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It is shown that any Feynman amplitude of pole diagrams at zero invariant mass does indeed possess the
O(4) symmetry and that there are poles which do not correspond to real particles.

I. INTRODUCTION

ECENTLY, it has been recognized that Regge
trajectories occur in families with definite require-
ments on the spacing of members of a family and on the
behavior of residue functions at zero values of the
invariant mass.!? These parent-daughter phenomena
have been elucidated by Toller,® and by Freedman and
Wang,* exploiting the 0(3,1) or O(4) invariance pos-
sessed by the equal-mass forward-scattering amplitude.
These conclusions have been derived only from the
Lorentz-invariance and analytic properties of scattering
amplitudes, without specific assumptions of dynamical
behaviors. It seems, however, that there are some con-
fusions about the physical interpretation of these con-
clusions, For example, it is not clear whether or not
daughter trajectories really correspond to ‘‘real” par-
ticle trajectories.’ Furthermore, it has been said® that
we do not see any immediate possibility of deriving the
0(4) symmetry from a Lagrangian approach. The aim
of this paper is to show that any Feynman amplitude of
pole diagrams at zero invariant mass does indeed
possess the O(4) symmetry and that there are poles
which do not correspond to real particles.

II. SCALAR-SCALAR SCATTERING

We begin by discussing a simple example. Massless
particles with spin 2, ““gravitons,”” are described by the
following set of equations:
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In quantization of massless particles there are some
complications as in the case of the photon. We must

1D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 44,
%;)683) :(]1963) [English transl.: Soviet Phys—JETP 17, 720

963)7.

2D.Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967);
Dl. Z7.)Freedman, C. E. Jones, and J. M. Wang, sbid. 155, 1645
(1967).

8 M. Toller, Nuovo Cimento 37, 631 (1965) ; University of Rome
Reports No. 76, 1965, and No. 84, 1966 (unpublished) ; M. Toller
and A. Sciarrino, University of Rome Report No. 108 1966
(unpublished).

¢ D.Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).

5 R. Oakes, Phys. Letters 24B, 154 (1967); L. Durand, III,
Phys. Rev. 154, 1537 (1967) ; Phys. Rev. Letters 18, 58 (1967).

6 G. Domokos, Phys. Rev. 159, 1387 (1967).

173

regard Eq. (4) as a supplementary condition and use the
indefinite metric. The result obtained by the quanti-
zation which is necessary in this paper is the expression
of the propagator of the ‘“‘graviton.”” The expression in
the momentum space is given by
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)
which is compatible with the conditions (2) and (3)

(de"m: Qusurvivay Quprivy= 0).

Then, the Feynman amplitude of the pole diagram
(Fig. 1) where all particles 1-4 are spinless is

2k)* 202 (2k)* 1
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where k£ and 6 are the momentum and the scattering
angle in the c.m. system, respectively.® The essential
point of (6) is that it contains the pole term proportional
to Py(cosf) with the ratio 1/8 to the term proportional
to Ps(cosf), which is exactly the ratio derived from the
O(4) symmetry.

Next, we go to the case of massive spin-2 particles, in
which we have the following equation instead of Eq. (1):
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Fic. 1. Diagram of a pole amplitude.

7 Details will be published elsewhere. Our results are different
from those of S. N. Gupta, Proc. Phys. Soc. (London) 63, 681
(1950). His starting point is different from our Eqgs. (1)-(4). See
also S. Weinberg, in Brandeis Summer Institule in Theoretical
Physécs (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965),
Vol. 2.
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8 We take the interaction as geéuu,¢9,,0,00. Even if we had
taken another interaction, the difference would be the term which
becomes zero as s becomes zero. So the following arguments
remain unchanged.
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and the others are the same as (2)-(4). The correct

propagator is as follows®:

dﬂll‘2v”l”2 (P) = (6541”1 F2V2+ Snwzsum)
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where s=—p? and §,,=08u+ pups/u2. The term pro-
portional to (s—u2) which is zero on the mass shell is
important to the discussion of the detailed properties of
amplitudes® and Eq. (7) is compatible with Egs. (2)
and (3) (duiugpirs= Guguirrey Guwrivy="0). Usually this term
is dropped and the propagator is incompatible with
Eq. (3) at ss#u2 The Feynman amplitude of the pole
diagram (Fig. 1) is

s— u?
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The ratio of the term proportional to P, and Py at s=0
is again equal to }. The essential difference between (6)
and (8) is the fact that in Eq. (6) two terms are both
poles, while on the other hand, in Eq. (8) only the term
proportional to P, is the pole term.

These facts show that at s=0, a Feynman amplitude
corresponding to a pole diagram does have the O(4)
symmetry irrespective of the zero or nonzero value of
the particle mass. For the case of a zero-mass spin-2
particle, there appears a pole at s=0 for the /=0 partial-
wave amplitude. However, this does not correspond to
a real scalar particle of zero mass: When the particle
line is external in Feynman amplitudes, the wave func-
tion for the particle satisfies Eqs. (1)-(4), and behaves
only as a massless particle of spin 2. The spin-0 com-
ponent appears only in intermediate states as a pole
proportional to Po(cosf). So we call this pole a “‘shadow
pole.”

The above argument can be easily extended to the
case of arbitrary spin. The propagator of massless
particles with arbitrary integer spin can be calculated as

9L, M. Nath, Nucl. Phys. 68, 660 (1965); S. C. Bhargava and
H. Watanabe, ibid. 87, 273 (1966) Our results correspond to the
limit (x—, §—w) of their results. This limiting process is
necessary for the consistency of the theory. Details will be
published elsewhere. For the same reason, the propagator of
particles with spin § becomes the following:
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which is compatible with the condition v,¢/,=0 (y,du,=0).
1Y, Takahashi and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 9, 14 (1953); 9, 50 (1953).
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follows:
(n )l
o S lemm, O

where # is the spin of the particle, [27] is » pairs of
Oui; and 7 pairs of 8,.; {n—2r} is (n—2r) pairs of
u:v;, and C means all possible combinations. Then the
Feynman amplitude of Fig. 1 is

2( )Zu

[n 2]
diy), L=~ (—
s r=0

f(k, cos)=

—C t(cosh) , (10)

where C,! is the Gegenbauer polynomial. Equation (10)
can be expanded in terms of P;(cosf) as follows:

27 (n')2(2k)%g?
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which is exactly the result derived from the O(4)
symmetry. Note that C,!(z) is the spherical function of
a four-dimensional space, that P,(z) [=C,"2(2)] is the
spherical function of a three-dimensional space, and
that the single-pole contribution can be expressed
simply in terms of the C,’s.

We can also discuss the case of the massive inter-
mediate particle. The part of the propagator composed
of only the Kronecker é contributes even at s=0, while
the other part composed of p, becomes zero at s=0.
The former part of the propagator of the massive
particle is the same as Eq. (9), because this part is
determined by the symmetric and traceless properties
of the propagator. The propagator adopted usually
does not satisfy these properties. Terms such as the
second term of Eq. (7) are essential for these prop-
erties. Using the correct propagator, we again obtain
the ratio of the partial waves at s=0 that is derived
from the O(4) symmetry.

J(k, cosf)=

_pn_2+...>’ (11)

III. NUCLEON-ANTINUCLEON SCATTERING

We proceed to discuss the case of N-N scattering
which is extensively examined in Refs. 1, 3, and 4. The
vertex factors for the coupling of the nucleon-anti-
nucleon system to the intermediate particle are linear
combinations of P, - P,.,, and Py, * - Py, for the
states C=P=(—) ,75‘)’,‘1 ,,3 P, for the states P=C
=—(—)*, and 5P, P,, for the states P=—C
=—(—)* In these expressions, P,= (ps—p1)u at the
1,2 vertex, and P,= (ps— p4), at the 3,4 vertex. We can
easily construct the pole Feynman amplitudes as in the
case of the scalar-scalar scattering.

Concerning the coupling type of Py, - - P,,, the calcu-
lation is exactly the same as above, and gives

Julk,z)=c(1/5)Ca(2), (12)
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where » is the magnitude of the spin of the intermediate
particle. This is exactly of type I as it is called by
Toller, Freedman, and Wang. For the coupling type of
YuPuy - - Pu, and the crossed term, we obtain also
Eq. (12), i.e., the type I, ignoring the term proportional
to s, which becomes automatically zero at s=0. After a
similar calculation, we obtain the following results for
the coupling vsyu Puy* * * Pu,:

S fo T (e 1)/ (21, (13)
which is the ratio required for type II. The situation is
quite different for the coupling <ysP,,-- P, The
amplitudes become zero as s becomes zero. This
phenomenon is called ‘““‘evasion.”

Although until now we have been describing the
mesons by symmetric tensors [ (% 7,3 7) representation of
the homogeneous Lorentz group |, we can also describe
them by other quantities. Spin-1 mesons, for example,
can also be expressed by an antisymmetric tensor of the
second rank [ (1,0)4(0,1)],

(D_."'z)e[#.v}= 0, (14)
€lp,v]= —€lr,ul, (15)
Operu,n=0. (16)

We obtain the following amplitudes as the contribution
from the pole diagram!:

25— 8m?

=1 — 1,2,
fOJ =38 )
R
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Sfa?T=13g )
S

(18)

when the mass of the intermediate particle is zero.
The ratio fao/fo at s=0 is 2, which was obtained in
the case “type III” of the O(4) symmetry. The parities
of fas and fo are opposite to each other and this fact
is called parity doubling. We want to stress the fact
that both pole terms of fo and f. are the contributions
of the pole diagram of only one particle. We can under-
stand this situation from the equaltity Yvsoudvsowy
=JoMou. Investigating the cases of all kinds of
interactions, we can conclude that the concep. of parity
of this massless particle makes no sense even in a theory
with parity conservation. We can also obtain the ratio

11 We have taken gfo e, 51 as the coupling. The propagator is
calculated to be
@ lurpsl, bval (®)
e [ T e S SO W e S
S—[Lz 2 \Yp1v1%u2v2 B1v2¥p2vl 2#2 KIVIL B2 V2
+?l‘]P"15ﬂ2"2—6“1V2P“2P”1_?I‘IPVZBI‘Z“I)]7 MZ#O

and
Quzual, brra) () = (1/5) (5 Gup1dumve— Suppadun) I, w2=0.
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feo/ fo=2 at s=0 when the intermediate particle is
massive.

Higher-spin (j>1) particles can be described by this
type [G(U+D), (/- D)+ G(G—1), 5(j+1))] and the
ratio of each partial wave at s=0 is exactly the value
predicted by the O(4) symmetry. Spin-0 particles can-
not be represented by this type, and spin O-spin 0
cannot couple to the particle described by this type. In
the Regge-pole theory this fact still remains. So it
seems difficult to classify the = meson as type III.

We summarize the above statements as follows:

PuPuyPuyy YurLuy Py, typel, (19a)
Vs¥urPus Py type II,  (19b)
YsPpuy+ Py, evasion, (19c)
OupaPus* *Prnps type IIT, (19d)

where the left-hand side represents the interaction
vertex.

IV. GENERAL CASES

We can examine more general cases with particles of
arbitrary spin as internal and external particles. In
general, a free particle is described by a unitary repre-
sentation (s,m) of the inhomogeneous Lorentz group,®
and for a definite s, 7 there is one unique representation
(apart from the equivalences). To express a particle of
spin s in a covariant way, however, we use a field which
transforms according to a representation (j,k) of the
homogeneous Lorentz group, where j and k can be
any pair of integers or half-integers, which satisfy
j—k<s<j+Fk [if s is an integer (or a half-integer),
j+%k must be an integer (or a half-integer)]. For a
definite spin s, different expressions are equivalent to
each other for a “free” particle. However, there remains
the question of whether or not they are equivalent in the
presence of interaction. We shall show that (j,k)
corresponds to (#,M) of Toller, Freedman, and Wang,
where n= j+k and M = j—k. This means that fields of
different (4,k) are not equivalent to each other when
they appear as virtual intermediate particles. To prove
this correspondence, it is more transparent to use the
spinor representation® than the tensor representation. A
field (j,k) is expressed by Xg...a;8,...5,, and an inter-
action by Xae..geelaeeegeor@ieeepoeepa®s + - pa®, which is
Lorentz-invariant. This means that ¢-:-¢---p---
transforms as (4,k). Then the problem is how to con-
struct a state (4,k) from two particles at (p1+p2)u=0.
This is a purely group-theoretical problem and was
treated by Freedman and Wang in Ref. 4, Eq. (25).
Thus we conclude that the amplitude is the same as that
of Ref. 4, unless it becomes zero.

12 E, P. Wigner, Ann. Math. 40, 149 (1939).
18 See, for example, H. Umezawa, Quantum Field Theory (North-
Holland Publishing Co., Amsterdam, 1956).
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V. CONCLUSIONS

We have shown that the Feynman amplitude of a
pole diagram mediated by a particle (4,k) at s=0 is the
same as the result of the O(4) symmetry, and that, in
addition, (4,k) corresponds in a one-to-one manner to
(n,M) introduced by Toller, Freedman, and Wang.
With these considerations we have concluded that it is
difficult to assign the = meson to the class III.

Another point we want to stress is the fact that the
pole terms appear in more than one partial wave, even
if a single particle is exchanged. This fact indicates that
there are poles in the S matrix which do not correspond
to a ‘“real”” particle. We call this pole a ‘“‘shadow pole.”
The fact that there is a pole which does not correspond
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to a ‘“real” particle forces one to modify the usual
assumption that a pole in the S matrix corresponds to a
real particle.

The relations between shadow poles and abnormal
solutions of the Bethe-Salpeter equation, and the
phenomenological effects of shadow poles will be dis-
cussed in subsequent papers.
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The production angular distributions for ¥,*(1385), ¥¢*(1520), and ¥1*(1660) in K—-p scattering are
characterized by forward and backward peakings. As the single-particle-exchange model is unable to account
for these features, we have attempted to explain them by considering rescattering square diagrams. We find
that the use of a coincident-pole method leads to a simple prescription for evaluating the production angular
distributions. Our results show agreement with the observed data when spin-parity assignments are 3+ for

Y1*(1385) and §~ for ¥*(1520, 1660).

1. INTRODUCTION

N K—p scattering, the following quasi-two-body
final states have been observed'—3:

K~ p— V*+(1385)+7—, 1)
K+ p— V1*(1385)+7+, )
K~ p— ¥¢*(1520)+1°, 3)
K~ p— V1*(1660)+7°. )

In all these processes, a characteristic feature of the
center-of-mass production angular distributions for the
various V* is that there is an approximate symmetry at
about 90° due to the presence of both forward and back-
ward peakings. Such a characteristic defies explanation
in terms of either the one-meson-exchange model or the
one-baryon-exchange model. For reaction (1) only K*°

1 Birmingham-Glasgow-London (I.C.)-Oxford-Rutherford Col-
laboration, Phys. Rev. 152, 1148 (1966).

2W. A. Cooper, H. Filthuth, A. Fridman, E. Malamud,
H. Schneider, E. S. Gelsema, J. C. Kluyver, and A. G. Tenner, in
Proceedings o) the Sienna International Conference on Elementary
Particles and High-Energy Physics, 1963, edited by G. Bernardini
and G. P. Puppi (Societa Italiana di Fisica, Bologna, 1963), p. 160.

3R. P. Ely, S. Y. Fung, G. Gidal, Y. L. Pan, W. M. Powell, and
M. S. White, Phys. Rev. Letters 7, 461 (1961).

can be exchanged, for (2) only the nucleon can be
exchanged, and for (3) and (4) both can be exchanged.
Therefore, for (1) and (2) we cannot hope to get all the
observed features from a one-particle-exchange model.¢
For reactions (3) and (4), one may combine the two
single-particle-exchange diagrams and use ad ’oc,
drastic, form factors to obtain the observed structure.
We have shown® that in such cases the rescattering
square diagrams can offer a natural explanation. The
purpose of this paper is to consider such diagrams for
reactions (1)-(4), to explain the structure of the pro-
duction angular distributions and thereby to fix the
spin-parity assignments.

2. METHOD OF CALCULATION

The rescattering diagram for the general process
A+B— C+D is shown in Fig. 1. The various momenta
have been labeled in the diagram. In Table I, we sum-
marize the intermediate states possible for the reactions
(1)-(4). The invariant amplitude for the diagram shown

(1;2%) M. Gupta and B. K. Agarwal, Nuovo Cimento 40, 434
(1; 6(;.)'1). Singh and B. K. Agarwal, Nuovo Cimento 54A, 497



