Introduction

In this thesis we shall deal in two subjects. In Chapter 1 we study
some geometric properties of orbits of Lie transformation groups in compact
symmetric spaces. In the latter, Chapter 2 and Chapter 3, we apply the
theory of transformation group to integral geometry, and describe about
recent results for the Poincaré formula and the kinematic formula, which are
important objects to research in integral geometry.

A mapping from a manifold M to itself is called a transformation. If a set
G of transformations has a group structure when we define the product by
the composition of mappings, then G is called a transformation group of M
and we say that the group G acts on M. If M is furnished some geometric
structures, then we will only consider the transformations which preserve
the structures of M: In particular when M is a Riemannian manifold we say
that G acts isometrically on A if it preserves the Riemannian metric. It is a
well-known fact that in general the group of all isometries of a Riemannian
manifold is a Lie group. Now let G be a Lie group acting on a manifold M.
We say that G acts transitively on M if and only if for any points 2 and ¥ in
M there exists an element of G which translates « to . Then M is called a
homogeneous space. For z € M we consider the G-orbit through z, that is,
the set of all points of M which translated from x by the action of G. Then
each orbit is a homogeneous submanifold of M. The purpose of Chapter 1 is
to investigate the geometric properties of some orbits as submanifolds.

Let G/K be a Riemannian symmetric space. We denote by S the unit
hypersphere in the tangent space T,{G/K) at the origin o. Then K acts
isometrically on T,(G/K) as the adjoint representation. So for each point
H in §, the orbit Ad{K)H is a homogeneous submanifold of .S, which is
called an R-space. The R-spaces have been studied by many geometers and
obtained several remarkable properties as submanifolds in S, from the view-
point of differential geometry. For instance all R-spaces have parallel mean



curvature vectors, which was proved by Kitagawa-Ohnita {22]. Ohnita [27]
congidered the parallel translations of the normal bundles of R-spaces and
represent such parallel translations by the group actions. One can prove
the result of Kitagawa-Ohnita mentioned above by this. Heintze-Olmos [8]
also considered such parallel translations and described the normal holon-
omy groups of R-spaces. On the other hand K also acts isometrically on
G/K. For compact symmetric spaces G/K, Hirohashi-Song-Takagi-Tasaki
[12] and Hirohashi-Tkawa-Tasaki [11] considered some geometric properties
of R-spaces and orbits of K-action on G/ K.

We shall review some definitions and previous results concerning isomet-
ric group actions on compact symmetric spaces. Let (G, K) and (G, Ky)
be compact symmetric pairs. Then K, acts isometrically on G/ K7, which is
a compact symmetric space. This action is called a Hermann action. The
Hermann actions are examples of hyperpolar actions, which is defined in
the following. Let G be a Lie group acting isometrically on a Riemannian
manifold M. A closed submanifold ¥ of M is called a section, if all or-
bits of the action of ¢ meet % perpendicularly. The action of G on M is
said to be hyperpolar, if there exists a section which is flat with respect to
the induced Riemannian metric. The codimension of the orbit of highest
dimension is called the cohomogeneity. The isometric actions on compact
syminetric spaces of cohomogeneity one are another examples of hyperpolar
actions. Kollross [24] proved that the hyperpolar actions on compact sym-
metric spaces are Hermann actions or cohomogeneity one actions. In Section
1.3 we consider the parallel translations of the normal bundles of the orbits |
of Hermann actions on compact symmetric spaces and represent such par-
- allel translations by the group actions. Using this we can show that their
mean curvature vectors are parallel, moreover those of hyperpolar actions are
parallel.

In the latter two chapters we deal in the topies of integral geometry. Let
G be a Lie group acting isometrically on a Riemannian manifold M. Then
a. submanifold of M is moved by G-action. Consider a geometric character
for a submanifold of M and evaluate its average, as an integration, for every
position by G-action, Blaschke dealt this problem and called “integral geom-
etry”. These problems have originated with “geometric probabilities” such as
the Buffon needle problem.

Let G be a Lie group and K a closed subgroup of (. We assume that
G has a left invariant Riemannian metric that is also right invariant under
K-action, then G/K is a homogeneous space with an invariant Riemannian

2



metric. Consider now two submanifolds A and N of G/ K satisfying dim M+
dimN > dim(G/K), one fixed and the other moving under the action of
g € G. Then the intersection M N gN becomes a submanifold in G/K of
dimension (dim M +dim N —dim(G/K)) for almost all g € G. Now we define
I{M N gN), an “integral invariant” for the submanifold M Ng/N. Then it is
called the kinematic formula, named by S. S. Chern at first, that represents
the equality between the integral
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and some geometric invariants of submanifolds M and N. This integral has
been studied by many geometers from various viewpoints. When we put
I(M N gN) = vol(M N gN), the evaluation of (x) is especially called the
Poincaré formula. In the case M and N are submanifolds of a real space
form it was studied by Poincaré, Blaschke, and others (see [31] for refer-
ences), and obtained the result that the integrl is equal to a constant times
the product of the volumes of M and N. Under the complex submanifolds
in a complex projective space, Santald [30] showed the same result. For real
submanifolds in a complex projective space, it was investigated by Howard,
Kang and Tasaki ([13], [19], [20], [32], [33], [34]). Howard [13] formulated
the generalized Poincaré formula for Riemannian homogeneous spaces G/XK.
-And he asserted that if G is unimodular and acts transitively on the sets of
tangent spaces to each of submanifolds M and N, then the integral is equal
to a constant times the product of the volumes of submanifolds. For example,
when G/K is a complex projective space and M and N are complex sub-
manifolds of G/X, it holds this condition. This leads to Santald’s theorem.
In Chapter 2, we attempt to describe the Poincaré formula for two almost -
complex submanifolds M and & in an almost Hermitian homogeneous space
G/K. And we will show that it can be expressed as a constant times the
product of the volumes of M and N if K acts irreducibly on an exterior
algebra. Furthermore in the case where G/IK is an irreducible Hermitian
symmetric space, we can determine this constant. This is an extension of
Santalé’s conclusion.

Next we shall review some well-known results as the kinematic formula
besides the Poincaré formula. In the case where G/K = R® if we take
I(MngN) = u(MNgN), an integral invariant from the Weyl tube formula,
then the integral form () leads to the kinematic formula of Chern [5] and
Federer [7]. In particular, let M and N are closed surfaces in R®, and we
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take

I(MﬂgN)zf Kk ds,

MngMN

where & is the curvature of the curve M N g/N. Then, () leads to the kine-
matic formula of Chen [3]. Afterward Howard [13] defined integral invariants
induced from invariant homogeneous polynomials of the second fundamental
form of M N ¢gN, and he achieved more general kinematic formula, where G
is unimodular and acts transitively on the sets of tangent spaces to each of
M and N. He put the kinematic formulas listed above into a uniform shape.
However, the reader must have a nontrivial calculation.

In Chapter 3, we attempt to obtain the explicit expression of kinematic
formulas stated by Howard. Let M and N be hypersurfaces of a real space
form, We denote by h and H the second fundamental form and mean cur-
vature of M N gN respectively. When we put

I(M i gN) = f ],
‘ MrgN

and :
roragh) = [ Ha
MngN _

as integral invariants of M N gN, we will express the kinematic formula by
integral invariants of A and N in Section 3.2. In the case where G/ =R,
these formulas become the kinematic formula of Chen. [3]. In Section 3.3, we
- will give two corollaries as an application of our theorems, and emphasize
that in this case we have obtained the complete form of formulas asserted by
Howard.



