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 Abstract 
 

One of the primary issues on landform evolution in mountainous terrains is what 

rainfall and topographic conditions affect the location of channel heads. Although 

many studies discussed channel initiation based on models or field observations, 

analysis filling the gap between models and observations is required for the 

better understanding of channel initiation mechanism. Many researchers focused 

on the conditions of shallow landsliding in humid forested mountains, while few 

studies discussed the role of bedload transport below channel heads. The aim of 

the present study is to analyze the thresholds for channel initiation by bedload 

transport based on the hydro-geomorphic observation in channel heads. 

The investigated area is located in the eastern Ashio Mountains, eastern Japan 

(Awano Town, Tochigi Prefecture). The area is underlain by Triassic bedded 

chert, and characterized by dissected topography. Shallow landslides are rare in 

the investigated area. Mean annual air temperature is 12.5 °C, and average annual 

rainfall is 1,476 mm. Area-slope relationship in 24 channel heads shows an 

inverse correlation as A = 747 Sc
 – 2.47 (R2 = 0.56), where A is source area (m2) and 

Sc is local channel gradient below a channel head. 

Runoff observation was conducted in a third-order basin (CL basin) and two 

first-order watersheds (C1 and C3) in CL basin. Discharge was manually 

measured at 19 sites in CL basin for seven cases of base-flow condition and two 

cases of storm-flow condition. Flumes and water-depth probes for automatic 

runoff observation were installed at the downstream side of channel heads in C1 

watershed (C1L), the downstream side of channel heads in C3 watershed (C3U), 

and the confluence with third-order stream in C3 (C3L). Tensiometers were 
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installed on a slope segment in C3 watershed. Hydrological observations were 

conducted mainly from June to October for three years (2000 – 2002). Bedload 

transport was simultaneously observed with the bedload traps installed at the 

three sites (C1L, C3U and C3L) from 11 June 2000. 

Manual measurement of discharge at 12 springs in CL basin showed a strong 

correlation (R2 = 0.79, p < 0.001) between drainage area and spring discharge 

during the largest storm flow. Observation of subsurface water in the slope 

segment revealed generation of subsurface storm flow. Since surface topography 

controls the flux of subsurface storm flow, the spring discharge, affected by 

subsurface storm flow, increases with increasing drainage area. 

In the case that the peak discharge, Qp, produced by a storm event is linearly 

proportional to the drainage area, A, and effective rainfall intensity, IR, the 

rainfall-runoff equation is expressed by Qp = kp IR A, where, kp is a dimensionless 

coefficient on runoff peak generation. Relationship between rainfall intensity and 

peak specific discharge, Qp/A, at the two channel-head sites (C1L and C3U) was 

analyzed with simple least squares linear regression. The maximum 4-hour 

rainfall, R4, which maximizes the coefficient of determination (R2 = 0.85), is 

suitable for the effective rainfall intensity in the investigated area. This analysis 

yielded the rainfall-runoff equation of Qp/A = 68.7 ×10-6 (R4 – 0.014). 

Plots of bedload yield against peak discharge indicated that bedload yield 

abruptly increases when peak discharge exceeds a critical value, Qcr. Critical 

discharges, Qcr, were estimated to be 0.035 m3 s-1 at C1L site and 0.007 m3 s-1 at 

C3U site. These values of critical discharge satisfy a power function of channel 

gradient, that is Qcr = 0.0036 Sc
-2.37. 

In the condition that the peak discharge produced by a storm event, Qp, is 
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equal to the critical discharge for bedload transport, Qcr, thresholds for bedload 

transport is expressed by ASc
2.37 = 52.4 / (R4 – 0.014). In comparison with the 

observed area-slope data at 24 channel heads and the above thresholds for 

bedload transport, R4 = 90 mm (equivalent to 3-year rain) appears to be the 

critical rainfall for bedload transport immediately below the channel heads. In 

most channel heads except for some steep channel heads, bedload transport 

occurs in relatively frequent rainfall (return periods of less than 30 years). 

 

Key words: channel initiation, hydrogeomorphology, bedload transport, runoff 

generation, chert, humid forested mountain, return period 
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