CHAPTER 2

Algebraic Curves

In this chapter, we introduce the theory of algebraic geometry used
for our construction of balanced arrays in Chapters 3 and balanced
n-ary designs in Chapter 4, We assumed that the reader is familiar
with some basic concepts and properties of groups, rings, and fields,
The interested reader is referred to, for example, [CLO98, Mor91]
and [Uen97] for covering more precisely this chapter and the above
algebraic systems.

2.1. Projective curves and affine curves

Let K be a fleld. A%(K) is the cartesian product of X with itself, that
is, A2(K) is the set of ordered two tuples of elements of I{. A%(K) is
called the affine plane over I{, and its elements are called points, We
often write it briefly as A?. In general, we can extend the notion to
the n-dimensional affine space, denoted by A®, by a similar definition
as above: A" ig the set of ordered n-tuples and its elements are also
called points.

The projective plane over K, denoted by P*(K) or simply P?, is
defined to be the set of all 1-dimensional subspaces through the origin
(0,0,0) in the 3-dimensional affirie space A®, and the elements of P? are
also called points. Any point P = (ay, az, as) in A*\{(0,0,0)} uniquely
determines such a 1-dimensional subspace, namely {(Aai, Aag, Aas)|A €
K}. This implies that P? consists of all equivalence classes of triples
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(ay, an, ag) of elements of K, not all zero, under the equivalence relation
given by (a1, ag, a3z} ~ (Aay, Aag, Aag) for all X € K, A # 0. Therefore a
point P € P? is often denoted by a representative element. To distin-
guish a point P on a projective plane from that in an affine space, we
use the notation P = {a; : ag : a3), which is called the homogeneous
coordinates for P,

An algebraically closed field K is a field in which the roots of any
polynomial with one variable defined over this field X always lie. The
complex number field is algebraically closed, while the real number field
and finite fields are not. The union of all finite dimensional extensions
of a finite field F, is an algebraically closed field containing F,.

Assume here that K is an algebraically closed field. Let F{(z;, 2o, x3)
be a polynomial of K[xy,z2, z3]. If all its monomials have the same
degree, then F(z,z2,13) is said to be homogeneous. For example
73 + zyz + z2° is homogeneous, while z% + zy + z? is not.

Let F be a homogeneous polynomial of K[z, %9, 23). A point P =
(a; : ap : a3) € P? is called a zero of the polynomial F if F'(ay, a9, a3) =
0. We often write F'(aq, az, a3) = F(P) = 0 for simplicity.

Definition 2.1.1 (projective curve). A projective curve C over a field
K is the set of zeroes of a homogeneous polynomial in K[z, £, T3a].

Let C be a projective curve defined by a polynomial . If the poly-
nomial F is irreducible, then the curve C is also said to be irreducible.

Definition 2.1.2 (degree of curve}. The degree of a projective curve
C defined by an equation F' = 0 is the degree of the polynomial F.

We now consider relations between P? and A2, Let C C P? be a
projective curve defined by F(zy,zs,23) = 0. The set of points in P?
can be partitioned into the two subsets Uy = {(a1 : ag : 1)} C P? and
Up = {{a1 : ap : 0)} C P2, We can denote a point P = (a; 1 az : a3) €
CNU, by P = (a1,a,). In fact, the point P = (a; : a9 : a) satisfying
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az # 0 can be rewritten as P = (a;/a3, ag/a3). The set C'N A% can
be defined by F' = F(z,2,1) = 0. The points of U, the points
at infinity, play an important role in connecting affine geometry with
projective geometry, For example, any elliptic curve * = 23 4+ az + b
has a unique point at infinity since the projective point {(0:1:0) is on
the corresponding projective curve 3%z = 23 + ax2? + b2®.

For any polynomial F* € Kz, |, a point P = (a;,a2) € A? is called,
similarly to the homogeneous case, a zere of F' if F(aq,09) = 0.

Definition 2.1.3 (affine curve). An affine curve over a field K is the
set of zeroes of a polynomial in K[z, y].

We can establish the correspondence between a projective curve
and an affine curve. By the above observations on the relation between
P? and A% the points P = {a; : @y : a3), @3 # 0, on a projective
curve C' defined by a homogeneous polynomial F can be regarded as
the affine curve C'N A? defined by the polynomial F(z,y,1). On the
other hand, an affine curve defined by a polynomial G corresponds to
the projective curve defined by the polynomial G(z/z,y/z).

Example 2.1.4. Let C be a projective curve defined by the equation
F =g+ aoyz+ 222 = 0, Any point P = (a; : a2 : a3), a3 # 0, on C
satisfies the equation F(z,y,1) = 2% + oy + 2* = 0. This implies that
(a1/as, aa/as) € A* is a point on the corresponding affine curve defined
by F(z,y,1) = 0.

For an affine curve C, a point P = (aj,az) € C is called a point
at infinity if the point (@ : ag : 0) is on the corresponding projective
curve.

Now we consider the singularity of points and curves.

Definition 2.1.5 (nonsingular affine curve). Let C be an affine curve
defined by a polynomial F. A point P = (a1,a3) € C is said to be
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nonsingular if

aF oF
EL}I‘T(P)’(?—IBQ(P)) :/é (0’0)'

If all points on an affine curve C' are nonsingular, then the curve C is
said to be nonsingular. '

For projective curves, we define the singularity similarly to the case
of affine curves.

Definition 2.1.6 (nonsingular projective curve). Let € be a projec-
tive curve defined by a homogeneous polynomial F. A point P = (a; :
ay : a3) € C is called nonsingular if

oF oF

(5 (P), 5 (P), 5P)) # 0,0,0),

If all points on a projective curve C are nonsingular, then the curve C
is said to be nonsingular.

2.2. Curves over finite fields

Keeping the definitions of previous sections in mind, we consider the
case when K is a finite field. Let g be a prime power and [F, a finite field
of order ¢. In Section 2.1, we assumed that the field is algebraically
closed. For the finite case, we consider curves over the algebraic closure
F, of I,. |

Let C be a curve defined over F,. Then the curve C is also defined
over any extension Fym of the field F,, that is, the coordinates of the
points on ' also lie in Fpn. We usually regard a curve defined over
F, as a curve defined over its closure If,. Thus we can consider curves
over finite fields in a similar way as in the cage of the complex number
field.
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Definition 2.2.1 {Fym-rational point). Let P = (a,, a5, a3) be a point
of C. If a; € Fym for all 4 then P is called a F,m -rational point of C.
The set of all Fpm-rational points of C is denoted by C(Fyn ).

2.3. Rational functions

In this section, we will mainly consider rational functions on affine
curves. '

Definition 2.3.1 (rational function), Let X be a field. A rational
function is a quotient F//G of two polynomials F, G € K[z, %3], where
G is not the zero polynomial, The set of rational functions is denoted
by K(zy, %)

In the above definition, if F' and G are homogeneous polynomial of
same degree and if the denominator & does not vanish at some point P
on a projective curve C, then the ratio F/G is called a rational function
on C. Similarly, if the denominator G(P) # 0 for some point P on an
affine curve C' then F/G is a rational function on ¢V,

The following considerations hold for the rational functions on pro-
~ jective curves as well as affine curves, Note that for the projective case
polynomials must be homogeneous.

Two distinct ratio F/G and F'/G' on a curve ¢ define the same
function if and only if F'- G — F' - ' vanishes on C. The set of rational
functions on C, denoted by K (C'), forms a field under the usual addition
and multiplication:

F F _ F.G@+F-G
ctg T T aa
F F F.F
el GG
This field is called the field of rational funetions on C, and its multi-
plicative group is denoted by K*(C). A rational function f € K{(C)
is regulor at a.point P on a curve C if there exists a representation
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[ = F/G with G(P) # 0. f(P)= F(P)/G(P) is called the value of f
at P.

In the remainder of this section, we focus our attention on affine
curves, since we can regard a projective curve as an affine one.

Definition 2.3.2 (ideal). A non-empty subset I of aring R is an ideal
if

¢ FF+ G €I whenever F el and G € I, and

e HF ¢ I whenever '€ I and H € R.

Since K[z1,29] is a ring, we can define an ideal of K{z;,=,]. For
Fy,... ,F; € K[zy,z3] let {Fy,... ,Fyy = {HiF\+ -+ HJF, . H €
Klzy,z9) fori = 1,...,s}. Then the set {F,...,F.) is an ideal in
K[:?Il, .'E-g].

Let P be a point in A”. We next consider the set of rational func-
tions which are regular at P.

Definition 2.3.3 {local ring). The local ring Op with respect to a
point P is the set of rational functions which are regular at P.

In general, a ring is called a local ring if it has exactly one mazimal
ideol, which is an ideal I of a ring R such that there is no ideal J
satisfying 7 C J C R other than J = [ or J = R. It is known (see for
example, Section 4.1 in [CLO98]) that for a point P = (a1, as} the ring
@p in Definition 2.3.3 has the unique maximal ideal {z; — ay, 2 — ag).
Since we will only use this special local ring @p throughout this thesis,
Definition 2.3.3 is enough for our discussicn.

Let f be a rational function in a local ring Op and I an ideal of
Op. Set [fl=f+I={f+h:hel} The quotient ring Op/I isa
ring defined over the set {[f] : f € Op} with [f] + [g] = [f +¢] and
[£)[g] = [f- 9] for any [f], [g] € Op/I. Since we can perform the scalar
multiplication as k[f] = [kf] for k¥ € K and [f] € Op/I, we know that
Op/I is also a linear space over K. Hence, we can define the dimension
dimg Op /I as the dimension of the linear space over K.
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Now consider the intersection multiplicity of an intersection point of
two curves. Let Gy and Cy be two affine curves defined by polynomials
Fy and Fy, respectively. An intersection point of the curves Cy and C»
is a common zero of the polynomials F} and F.

Definition 2.3.4 (intersection multiplicity). Let P be an intersection
point of two curves C) and C; defined by relatively prime polynomials
Fy and Fj, respectively. The intersection multiplicity Ip(C1, Cs) of the
point P is

Ip(Cy, Cy) = dimy Op/(Fy, Fy),

where Op = {F/G € K{z,22) : G(P) # 0} is the local ring with
respect to P. Note that the ideal (Fi, F3) is an ideal of Op since
K[:cl,.'z:g] C Op.

Next we consider the order of a rational function at a point. Let C
be an affine curve defined by a polynomial F' € K[z1, zs].

Definition 2.3.5 (order of f at P). Let f = G1/G be arational func-
tion on C, where Gy, Gy € K[z1,%3]). Then the order ordp(f) of f at
Pis

ordp(f) = Ip(C, C1) — Ir(C, Ca),

where C; and C are affine curves defined by the polynomials Gy and
(79, respectively.

The following are two elementary properties on the orders of f, g €
K(C) (see for example, Section 2.5 in [Ful69]):
ordp(f - g) = ordp(f) -+ ordp{g);
ordp(f +g) = min(ordp(f), ordp{g)).
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2.4. Divisors
Let C be a nonsingular projective curve defined over a field K.

Definition 2.4.1 (divisor). A divisor D on C is a finite formal sum
D =% ,mp - P for a finite number of points P € C with mp being
integers. The set of divisors on C' is denoted by Div(C).

The set Div(C) of divisors on a curve C forms an Abelian group
under the addition

D£E=> (mpLtmp) P,
P

where D=3 pmp-Pand E=3 pmp - P.

Let D =3 mpP be a divisor on C. The support of D, denoted by
Supp D, is the set of points P with mp # 0. The degree of D is ) mp,
and is denoted by deg D. If mp > 0 for any P € C then the divisor D)
is said to be effective and is denoted by D > 0. Moreover if D # 0 we
call it positive. For any two divisors D, F € Div((), we write D > F
if and only if D — £ > 0.

Now we consider the divisor of a rational function.

Definition 2.4.2 (divisor of rational function). For a rational function
fe K(C), f #0, on a projective curve C over a field X,

div(f) = > ordp(f)- P
P

is called the divisor of f.

Since a polynomial can be considered as a rational function with
denominator 1, and since a curve can be represented by a polynomial,
the divisors of curves can also be defined in the same manner as rational
functions.

Let C be a projective curve defined over a fleld K. For f,g € K(C) .
and o« € K, a # 0, the following properties hold (see for example, page
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137 in [Uen97]):

diviaf) = div(f),
div(fg) = div(f)+div(y)
div(f/g) = div(f) - div(y).

Moreover, if f is constant, i.e. f = a € K, then div(f) = div(a) = 0.
For the degree of the divisor of a rational function, the following lemma.
is well-known.

Lemma 2.4.3. The degree of div(f) is equal to 0 for any rational func-
tion f € K(C). (See for ezample, Lemma 8.2 in [Uen97].)

Let D =my P + -+ +m.P, be a divisor on a curve C defined over a
finite field IF,. In this case, each P; is an Fq-rational point of C, that
is, P, € C(F,). Let Aut(F,/F,) be an automorphism group such that
for any o € Fy and any o € Aut(F,/F,), o(a) = a holds. For an

IF,-rational point P = (qa; : as : a3), we define
P? = (o(a1), 0(az), a(as)).

Then P is also a F,-rational point of C. This comes from the following
reason. Since C is defined over Iy, the curve ¢ is defined by a homoge-
neous polynomial F' € I, [zy, 2, z5] with coefficients in F,. Therefore
Fy(P?) = Fy(o(a1),0(a2), 0(as)) = o(Fy(a1,ae,a3)) = o(0) = 0, which
implies that P7 is also a IF,-rational point of C. _

For a divisor D = my.Py + ++» +m, P, on a projective curve C' we
define D° by

D =m Py 4+ +msP].

Definition 2.4.4 (rational divisor). A divisor D = my P+ +m,F;
on a projective curve C' is called a rafional divisor over Wy or an F,-
rational divisor if it satisfies the following conditions:
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1. Each P; is a Fym-rational point;

2. D7 = D for any o € Aut(Fm /F,).

Definition 2.4.5 (prime rational divisor). Let D be a rational divisor
over F,. D is called a prime rational divisor over I, if it satisfies the
following conditions:

L. D=P -+ -+ P, where P, # P; for any ¢ # j;

2. There is an element ¢ in Aut(F,m /F;) such that P7 = P; for any
two distinct points F;, F; € Supp D.

Since a prime rational divisor is of form D = 3 P? with P ¢
C(Fym) and o € Aut(Fym /F,), any rational divisor over I, is a finite
sum of prime rational divisors over .

We conclude this section by remarking that Aut(¥y= /I,) can be
represented by

AUt(Fq"‘ /]Fq) = {1) @, ‘92: T :(Pm—l}:

where p{a) = o7 for o € Fym.

2.5. Vector space L(D)

Let C be a projective curve defined over a field K. For any divisor D in
Div(C), we define L* (D) to be L*(D) = {f € K(C)\{0}div(f)+D =
0}. Let L(D) = L*(D) U {0}. Then L(D) is a vector space over K,
which is called the space associated to D. The dimension of L(D) is
denoted by (D). Let D = m P+« + 1P — M1 Peyr — - —mu B,
where m; > 1,j = 1,2,...,l. The condition div(f} + D > 0 in the
above definition of L(D) can be rewritten as follows.

° Ordpj(f) <m; at P;1 <j< k’,
o ordp,(f) > m; at Py k+1 <7< {, and
e fisregular at P ¢ Supp D.
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1t is clear that if f, g € L(D) then f &g € L(D), and that af € L(D)
for « € K, f € L(D). Hence L{D) is a vector space over X. The
following lemma is a result on the dimension of the vector space.

Lemma 2.5.1. L{D) is finite-dimensional for any D € Din(C). In
particular, if D > 0 then
I{D) = dimg L(D) < deg D + 1.

(See for ezample, Proposition 2 in Section 6.2 of [Ful69).)
Lemma 2.5.2. For divisors D, E € Din(C), if D > E then

L(D) 2 L(E).

(See for example, Proposition 2 in Section 6.2 of [Ful69].)

The next lemma is an immediate consequence of Lemma 2.4.3. If
f € L(D) and f # 0 then div(f)+.D > 0, that is, deg(div(f)+ D) > 0.
The degree of the divisor div(f)+ D is deg(div(f)+ D) = deg(div(f)) +
deg D = deg D < 0, which is impossible.

Lemma 2.5.3, If deg D < 0 then L(D) = {0}. (See for example,
Corollary 8.1 in [Uen97].)

2.6. Riemann-Roch Theorem

In this section, we give an important theorem about the dimension
(D) of L(D). Let C be a projective curve over a field /' and D) a
K-rational divisor on C,

Theorem 2.6.1 (Riemann’s Inequality). There is a non-negative in-
teger g such that

I(D)>degD+1—g (2.6.1)

for any divisor D € Div(C). (See for ezample, Theorem 2.5 in [Mor91]
and Corollary 3.8 in [Uen97].}
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The smallest integer of g is uniquely determined by the curve ¢, Tt
1s an important invariant for the curve C.

Definition 2.6.2. The smallest g satisfying the inequality (2.6.1) is
called the genus of C.

When C'is a nonsingular projective curve, the genus g of €' can be
calculated easily.

Lemma 2.6.3. Let C be a nonsingular projective curve, g the genus
of C and d =degC. Then

(d—1)(d - 2).

ol

g ==
(See for example, Lernma 3.6 in [Uen87].)

In the theory of algebraic geometry, there is a famous theorem called
Riemann-Roch Theorem. The following is a special case of Riemann-
Roch Theorem in finite fields, which plays a'very important role in our
applications,

Theorem 2.6.4 (Riemann-Roch Theorem). Let B, be a finite field of
order q, C a nonsingular projective curve defined over ¥, with genus
g, and D € Div(C) an F,-rational divisor such that deg D > 2g — 2.
Then

D) =degD+1-g,

where 1(D) = dim L(D), L(D) = {f € F(C)|div(f) + D > 0} U {0}.
(See for example, Lemma 3.7 in [Uen97].)



