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Purity plays a key role in the model theory of modules, finding many uses in the representation theory
of finite-dimensional algebras. The theory of purity is based on that of a pure-exact sequence, extending
to many additive categories, including those of sheaves and those of quasicoherent sheaves. It should
be stressed that this categorical purity differes, outside the affine case, from the geometric purity. The
general relationship has been investigated in [E. Enochs et al., Proc. Edinb. Math. Soc., II. Ser. 59, No.
3, 623–640 (2016; Zbl 1370.18011)]. Looking more closely, this paper considers categorical and geometric
purity for sheaves over a scheme abiding by some mild conditions, both for the category of all sheaves
and for the category of quasicoherent sheaves.
A synopsis of the paper goes as follows. §1 explores the relations between the purities in OX − Mod and
QCoh (X). §2 looks deeper into the purity-related notions in the category, investigating which of them
are preserved or reflected by the three functors associated to an open subset, namely, the restriction, the
extension by zero and the direct image. The main result therein is that the geometric pure-injective in
OX −Mod are the skyscraper sheaves with an indecomposable module of sections. §3 presents an example
of the Zuegler spectrum of the category OX − Mod over a local affine 1-dimensional scheme X.
§4 turns to quasicoherent sheaves, restricting to the case of quasicompact quasiseparated schemes. It is
shown that such schemes are affine iff the two purities coincide in the category QCoh (X). The authors
proceed by describing the geometric part of the Ziegler spectrum of QCoh (X), showing that this is
always glued from afine pieces and forms a quasicompact closed subset of the spectrum. A definable
subcategory DX ⊆ QCoh (X) is assigned to this closed set, such that its objects enjoy the property that
every geometrically pure-exact sequence starting in them is categorically pure.
§5 is devoted to the computation of the Ziegler spectrum of the category of quasicoherent sheaves over
a projective line. Both the points and the topology are described, noting that, unlike the affine case, the
Ziegler spectrum is not quasicompact. The subcategory DX allows of a more explicit description in this
case.
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