Chapter 3

Kinematic formulas

3.1 Second fundamental form of an intersec-
tion

In this section we provide some lemmas in order to prove our theorems
in the following section.

Let M be a p dimensional submanifold of a Riemannian manifold X. By
second fundamental form of M at x € M, we shall use a symmetric bilinear
mapping

_ By : ToM x T, M — T;‘M.
If we choose an orthonormal basis ey,... e, of T, X such that e;,... e, is
a basis of Ty M and ep41,... , €y, is a basis of T; M, then the components of
h, for this basis are defined by

(h‘fﬂ)g = (h’-’b‘(ei: 3;1')1 ek) 1< i:j <p,ptl1l< k< m,

where (-, ) is the Riemannian metric on X,

We now work on the hypersurface in Riemannian manifold X. Let M and
N be C?*-class hypersurfaces in X. We assume that M and [V are intersecting
transversely at z, then M NN is a submanifold of dimension (n —2). We shall
denote the second fundamental forms of M and N by A™ and h" respectively.
Unless stated otherwise, the second fundamental forms of A N N will be
denoted by h. Take an orthonormal frame {ej,...,en—3,€a-1,€s} at x in
M NN with

ery ... ,en2 € L(MNN), en1 €TLM, e, € TIM.
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We also take another orthonormal frame {ey, ... ,en—2,€,_;, et} at zin MNN
such that

el)-":en—QeT(MmN) nlET(N) 6 ETJ—(N)

Let ¢ be the angle between M and N at z, that is, cos¢ = (e, e’). Then
we may give the following equalities:

en—1 = coS Pe,_, —sindel,, e, =singe,_; + cosdel,,  (3.1.1)
e,_ = cos e, +singe,, e, = —singe,_; + cosge,. (3.1.2)

Using these frames, we define the components of i by
h,fJ (h{es, e;), ex) or h'fj = {h{e;, €;), €,),
where 1 <4, <n—2and n— 1< k <n. Furthermore we put
h’?,n—l = (h'M(eiaeﬂFl)a €n)) h’zn 1= (h (€35 €p1)s €0}

when 1 € ¢ € n— 1. By the choice of orthonormal frames, h™ and A% are
represented as the following matrixes,

n . n mn R m
My M n by WY -1
M = P : , AV = ' '

n e n 1T o In
ha_1 Pp—tn1 - h n—1,1 h n—1n—1

It is a well-known fact that 2, A™ and A" are all symmetric tensors.
- Having set up these notations we can now give two lemmas.

Lemma 3.1.1. For 1 <i,5 <n—2, we have
sin® gh(e;, e;) = (A — B'j; cos g)en + (A — hiy cos d)ey,.

Proof. It is obvious that e, and e}, are lincarly independent with each
other since M and N are intersecting transversely. This implies that the
normal space 7;-(M N N) is spanned by e, and e],. So, there exist a;; and
Bi; such that

hles, €;) = tyien + Pijen (1<i,5<n—2).
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From (3.1.1), we have
hiei, ;) = oy;sin e,y + (ou; cos ¢ + Big)el,.
Hence we get
B = (hlei, e5), e,) = g cos d + By (3.1.3)
Similarly, from (3.1.2) we obtain
hi; = (h(es, €5), en) = gy + Bij cos ¢, (3.1.4)
From (3.1.3) and (3.1.4), we have the following:

. i1
sin® gay; = hy; — h'i;cos g,

sin’ pf;; = Wi — hijcos¢.

These equalities bring the proof to a conclusion.

We can see the following lemma by a direct computation from Lemma
3.1.1.

Lemma 3.1.2, For1 <4 4k, I <n-— 2, we have
sin® p(hle;, e;), hlck, &)) = hihly + WG — cos (R + Wihe).

The principal directions of a hypersurface are the directions which diago-
nalize its second fundamental form. It is a well-known fact that at each point
of a hypersurface in X there exist (n — 1) principal directions and {(n — 1)
principal curvatures. '

Let {&,...,én—1,en} be an orthonormal frame at z in M such that
£1,+..,&q—1 are principal directions of M and e, is normal to M. We denote
by k; (1 <% < n—1) the principal curvature for the principal direction &.
Then, we have

(hM(&i &), en) = ihis. (3.1.5)

Using this frame, we have
n-1
er= azf; (i=1,2,--+,n—1).
i=1
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Since the (n — 1) x {n — 1) matrix (a;;) is an orthogonal matrix, one can see
the following equalities by putting ax,—; = v

-2 n—2
v + Z“?i =1, vu+ Zajiﬂki. =0 (F#k). (3.1.6)
=1 i=1

We thus have from (3.1.5)

n-1
h’::—-].,ﬂ 1= <h' (en-1: En— 1 en) = Z ViV (h &,,53 Bn Z’U K 3 1. 7
6j=1
Similarly for i =1,2,... ,n — 2, we also have
hyg = E @ji i h' (&) ks en) Zaﬁh‘j' (3.1.8)
Jik=1 gei
n—1 n-1 _
Min-1 = Z ajivn (WM (€, €k), €n) Zayvjmg (3.1.9)

k=1

3.2 Kinematic formulas for hypersurfaces in
real space forms - |

In this section, we will prove the following kinematic formulas,

Let M and N be C?-class hypersurfaces of an n dimensional real space
form G/K and G the group of all orientation preserving isometries of G/K.
We denote by 7% and H¥ the second fundamental form and the mean cur-
vature of a submanifold X respectively.

Theorem 3.2.1. ([17]) Let h be the second fundamental form of submenifold
MnNgN, Then we have

L iniea) ag 5210

~  C(n)vol(N) fM (2 — 2n — DI + (a0 — 1) dpyy

+ C'(n)vol(M) / ((n% = 2n — D||RY[]P + (n — 1P (HY)?) duy.
N
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Theorem 3.2.2. ([17]) Let H be the mean curvature of M N gN. Then we

hove
f(/ szu) dg (3.2.11)
G \J MngN .

(nc—_(g))—gvol(N) fM @l1aM]12 + (n* — 20~ 2)(n — 1)>(H™)?) du,,

(T%Vol(M ) fN NP + (n® — 20 — 2)(n — D*HM)?) dyuy.

+
Here the constant C(n) is

_ vollSO(n = el
C(n) = (n— 1)(n+ 1)vol(Sn-3) °

Remark 3.2.3. Theorem 3.2,2 has been studied by Zhou, but the numer-
ical coefficients here do not agree with those in Zhou's paper [36] and [37}-
Roughly speaking, the expression of the normal curvature in those papers
are erroneous, IHere, we will amend Zhou’s coeflicients.

It is sufficient to prove our theorems only when the homogeneous space
G/K coincides with R™. The reason why we do so is that we have the the-
ory of “transfer principle” in integral geometry. In other words, the transfer
principle allows us to move kinematic formulas proven for a homogeneous
space G/K to any other homogeneous spaces with the same isotropy sub-
group I{. (See [13] for a detailed discussion.) Thus, the transfer principle
states that our formulas hold in all real space forms if we can show the case
of G/K = R". Throughout this section, M and N will be hypersurfaces in
R* unless otherwise stated.

From now on, we work on the proof of Theorem 3.2.1. Namely our goal
is to give a detailed calculation of the following integral form:

L] wias) a
a MngN

To do this, we start with the following two lemmas.
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Lemma 3.2.4. With the notation of Section 8.1, we have

it—2
sin® pllall> = M| -9 Z(hgn_l)g — (P )

n—1ln—1

"‘”hN”2 QZ Vin-1)’ ~ (Wa1no1)? ZCOS‘ﬁE}Iwhm

i=1 1,5=1
Proof. From Lemma 3.1.2 we have
sin? ¢||h||* = sin®¢ Z 2+ (R
i,i=1
n~2
= sin’¢ Z (h(es, e5), k(e e5))
iJ=1
n—2
= > (M) + (W5)? — 2cos g, W)
ii=1 "
n~—2
= ||A¥)? -2 Z(hgn—ﬂg - (hznl,nwl)2
i=1
'*_”hN"2 22( in— 1 ‘"( n— 1n71 QCOSQSZhUhm.
fo=1 . 1.7‘—

Lemma 3.2.5. (Santald [31] p.262 (15.35)) We denote the kinematic density
of M, N and M N gN by dTy, dTy and dT' respectively. Then we have

dT Adg = sin® ' ¢ de A dI'y A dTw,
where @ is the angle between M and gN.
From Lemmas 3.2.4 and 3.2.5, we have

||BI2dT A dg (3.2.12)
( = n 2 n 2 \
”hM”Z - QZ(h’i,n-—l) - (h‘n—l,n—l)
.—n—2
= + ”h‘N”2 2 Z Vin~1 (h'ln 1, an—l)2 sin® 3 Qddp ANdTy ANdTy
g i=1
—2cos¢ > hh'y

\ by - /
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Let us integrate both terms of (3.2.12). The integral of left hand side gives

wisom-2) [ ([ . P do,

where dp is the volume element of the intersection submanifold M N gN and
dg is the kinematic density for R®,
On the right-hand side, we have

m
f sin™®3 ¢ cos p d¢p = 0,
0

thus it is enough to calculate the first and second line of (3.2.12). Put

-2
. VrT (E—g_) vol(§n~2
j— in® = = (S )
Cp = A sin" 3 pdep = - (n _ 1) ~ vol(S7-3)

(3.2.13)
2
then we may consider the first part of the right-hand side of (3.2.12), that is,
| n—2 :
on f (llh”"||2 =2 (W) - (h:_m_l)ﬁ) dTy f dTy.
i=1
The kinematic densities dTy and dTy will be w;itten as

dThy = dk A dpiyy, dTy = dk A dpyy,

where du,, and dp, are the volume elements of M and N respectively, and
dk is the invariant measure of SO(n — 1). Hence, we have

f (llh‘”W — 2%(!»;:%1)2 - (h::_l,n-l)ﬂ) dTw

i=1

= vol(SO(n - 1)) fM 1A |2 dpyg

-2
- / / (2 Z(h?,nwl)z + (’12—1,11—1)2) dk A dpeyy.
M J80(n—1) .

i=1
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From equations (3.1.6) and (3.1.9), we have

n—2 n—1
Z(h?n )P = 2(1 - U U - 22%} v,ﬁ,m. (3.2.14)
i=l i=1 i<k

Furthermore from equation (3.1.7), we obtain
L) Z'v 2 vRtkng. (3.2.15)
i<k
We first integrate on SO(n — 1). Then we have

*/A‘S'O('H.—]_) (2 Z 1 n—1 n—*l,ﬂ-—])2) dk

i=1

= vol(SO(n — 2))f5n-2 (;(2 -2 %v vknjmk)
_ vol(SO(n — 2))vol(S7~?) = ,
= Dt ((Zn—l);mj—QKZkﬁjﬂk)a

where the step going from the first to second line uses equations (8.2.14) and
(3.2.15), the fibering of SO(n — 1) over S"* with the fiber SO(n —~ 2}, and
the last step used the known values of the integrals of Weyl [35],

(24 — Dt 2y — 1Y
(n—1n+1)-(n+2p-3)

f ‘ 'uf'" v 2‘““‘dv = vol(SO(n — 2))
gn— 2

where p = 714, Since
a1
IRMIP = > ki,
=1
n—1
(n—1)*(HM)® = (Zfﬂj) }:mf+22fijm,

Jj=1 j= j<k
we have

n—1

2n — 1) Em - 22!@&& = 2nf|hM||* — (n — 1)2(HM)%

j<k
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Therefore, we obtain

n—2
/ (”"’JM”2 —-2 E(h?.n—l)g - (h’:—l,n—l)2) dly

vol(:SO(n — 1))1‘=1
(n—1)(n+1)

((n® —2n — D)||A|* + (n — 1)2(ITM)?) dpzpy-
M
By the same calculation, we also have

f (”3””2 QZ hi?nﬁ Ve ~1in—1) ) diy

T f (9 = 2n = DIWPIP + (0 = () sy

Thus the integral of the right-hand side of {3.2.12) becomes

cavol(SO(n — 1))?
(n—1)(n+1)

vol(IV) fM ((ﬂ.2 — 20— DRY|? + (n - l)Z(HM)z) dityy

+vol(M) /N ((n? - 2n — D||AY|* + (ﬁ — 1)*(HY)?) duy

X

Put
vol(SO(n — 1))vol{S™*)?

(n— 1)(n + 1)vol(Sn-3) -
then this completes the proof of the formula (3.2.10).

C{n) =

We now turn to the proof of Theorem 3.2.2, The main idea of this proof
is the same as that of Theorem 3.2.1. In this case, we have to consider the

integral
[ (e)s
¢ \J MngN

which requires the following lemma.
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Lemma 3.2.6. With the notation of Section 3.1, we have
n—2

sin® ¢(n— 220 = (n—1)*(HM)? =23 hEh2_ .y — (B2 g )’

i=]

+ (?’b - 1) (HN —2 Z h’mh n—tn—1"" (hr:—l,m-—l)2
i=1

~ CO8 ¢ Z (AR5 + hGRE).

i
i,J=1
Proof. From Lemma 3.1.2 we have
n—2
sin* p(n — 2)2H? = sin?¢ Z {hies, e;), hies, ;)
gj=1

n—2
= Z (REhG; + WEh'; — cos (R + RhA,))

by Lo (A ] i'"5f
i=1

= ( (HM -2 E h?l h’n-wl n—1 1:-*1,11--1)2
n—2
+(n — 1)Z(HN)2 -2 Zh': Vn—tin-1 _(’7"2—.1.&_1)2
i=1

2
—cos Z (WS + WGRE).

i,j=1

By Lemmas 3.2.6 and 3.2.5

(n— 2)2H?*dT A dg (3.2.16)
( (n— ?*E hihn—im-1 — (Mg 1)2 \
n-—-2
= +Hr -1 Q(HN ~-2 Z hh n—1 (h,z—l,n#l)g
i=1
-~ cos ¢ Z (A5 + Wih3;). )
=1

sin® 3 pdep A dTns AdTy.
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The integral of the left-hand side of (3.2.16) is

(n — 2)%vol(SO(n — 2)) fG (er"lgN szp:) dg.

On the other hand, the integral of the right-hand side of (3.2.16) becomes

n—2
Cnf ((ﬂ— I[M 22]1’1’12_1 P | - 13 1;71—1)2) dTMdeN
en [ dtu [ ((n— DY - 2 S (h':_l,n_l)ﬂ) iy,
i=1

Here, we have

f ((n“l -HM gnzh’:zh’n ln—1 " h’:—ln——l) ) dTM
= wol(SO(m—1)) [ ((n 22 (E") dpg

2y hihy gy + (B dic A dpeyy.
-/fSO(n—l)(Z -1+ (ha 1)) #M_

i=1
From equations (3.1.7), (3.1.8) and (3.1.6), we obtain
n—1

Zhu -1 = Z(l - UJ) + ZZ (1-- v YRR, fik. (3.2.17)

i=1 i<k

Hence, from equations (3.2.17) and (3.2.15) we have

/(( —-1) (HM)2 2§hnhn—1n 1 (h’gml,n—l)z) dly,

\?:(f?) (n+ 1)) /M CIAM|? + (n® — 2n — 2)(n — 1HM)) dpsay-

By the same calculation, we also have

f ((n — 1AM - 2}: Wb mino1 — (h'ﬁ_l,n_l)?) dTy
i=1

_ vol(SO(n —1)) N2 4 (n? — op — n‘— 2/ 7 NY2
= TG J, O 62 )
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Thus, the integral of the right-hand side of (3.2.16) becomes

epvol(SO(n — 1))2
n—1n+1)

vol(N) fk (@A + (= 2n - 2)(n— 1EY) dy

tvol (M) fN (2N + (n? — 2 — 2)(m — 1Y2(HM)?) diny

X

Hence we obtain the kinematic formula (3.2.11).

Corollary 3.2.7. Under the hypothesis of Theorems 3.2.1 and 3.2.2, if n =
3 then we have

/ (/ Kzzds) dg = w3vol(N)f (JIRM]1% + 2(H™)?) dpgy
& \JMngN M
+ mivol(M) / (A7 + 2(H™)?) dpey,
N

where k is the curvalure of the curve M N gN.

Actually, this is the well-known kinematic formula of Chen [3].

3.3 Further remarks

In this section, we shall review some definitions and fundamental prop-
erties with respect to the kinematic formula on real space forms and give the
Corollaries 3.3.5 and 3.3.7 as an application of Theorems 3.2.1 and 3.2.2. We
will use the notation in Howard [14}.

Let G be a Lie group and X a closed subgroup of G. We denote by o the
origin of a homogeneous space G/K. Let V, be a linear subspace of To(G/K).
We define a vector space II{V},) to be

I(Vy) = {h | h:V, x V, = V;" symmetric bilinear} .

The element A € 11(V,) can be thought of as the second fundamental form
of submanifolds of G/K which pass through o and have V, as the tangent
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space at o. Let K(V;) be the stabilizer of V, in K, that is, K(V,) = {e e
K |a.V, = V,}. This group K (V,) acts on II{¥;) in the following manner:

(ah)(u,v) = a.h(a; u, a; v) (u,v € V)

for ¢ € K(V,) and h € 1I(V,). Here we can consider a polynomial P on
II{(V,), since II(V,) is a vector space. Then a polynomial P is invariant
under K(V,) if and only if P(ah) = P(h) for all a € K(V,). In addition,
let 44 be a submanifold of G/K of type V,. Since we can take g € G with
9+Va = T M for ecach x € M, g~'M becomes a submanifold of G¢/K through
o whose tangent space at o coincides with V,. Thus h¢™' ™ € 1I(V,). If g, is
another element of G such that ¢,,V, = T, M then there exists a € K (Vo)
with gy = ga. Since @ is an isometry, we obtain hg‘ﬁlM = a"thy M, An
this time, if P is polynomial on I{V,) invariant under K(V,) then we have

_ -t

P(hg™" My = P(hdl ™), Therefore, we can define P(AM) at z € M by
P(hy') = P ™),

where g is any element of G such that gV, =T, M.

Definition 3.3.1. Let V, be a subspace of T,(G/K).and P a polynomial
on 11(V,) which is invariant under X (V,). Then, for each submanifold M of
G/K of type V,, we define

IP(M):L?(hif)d;aM.

We remark that I” is invariant under G. If G/I( is a real space form,
then many of the integral invariants that are usually encountered are of the
form I®. For example, if P = 1 then I7{M) = vol(M).

With these preliminaries, the kinematic formula can now be stated as
below. Hereafter, unless otherwise stated, G/K will be an n dimensional
real space form. :

Theorem 3.8.2. {{13]) Let p and g be integers such that 1 < p,g < n and
p+q > n. Let P be an invariant homogeneous polynomial of degree ! defined
on the second fundamental forms of (p+ q — n) dimensional submanifolds
with | < p+ g —n-+ 1. Then there exists a finite set of pairs {Qa, Rataen
such that
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(1) each Q« is en invariant homogeneous polynomial on the second funda-
mental forms of p dimensional submanifolds,

(2) each R is an invariant homogeneous polynomial on the second funda-
mental forms of ¢ dimensional submanifolds,

(3) deg Qo +deg Ry =1 for each o,
(4) for all submanifolds M® and N® of G/K

fG IP(M N gN)dg = > I9%(M)I?= (N},

Let G be the full isometry group of G/K and O(T,(G/K)) the orthog-
onal group of the inner product space To(G/K). Then we will identify K
with O(7,(G/K)) via the isomorphism of KX to O(T,(G/K)) with a = a..
It is easy to check that if V, is any p dimensional subspace of T,(G/K) then
K(V,) = O(V,) x O(V;}). Here, we note that there are no homogeneous
polynomials of odd degree on II(V,) invariant under K{V;). The homoge-
neous polynomials of degree 2 invariant under K(V,) are spanned by the two
polynomials

Q) =S (). Q=3 (Z h:-“;) ,
_ k f

L1k

where 1 <i,j <p, p+1 <k <n,and if 2 < p < n-—1 these polynomials are
independent. Geometrically, Q;(h) is the square of the norm of the second
fundamental form, and Qy(h) is p? times the square of the mean curvature. .

We now turn to the group of orientation preserving isometries of G//JK.
The case where G is the full isometry group of G/K can be dealt with in the
same manner, while the value of constants will be twice.

Now we want to rewrite our kinematic formulas in the sense of above
polynomials @ (%) and Qp(h). Then Theorems 3.2.1 and 3.2.2 state:

Theorem 3.3.3. We have

f UM NgN)dg = C(n) ((n? — 20— I (M) + 1% (M) vol(N)
G
+ C(n)vol(M) ((n? — 20 — 1IA(N) + I92(N)}),
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and
/ 1M gN)Yg = C(n) (1% (M) + (n? - 2 — 2)I%(M)) vol(IV)
a
+ C(n)vol(M) (2I%(N) + (n® — 2n — 2)I%(N)) .

In Theorem 3.3.3, we present the final form in the case of degree 2 for
hypersurfaces of real space forms.

For the rest of this section, we define the homogeneous polynomials of
degree 2! on II(V,) by

rpk k1 k1 "
h};}lil hm2 . hmM
1 1
: iy hlm . hmm
Wy(h) =2') det | ,
ki Fc: Lz
h‘is}é 11 h’iza 1z hﬁzz 132
]
- hﬁzm h’lwz h’thr -
where the summation isover 1 < 4,49, ... iy < pand p+1 < ky, ko, ... ky <
n. We note that the (a, b)-component of above matrix is A; “;;"“V Y where [z]

means the greatest integer {x] not greater than z. It is remark that these
polynomials are characterized as the invariant polynomials which vanish on
the second fundamental forms of generalized eylinders. For a detailed clls-
cussion, the reader is referred to the paper [13] of Howard,

Theorem 3.3.4. ([5], [7]) Assume that 0 < 2A < p+¢q—n.
f (M gNYdg = S Cln,p,q, b, DIV (MY a0 (W),
0<k <! -
where each constant C(n,p,q, k,1) depends only on the indicated parameters.

For each submanifold M of G/K, we introduce the integral invariants
Ho (M) which are defined by

pay(M) = ™ (M).

Indeed, these integral invariants p,, (M) appear in formula of Weyl for the
volume of a tube [35].
‘We now turn to our case. If [ = 1, we have

Wa(h) = 2(Qa(h) — Q1 (1))

From Theorem 3.3.3, we have
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Corollary 3.3.5. Forn > 4,

/G PY%(MOgN)Ydg = 2n -+ 1)(n — 3)C(n) 1" (M)vol(N)
+2(n + D(n — 3)C(n)vol(M)I2(N).

For each & with 2 < k < n—1, let I, be the invariant polynomial defined
on the second fundamental forms of & dimensional submanifolds of G/K by

Up(h) = kQq(h) — Ca(h).

This polynomial is characterized as the invariant polynomial which vanishes
on the second fundamental forms of the k& dimensional spheres in R*. The
invariant polynomials on the second fundamental forms of & dimensional
submanifolds of G/ X has as a basis the polynomials U}, and W,. Using these
invariant polynomials Uy (h), Howard formally gave the following proposition:

Proposition 3.3.6. ([13]) If p+¢—n > 2 then

[ [Hero-n(MP O gN)dg = o(p, g, m) I (M)vol(V) + (g, p, n)vol(M) ¥ (N),
£ )

where c(p, q,n) are numerical constants depending only on p,q and n.

Using this invariant polynomial U,—o(h) = (n — 2)Q;(h) — Qa(h), we can
give a conclusive expression for ¢(n—1,n—1,n) from Theorem 3.3.3. Namely
we have

Corollary 3.3.7. Forn > 4,

f 2 (M gN)dg = n(n — 3)C(n) %=1 (M)vol(N)
[
+n{n — 3)C(n)vol(M) I (N).
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