know that A¢(y) is bounded for every ¢ due to Lemma 5.2.6(b). Givenany ¢ 2 1, choose
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y € R*! 5o that

inf{w | fifw|y) = 0} < A(w) < sup{w | fi(wly) =0}. (5.2.78)

Given any sufficiently small e > 0, let A~ = A{y) — € and AY = A(y) + ¢ Then, since fi(w|y)

is strictly decreasing in w as in Corollary 5.2.1(b}, we have
FO ) = ~ (A7) = 5+ Bua (T, g) < AT >0 (5.279)

and
FHy) = —r(VF) = s 4 o (3F, ) = AT <0, (5.280)

Note that v,—{w,y) is continuous and nondecreasing in y for any w due to Lemma 5.2. 1(b2).

Hence, from Eqs. (5.2.78) to {5.2.80) there exist two points y~ € RFVand yt € R*!such that

v <y, y #y, LAlyT)=0

and
v<yt, y#yh AT =0
Then, we can take y’ such that
y~ <y syt Vv (5.2.81)

Due to Lemma 5.2.1(b2) we know that fi(w|y) is nondecreasing in y, thus it follows from
Eq.(5.2.81) that 0 = fi(A~ly™) < f(A"l¥) and fi(Mly’) < fi(AHy™t) = 0. Hence, since
fi(wly') is strictly decreasing in w by Corollary 5.2.1(b), we claim that ('), the unique root
of fu(wly’) = 0, exists in [A\™,A"], that is, in either [A~, A(#)] or [A:(y),A*}. By noting that the
length of either interval is less than or equal to ¢, we obtain [A(y") - Ae(y)| € €, which shows
the continuity of Ai(y) at y.

Due to Lemma. 5.2.1(b2,4), we deduce that fy{w|y) is nondecreasing in g and ¢, respectively.

Hence, since it is strietly decreasing in w from Corollary 5.2.1(b), it follows that A(y) is non-

decreasing in y and ¢, respectively. B

Lemma 5.2.7 Fort > 0:
(a) Let © be such that 8 <. Then :

zg(m) = &, (5282)
< & if w<i, -

S (w.) {: i iew (5:283)

ve(@) = 5(&). (5.2.84)

(b) Let @ be such that § < &. Then, v(z') < w(x) for any @' € R* such that & < &.

PRrOOF.
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(2) Egs. (5.2.82) to (5.2.84) are evident for ¢ = 0 by definitions of 2§(z ), z{(w, y), and vo(z).

Choose an @ € R with 8 < & and assume v_1{x) = $(&).

(i) Suppose § < 6. Then, —s+ Bv;—1(0,y) < 8 < & by Theorem 5.2.2(b). Hence, from
Eq.(5.2.27) we obtain Eq.(5.2.82). Furthermore, from Eq. (5.2.77) we get Eq. (5.2.83) by con-
sidering three cases: w < 6,8 < w < &, and & < w.

(i1} Suppose # < §. Then, for any w we have § < max{w, §}, thus v,y (w,y) = S(max{w, §})
by the assumption. Hence, from Lemma 3.2.2(b) we have

—5 + Bve_y(w,y) — max{w, §} = K(max{w,§}) < K(#) = 0. (5.2.85)
Setting w = 0 in Eq.(5.2.85), we get —s+ 3v..1(0,3) < § < 3. Hence, we obtain Eq.(5.2.82)
from Eq. (5.2.27). Due to Eq.(5.2.85) we get
—r(w) — s + Pre1{w,y) < max{w,§} < max{w,i} = { ’ ?f w <& (5.2.86)
w if &< w
it follows from Eqs. (5.2.28) and (5.2.86) that if w < &, then 2z[{w,y) < max{2,%} = &, or else
7 (w,y) = w. Hence, we also get Eq. (5.2.83).
As seen in (i) and (ii), we have obtained Egs. (5.2.82) and (5.2.83).

Now, it follows from Eqgs.(5.2.82) and (5.2.83) that, for any = with § < &,

wlz) = fb max{z} (w,y), #}dF(w) = /x & dF(w) + fb w dF(w) = S(&),

Qa

thus the assertion holds true by induction.

(b) Suppose that @ satisfies 8 < %, and let @' € R* be such that 3 < &. Now, choose z” € RF

so that &' < 2" and
max{f, '} < " < &. (5.2.87)

Since a < a < # by the assumption a < o and Lemma 3.2.3(b), we get a < § < 2" < & due to
Eq. (5.2.87), thus it follows from (a) and Lemma 3.2.1(c) that

(") = §(&") < §(8) = vi(z). (5.2.88)

Since &' < a” is assumed, from Lemma 5.2.1(b2) we claim

vz} < vn(2"). (5.2.89)

Hence, if () < vy(2’), it follows from Eqs. (5.2.88) and (5.2.89) that v (") < v{ae"}, which

is a contradiction. Therefore, vi(z’) < ve(x) must hold. B
Corollary 5.2.3 If z is such that 8 < %, then u{w,2)= max{w,2}.

ProoF. From Lemma 5.2.7(a), if w < #, then 2J(w,y) < & = zf(a),or else z7(x) = £ Sw =

2'(w,y). This relation and Eq.(5.2.30) complete the proof. 1
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From Corollary 5.2.3, the optimal decision rule for the case # < & canbe prescribed as follows:

& Optimal Decision Rule:  In the case where @ € R* is such that 6 < &, if w > &, accept

the current offer w and stop the search, or else accept the leading offer & and stop the search.

Here, let us define the following vectors:

:BtL :(31,“’,18{,0,"',0) ERk, 351‘45
yf’=(:t:1,---,:cg,0,o--,0) eRkF]’ i<k,
:BF :(0,--',0,£E3'+1,"',$k) G.Rk, tSka

y;‘l :(0""101$i-§—1y"'7mk-1) eRkﬁlv i<k.

Then, clearly,
3 = max{al, :F}, i<k,
j = max{@f, if}, i<k

Furthermore, we define a set of z; under a given ©; € R¥~1 as follows:

Xi(z;) = {z: | v(@) = vi(2f)}, i <k, t20.

Lemma 5.2.8 Given any i < k, z; € RF!, and t > 1, suppose

v g Xia(2:) == wa(@) = vea(z))
where

X y(ws) = {oi | va(®) = vr—1(2f)}.
Then :
(a) Given anyy € RFY

w g X\ 4(y) == ve1(w,y) =v-1(w,0)

where
X (y) = {w | v-1(w,y) = v1(0,9) )

(b) Given any i < k and y; € R*2,

5 € XitH0,g;) = v-1(0,y) = v-1(0,3F)

where

XiH0,y;) = {&: | u-1(0,m) = _1(0,y7)}-

(¢) For any @* € R¥ and 2* € R* such that z* < @?,

w(el) = w(a?) = (@) = ().

(5.2.97)

(5.2.98)

(5.2.99)

(5.2.100)

(5.2.101)

(5.2.102)

(5.2.103)
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Proor.
(a,b) Consider the vector
p=(w,zy, &0 3p) = (w,y) € RF
whose elements are p; = 2 and p; = 2.1 for 2 < j < k. Then, from Eg. (5.2.96) we get
Xi_y(p) = {p; L oea(p) = w—s (PP} (5.2.104)
Furthermore, Eq. (5.2.97) can be rewritten as
pi € Xi(p;) == w_1(p) = ve-1(p}). (5.2.105)
Since we have
py = (21,22, Th1) =Y € RF 1,
pt = (w, 0,0,--,0) =(w,0) €RF,
Pl = (021,22, ,251) = (0,y) € RF,
assertion (a) is verified from Egs. (5.2.105) and (5.2.104).
For 2 < j, it follows that
Yioy = (@1, ,2ien,zise e, 21 ) € RE2,
yhy = (z oz, 0o, 0) € RMY
yfwl = (0,--, 0,&j,251) € RE-L
from which we get
p; = (w21, ,%5-2,%5, oo ep-1) = (w, Y1) € REY,
'pf’ = (w,z1, ", %1, 0,2+, 0) :(w,yf‘ml)efﬁk,
p? =(0,0,--, 0,--,zj, -, 25-1) = (0,97 ) € RF
Hence, by noting p; = z;_1 for 2 < j < k, it follows from Egs. (5.2.104) and (5.2.105) that
XE 4 (w0,500) = {251 | veer(w,y) = w09 0)}, 2< i<k, (5.2.106)

and
2jo € X (w,y,0) == v—aw,y) = va(w, yi), 2<i<k (56.2.107)
By setting w = 0 and j = i+ 1 in Eqgs.(5.2.106) and {5.2.107), assertion (b) proves true.
(¢) Choose 2! € RF and a? € R* so that @' < 2, thus ! <y
(1) First, suppose 9% < w or w & XL, (y?). If ¥ < w, then §! < w, thus v (w,y') =
ur_1{w,y?) by Lemma 5.25(b) with n = 1. fw ¢ X, (y®), then vt (w,0) = v_y(w,y?)

due to assertion (a), thus we also get v, yt) = v-1(w, y?) from Lemma 5.2.5(a) because of
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gt < y%. From these two results and Eq.(5.2.28) we get
P<w oo wed Xy == ve1(w,y") = vi—1(w, ¥*)
=  Z(w,y") = 2] (w,y?). (5.2.108)

(2) Conversely, suppose w < §% and w € X}_;(y?). Ifw < §?, then w < &%, If w € X{_,(y*),
then vi—1(w,y?) = v.—1(0,y*) due to Eq.(5.2.100), thus —r(w) — s+ Bu(w,y?) < s+
#v;..1(0,y?). Therefore, by Eqs. (5.2.27) and (5.2.28),

w< i and we X, (@) = #(wy?) = max{w,-r(w)-s+ Bo,_1(w,y*)}
< max{#,—s + Bv._1(0,3%)}

= 22 (5.2.109)

(3) Now, it follows from Eqs.(5.2.108} and (5.2.109) that either Z(w,y') = 2(w,y?) or

2 (w, 4} < 20(2?) for any w. Hence, since z{(w,y') < # (w,y?) by Lemma 5.2.4(b), we get
2w, yt) # 2 (0 y?) = 2w, y') < Zlwy?) < (@) (5.2.110)
(4) Here, suppose z(x') = 2{(x?). Then, if z[(w,y") = 2 (w,y?), we immediately get
max{z} (w,y1), 7 (z")} = max{z(w,y?), 2 (z)}. (5.2.111)
Even if 2¢(2!) # 22(x?), from Eq.(5.2.110) we get
masx{z{(w,y"), 7 (8)} = #(@1) = 2(a?) = max{zf(w, 1), 5(22)}.
Hence, Eq.(5.2.111) holds true for any w. Thereby, due to Eq.(5.2.32) we obtain

(el = 22(2?) = nla')= ve(x?). (5.2.112)

(5) Conversely, suppose z(z') < z¢(2?). Then, foranyw ¢ W, (2?) it follows from Eq. (5.2.29)
and Lemma 5.2.4(b) that z(w,y') < z/(w, %) < z{(2?), from which

max{ (w,y"), (")} < #(a*) = max{z}(w, y*), #(=")}.
Thereby, since Wy(@?)° # ¢ by Lemma 5.2.6(c), we arrive at
22y < f(2?) = v(x!) < vlx?). (5.2.113)

(6) Thereupon, the assertion proves to be true from Fgs.(5.2.112) and (5.2.113). B

Lemma 5.2.9 Given anyi < k, ; € B¥1 andt >0,

z: ¢ Xi(z;) => wle)= vd2l). (5.2.114)

Proor. Consider the following three cases: (a)i =k, (b) >, and (c)i <k and & < 6.
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(a) ¥ i = k, then 2 = zf by Eq.(5.2.91), thus we get the assertion for any XKy

(b) Choose an @ € R* so that & > 8. Il & = &f, then v,(z) = S(2) = $(&8) = v(axf) by
Lemma 5.2.7(a), or else 3 > &8 by Eq. (5.2.94), thus v(e) > v(xf) due to Lemma 5.2.7(b).

From above, v;(z) = v;(2f) if and only if & = &R, thus Xi(w;) = {2; | & = #f1}. Hence, if
z; & Xi(#;), by Eq.(5.2.94) we have & > iR sod = &L > 8, thus vy () = S(&) = S(&l) = w(=f)
due to Lemma 5.2.7(a). The proof for {b) has been completed.

(c) Below, suppose ¢ < k, and let = € R* be such that # < 8. The proof for the case is made
by induction on ¢ as follows:

(c-1) If & = &F, then wvo(®) = S(&) = S(28) = v(2zF) by Eq.(5.2.20).

Suppose & > :riR. If @ > &, then a > & > &f, thus wo(z) = S(&) = SEf = vg(m?) (= 1)
by Lemma 3.2.1(a), or else & > max{a,2]'}, thus wix) = §(d) > S(Ef) = wvo(xf) due to
Lemma 3.2.1(c).

From above, Xi(z;) = {z; | #= 2% or a> 3} Hei ¢ Xi(@;), then & > &F, thus & = &F,
from which w(@) = vo(zF). Consequently, the assertion holds true for ¢ = 0.

{c-2) Assume the assertion holds true for ¢ — 1, that is,
i Xi (@) = {oi | oma(@) = v (@)} = veal@) = woa(@)), (5.2.115)
which is the premise of Lemma 5.2.8.
(c-2-1) To begin with, we shall show
Xi(m;) = {o: |0F(y) <z or m € X 0,y,)), i<k (5.2.116)

Since & < 6 is assumed here, we have § < 8, §F < 8 and #ft < 6. Hence, due to Eq.(5.2.10) and
Theorem 5.2.2(b} we have

z(x) = max{ %, 9?(1’) } = max{ @, Hf(y) } = max{ z, Bé‘(y) }, (5.2117)
2xF) = max{ &F, 08 (yF) } = max{ gk, 0, Oyl }= 0 (y1), (5.2.118)

#(@f) = max{ &f, 9’“(%5) b= max{ §F, zz, 6i(yF) } = max{ oy, 8£(yl) ). (5:2.119)

(i) First, suppose 8f(y) < zf or z; € X0,y I 8% (y) < a4, since 85yl < 0f(y) from
Theorem 5.2.2(d), it follows from Eqs. (5.2.117) and (5.2.119) that

() = 2(xF) = 2. (5.2.120)

If z; € X'T10,;), then v_1(0,y) = v1(0, vy by Eq.(5.2.102), thus 0k (y) = 0 (yl) due to
Theorem 5.2.2(b). Hence, by Egs. (5.2.117) and (5.2.119) we get

29(2) = max{es, 05(y)} = max{zy, 65 (W)} = =X(al). (5.2.121)
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Therefore, due to Egs. (5.2.120) and (5.2.121) we obtain

Bi(y) <o or 2 € XFH0,p) =2 2(e) = z(=h). (5.2.122)

(i1} Conversely, suppose zj, < €f"(y) and z; ¢ Xffll((),yi). Ha & ngjll(O,yt'L then v..1(0.y) >
ve1(0,37) from Eq.(5.2.102), thus 8F(y) > 65(yF) by Theorem 52.2(b). Therefore, from
Eqs.(5.2.117) and (5.2.119) we have

6 (y)

> max{e, 05y}

o < 8%(y) and 2 & XHN0,y,) == (=)

= 22(aM). (5.2.123)
(iii) Now, it follows from Eqgs.(5.2.122), (5.2.123), and Lemma 5.2.8(c} that
6ily) <o or meX(0y) = (@) =@
= ylz) = u(zl), (5.2.124)
which guarantees Eq. (5.2.116) to be true.

{c-2-2) Finally, we shall show Eq. (5.2.114). If z; ¢ Xi+N0,y;), then v_y(0,¥) = ve1(0,yF)
by Eq.(5.2.101), thus 6¥(y) = 8F(yF) by Theorem 5.2.2(b). Hence, by using Egs. (5.2.116),
(5.2.117), (5.2.118), and Lemma 5.2.8(c), we arrive at

i f Xi(my) e # <0{y) and wi¢ XF0,y))
== 2(e)=8(y)= 0i(y]) = zi(=})

= u(2) = v(e}). (5.2.125)

Since the proof for the case (c) is completed, we have confirmed the assertion. B

Theorem 5.2.3 Fort>10:
(a) If &! < w2, then W(2') D Wiz}
(b) If t < k and w < max{z; | i < k —1}, then w & W(x).

Proor.
(a) We shall let 2! € R* and z? € R* be such that &' < @*, and show that w € W, (z?) also
belongs to Wy(a!). In the case of # = 0 we have Z8(a?) = & and zj(w,y") = wfori =1and 2

by definition. From this and ! < 2?, thus &' < &%, we obtain
Wolz!) = {w| 2! < w} 2 {w] #* <w}= Wy(=?)

Suppose ¢ > 0 and choose a w so that w € Wi(22) and w < Ag(y?). Then, by Eq.(5.2.29} and
Corollary 5.2.2(b1) we get

—s+ fre_1(0,y%) < zt"(aez) < z;(w,’y?) = —r{w)— s+ fv, 1 (v, ¥,
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from which
(0 <) r(w) < Bvs(w,9%) = v (0, 9%)),

implying v_1(w,¥?) > ©-1(0,y%). Hence, from Lemmas 5.2.9 and 5.2.8(a) we know w ¢&
XL [ (y?), thus v1{w,y?) = v_1(w,0), from which ve_y(w,y?) = n—1(w,y') due to y* > y?
and Lemma 5.2.5(a). Therefore, from Fq. (5.2.28) we get
we Wiz?) and w< Me?) = vw_i(w,¥?) =via(w,y")
=z (w,y*) = 2 (w,y"). (5.2.126)

If w is such that A (y?2) < w, then Afy!) < w since Ai(y!) < Xi(¥*) from Theorem 5.2.2(d).
Hence, due to Corollary 5.2.2(b2,b3) we obtain

My <w = Z(w,¥?) =z (v,y") (= v). (5.2.127)

Note that 22(x?) € 2f(w,y') for any w € Wy(') with ¢ = 1 and 2 from Eq.(5.2.29). Then,
due to Lemma 5.2.4(a) and Eqgs.(5.2.126) and (5.2.127) we get

we Wi(e?) == 2(z') < 2{?) < (w,9") = 4 (v,9") == weWieh),

which completes the proof of the assertion.
(b) If £ == 0, then max{a; | i <k — 0} = & and Wy(z) ={w|  <w} by Eq.{5.229). Hence,
if w < max{z; | 1 <k — 0} = &, then w¢ Wy(z). So, the assertion holds for ¢ = 0.
Suppose 0 < ¢ < k and w < max{z; | i < k — ¢}, thus w < %, and let p* = (w,y) and
p* = (0,y). Then, p} = w, p? =0, and p} = 2;_y = p? for 2 <k < k. Hence, we obtain
max{p! |i <k —t+ 1} = max{w,z1, +,Tp_t}
= max{zy, ", Tp_¢)
= ma,x{(), Tyytery m1"c—t}
= max{p? |i <k —t+ 1}
and p! = ;-1 = p? for k — t 4+ 1 < ¢. Therefore, p! and p? satisfy Eqs. (5.2.54) and (5.2.55)
with ¢ — 1, thus »,_;(w, y) = v,_;(0,y) from Lemma 5.2.5(c). Thereby, we conclude 2{(w,y) <
max{#, ~r(w) — s + Bue1(0,9)} < #(z), that is, w ¢ Wy(z). 1

Lemma 5.2.10

() If § < A(0), then A(y) = A(0), and if A(0) < §, then My) & Wilx).
(b) If w € Wi(a), then either w < A(0) or M{y) < w.

Proor.

(a) If § < A4(0), it follows from Lemma5.2.5(b) with n = 1 that v:_1(A,(0),¥) = -1(2¢(0),0).
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Hence, due to Eqgs. (5.2.62) and (5.2.64) we get

ft()\t(o)l’y)

It

—7(A(0)) ~ 5 + Bria (A 0), 1) — 4 (0)
—T(/\t(())) -84+ ﬁUg_l(At(O),O) - At((})
= f(\(0)]0) = 0. (5.2.128)

Therefore, if § < A:{0), then X¢(y), the unique root of fi{wly)} = 0, must be equal to A,{0).

The latter part is proven by contraposition. Suppose A¢(y) € Wi(a). Then,

§ <& < 2(®) < H(Mly)y) = Ady) (5.2.129)

from Eqs.(3.2.27), (5.2.29), and Corollary 5.2.2(b2). If § < Ai(y), then A(y) = M(0) because
we obtain fi(A:(y)|y) = fe(M(w)|0) = 0 in the same way as in Eq.(5.2.128). We have thus
checked that if A{(y) € Wi(z), then § < A:(y) = A:(0). Hence, the latter part proves true.

(b) Since any w satisfies either w < Ay{0) or 4(0) < w, the assertion holds for § < Ay(0) from
the former part of assertion (a).

The proof for A,(0) < § is by contradiction. Choose an 2? with A,(0) < #* and suppose
that a certain w € Wy(2?) satisfies 4,(0) < w < A(y%). Then, since A(y) is continuous and
nondecreasing in y from Theorem 5.2.2(d), there is an z' such that 0 < ! <z?andw = Aly')

according to the intermediate value theorem. Hence, it follows that
2(0) < w = M(y?) < M(w?). (5.2.130)
From A¢(0) < A(y!) in Eq.(5.2.130) and the contraposition of the former part of (a) we get
M(0) < . Due to this and the latter part of (a) we obtain (w =) M(y') ¢ Wy(zl).
To sum up the above, if there is a w € Wi (@?) such that A(0) < w < A(y®), then w ¢ Wi(x!)

for a certain @! with 2! < 22. However, this is a contradiction because w € Wi(2') must hold
for any ' with #! < 2? according to Theorem 5.2.3(a}). Therefore, no w € Wiz) satisfies

A(0) < w < A(y), that is, any w € Wy(z) satisfies either w < Ay(0) or A(y) <w.
Corollary 5.2.4 For anyw € Wy(x) we have w < Mly) if and only if w < A4(0).

Proor. Any w € Wy(a) such that w < Aly) satisfies w < A(0) since it is impossible for
w € Wi(z) to satisfy A(0) < w < Ae(y) according to Lemma 5.2.10(b).

Any w € W(a) such that M(y) < w satisfies A\(0) < w because Ai(0) < A¢(y) by Theo-
rem 5.2.2(d). I

Theorem 5.2.4 If r(w) is concave, W(x) is a connected set for any .

Proor. In the same way as in the proof of Theorem 4.2.6 (p.29), we can show that if 7{w) is

concave, Wy(z) is connected for each z; under given any ®; € RF1. N
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5.2.4 Infinite Planning Horizon

Theorem 5.2.5
(a) T(w) < ulw,2) < wf{w, ) for anyw and & € R*.

(b) ue(w, =) converges to u(w,z) = max{w, &,0} ast — oc.

Proor. See Lemma 4.2.9 (p.31) and Theorem 4.2.8 (p.32), respectively. H
This theorem yields the optimal decision rule for an infinite plananing horizon:

¢ Optimal Decision Rule: In the case of an infinite planning horizon, if § < max{w,i},
accept the more lucrative between the current offer w and the leading offer £, or else continue

the search.

5.3 Numerical Example

In the case of & = 2, all offers to be considered for each time are reserved offers z1 (= y),
zg (= z1), and current offer w. Hence, in this case, the optimal decision rule can be schematized
in 3-dimensional diagrams like Figure 5.3.1, which illustrates the optimal decision rule for t =1
with provision that F(w) is the uniform distribution on {1,2] (,so ¢ =1 and b = 2), 3 = 0.95,
s = 0.005, and r(w) = 0.002w.

Figure 5.3.2(a) is the cross section of Figure 5.3.1 with o = 1.3, and (b) is the one with z; =
1.4. The thick curved lines in (a) and (b) represent {(z1,za, w) | 2{(21,22) = 2[(w,x1), 22 =
1.3} and {(21,x9,w) | 2§(z1,22) = 2i(w,z1), #1 = 1.4}, respectively. Hence the areas on the
left sides of the thick curved lines shows Wi(z1,1.3) and W1(1.4,22), respectively. Either of the
diagrams indicates that if we have the reserved offer vector (zy,z3) = (1.4,1.3) at t = 1, the
best choice for a current offer w is:

If 1.570 < w < 2.000, AS (accept the current offer w and stop the search).
If 1.410 < w < 1.570, RC (reserve the current offer w and continue the search).
If 1.000 < w < 1.410, PC (pass up the current offer w and continue the search).
Figure 5.3.3 shows the optimal decision rules for { =1 to 4.
Next, we shall show two cases of the search process.
Case 1: Table 5.1 shows a result calculated on the condition that F{w) is a discrete uniform

distribution function with
Pr{w = 0.25} = Pr{w = 0.50} = Pr{w = 0.75} = Pr{w = 1.00} = 0.25, (5.3.1)

and that s = 0.1, § = 0.9, r(w) = 0.00lw, and ¥ = 2 (,ory = 2, and ¥4 = #2). Since
w € {0.25,0.50,0.75,1.00} for each time due to Eq.(5.3.1), it follows that 8}(z2), #}(2,), and



Chapter 5 Optimal Stopping Problem with Finite-Period Reservation 63

AS
[al]
o
PS @ o PS
L 1 -
d A RC
PC =g =
2 7'876‘; * )
F e 1.8
x; e 2 14 0
7 %2

Figure 5.3.1: Optimal Decision Rule for t = 1 with k = 2
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(a) Cross section with 2 = 1.3 (b) Cross section with x; = 1.4

Figure 5.3.2: Cross sections of Figure 5.3.1

A¢(z1) can be substituted, respectively, by
61 (z) = max{z; | #; <0} (z3), 71 € {0.25,0.50,0.75,1.00}},
87(z1) = max{zy | a2 < #%(z1), 2 € {0.25,0.50,0.75,1.00}},
M(z1) = max{w | w < M(z1), w € {0.25,0.50,0.75, 1.00}}.

The way to see Table 5.1 is as follows: Suppose that we are at £ = 3 with no reserved offers,
or (z1,z2) = (0.00,0.00), and find an offer w = 0.50. Then, since 0.50 € W3(0.00,0.00) and
0.50 < A3(0.00), the offer w = 0.50 should be reserved due to the optimal decision rule (a2)
on p.51. Hence, # = (0.50,0.00) at ¢t = 2. If w = 0.25 ¢ W5(0.50,0.00) appears at £ = 2, it
should be passed up, and since z, = 030 < 61(0.00) and 3 = 0.00 < 2(0.50), the search
should be continued from (b2) of the rule. Therefore, we reach ¢ = I with = (0.00, 0.50). If
w = (125 ¢ W1(0.00,0.50) appears, it should be passed up, and since z; = 0.00 < 61(0.50)" but
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Figure 5.3.3: Optimal Decision Rule fort =1,2,3,4 with £ =2

zy = 0.50 > 62(0.00Y, the search should be stopped by accepting the leading offer x; = 0.50 by
virtue of (b1) of the rule.

From the above, we find that the leading offer can be accepted at neither the starting time

nor the deadline. Note that such a thing does not happen at all in the mode} with finite-period
reservation (Property C on p.35).

Table 5.1: Case 1 of the search process

(g1 @2 ) 6 0 z) Wiy, z2) Mz1)  w  Decision
(0.00,0.00) 0.50 0.50 {0.50,0.75,1.00} 050 050 RC (Reserve w = 0.50)
(0.50,0.00) 0.50 0.50 {0.50,0.75,1.00} 050 025 PC

(0.00,0.50) 0.50 0.25 {0.50,0.75,1.00} 0.0 025 PS (Accept z2 =0.50)

S R IO

Case 2: The condition for Table 5.2 is the same as that used for Figure 5.3.1, From Table 5.2
we shall confirm that, at ¢ = 3, the offer w = 1.54, which is inferior to the available reserved

offer #; = 1.55, is reserved. This is different from Property D of Model 1 on p.36.
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Table 5.2: Case 2 of the search process

(z1 ,z2 ) g 02(x1) Wim1,2) Af0)  w  Decision

(0.00,0.00) 1.580 1569 1545 <w 1575 155 RC (Reserve w = 1.55)
)
)

(155,0.00) 1.580 1566 1535<w 157 154 RC (Reservew = 154)
(154 ,1.55) 1580 1560 1515 <w 1575 150 PC
(0.00,1.54) 1580 1422 1510<w 15710 150 PS_(Acceptzs = 154)

- D D ] e

5.4 Properties of the Optimal Decision Rule

A.

If a < a, then the continuation of the search is not optimal at all.

This is a restatement of the optimal decision rule on p.45, which is exactly the same as
Property A of Model 1 on p.35.

The following properties are obtained for the case of a < o

For each time t with any z, an offer w € Wi(x) must be reserved if and only ffw < A(0).
The result is immediate from Corollary 5.2.4 and the optimal decision rule (a2) on p.51.
Note that, whatever @ we have, if w € Wi(x), we only have to compare it with A¢(0)} in
order to decide whether or not to reserve it.

If the reserved offer vector @ is such that § < &, then accept the more lucrative between the
leading offer & and the current offer w.

This is already stated in the optimal decision rule on p.55. Hence, if an offer vector & with
8 < % is given before entering the search, we should immediately stop the search by accepting
the leading offer or the offer found from the first search.

An offer reserved during the search process must not be accepted prior to its maturity of

reservation, however, it may be accepted on the malurity even before the deadline.
From the assumption 0 < ¢ < & and Lemma 3.2.3(b) on p.12 wehave 0 < a <« < 8, thus
0 < 8, yielding A:(0) < & for every t by Theorem 5.2.2(c). Consequently, from Property B,
all offers to be reserved throughout the search process have less value than 6. Hence, if the
search starts with the reserved offer vector z such that & < @, the inequality holds forever,
or z; < § for all i for every t. So, § < fand §; < 8 forall ¢ < k and for all ¢. In this
case, 8i(z;) = 8 for i < k by Theorem 5.2.2(a), thus gi(x;) < z; never happens for © < k.
However, 85 (y) < 2, is possible (see Tables 5.1 and 5.2 in Section 5.3).

The ahove facts suggest that no reserved offer z; must be accepted if it remains available
at the next time, or ¢ < k, and that only the offer zs, which is at maturity, has a chance to
be accepted. This can be interpreted as follows: Since any offer once reserved is assumed
1ot to deteriorate in its value over the search process, it seems a waste to accept an offer
while its effective periods still remain.

This is one of points different from Property C of Model 1 (p.35) which dissuades us from

accepting any reserved offer prior to the deadline. In Model 1, however, since the length of
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the effective periods is assumed to be infinite, any reserved offer available at time ¢ remains
available at the next time ¢ — 1, so no offer reaches the maturity. For the reason, Property C
of Model 1 does not contradict Property D of this model.

What is to be emphasized here is that, although offers are reserved only to prevent the risk
at the deadline in the model with infinite-period reservation, in the model with finite-period
reservation we reserve offers so as not only to prevent that risk but also to facilitate stopping
the search when we see no reason to pursue it further.

E. If the reserved offer vector is better, the range of offers fo be passed up should be wider.
This is clear from Theorem 5.2.3(a).

F. Although every offer should be passed up if it is inferior to any of the reserved offers which
will be still available at the deadline, it may prove wise to reserve even an offer inferior to
some of the reserved offers which will expire prior to the deadline.

Theorem 5.2.3(b) indicates the result. In fact, we have a case that, with a reserved offer 2,
an offer w is to be reserved despite w < 23

In Model 1 an offer to be reserved must be superior to the leading offer at each time due
to Property D. This fact is different from Property F in the model but can be taken as
consistent with it from the viewpoint that each reserved offer is assumed to be available at
the deadline in Model 1.

We should notice that, although it seems better torecall and accept a reserved offer z; than
to reserve an offer w with w < z;, it can be optimal to Teserve such an offer w. Undoubtedly
such an offer w will not be recalled and accepted while the offer «; is available, but it is to be
reserved as further insurance against any unfortunate situation awaiting after the expiration
of the offer x;.

G. If r(w) is concave, the indifferent point between reserving an offer and passing up an offer
is determined at one critical point.

This is immediately derived from Theorem 5.2.4, which is exactly the same as Property F
of Model 1 on p.36.

H. If the planning horizon is infinite, we should continue the search with reserving no offers
until an offer exceeding 8 is found.

This is a Testatement of the optimal decision rule on p.62, which is exactly the same as

Property G of Model 1 on p.36.
From all the stated above, the optimal decision rule can be summarized as follows:

& Optimal Decision Rule:  Suppose that you are at time ¢ with the reserved offer vector
z and have just drawn an offer w. Let 2° € R* and 3% be the initial offer vector and the initial
leading offer, respectively, thus 2 = a® and & = #0 if time 1 is the start point of the search

process. Then, the choices are:

(a) f a« < aor 8 < 29, then:
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1. AS if the offer w found at the start is such that 3® < w (accept it and stop the search).
2. PS otherwise (accept the initial leading offer £° and stop the search).
(b) He < o and 3% < 6, then:
1. If ¢t = 0 {deadline}, then:
1 ASif & < w (accept the current offer w and stop the search).
ii PS otherwise (accept the leading offer # and stop the search).
2. Ift > 1, then:
i A8 if w € Wi(z) and A(0) < w (accept the current offer w and stop the search).
it RC if w € Wy(z) and w < A:(0) (1eserve the current offer w and continue the
search).
iii PS if w ¢ Wi(z) and 8f(y) < 2% = & (pass up the current offer w and stop the
search by accepting the leading offer zx).
iv PC if w ¢ Wi(z) and z; < 0F(y) (pass up the current offer w and continne the
search).
3. If ¢t = oo (infinite planning horizon), then:
i ASif @ < w (accept the current offer w and stop the search).

ii PC otherwise (pass up the current offer w and continue the search).



Chapter 6

Model 3:
Remaining Time Value

This chapter is devoted to the discrete-time optimal stopping problem where any of offers
appearing subsequently can be reserved by paying the reserving cost and any reserved offer
is allowed to be recalled and accepted at any time in the future. Furthermore, at the time
of acceptance we can receive not only the value of the accepted offer but also the rernaining
time value, which increases as the number of the remaining periods increases. Two types of
the remaining time value are considered: convex type and S-additive type. A major finding
is that no reserved offer should be recalled and accepted prior to the deadline of the search
process.

6.1 Model

Suppose that a person periodically searches for offers with the intention to accept one of them
over the ¢ periods from time ¢ to the deadline ¢t = 0 where the value of an offer w belongs to
la, 8] and follows a known offer value distribution function F(w) with the mean . The search
cost s > 0 is incurred to find an offer, and if the reserving cost r(w} > 0is paid, any offer w can
be reserved eternally as well as accepted or passed up. Iis objective is to maximize the total
expected present discounted net profit.

After stopping the search, he is assumed to use the exira time to get some money by engaging
in another economic activity instead of the search activity: More precisely, by stopping the
search at time ¢, he gains the remaining time value d;, that will be obtained over the remaining
t periods up to the deadline? = 0. The idea of the remaining time valueis presented in Sato [51].

Let us postulate that d; is nonnegative and strictly increasing in £, that is,
0<dp<dy <da<---<deg < -, (61.1)

Furthermore, d; is supposed to be either convex or concave in ¢ where, in the thesis, “d;is convex

(concave) in ¢” means that d; — d,_; is nondecreasing {nonincreasing) in £. In the case where d,

638
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(a) d; is convex in t. (b) d¢ is B-additive in ¢
Figure 6.1.1: Two types of d;.
is convex in ¢, that is,
(0 <) dl - dﬂ S d2 - d}_ S e S dt —_— dt—l S A (6.1.2)

(see Figure 6.1.1(a)), it indicates the case where the remaining time value tises steeply as the
remaining period becomes longer, and it is possible to find distinctive properties of the optimal
decision rule. The case where d, is concave in f, however, is yet to be investigated. For this
reason, as a special case of a concave remaining time value, we shall treat d; such that do > 0
and

di=do+(B+8°+ - +8% >0, o>0, t21, (6.1.3)

which represents the case where ¢ > 0 can be received per period throughout the ¢ periods
remaining up to the deadline (see Figure 6.1.1(b}). For expressional simplicity, let “d; is J-
additive in t” mean that d; is expressed as in Eq.(6.1.3).

6.2 Analysis

Without loss of generality, we can consider the value of an offer to be in (—oc,b]. So, for
expressional simplicity, let “for any w” and “for any z” mean “for any w with w < ¢" and “for

any x with < b,” respectively.

6.2.1 Optimal Equation

Since each reserved offer is assumed to be available at any time in the future, we can ignore all
reserved offers except for the leading offer.

Let u,(w,z) denote the maximum total expected present discounted net profit attainable by

starting the search for offers from time ¢ with the current offer w and the leading offer z, and
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let v;(z) denote the expectation of w(w,2) with respect to w, that is,

b
wlz) = L ws(w,e)dF(w), t20.

(6.2.1)

If we stop the search at time t by accepting either the current offer or the leading offer, we can

receive not only the value of the offer accepted but also the remaining time value d;. On these

grounds, u,(w, z) can be expressed as follows:

o ) = max AS : w+dp,
o\w, &) = PS - »

2+ dy
A5 o w+dy,
ug(w,z) = max S zid,
PC i -s+ fuafa)

Due to (6.2.2), Egs.(6.2.1), and (3.1.1), we get

vo(z) = fabu(}(w,x)df’(w)z ]:(max{w,,x}-i-dg)d}?‘(w)=.S'(a:)+d0.

Lemma 6.2.1
(a) w(w,z) is:
1. continuous in w and z,
2. nondecreasing in r,
3. convex in z,
4. nondecregsing in i.
(b) ve(z) 4s:
1. continuous in x,
2. nondecreasing in x,
3. convex in z,
4

. nondecreasing in t.

RC wr(w) -5+ ,B'Ut—l(max{w': 33}):

(6.2.2)

(6.2.3)

(6.2.4)

Proor. By noting that d; is independent of = and w, and that d; is strictly increasing in ¢, we

can prove all the assertions in almost the same way as in the proofs of Lemma 4.2.1 (p.15) and

Corollary 4.2.1 (p.17). 1

Lemma 6.2.2 Fort > 0:

(a) z + dy < ve(z) for < b.

(b) 'Ut(b) =b+ d;.

() p+de <ve(z) < b+ d; forany .
)

{(d) Bvy(z) — x is strictly decreasing in z.
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PrROOF.
(a) Given any @ < b, choose an z! so that @ < z' < b, and let 2* = max{a,z'}. Then
a< 2% < b, and thus 1 — F(?) > 0. Further, w— @ > 2! —z >0 forw> z? (> «'). Hence, it

follows from Eqs. (6.2.2) and {6.2.3) that

v(e) ~ @ — dy = /xz (ut(w,a;) —p— dt)dF(w) + /xz (ut(w,m)w z - dt)dF(w)

v

v

b

0+f2(9,-1 ~2)dF(w) = (@ -2)(1-FE?) > 0,
ar

from which we conclude 2 +dy < v(z) forz < b.

(b-d) Each of the assertions can be proven by applying almost the same way as in the proof

of Lemma 4.2.2(b-d) on p.17, respectively. W

Lemina 6.2.3 For any w, x, andt > 1,

w + dt, w + dia

—r(w) = s + fvpoy(max{w,z}), | r(w) — s+ Bua(w),
max = max

&+ dy, L@+ dy,

~5 + v (2) -5+ Buea(x)

Proor. Easy by using almost the same fashion as in the proof of Lemma 4.2.3 (p.18). R

Lemma 6.2.3 enables us to rewrite u¢(w,z), defined by Eq.{6.2.3), as follows:

AS : w +dy,
B RC : —r(w)— s+ fveq(w),
w{w,z) = max PS ¢ 14 d, , t> L (6.2.5)
PC : —s4 foiq(2)
6.2.2 Optimal Decision Rule
6.2.2.1 Common Discussion
Let us define the two functions 2{(z) and z{ (w) as follows:
z(z) = max{z + di, —5 + fop_y(2)}, t> 1, (6.2.6)
zi(w) = max{w + di, —r(w)— 5+ o,y (w)}, 1> 1, (6.2.7)

z3(z) = z, and z{(w) = w. Furthermore, we define the following set:

Wi(s) = {w |25 (2) < Z{(w)}, >0, (6.28)
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The meanings of 2{(z), 2] (w), and W(z) are exactly the same as those stated in p.19. Then,

ue(w,2) = max{#{(w), #(2)} (629)
| E(w) i we Wi(z),
Bl { 28(z) if wg Wyz), 20 (6:2.10)
from which
b
w(z) = / max{z] (w), 2(z)}dF(w) (6.2.11)
= o, FE) + /Wt(w)c H)dF(w), >0, (6.2.12)

Lemma 6.2.4 If a+ fdy < o+ dy, then w(w,z) = max{w,z} + d; forany w> a, 2 >0, and
t>0.

Proor. Suppose a + fdy <a+ dy,0r @ ~a < dy — SBdp.
If d; is convex in ¢, from Eq.(6.1.2) we have 3(ds — Bdi—1) < d¢ — ds_y < di+1 — d¢ for any
t> 1, thus
dy — fds_1 <dpyy — Bde, > 1L (6.2.13)

If d; is f-additive in ¢, from Eq. (6.1.3) we get
di— Bdi_1 = Bo = dpyy — Bd;, t> 1. (6.2.14)
Due to Eqs.(6.2.13) and (6.2.14), in either type of d; we get
a—ald ~fdy <dy—fd; <. (6.2.15)

By noting Eq.(6.2.15) and applying almost the same fashion as in the proof of Lemma 4.2.1

(p.20), we can prove the assertion. N
Due to the above lemma, we get the following optimal decision rule:

¢ Optimal Decision Rule: In the case where a+ fdy < a+dy, if w > x, accept the current

offer w and stop the search, or else accept the leading offer z and stop the search.

It should be noted that, in the case where d; is convex in ¢, even if a+fd;—y < a+ d;s holds at
a certain ¢ > 1, we may have a + fdp > a + d;. In the case where d, is S-additive in t, however,

f e+ 8d;_y < a+ dg holds at a certain t > 1, we get a + 8dg < a -+ dy.

Lemma 6.2.5

(2) 2{(z) is continuous, nondecreasing, and convez in =, and nondecreasing in t.
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{b) z[(w) is continuous in w, and nondecreasing in .

(c) Wi(x) is a closed set such thatb e Wiz) for any z and ¢t > 0.

Proor. Assertions (a) and (b) can be easily confirmed due to Eqgs.(6.26), (6.2.7), and
Lemma 6.2.1(h). Assertion (c} can be proven by using almost the method as in the proof

of Lemma 4.2.5(e) on p.21. 1

Here, let us define the two functions gi(z) and fi(w) with ¢ > 1 as follows:
gi{e) = —s+ fviq{z) —z - dy, t>1, {6.2.16)

flw) = —r(w) = s+ Bug(w) —w—dy, t2>1 (6.2.17)

Corollary 6.2.1 Fort>1:

() gi(z) is continuous and strictly decreasing in «.

(b) fi(w) is continuous and strictly decreasing in w.

Proor. By noting that r(w) is continuous and nondecreasing in w, and using Eqs. (6.2.16),
(6.2.17), Lemmas 6.2.1(b1), and 6.2.2(d), we will get both assertions. B

Now, we define #; and A; with ¢ > 1 as the respective roots of g;(«) =0 and f,(w) =0, if they
exist, that is,

Qt(gt) = —s+ ﬁvt_]_(gt) — 0; - dt = 0, tZ 1, (6218)

ft()\t) = —T(/\t) - 8+ ﬁvt—l()\t) - A —-d; = 0, i> 1. (6219)

Obviously, #; is a point of indifference between PS and PC, and ), is that between AS and RC.

Lemma 6.2.6 Fort>1:

(a) 0; exists uniquely with o — (dy — Bdi—1) < 8 < b —(dr — Bds_y).
(b) A¢ exists uniquely with o — r(b) — (dy — Bdy—1) < A < b:.

Proor. Lemma 6.2.2(c) implies g — dy + Bdi—1) 2 0> ¢e(b~ di + Bdy—1). From this and

Corollary 6.2.1(a) we get (a). Assertion (b) can be proven in a like manner. §

Corollary 6.2.2

(a) Fort>1:
L Ifz <8, thenx+d, < —s+ Bov_q(2).
2. Ifz =0, thenz+ d = —s+ fov,_1(2).
3 Ifz>6, thenz+ d > —s+ Buv,_1(z).
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(b) Fort > 1:
L Ifw< )y, then w+ dy < —r(w)— s+ Bo.1(w).
2 Fw= ), thenw + de= —r{w) = s+ fv,(w).
3. Ifw> X, then w+dy> —r(w) — s+ Bo_1(w).

ProoF. Both assertions are evident from Corollary 6.2.1 and Lemma 6.2.6. 1

It follows from Eq.(6.2.10) and Corollary 6.2.2 that, fort > 1,

( w4 dy if we Wi(z) and Ay < w,
zi(w) =
() —r(w)~ s+ fv—r(w) if we Wi(z) and w < A,
e (w,z) = (6.2.20)
() &+ d; if w¢ We(z) and 0, < z,
zX{x) =
‘ —s + Bv_1() if w¢ Wy(z) and o < .
Here, define §y = Mg = —co for convenience, Then, in general, due to Eq.(6.2.20} we can

prescribe the optimal decision rule as follows:

$ Optimal Decision Rule:  Suppose that you are at time ¢ with the leading offer z and
have just drawn an offer w. Then, the choices are:
(a) If w € Wy(z), then:
1. If A\; < w, then AS (accept the current offer w and stop the search).
2. If w < A, then RC (reserve the current offer w and continue the search).
(b) If w ¢ Wy(z), then:
1. If 8; < z, then PS (pass up the current offer w and stop the search by accepting the
leading offer z).

2. If # < 6, then PC (pass up the current offer w and continue the search).

Lemma 6.2.7 Fort > 1 we have

7-( ) < B+ d; if w< b,
Z
Y 2 wtd o B<w

Proor. See the proof of Lemma 4.2.6 (p.24). §

Theorem 6.2.1 Fort >

(a) For any z, if w € Wy(z), then z < w.
(b) If 2* < 2*, then Wy(z!) D> Wy(2?).

Proor. See the proof of Theorem 4.2.3 (p.26). ®

Theorem 6.2.2 If r(w} is concave, Wi(z) is a connected set for any x and t > 0.
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ProoF. Given any z and ¢ > 0, it follows from the contraposition of Theorem 6.2.1{a) that
if w< 2, then w ¢ Wy(z). By using such a w instead of a in the the proof of Theorem 4.2.6
(p.29), we can get the assertion. N

Theorem 6.2.3 Let & < z. Then:
(2) Wi(z) = max{w | z < w}.

(b) ue(w,z) = max{w, 2} + d;.

(c) ve(z) = §(2) + 4.

PRrOOF. See the proof of Theorem 4.2.4 {p.26), replacing  with ¢;. 1
Theorem 6.2.3(b) indicates the optimal decision rule for the case #; < z as follows:

{ Optimal Decision Rule: In the case where 6; < z,if w > &, accept the current offer w

and stop the search, or else accept the leading offer z and stop the search.

Lemma 6.2.8 v(z) ~ u_1(2) is nonincreasing in z < 8; for anyt > 1.
ProoFr. See the proof of Lemma 4.2.8(a) on p.27, replacing & with ;. R

Lemma 6.2.9

(a) Fort > 1 we have
0: > [=] b1 &= ﬁ(vt(et) - ’Ut—l(‘?t)) < [=] dya—-d;
= B(wl0e1) = veea(Be)) < [=] doga — do-
(b) Fort > 1 we obtain
A > [F] A == ﬁ(?)t()\t) —’Ut~1(/\t)) < [=] dig1—d;
= B(wher1) — vemieg1)) < (=] depn — e
Proor. In the case of & > @iy, two functions g¢(z) and gi1(2z) can be depicted as in
Figure 6.2.1 from Corollary 6.2.1(a). The figure shows
gr1(8:) < 0 &= 6> 8, <= 6:(8i01) > 0. (6.2.21)
Since ¢¢(8:) = ge+1(0441) = 0 from Eq.(6.2.18), we obtain
ge+1(0¢) = ge1(0e) — ge(64)
= —s+ Buy(0:) ~ 0 ~ depy + s+ Poe1 (8) + 6, + d;
B(0(0) = vir(80)) — dig + do (6.2.22)

It
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9t+1 |

Figure 6.2.1: g:(z) and gi41() in the case of #; > 841

and

g¢(0s1) — 9t+1(9t+1)

i

gt(f41)
= =5+ Bvs1(0rg1) — b1 — de + 5 + Boe( i1 ) + Orp1 + digy
ﬂ(vt—1(9t+l) - Ut(9t+1)) + dip1 — dr. (6.2.23)

Therefore, it follows from Eqs.(6.2.22), (6.2.23), and Corollary 6.2.1(a) that

g1(B) < 0 = B(u(8) - veer(8)) < dep1 — dy (6.2.24)

and
G(041) >0 = 5(’0t(9t+1) = 031 (f41 )) < dyyp1 —dy. (6.2.25)

From Egs. (6.2.21), (6.2.24), and (6.2.25), we have confirmed the assertion as for inequalities.

The assertion as for equalities can be proven similarly.

(b} Similarly to the proof of (a), we can prove the assertion. |1

Lemma 6.2.10 Let X, with t > 1 denote the following set :
Xe={z | Wi(z) 2 Wir1(2), 2 <8}, t>1. (6.2.26)

Then :

(a) If 6121 < 64, then X, # ¢
(b) If Be41 = 64, then X; = ¢.

Proor.

(a) Suppose 641 < 6;. Then, from Lemma 6.2.6(b) we have an z such that

ma,x{ﬁt,;_},)\t} S T < 95. (62.27)
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Due to this, Corollaries 6.2.2(a,b2,b3), 6.2.1(a), and Eq.{6.2.18), we deduce
2(z) -z (a) = —s + Poe—q(x) — 2 — di = g(2) > ¢:{6;) = 0,

from which we claim z & W{z). However,z € Wi1(z) = {w | 2 < w} due to Eq.(6.2.27)
and Theorem 6.2.3(a). Hence, if ;41 < 8;, there exists an x having at least one w such that
w ¢ Wi(z) and w € Wigi(z). Therefore, X¢ # ¢.

(b) Suppose 8,41 = 6;. This case is proven by contradiction. Suppose X; # ¢ and choose an
z € X;. Then, it follows from Eq. (6.2.26) that

& S 9t+1 = 9t (62.28)

and that there exists at least one w satisfying w ¢ Wi(z) and w € Weyq(2), thatis, w ¢
Wi(z)® N Wiga(z).

Due to Eq. (6.2.28) and Corollary 6.2.2(al,a2) we have z{(z) = —s + Bv,_1(z) and 2, {{z) =
—s+ Bu(z). From this and Lemma 6.2.1(b2) we find that, for any w € W;(z)° N W),

z(w) < z{(z) = —s 4 fria(2) € —s + Bri(2) = 24, (2) < 24, (w),

from which
Bv(e) ~ vecr(2)) < 24 (w) - 2] (w). (6.2.29)
By using Lemmas 6.2.9(a), 6.2.8, and Eq.(6.2.28), we get
dey1 — do = B(w(0) — ve-1(80)) < Bv(@) = veea (2)). (6.2.30)

(i) Suppose that a certain w with w > 6 (= 6;41) belongs to Wi(2)° N Wiyq(x). Then,
max{Asr1,Ar} < w by Lemma 6.2.6(b), thus from Corollaries 6.2.2(b3) and Eq.(6.2.30} we get

zig(w) — zj(w) =w+diyy ~w—di = dgy1 —dy < 5(%(55) —’Ut.q(iﬂ)),

which contradicts Eq. (6.2.29). Hence, we conclude that if 8, < w, then w ¢ Wi(z)* N Wepa(z),
that is, w ¢ Wi(z) and w € Wepi(2).

(if) Suppose that a certain w with w < 8; (= 641) belongs to Wy(z)° nWigi(z). Then, since
w € Wipi(z) is assumed, we get @ < w due to Theorem 6.2.1(a), thus < w < f; holds by the

assumption. On account of this and Lemma 6.2.8 we get

B(vw) - via(w) < B(wi2) — vea(2)). (6.2.31)
Hence, it follows from Eqgs. (6.2.31) and (6.2.30) that
zep(w) — 7 (w) = max{w + dy1, —r(w) — s+ folw) } — max{w + dy, ~r(w) ~ s + Bu_1(w)}
ma,x{dt.H - dt,ﬁ(“ut(w) - 'Uf....l(w))}
max{dH_l - dt,ﬁ(vt(:c) - vtﬂl(:v))}

IA

1A
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= ﬂ('vt(m) — 1 (37)) »
which contradicts Eq. (6.2.29). Therefore, we deduce that if w < 6, then w ¢ Wy(2)° NWepy(2),
that is, w & Wi(2) and w € W1 ().
Now, from (i) and (i) we claim that there exists no w satisfying w ¢ Wy(z) and w € Wy (2),

thus Wi(2)¢ N Wipq(z) = 6, that is, Wi(z) 2 Wii(x). As this contradicts z € X; # ¢, we
conclude that if ;44 = 6;, then Xy = ¢. 1

6.2.2.2 The Case where d; is Convexin {

Lemma 6.2.11 Let d; be convex in t. Then:

(a) Fort > 1, we have

< dgpr—dy if B<

8y — v (0 6.2.32
5(%( +) ¢ 1(t)) < dyi—d, if =1 ( )
(b) Fort > 2, of B(ve_y(A) — Vi2(Ae)) < di— di_q, then
< depr—de i B,
B(vi(Ae) — vema () { - _ (6.2.33)
< dipr—de if =1
Proor.
(a) Due to Egs.(6.2.2) and (6.2.3) we claim that, for any w and ¢t > 1,
iz (w, 8,) > max{w + di_y, 6, + di_1}. (6.2.34)

Hence, it follows from Theorem 6.2.3(b), Eqs.(6.2.34), and (6.1.2) that
u{w,0;) — us.q (w, ;)

= max{w -+ dt, 8; + dt} - Uthl(w,gt)

[FAN

max{w + d, 6; +d;} — max{w +ds_y, 6 + di1}
=di—d;_y < dypy ~ dy,

implying

v (8:) — ”3—1('9:5) = /b

(1w, 80) = we (a0, 6:))dF (w)
b
g / (dt%-l - d;)dF('w) = dt-l—l - dt.
which immediately indicates Fq. (6.2.32).
(b) For ¢ > 2, it follows from Eq_ (6.2.9) and Corollary 6.2.2(b) that

’ttg(’w, /\t) — ut—l('wa At)
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_ { max{-r(w) — s + Bu_1(w), 27(A)} —uer(w,A) i w <Ay (6.2.35)
max{w + d, 22(M)} —uem(w, Ag) i A S
Due to Eq.(6.2.3) we get, for any w,
w1 (w, As) > max{w + ds—1, —s + Bvi_2(As)}- (6.2.36)
First, let w < A Then, »_y(w) < vi—1(X) by Lemma 6.2.1(b2). From this, Eqgs.(6.2.36},
(6.1.2), and the inequality assumed in the assertion, we get
—r(w) — s+ Brg-1(w) — we—1{w, At)
~r(w) = 5+ Bre-1{Ae) — w—1(w, Ar)
—r(w) ~ s+ Bo-1(Ae) + 5 — Bvi2(Ae)
[)’(vt_l()‘t) - ut_?,()\t)) < dy—diey < dppq —dy. (6.2.37)

IA A

A

Next, let A; < w. Then, from Eq. (6.2.36) we obtain
w+ di — ug—1(w, Ag)
S w+ dt — W - dg_l = dt - dt—l S dt+1 - dt. (6238)

Finally, for any w, it follows from Lemma 6.2.6(b}, Corollary 6.2.2(al), Eqs.{6.2.36), (6.1.2),

and the inequality assumed in the assertion that
20 (Ar) — w1 (w, A
= =8+ Fvgea(Ae) — we—1{w, Ar)
< =8+ Bvea(M) + 5 — Bri-a( M)
B(vea () - vidM)) < di—dir < depr - . (6.2.39)

From Eqgs.(6.2.35), (6.2.37) to (6.2.39), we deduce that if B(we—1(M) — vs—2(M)) < di — dier,
then wus(w, Ae) — ue—1(w,Ae) < deg1 — dy for any w, thus we get w(A) —ve-1(M) € dip1 — dy,
which immediately implies Eq.(6.2.33). &

Theorem 6.2.4 Let d; be convex int. Then, fort > 1
(a) If 8 < 1, then :
1. 8, is strictly decreasing in t with 8; < @, and diverges to —o0 ast — oo,
2. Suppose Ays_1 > A for a certain t*. Then, Ay is strictly decreasing in t > %, and
diverges to —oco ast — 00.
3. There exists at least one t* such that Xp_q > Ap.
(b) If 3 =1, then :
1. 84 is noninereasing in t with §; < 6.

2. Suppose Ape_1 > M for a certain . Then, Ay is nonincreasing in t > t.
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ProoF. For 8 < 1, it follows from Egs. (6.2.4) and (3.2.3) that
a1{8) = —s+ fuo(8) — 8 — dy
—3+f35(0) — 6 — di + Bdo

—d1 -|-ﬁd0 < 0 = 91(61)7

fl

I

from which and Corollary 6.2.1(a) we conclude 6, < 8.

(al) Suppose § < 1. It follows from Lemmas 6.2.9(a) and 6.2.11(a) that f is strictly decreasing
in t, thus #, < 6, < ¢ for each t > 1. Due to Eqs. (6.1.1) and (6.1.2) we find d; — o0 ast — oo.
From this and Eq.(6.1.2) we get d; —fd;_1 (= 8(d¢ ~ dy1)+ (1~ §)dy) — o0 ast — oc. Hence,
8; — —oo as t — oo due to Lemma 6.2.6(a).

(a2) From Lemmas 6.2.9(b) and 6.2.11(b) we get Aje > Apyy > -+ if Agey > Ao Further,
A — —0o0 as t — 00 due to {al) and Lemnma 6.2.6(b).

(a3) Since Ay — —o0 as t — oo from (a2), it follows that there exists a number t* such that
Ao 2 A

(b1) Immediate due to Leminas 6.2.9(a} and 6.2.11(a).

(b2) Easy from Lemmas 6.2.9(b) and 6.2.11(b). 1

Corollary 6.2.3 Let d; be convex int. Then :

(a) Let 5 < 1. Then, there ezxists an z such that Wy(z) 2 Wypi(2).
(b) Let 3 = 1. Then, if ey < b, there exists an z such that Wi(z) 2 Wia(z), or else
Wi(z) O Wipi(2) for any z.

Proor.

(a) Since fs41 < ; for any ¢ > 1 by Theorem 6.2.4(al), it follows from Lemma 6.2.10(a) that
there exists an @ satisfying Wy(z) 2 Wiqi(a).

(b) The case 641 < 8¢ can be proven in exactly the same way as above,

If 0,41 = 6, then Wi(2) D W, (z) for any 2 with 2 < 6§, from Lemma 6.2.10(b). For
z 2 8y (= 6py1) we have Wi(z) = Wia(z) = {w | ¢ < w} due to Theorem 6.2.3(a).

Consequently, we get the assertion. R

6.2.2.3 The Case where (, is -additive in ¢

Lemma 6.2.12 Let d; be S-qdditive in t. Then, fort > 1:

(3..) 6(’5}(93) - vt—l(gt)) = dt.;.l — dg.
(b) B(w(h) = 1A > gy — .
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Proor. Suppose t > 1. Then, from Eq.(6.1.3) we have

d‘-f-l-l - dt = ﬂH-]O" (6240)

(a) Due to Theorem 6.2.3(b), Egs. (6.2.2), and (6.2.40), we get, for any w,
uy(w, b)) — ug(w,b)
= max{w+ dy, 1 + di} — max{w + do, & +dp}
=dy ~dy = fo. (6.2.41)
Hence, it follows from Eqs.(6.2.41) and (6.2.40) that
B(wi(01) = vo(81)) = B0 = dy — di. (6.2.42)
Suppose B(wi—1(fs—1) — ve-2(fi—1)) = di — diy (= B'0), from which and Lemma 6.2.9(a) we
obtain 8;_, = ;. Then, due to Theorem 6.2.3(b} we get
ug(w, 8;) - w1 (w, f)
= ag{w, 0) — ey {w, 0i—1)
= max{w +dy, 0+ di} - max{w + dy_y, 01 + di_1}
= max{w +dz, 8¢+ &} - max{w + di—1, 0 + di1}
= dy— diny = flo,
from which
B(w(8)) ~ ve-1(6)) = B0 = diga — di. (6.2.43)
Due to Eqgs. (6.2.42) and (6.2.43) we have confirmed the assertion by induction.
(b) It follows from Lemmas 6.2.6(b), 6.2.8, and assertion (a) that

Bvi(Ae) = vecr (M) 2 B(wil8e) = ve1(8) = duwr — i,

which completes the proof.

Theorem 8.2.5 Let d; be §-additive int.
(a) 8, for each t > 1 becomes equal to the solution of K(x} = fio, which is less than 8.

(b) A; is nondecreasing in t.

PRroOFV.
(a) From Lemmas 6.2.9(a) and 6.2.12(a) we get 6; = #;,; foreach £ > 1.
Due to Eq.(6.1.3) we get dy ~ fdo = fo. From this, Eqs. (6.2.4), and (3.2.3), we obtain

gi(z)=-s+85(z)—z — fo = K(z)— fa,
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which indicates that §, becomes equal to the solution of K(z) = B¢. Further, since 0 = K(¢) >
I(#) — Bo = K(6,) — o, it follows from Lemma 3.2.2(b) that #; < #. Therefore, the assertion

proves to be true.

(b) Immediate from Lemmas 6.2.9(b) and 6.2.12(b). &

It should be noted that the results are almost the same as those stated in Theorem 4.2.2 (p.25)
except for the value of §;. In Theorem 4.2.2 we have concluded that 8; is the root of K(z) = 0.
In Theorem 6.2.5 we have deduced that ; is the root of K(z) = fo.

Corollary 6.2.4 Let d; be B-additive in t. Then, We(z) 2 Wepq(2) for any z and t > 0.

Proor. We easily get Wo(z) = max{w | # < w} for any z, thus from Theorem 6.2.1{a)
we obtain Wy(z) D Wi(z). Fort > 1, since 6441 = 6 from Theorem 6.2.5(a), we claim
Wi(2) 2 Wyya(z) for any = < 6; due to Lemma 6.2.10(b). From Theorem 6.2.3(a) we get

Wi(z) = Wipa(z) = {w |z < w} for any z > §,. Therefore, we have confirmed the assertion. 1

6.2.3 Infinite Planning Horizon

Lemma 6.2.13 Suppose that 6; converges o a certain number § > 0 as { — co. Then, v (0:) —

v¢{0) is strictly decreasing in t and converges to 0 as t — oc.

Proor. Consider the case where 6, converges to a certain number # > 0 as ¢ — co. Then, since
&: is nonincreasing in ¢t due to Theorems 6.2.4(al,bl) and 6.2.5(a), and 8; < b —d1 + Bdy (< b)
due to Lemma 6.2.6(a), we get

0<P < <8< 1<+ <b <b (6.2.44)

from which
0SF()< - <F(B) S F(Bit) < - < F(B) < 1. (6.2.45)

Let Wy = Wi(8;) and W3 = W;(0). Then, W; C W, and W; = {w | #; < w} due to

Theorems 6.2.1(b) and 6.2.3(a), respectively. Hence, W = W, U (W N W,) and W¢ =
Wiu(WinWz)={w|w < 6,}. Accordingly, from Eq. (6.2.12) we get

vi(8,) = f o1 (w)dF(w) + / 22(0,)dF(w). (6.2.46)
Wi W
By noting z{(0) < 7 (w) for any w € W§ n W, (G W) and using Eq. (6.2.12), we get

vs(0) = fWQ 2} (w)d F(w) + fwﬂ 2z (0)dF (w)
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- / T(w)d F(w) + / ()P (w) + ] 2(0)d F(w)
> /W] z (w)dF(w —i—/ - z (0)dF{w) +/ z{ (0)d F(w)
_ /W] Z(wdF(w) + fw O () (6.2.47)

Since z2(6,) = —s+ Bvi—1(8;) and 27(0) = —s + Bve—1(0)
due to Corollary 6.2.2(al,a2) and Eq. (6.2.44), it follows frorn Eqs. (6.2.46) and (6.2.47) that

w8 = 0(0) < [ (=800 = 22(0))dF(w)
- fwfﬁ(vt_l(é’t) ~ w1 (0)}dF ()

- f_ H;ﬁ(vt_l(et) — w1 (0))dF ()
= BE() (vi-1(8) = v-1(0)): (6.2.48)

Here, we have v;—1{0) < v1~1(8:) < we—1(fe—1) by Eq.(6.2.44) and Lermuma 6.2.1(b2), and
0 < BF(8,) < BF(6;) due to Eq.(6.2.45). Hence, it follows from Eq. (6.2.48) that

0 < w(Be) — v(0) < BF(B1) (o1 (Bucn) — v4-1(0)). (6.2.49)
Repeating the above argument yields
0 < ve(8:) - 0(0) < BF(81)(vi-1(Bim1) = vi-1(0))

(ﬁF(9l))2(“t—2(3t—2) - vt—z(o))

1A

IA

(87(81)) " (ma(6) - w(0)). (6.2.50)

Since 0 < v1(61) — v1(0) due to Eq.(6.2.44) and Lemma 6.2.1(b2), and 0 < §F(6;) < 8 <1
from Eq.(6.2.45), we lead to

lim (6F(6)) (0:(61) — m(0)) = 0. (6.2.51)
Now, due to Eqgs. (6.2.49) and (6.2.45) we get
2(8:) — v(0) < BF(61) (ve-1(811) = 0-1(0)) < w1 (Bem1) — ve-1(0),

which shows that ve(8;)—4(0) is strictly decreasing in ¢. Furthermore, it follows from Eqs.(6.2.50)

and (6.2.51) that v;(6¢) — v;(0) converges to 0 as # — oo. Hence, thelemma proves to be true. i

Lemma 6.2.14 There exists a number t* such that —r{w) — s + Bve_1(w) < w(w,z) for any
w>a, x>0, andt >,
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ProOF. Let # and X denote the limits of 8, and A, respectively, if they exist.

(a) First, consider the case where #; — —co or 8; — § <0. Then, Ay = —oo or Ay — A<
due to Lemma 6.2.6(b). Thus, from Corollary 6.2.2(b3} and Eq. (6.2.9) we can get a number ¢*
such that, for any w > a, 2 > 0, and t > t*,

—r(w) — 8 + B (W) <w+ dp < 27 (w) < max{z{ (w),z{(z)} = w(w,z).

(b) Next, consider the case where #; — § > 0. Then, it follows from Lemma 6.2.13 and

0 < r(a)/8 that there exists a number t* satisfying
0 < vp(Bpr ) - v0(0) < r{a)/B. (6.2.52)
Choose any £ with t* < ¢, thus t* < ¢t ~ 1. Then, due to Lemma 6.2.13 and Eq. (6.2.52) we have
0 < Bvp1(fim1) — Fv:-1(0) < 7(a). {6.2.53)

(i) Suppose f;.; < z. Then, since 6, < 6,_; due to Theorems 6.2.4(al,bl) and 6.2.5(a), we
get 8; < z. Hence, if w < Ay, then w < Ay < 6 < @ due to Lemma 6.2.6(b}, thus it follows from
Lemma 6.2.1(b2} and r(w) > 0 that

—r(w) — s+ fri1(w) < —s + Bri—i(x) < 27(2) € wy(w,z). {6.2.54)
Contrarily, if Ay < w, from Corollary 6.2.2(b3) we get
—r{w) — 84 Bvi1(w) < w -+ de < 2 (w) < uw,z). (6.2.55)
Hence, in the case of #,..; < z, the assertion holds true.
(ii) Suppose 0 <z < #_;.
First, if w < 2, by the same way as in Eq.(6.2.54) we get —r{w) — s+ Bve_y(w) < uw, ).
Next, if z < w < 6;_1, Lemma 6.2.1(b2) implies
Bre—1(0) < Bvp-a(z) € Prya(w) < Bve—1(8i-1) (6.2.56)
From Eqs. (6.2.53), (6.2.56), and r(a) < r(w), we obtain
0 < Bre1(w) = fre—1(z) < Br_1(6i—1) — Bo—1(0) < r(a) < r(w),
thus
—r{w) — 8+ Bre_1(w) < —s + Bvi1(z) € 22(2) € w{w,z). (6.2.57)
Finally, if 6;—1 < w, then A, < 8 < ;1 < w from A < 4 and 8; < 6,4, thus we also get
—r(w) — s + Bvs_1(w) < ug{w, z) by the same method as in Eq.(6.2.55).

From the above, we conclude that the lemma holds true. N

Corollary 6.2.5 Let 6 denote the limit of 8;, including the case § = —oco. Then, uy(w,z) —

(max{w,w,(j}-l-dt) —0foranyw>aandz> 0 ast — oo,
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Proor. Easy from Lemmas 6.2.13 and 6.2.14. #
This corollary yields the optimal decision rule for an infinite planning horizon:

{$ Optimal Decision Rule: Let ¢ denote the limit of 6, including the case ¢ = —o0. Then,
in the case of an infinite planning horizon, if § < max{w,2}, accept the more lucrative between

the current offer w and the leading offer &, or else continue the search.

6.3 Numerical Example

Here, we will pay attention to the movement of &, and A, with respect to t, which is schematized
in the diagrams on the third and fourth columns of Figures 6.3.1 to 6.3.4. The condition of the
calculations are as follows: F{w) is the uniform distribution on [0,1] (, so ¢ = 0 and b = 1),
s = 0.005, and 8 = 0.97 [1.00] for the diagrams on the third [fourth] column; r(w) and d, are
depicted in the diagrams on the first and second columns, respectively. Figures 6.3.1 to 6.3.3
show the results of the case where d; is convex in ¢. Figure 6.3.4 presents the result of the case
where d; is 3-additive in t.

The remaining time value d; used in Figure 6.3.1 satisfies d; — 8d;_.1 — o0 as t — oo in both
B < 1land 8 = 1, which produces 8, — —oco and Ay - —o0 as t — 00 according to Lemma 6.2.6.
We can see the above result in the figure. Furthermore, it is checked that 4, is strictly decreasing

in ¢, and A, keeps decreasing after its increase in ¢ (Theorem 6.2.4).

Exactly the same thing results in Figure 6.3.2 with 4 = 097. In the case of 3 = 1, the d; can
be rewritten as dy = 0.05+ 0.02(83 + 8% + -- -+ B8%). That is, the case of 3= 1 is deduced to the
case where d; is f-additive in ¢. Hence, in the figure we see the properties as in Theorem 6.2.5
{see also Figure 6.3.4).

See Figure 6.3.3. If 8 < 1, then d; ~ 8d;_1 — o0, orelse d; — fd;_y — 002, That is, i 3 < 1,
then b — (dy — fds—1) — —o0, or else a — (d; — Bd;..1) converges to 0.475. Hence, if 8 = 0.97,
then 8; and A; diverge to —oo, and if 3 = 1.00, then 6; and A, converge to certain finite numbers
as follows: #; — 0.776 (top and bottom), A; — 0.593 (top), and 0.706 (bottom).

In the case where d; is (S-additive in ¢, we can see the properties as in Theorem 6.2.5 by
Figure 6.3.4.

Finally, we will see the optimal decision rules in Figure 6.3.5. The two diagrams in the top
row show the rules for t = 1. From the second to bottom row includes the rules for ¢t = 31, 61,
and 91, respectively. The four diagrams on the left and right columns are calculated under the
same conditions as in the tops of Figures 6.3.1 and 6.3.4, respectively, with 4 = 0.97.

As seen in Figure 6.3.1, we have §; — —oo. In the left column of Figure 6.3.5, we will confirm

that the area PC becomes smaller and finally disappears as the remaining period gets longer.

The left bottom diagrams show that if we start the search at time 91, it is optimal to stop the
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search immediately by accepting an offer even if the value is 0. Ir the right column, the decision

rules are almost the same from time 31 to 91. That is, it is possible that the continnation of the

search become the optimal decision even if an infinite planning horizon is given.

6.4 Properties of Optimal Decision Rule

6.4.1 The Case where d, is Convex in ¢

A

If a4 Bdo < a4+ dy, then the continuation of the search is not optimal at all.

This is a restatement of the optimal decision rule on p.72 and correspounds to Property A of
Model 1 {p.35) and Property A of Model 2 (p.65).

If the leading offer © is such that 8; < ¢ at a certain t, then accept the more lucrative
between the leading offer x and the current offer w.
This is already stated in the optimal decision rule on p.75, and it corresponds to Property B
of Model 1 (p.35) and Property C of Model 2 (p.65).

No offer reserved during the search process should be recalled and accepted ercept at the

deadline.
Let the leading offer z of time ¢ be the offer reserved at t* (> #). Then, z < A= because
an offer w which should be reserved at time ¢* satisfies w < Ay according to the optimal
decision rule (a2) on p.74. From this, Lemma 6.2.6(b), and Theorem 6.2.4(albl), we get
T < Ay < KOy <o <0 < -0 < 0y, which shows that the leading offer z satisfies
z < G ift* >t > 1. However, the leading offer 2 which should be recalled and accepted
at time ¢ must satisfy 6; < z due to the optimal decision rule (bl). Therefore, we get the
property.

In the model, the earlier we stop the search, the larger the remaining time value becomes.
So, it is more attractive for us to stop the search early in the process than in the situation
of Model 1. However, we obtain the property which is exactly the same as Property C of
Model 1.

Note that exactly the same property has already been obtained in Model 1 (Property C
on p.35).

At each time, any offer inferior to the leading offer should be passed up, and the range of
offers to be passed up should be spread as the leading offer becomes better.

We get the property from the optimal decision rule (b) on p.74 and Theorem 6.2.1(a,b). See
also Property D of Model 1 (p.36) and Property E of Model 2 (p.66).

If B < 1, for a certain x there exisis an offer w which should be reserved or accepted at
time t + 1 but should be passed up at time .

Due to Corollary 6.2.3(a) we get Wi(z) 2 Wepq(2) for a certain z. This is different from
Property E of Model 1 (p.36).
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F. If3 < 1, there exists a certain time t* such that if the search starts before the time, or
tirne L with t > t*, then continuation of the search is far from the optimal decision.
Due to Theorem 6.2.4(al) we have a certain time ¢™ such that 8, < Ofor any ¢ > £". From
this and the optimal decision rule (b1) on p.74 we get the property.

G. If r(w) is concave, the indifferent point between reserving an offer and passing up an offer
is determined at one crilical point.
This is derived from Theorem 6.2.2. See Praperty Fof Maodel | {p.36).

H. Let 6 < —oc be the limit of 8,. If the planning horizon is infinite, continue the search until
ant offer superior to g is gotlen.
This is a restatement of the optimal decision rule on p.83. Similarly to Model | and Model 2,
we have no need to reserve offers if an infinite planning horizon is given. See Property G ol

Model 1 {p.36) and Property H of Model 2 (p.66).

6.4.2 The Case where d, is 3-additive in /

[ . All of the properties of Model 1 (p.35) are inkerited except for the point that « < u and 8
are replaced with o + Bdy < @ + dy and the solution of K{x) = fla, respectively.
The same property as Property B of Model 1 is already gotten as the oplimal decision
rule on p.75; Property C is from Theorem 6.2.5(a); Property D is from Theoremn 6.2.1{a,b);
Property E is from Corollary 6.2.4; Property I'is from Theoremn 6.2.2; Property G is the
the optimal decision rule on p.85.

From the above, the optimal decision rule of can be summarized as follows:

& Optimal Decision Rule:  Suppose that you are at time ¢ with the leading offer & and
have just drawn an offer w. Let 20 be the initial leading offer, thus @ = «* il time ¢ is the start
point of the search process. Then, the choices are:
(a) If « + fBdo € a+djor 8, < xY, then:
1. ASif the offer w found at the start is such that 29 <w (accept it and stop the search).
9 PS otherwise (accept the initial offer 2@ and stop the search).
{(b)If a +di < a+ Bdp and 2" < 8, then:
1. If ¢ = 0 (deadline), then:
i ASif ¢ < w (accept the current offer w and stop the scarch).
i PS otherwise {accept the leading offer z and stop the search).
2 Ift > 1, then:
i ASifw € Wiz)and Ay < w (accept the current offer w and stop the search).
i RCifw € Wi (z)and w < A (reserve the current offer w and continue the search).
ii PCif w ¢ Wi(z) (pass up the current offer w and continue the search).

3. Ift = oo (infinite planning horizon 3, then:
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i ASif# < w where § < —o0 is the limit of 8, (accept the current offer w and stop the
search).

il PC otherwise (pass up the current offer w and continue the search).



Chapter 7

Conclusions and Future Studies

We have discussed discrete-time optimal stopping problems with reservation from some view-
points and revealed some properties of the optimal decision rules.

One of the most important results obtained from the three models is that no reserved offer
should be recalled and accepted while it remains recallable at the next point in time, in other
words, the time when recalling and accepting an reserved offer can become an optimal decision is
restricted only to the maturity of its reservation. In the models with infinite-period reservation
(Chapters 4 and 6), the deadline is regarded as the maturity of each reservation.

When the author obtained the resuit in the model with infinite-period reservation (Chapter 4},
he thought that some mistakes might have been made somewhere in the proofl. His reasoning
was that since a search cost s > 0 is required and the expectation of finding better offers in the
future attenuates every time the search is continued, he believed it was possible that recalling
and accepting a reserved offer would become an optimal decision ever before the deadline.
After confirming that there were no mistakes, the author found that the reservation of an offer
is insurance against any dire situation which may be awaiting at the deadline. This lead him to
wonder whether the result would hold for other models.

In the model with finite-period reservation (Chapter 5), he verified the truth of the result and
discovered that the reservation of an offer had the additional benefit of expediting the search
process as well as avoiding the risk at the deadline,

In the model with remaining time value {Chapter 6), it seemed more attractive to stop the
search eatly in the process than to do so in the previous two models. In the model, however, we

should also wait to recall a reserved offer until the deadline comes.

In this thesis we have established the methodology for optimal stopping problems with the
basic ideas of reservation and have obtained an intriguing result as stated above. Naturally
there arise some questions. Is the result always effective in any optimal stopping problem where
reservation is taken into account? If there are counterexamples, what conditions would be

added to or deleted from our models? Answering the questions clarifies further the meanings
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and importance of reservation in optimal stopping problems. In order to achieve this, the future

direction of this study should take in models with the following assumptions:

1. The length of the reserving periods depends on the offer value and/or the reserving cost.
2. The value of a reserved offer will deteriorate as time goes by.

3. Any reserved offer can be canceled with a certain probability but a cancellation fee will be

received.
4. There exists a budget constraint for search costs and reserving costs to be invested.
5. The renewal of a reserved offer is allowed at its maturity.

6. The reward gained by accepting an offer can be invested in another economic activity after

the acceptance.
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