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The dynamics of a relativistic string made of spinning material is discussed in two dif-
ferent formulations. The first is a manifestly covariant formulation under a gauge trans-
formation. The second is a Hamiltonian formalism which enables us to make the transition
from the classical to the quantum description in a coherent way. The Lagrangian is also
constructed. The results of our investigations are as follows: (1) The mass spectra here
coincide with those of the Neveu-Schwarz model. (2) The model is ghost-free. (3) The
Poincaré generators IM*” and @ # are constructed. The quantization is shown to be consis-
tent with Lorentz covariance if the dimension of space-time is 10 and the Regge intercept

is 3.

I. INTRODUCTION

The string picture!’? of dual models has two im-
portant aspects. The first is the substantiality of
the picture, which helps us to figure out intuitive
images and gain an insight into a dynamical mech-
anism. The second is the mathematical refine-
ment of the formulation. In particular, in the
treatment of gauge invariance, which is the funda-
mental clue in understanding dual models, one can
take advantage of techniques developed in gravita-
tion and Yang-Mills theories.®*** In a recent work
Goddard, Goldstone, Rebbi, and Thorn® have
greatly improved our understanding of the Vene-
ziano model. One improvement is the simplifica-

tion of the ghost-eliminating mechanism by Brower,

and Goddard and Thorn,® which is now understood
as given by the existence of a certain gauge where
no ghost appears.” Another is the relation be-
tween Lorentz covariance and the dimensionality

of space-time, d. In their string model they have
shown that the quantization is consistent with
Lorentz covariance if d=26,

In view of these aspects, it is a challenging
problem to extend the string picture to the Neveu-
Schwarz model® (NSM). In a previous paper® we
showed a manifestly gauge-invariant formalism
of the string model, which reduces to the NSM in
a special gauge. In the present article, we further
develop the argument and give the Hamiltonian and
the Lagrangian formulations, which are useful for
various purposes, i.e., the quantization of the
string motion, the incorporation of the interaction
with external sources, etc.

The model we consider is the one based on a
string on which Lorentz vector quantities (spins)
are continuously distributed.!® The system is in-
variant under a gauge group. The generalized
Hamiltonian formalism developed by Dirac,® then,
enables us to provide a quantization procedure.
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The spectra of the string motion are shown to be
those of Neveu and Schwarz. All the negative-
normed particles (ghosts) and the tachyon on the
leading trajectory are eliminated by a certain
choice of the gauge. Lorentz covariance requires
that the dimension of space-time is 10 and the
Regge intercept is 3, as expected from the dual-
model analysis.!

In Sec. II, we give a manifestly covariant formu-
lation in which the gauge transformation proper-
ties are transparent. Although this formulation
was already presented in a previous report® ex-
cept for some refinements, we include it here to
make the discussion self-contained. The reader
who read the previous work can go directly to
Sec. III.

In Sec. III, we construct the Hamiltonian which
contains all the arbitrariness due to gauge invari-
ance. This Hamiltonian formalism provides a way
to quantize the model and defines the path integra-
tion in the functional formalism. The gauge-in-
variant Lagrangian is also constructed from the
Hamiltonian. The explicit form, which turns out
to be very complicated, is shown in Appendix A.

The quantization and the Lorentz covariance are
discussed in Sec, IV. The final section is devoted
to comments and further outlooks.

II. MANIFESTLY COVARIANT FORMALISM

In this section we present, for the mechanics of
a string, a formalism in which the gauge invari-
ance is obvious.

In order to construct a model which reproduces
the NSM in a special gauge, one has to consider
the Lorentz-vector position field X*(£)
(r=0,1,...,d- 1) together with a two-component
Lorentz-vector field

0= (34).

where & = (£, £2) is a parameter specified below.
We know, moreover, that S¥ has to be trans-
formed with the dimensionality index —% under the
conformal transformation. In what follows such a
quantity is referred to as the conformal spinor.

One of the difficulties of incorporating the con-
formal spinor into the dynamical system is the
nonexistence of the spinor representation under a
nonlinear coordinate transformation. However,
we can overcome this trouble, just as in gravita-
tion theory, by introducing an extra field V¢ (£)
(a,i=1,2), the zweibein field, an analog to the
vievbein field in gravitation theory.'?

In the d-dimensional Lorentz space, we con-

FIG. 1. The world sheet X" (¢) swept out by the string
a-b. At each point on the world sheet, a tangent surface
(né, né) is associated. S¥(¢) is the conformal spinor
on the tangent surface.

sider the motion of a string on which S* is distrib-
uted. The two-dimensional manifold swept out

by the string is called the world sheet (Fig. 1).
Furthermore, we assume that the parametrization
(&%, £2) of the world sheet is given by the metric
tensor

gH=4ilSV,0,5-05 7,5+~ )l+}o, X0, X
(2.2)

with
ShogiTy, (2.3)

where S* is an anticommuting field even in the un-
quantized system [otherwise (2.2) is meaningless].
The zweibein field V$ is employed in (2.2) as the

2 X2 matrix

V=0, V¢ (2.4)
with

01 01
01=0'1=<1 0), 02=—02=<_1 0). (2.5)

The fields X#, S*, and V{ are all assumed to be
real.

The transformation properties of g;; are deter-
mined on two distinct gauge groups defined below.
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To a given parametrization of the world sheet
(£,£2), we associate a conformal space at each
point £, which we call the tangent surface at £, If
the coordinate on the tangent surface at § is rep-
resented by 1, = 0}, n%), the conformal transfor-
mation C, on the tangent surface® is defined by

Ce: dn=A% M) dn}, (2.6)
with

A% (mg)=expl pe(@g)]

<cosh9§(17§) sinhﬂg(n§)> @.7)
sinh6, (1) cosh6,(n;)/,,’ ’

where . and 6, are real and arbitrary functions.
The functional forms of 1, and 8, depend on §
also. In the following we use simplified notations
A% (£), w(&), and 6(¢) for A% (), e(n), and
6¢(m,), respectively. The conformal spinor S(£)
is defined on this tangent surface. Under (2.6),
related quantities are transformed as

g
XHE(E)~X 1),
VHE)~ A% (E)VEE),
SH(E) - Q(E)SH(E),
where
(&) =exp[-3 p(¢)] exp[-36(¢)o,] . (2.9)

The metric tensor g;; is invariant under I, C,.
Under the reparametrization 7' of the world
sheet

T: g =£"(), (2.10)

where &’! is an arbitrary function, and both X*
and S* are assumed to be scalar, whereas V}{ is
to be a vector with respect to the suffix ¢ only,
i.e.,

T: XF(E)—-XH(E),
SH(E)~SH(E"), 2.11)

7z
vie)- 25 vien.

Therefore, g;; is a second-rank tensor under 7.
It may be worthwhile to point out that, in con-
trast with the case in gravitation theory, the co-
variant derivative is unnecessary in (2.2) due to

the special situation in two-dimensional space.

(2.8)

A. The Model

The equations of motion for our string are given
by

| oo

2 1 08,
BE7 [(-—detg)”z <2glza(a‘s)

g m 08y
15(0,S) =228(9;5)

1 dg, 9g. 9g,
- Caet g7 (281 58 ~8u B ~gu 20t ) =0,

(2.12)

3 1 981,
at! [(-detg)“2 <2g‘2 8(8;X)

981s _ 98y, -
_g“a(aiX) g”a(a,.X) 0.

(2.13)

One can easily confirm the invariance of (2.12) and
(2.13) under

I,C  XT (2.14)

because (2.12) and (2.13) are formally obtained
from the Euler equation if one assumes the action

=2 f (~det g)/2a% .

Now, the model will be determined if we specify
what the zweibein field V§is. We require that V¢
is determined by the following subsidiary condi-
tions:

&i;=hEM,ViVy, (2.15)

8,XV0,5=0, (2.16)
where g;; is given by (2.2) and

Vi=oevi, Vivi=el. (2.17)

The inverse zweibein field Vi to V¢ is necessary
to make (2.16) covariant under (2.14). The new
quantity k(Em,, (0, == =1, M,=7y =0) is the
metric tensor on the tangent surface at £. Since
we have five unknowns (V$ and k) and five inde-
pendent relations [ (2.15) and (2.16)], the zweibein
field is solvable as a function of S¥, X*, and their
first derivatives.

Then, V{(S, X) so obtained must be substituted
into (2.12) and (2.13) after the partial derivatives
8/8SH, 8/ X" etc., are performed with the V’s
being regarded as independent of S* and X*. This
determines the model.

The equations of motion defined above are no
longer derivable from a simple Lagrangian such
as L=2(-detg)!/? because of the conditions
(2.15) and (2.16). The invariance of (2.12) and
(2.13) under (2.14), however, is guaranteed by the
covariance of the subsidiary conditions.

The dynamical content of (2.15) may be inferred
from an analogous relation g, = V7, VEn,s
[a,...,v=0,1,2,3] in gravitation theory. The
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relation (2.16) implies the orthogonality of the
polarization of the string constituent to the ve-
locity at a given point of the string.

B. Choice of the Gauge

Contrary to the complicated appearance of the
equations, the model is exactly solvable if a suit-
able gauge is chosen.

To do this one recalls that, in any two-dimen~
sional geometry, one is able to choose the T-gauge
where the metric tensor is diagonal, i.e.,

&i; =hn,,ViVi=gE)ny,, (2.18)

where 1,, =-17,,=1 and 1,,=71,, =0. Moreover, one
has an extra gauge C, at each §. It is an easy
exercise to show that, if the £ parametrization is
orthogonal as in (2.18), the 1, coordinate on the
tangent surface at £ can be taken to be

Vi()=06¢
for all .

In this gauge Eqgs. (2.12), (2.13), (2.15), and
(2.16) turn out to be

(2.19)

9_Sk=0,
(2.20)
8, S§ =0,
89,0_X*=0, (2.21)
i31f+31+ 38, X)*=0, (2.22)
iS,0_8,+3(8_ X)?=0,
9,XS,+8,8,X=0,
(2.23)
9_XS,+S5,8.X=0,
where we have introduced new parameters
o*=5(E £ %)
and (2.24)
9
+ =50t

It should be noted at this point that our model
still has a gauge invariance under an over-all con-
formal transformation 7,, in which C, and T are
performed simultaneously keeping (2.19) un-
changed. The transformation property of various
fields are obtained from (2.8) and (2.11). Namely,
corresponding to 7, ,

ag't=A% (E)ag! (2.25)
one obtains
XH(E) - XH(E),
(2.26)
SH(E) - (&) SH (),
where

Q) =exp[- 1) exp[- 3 (&) 0,],

B cosh ¢(£) sinh @(&)
Ay (€)= exp A (6)] <sinh () cosh gl )>

It is (2.26) that is adopted in the usual formulation
of NSM.

Finally we remark that (2.22) and (2.23) are con-
ditions corresponding to L and G in dual models,
respectively.

(2.27)

ij -

C. The Super Gauge

There remains a crucial point to be settled. A
remarkable aspect of our model is the existence
of an extra invariance.!® The Eqs. (2.20)-(2.23) are
invariant under a new transformation

S5, +f(0,)8, X,

2.28
S,~S,+gl0.)o_X, ( )

o] O
X~ X—4i U +fsl’do+5 gs;do> . (2.29)
where f and g are small but arbitrary functions
which anticommute with S, .**
The invariance of (2.20) and (2.21) is obvious.
The variations of (2.22) and (2.23) can be calculat-
ed straightforwardly to be

5[Eq. (2.22)] =-2i8, [f(8,X-S)]=0, (2.30)
8[Eaq. (2.23)] =44 [48,5, S, + 5 (8, X)?]=0, (2.31)

and similar relations hold for S, and 8_ X .

Note that the right-hand sides of (2.30) and (2.31)
are proportional to the subsidiary conditions (2.23)
and (2.22), respectively. The invariance implies
that the Hamiltonian (although it is not explicitly
given here) and the right-hand sides of (2.22) and
(2.23) form a closed algebra through the Poisson
bracket (see Sec. III).

As will be discussed in the next section, it is
this algebraic property which allows us to choose
a component of S¥, say S} =3(S{+S§#™*), to be

S}=0. (2.32)

Similarly, the existence of T, allows us to choose,
say, X" =3(X°+X%"1) to be

X+=\/§-P+§l,

where p* can be identified with a light-cone compo-
nent of the total string momentum.

We are now ready to solve the system if we im-
pose the boundary conditions

(2.33)

aZXuIE,z:o,vr:O’
(Sh 'S%)I€2=o,1r=0'

(2.34)
(2.35)

Taking the transverse components X and § as in-
dependent, one then obtains from (2.20)-(2.23)
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-1
S‘_\/—Z—p+

8,X- 8§,

1

e > 1 =

1 .
3, X':\/.2_p+ [le 9,8, +3 (2.36)

S‘é(gl’ 52):Sli(gp _52);
where X~ =4(X°- X% 1) and §7=£(S%- S5¢-1),

III. HAMILTONIAN AND LAGRANGIAN

The purpose of this section is to investigate the
inverse problem to the one developed in the pre-
vious section. In a certain gauge, we have a set
of simple equations of motion (2.20) and (2.21),
and a set of subsidiary conditions (2.22) and (2.23).
Starting from these equations as given, we try to
obtain a Hamiltonian which contains all the neces-
sary arbitrariness caused by the gauge transforma-
tions, i.e., both the conformal and the super
gauges. Then the gauge-invariant action will be
obtained. To do this let us first review the gen-
eralized Hamiltonian formalism developed by
Dirac® and Faddeev,* on which our argument is
based.

A. Generalized Hamiltonian Formalism

For simplicity, we restrict the discussion to
a system having a finite number of degrees of
freedom.

Let us consider a Lagrangian L(g, ¢) having a
number of gauge invariances. The canonical mo-
mentum is defined by

oL

pi_aq- (i=172""’N)‘ (3'1)

i

When L has gauge invariances, (3.1) is generally
singular, so that one cannot solve for the &;’s

as functions of ¢ and p. Instead, one obtains a
set of conditions among the canonical variables

(pa(q7p)=0 (a=1’2,""M)7 (3'2)

which defines a surface A in the phase space.
Dirac showed that one can construct such a Hamil-
tonian and subsidiary conditions that obey the fol-
lowing rules:

(a) ¢, (@a=1,..., M) are independent and irre-
ducible in the sense that an arbitrary function f
vanishing on the surface A can be expressed as

M
f=§lu,,(q,1>)<pa(q,1>)- (3.3)

(b) The ¢’s and H form a closed algebra through
Poisson brackets,

[goa’ (pb]P =EC§1:<PC ’
c
[H7 (pu]P =§>Cab¢b;

(3.4)

where the C’s are arbitrary functions, and [ , |p
stands for the Poisson bracket.

Dirac then showed that the Hamiltonian in the
general gauge is given by

M
H=H+3,0,9,, (3.5)
a=1

with arbitrvary functions v,. To choose a special
gauge means to choose a special function for v,.

The equation of motion for any function of the
canonical variables is given by

I:‘=[F) HI]P
=[F’H]P+Zva[F, (pa]P' (36)

The subsidiary conditions ¢, =0 must be imposed
after the Poisson-bracket calculations are per-
formed in (3.6). The observable f, which is de-
fined to be gauge-independent on the surface (3.2),
satisfies

[f’ QD]Pzédab(pb‘ (37)

Then, the equation of motion for the observable is
independent of v, on the surface (3.2) since the last
term of (3.6) vanishes due to (3.7).

Properly adjusting the arbitrariness v,

(@a=1,...,M), one can choose the gauge-dependent
quantities
X, (a=1,2,...,M) (3.8)

to be certain fixed values, say, zero, if the con-
dition
det][xa,q;b]P};tO (3.9)

is satisfied.

The condition (3.9) implies that the y’s are
gauge-dependent and mutually independent. Indeed,
when a transformation is induced by }; «,¢,,, the
variation of the y’s is given by

6Xa =Z) um[xa’ (pm] P

Inversely, for any given 6y,, u, is uniquely de-
termined if (3.9) is satisfied.

In our case, the problem is the inverse. Asis
seen below, we have H and ¢, satisfying Dirac’s
conditions (a) and (b). The Hamiltonian in the gen-
eral gauge is given by (3.5). The gauge-invariant
action can be determined by two steps. First one
defines the Lagrangian in the phase space by

¥
L,= Z:lpiqi ~-H
&

= {Epiq{ -H _E VePa- (3-10)

Second, one eliminates p, and v, from L, using
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the Euler equations for (3.10). An elegant method
for this procedure will be shown i1n Appendix A.

B. The Hamiltonian of the Model

The Hamiltonian and the ¢ conditions in our case
are

H =18 ,35,S, —15,8,S, +3[P* +(8,X)?], (3.11)
L, =2i5,3,5, +3(P +8,X)?, (3.12)
L_=-245,5,5, +3(P - 8,X)?, (3.13)
G, =(P+8,X)S,, (3.14)
G_=(P - 8,X)S,, (3.15)

where L, and G, play the role of ¢’s.

The relations (3.12)-(3.15) are equivalent to the
left-hand sides of (2.22) and (2.23) except that 5, S!
is eliminated by the use of (2.20) and 8, X" is re-
placed by P*., H is constructed in such a way that
Hamilton’s principle reproduces (2.20) and (2.21).

The Poisson brackets are required to be

[XH(£2), PV (£2")] p=2mb(£2~£2")nHY |
[S4 (£2), SY ()] p=—5imb(£2~E2 )" &,

for £1=£1,

Some comments on the second relation may be
necessary. The Poisson bracket for the anti-
commuting field is not familiar in classical me-
chanics. We simply regard (3.16) as an algebraic
rule for S;, since we know that no trouble arises
once the field is quantized. As a natural conse-
quence, we assume

[Si S;5 S ]P:Si [Sj > Sk ]P

(3.16)

_[Si ’ Sk ] Psf

for anticommuting fields. Another point we would
like to mention is that the canonical momentum
to S¥ is S% itself because it is a Majorana-type
field. Finally, the factors 27 and %7 in (3.16)
arise owing to our unorthodox normalization.

The algebraic condition (b) can now be confirmed
by the use of (3.15) and (3.16);

[L.(f), L &))p=47L,(fg"'~f'8), (3.17)
[L.(), L(]p (3.18)
[G.(f), G.(8) J,,=-an* (f2), (3.19)
[G.(f), G(&)]p=0, (3.20)
[L.(f), G.(@)]p==4nG.(f'9), (3.21)
[L.(f), G:(&)]p=0, (3.22)
where

()= L. 897 9,

(3.23)

G.(g)= fci(gl, £2) g(£2)d 82,

with arbitrary test functions f(£2) and g(£2).
Throughout the arguments in this and the next sec-
tion, we fix £!' at a common value, say, £'=0, un-
less specified otherwise. Since H=4(L.,~ L_),
(3.17)-(3.22) prove Dirac’s second condition (b).
As far as the first condition is concerned, we can
satisfy it by restricting the functional space prop-
erly.

As a consequence, the Hamiltonian including the
arbitrariness of L, and G, gauges turns out to be

H' =H+XyLy+X_L_+p,G,+p_G_. (3.24)

As a special case where A,=p,=0, H' gives (2.20)
and (2.21). As a matter of fact, H can be taken
to be zero without losing generality, because the
substitution of H =3(L,~ L_) eliminates the first
term in the right-hand side of (3.24), and subse-
quently changes A, to new values.

The equation of motion for any function # of the
canonical variables is given by

d

ag F=F=[R A, (3.25)
with
H= W—f H'(E, £2) ag? . (3.26)
The subsidiary conditions
L,=0, (3.27)
G,=0 (3.28)

must be imposed affer the Poisson-bracket calcula-
tions are performed in (3.25).

Finally we emphasize that it is the Hamiltonian
(3.24) that defines the path integration in the func-
tional formalism.* The NSM scattering amplitude
based on this formalism will be discussed in a
separate paper.

C. The Ghost-Free Gauge

So far the discussion has been free from any
particular choice of gauge, i.e., A, and p, are
arbitrary. What one has to do next is to find a
particular gauge where (i) the ghost-free conditions
must be satisfied for arbitrary &' and £2 [this cor-
responds to the choice of x, in (3.8)], and (ii) the
equations of motion must be simple enough to be
solvable. The second condition is, of course,
purely technical.

In our case the gauge with A, =p, =0 turns out to
be the correct choice. The equations of motion are
determined from (3.25) as

)'(H=pu’
bLED G

(3.29)
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Sh-Sh'=0,

SE4+SHE/ =0 (8.30)
2 2 ’

where the dot and prime mean 8/6£* and 8/6£2,
respectively.

Now we specify our x’s which are defined in (3.8).
In order to make the model ghost-free, we take the
following Lorentz-noncovariant ¥ conditions:

P* = (P4 P4 = VD", (3.31)
X+'=‘/-1—7(X°’+X¢'1')=0, (3.32)

J

1
Si=rzi+81™) =0,

) (3.33)
S, =75 (S3+53™) =0,

for all &' and £2.

It may be instructive to examine the relation be-
tween these conditions and the equations of motion.
First, the relations (3.31)-(3.33) are possible at
the initial point £'=£%: The equations of motion
(3.29) and (3.30) and the subsidiary conditions
(3.27) and (3.28) are invariant under the trans-
formation

F(E' £2) = F(£h &%)+ f[F(ﬁl, £%), uy (0) Ly (£, 0) + u_(0) L_(§', 0) +w. (0) G4 (¢, 0) +u_(0)G(E*, 0)|pd o, (3.34)

where F is any canonical variable, and %, and w,
are arbitrary £!-independent functions. One can
see that (3.31)~(3.33) can be satisfied by appropri-
ate choices of #, and w,, without changing the form
of the equations of motion. Second, Egs. (3.29)and
(3.20) tell us that (3.31)=(3.33) hold for arbitrary
£,

Substituting (3.31)—(3.33) into (3.27) and (3.28),
we arrive at the same results (2.36) as obtained in
the previous section.

D. The Invariant Lagrangian

As is shown above, practical problems do not
necessarily require the action principle. It may
be, however, interesting to construct the invariant
Lagrangian., A possible method is to start from the
Lagrangian in the phase space defined by

L,=PX+i[S,, S, ]+ilS,, $,]-H". (3.35)

The Euler equations are obtained by regarding P,
X, S;, A,, and p, as independent. As demonstrated
in Ref. 5, one can construct the invariant Lagran-
gian if one eliminates P, A,, and p, from L, by
the use of the Euler equations. Although we have
obtained the Lagrangian, we are skeptical of its
usefulness because of its complicated structure.
The interested reader can refer to Appendix A.

IV. QUANTIZATION AND LORENTZ COVARIANCE

We are ready to quantize our model. According
to the usual rule, we replace the Poisson brackets
(3.15) and (3.16) by the commutator for X* and
anticommutator for S*;

[X*(£2),Pi(£2)]=2mig 6(£2~£%), (4.1)
{84 (£2), S§(£?)} = 3md,, g H6(82-£2") . (4.2)

The quantization condition is imposed only for
the transverse components of X and S, since the
others are expressed in terms of the former as
shown in (2.36).

Taking the world sheet as a strip with width
0<&%<7, and imposing the boundary conditions
(2.34) and (2.35), we make a normal-mode expan-
sion of the canonical fields as

. i
X4 8 2 are ™ cos ) + g+ VEPE,

(4.3)

S{(£1,£2)=%Z}bke""(§1 +§2)’ (4.4)
kR

SHEY, £2) =3 Dby e €1 1D (4.5)
k

where 7z runs through all integers except zero,
while %2 runs through all half-integers. Hermiticity
requires a_,=a, and b_,=b% . In terms of these
operators, the commutation relations are

[af,, al]l=ms, _,6%, (4.6)
{bz’ b{}=5k,-16“s (47)
[6%, x7]= —iv¥,

[p*,p7 ]=[x*, x7]=0.

From (2.36) and (3.31)-(3.33), "the light-cone com-
ponents are

(4.8)

-_ i L —qul 2 (LQ—a.Q)g_l £
X —‘/71)4,;)—7’—'% cos(n&?) + +

V2pt T2,
(4.9)
1 spqel+ g2
Si=57 2 Ge VT
2/2p" 5 (4.10)

S ii(et-£2)
82_2ﬁp+12 Gle ’
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where [Sm'“’,m“]:i(g““mz”ﬁ—g”“m”
=1[, abmabie T @ tmiog ot g gt . (4.15)

(4.11)

G,=%%}:a§_kb};:. (4.12)

Here we write V2 pi=al.

In obtaining the above expressions, the only
point one has to be careful of is a in (4.9). As
will be shown in (4.25) below, Lorentz covariance
requires a,=3.

Since the gauge we adopted is not manifestly
Lorentz-covariant, we must ensure the covariance
by explicit construction of the Poincaré generators

MY and @*, which obey the algebraic relations
[e*, ®¥]=0, (4.13)
[e#, m*Pl=i(-gh@P+g" P, (4.14)

J

Since we have identified X* with the position of
the string, the displacement generator should be
given by

o = J— f PH(E?)dE?, (4.16)
which gives, when the solutions are substituted,
@t =p*, for u=7 and +, (4.17)
and
-1
® =1)—+(L0—a0). (4.18)

A natural choice for the Lorentz generators may
be

ouv=t f 42 [5(XHPY+PY XF) = J(XVPH +PP X7 ) + 2(SESY, + SES)]. (4.19)
In terms of normal mode operators, I *” turns out to be
M =3 el 0l - adan) v xtpt - xlpt iy 040 1, (4.20)
n=1
- =i L,-L_ 1 1 | )
9= = 75,1_;2 al - a} o [ (Lo = @g) + (Lo=ap)x |- 75 x a},+-—‘/#kz%(6_,,b,‘z—bjk Gy), (4.21)
n=1 =
mit=xip*, (4.22)
MY~ ==2(x"p* +p*x7). (4.23)

In the proof of (4.13)-(4.15), one finds a situation similar to the one encountered in Ref. 5. All algebras
other than [, M’~] are easily confirmed as is shown in Appendix B. The latter turns out to be

)

TP

d-

)3
d_2> (2

where d is the dimension of space-time. Lorentz
covariance, therefore, is verified if

-, -]

3l
+Z°°j [41&(1_

(4.25)

=

(¢

0
and

d=10. (4.26)

These results agree with those obtained in the
dual resonance model.'* Goddard, Rebbi, and
Thorn'® also obtained (4.26) by constructing the
generators of O(9) in a different method. We ob-
tain the generators of O(9, 1) as well as the trans-
lation operators @, in the framework of the string
picture.

Spectra of the string are determined by the

0[0—"‘—“

2

d, -——8—~>] (af,al —alat)

d- 2)](b_,,bf b b‘)} (4.24)
T
mass operator
M2=(®*?=R-1%, (4.27)
where
R= Z) al, a +z; 10},b%. (4.28)

The spectra coincide with those of NSM. The
ghosts are not contained because all negative-
normed components are eliminated by (4.9) and
(4.10). It is interesting that the tachyon at (mass)?
= -1 also does not appear in the spectrum relation
(4.27), and therefore the decoupling has nothing

to do with the type of vertex operator adopted in
NSM.
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V. CONCLUDING REMARKS

Our model is that of a massless string made of
spinning material. As is shown in (4.4) and (4.5),
the collective motion S* of the constituents has
two components, the right-going wave S/ and the
left-going wave SY, propagating with the speed of
light. At both ends of the string S* is totally
reflected. One may imagine a massless flexible
tube in which photons are confined.

We have demonstrated two different (but equiva-
lent) formalisms concerning the string motion.
Each has its own advantages. The manifestly
covariant formalism is better, not only in the
transparency of the gauge invariance, but also
in its visual nature of description. In contrast,
in the Hamiltonian formalism it is hardly possible
to imagine that a Hamiltonian such as (3.24) has
anything to do with the string motion. For practi-
cal purposes, however, the latter is superior to
the former. Moreover, the formalism is so
general that it is applicable to other dual models,
i.e., the Bardakci-Halpern model,'® the Thirring-
type model,'” etc. The invariant Lagrangian,

f DXHDPHDSE DS DADWDP,DP -

which mediates the two formalisms, usually turns
out to be extermely complicated as in our case.

The construction of the scattering amplitude
will be discussed in a separate paper.
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APPENDIX A

In this appendix we derive an invariant action.
Since the Lagrangian in the phase space (3.35)
contains all the arbitrariness A, and p, induced
by the gauge group (3.17)-(3.22), the gauge-in-
variant action may be obtained if A, and p, are all
eliminated. To do this we use the functional in-
tegration method.'®

The path integral in the phase space will be
given by

X exp<éfd2£ {PX+i[s,, é1]+i[82, S,]+5MLy + L) +3w(L, = L) +p,G, +p_G_}> , (A1)

where A, =3(A+w). In the phase space, both X*
and P" are considered to be independent. If one
performs the functional integration with respect
to P*, A, w, and p,, the integral (A1) gives the
exponential of the action with a certain integration
measure. A convenient order of performing the
integrations is to integrate first with respect to
P! then w and p,, and finally A.

In performing the integration about p,, we sepa-
rate an anticommuting component ¥ out of p, in
such a way that p, =p/%, where p] are the usual
commuting functions and ¥ is assumed to be a
constant satisfying ¥®=1.

The action turns out to be

_1 2

“zﬂde £ (A2)
and

L=2(AB)"2+C, (A3)
where

A=—§(a[W}a)+%)‘(2, (A4)

B=—3(b|W|b) - i[S,, S{]+i[S,, S4] - 3X'2, (A5)

(detm)®

-

C=i[S,,S,]+i[Sy S,]- (A6)
Furthermore, a, b, and W are given by
W=M"1, (AT
(x'? (S, X") (&S, X'
M=| (kS,* X") =S% =SS, |, (A8)
(RS, X)) =8,°S, =S
d=(XX', KS,* X, KS,*X), (A9)

b=(i[S, S!]+i[S, SL], &S, X', —KkS,* X').
(A10)

At the final stage, ¥ can be eliminated due to
K2=1. One can readily confirm that (A3) reduces
to [(XX')? =X 2X’2]"2 in the limit of S, -0.

The integration measure in the path integral
formula is now given by

1 (é)l/zexp [-2(4B)V?]

(d-2)/2
><<5%> exp[2(AB)¥2]. (All)



8 QUANTIZATION OF A STRING OF SPINNING... 449

The Lagrangian so obtained may not be unique.
From the covariant equations of motion (2.12) and
(2.13), together with the subsidiary conditions
(2.15) and (2.16), one can construct, in principle,

a Lagrangian by eliminating the zweibein fields. Al-
though both Lagrangians show all the gauge in-
variances required, the forms may be different.

APPENDIX B

We prove Eq. (4.14). The proof is straight-
forward, but tedious. Since the calculation is
similar to that of Refs. 5 and 15, we do not give
the details, but only comment that the crucial
point in the calculation is the ordering of opera-
tors. To make the generators M*” well defined,
we take normal-ordered products of operators.
This is the reason why the commutator [, 9’ ")
does not vanish in general.

We list some of the useful formulas to compute
the commutator:

[@m a3 ]=mb,, 0"
{or, b1}=05,,-,8",
ab=VZ p*,

[P‘» x? ]==idy;,
[p*, x7]=1,

(@m Lo ]=mag.n,
(65, La]= (B +3)bgen,

[al, G,]=mb},,,

{bli’ G, }=a;+t ’

[, L, ]=da,,

[¥, G,1=ib},

(L, Ly )= =m) Ly, p+5(d - 2m@n* = 1)6, _,,
[Ln, G, ]=(Gn = DGy,

{G), G, }=2L,,, +3(d-2)(I-3)(I1+3)5, -

Using these formulas, we can find Eq. (4.14) after
some lengthy calculations.
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