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This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups
in the characteristic caseia the Fichera function. Probabilistically, our result may be stated as follows: We
construct a Feller semigroup corresponding to such a diffusion phenomenon that a Markovian particle moves
continuously in the interior of the state space, without reaching the boundary. We make use of the Hille—Yosida—
Ray theorem that is a Feller semigroup version of the classical Hille—Yosida theorem in terms of the positive
maximum principle. Our proof is based on a methoceliptic regularizationsessentially due to Olaik and
RadkevE. The weak convergence of approximate solutions follows from the local sequential weak compactness
of Hilbert spaces and Mazur’s theorem in normed linear spaces.
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1 Introduction and main results

This paper is devoted to the functional analytic approach to the problem of construction of strong Markov pro-
cessewithout boundary condition. More precisely, we construct a Feller semigroup corresponding to such a
diffusion phenomenon that a Markovian particle moves continuously in the interior of the state space without
reaching the boundary. This paper is inspired by the work of Altomare et al. [2], [3] and [5] (see Remark 1.3),
and it is a continuation of the previous papers Taira [23] through [31] and Taira—Favini-Romanelli [32].

Let D be a bounded domain of Euclidean sp&®& N > 2, with smooth boundargD; its closureD = DUAJD
is an N-dimensional, compact smooth manifold with boundary. Adte a second-ordedegenerateelliptic
differential operator with real coefficients such that

8 . 0% N . du
AuX) = i.JZ:la (X) %, (x)+i;b (X)d—xi(x) +c(x)u(x). (1.2)

Here:
(1) al e C*(RN) andali (x) = ali(x) for all xe RN and 1< i, j < N, and
N
dl(x)&é& >0 forallxe RN andé =30, & dx; € T (RVY),
if=1
whereT,(RN) = RN is the cotangent space B atx.
(2) bl eC*(RN) for1<i <N.
(3) c=AleC”(RN) andc(x) < 0 onD.
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2 K. Taira: Feller semigroups and degenerate elliptic operators lll

Following Fichera [12], we introduce a functidm called theFichera functionfor A, on the boundargD by
the formula

b(X) = S (d(%) % o (%)) n; forallx € dD, (1.2)
; = X

wheren = (ng,ny,...,Ny) is the unit inward normal to the boundad.
It is easy to verify (see [30, Section 3]) that the Fichera fundtigminvariantly defined on theharacteristic

set
N

> al (xX)ninj = O}.

50={XeoD:
i,j=1

We divide the boundaryD into the following four disjoint subsets:

S3= {x’edD:l Nla”od)ninj >o} =0D\ 2° (1.3a)
=

Sy= {% €dD: i,ilaij (X)ninj =0, b(X) < o} ={Xe5%bx)<0}, (1.3b)

5= {% €dD: élaﬂ (X)ninj =0, b(X) > o} ={Xez%:bKX)>0}, (1.3c)

So= {% €dD: i.%laij (X)nin; =0, b(X) = o} ={Xez%:bx)=0}. (1.3d)

Our fundamental hypothesis for the operaias stated as follows (cf. Figure 3.1 in Section 3):

The boundaryD consist of a finite number of connectegbersurfaces (G)
of the setpand >1: dD = >pU 23.

This hypothesis makes it possible to develop the basic machinery ofikOé&d Radked [18] with a mini-
mum of bother and the principal ideas can be presented more concretely and explicitly.

It should be emphasized that a Markovian particle moves continuously in the ireréovd approaches the
boundary portior2, U 23 in finite timewith positive probability ( [21], [30]). Hence, we may impose a boundary
condition only on the boundary portiarp U >3 (see [18], [22]). Under hypothesis (G), we cannot impose any
boundary condition on the boundad¥, sinceX; = >3 = 0.

We give a simple example of hypothesis (G) in the unit disk in the pRfe

Example 1.1 Let D = {(x1,%2) € R?: %% +x2 < 1} be the unit disk with the boundagD = {(x1,%) € R?:
xf +x§ = 1}. For a local coordinate systera = r cos@ andx; = r sinf with 0 < 6 < 2t near the boundary
0D = {r = 1}, we assume that the differential operatds written in the form

0 2 10 1 9° 0
A_¢(r)A_0_¢(r)<0r2+rar+r2092>_0r’

where¢ (r) is a smooth function defined by the formula

o(r)= {eXp{_ler} forr <1,

0 forr > 1.

Thenit is easy to see thafz = 0 and thab= 1 ondD = {r = 1}. This proves thadD = >;.
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LetC(D) bethe space of real-valued, continuous functiérs D. We equip the spadg(D) with the topology
of uniform convergence on the whdlg hence it is a Banach space with the maximum norm

[ f]] = max f(x)].
xeD

A strongly continuous semigrouf; }+>¢ on the spac€(D) is called aFeller semigroupon D if it is non-
negative and contractive &(D):

feCD),0<f(x)<1 onD = 0<Tif(x)<1 onD.

It is known (cf. [28, Chapter 9]) that T is a Feller semigroup oD, then there exists a unique Markov transition
function p;(x,-) on D suchthat

Tof (x) = /5 p(xdy)f(y) foreveryf e C(D).

Furthermorethe functionp;(x,-) is the transition function of som&rong Markov process?”; hence the value
p: (X, E) expresses the transition probability that a Markovian particle starting at positidhbe found in the
setE at timet.

The next theorem asserts that there exists a Feller semigrolpaamrespondingo such a diffusion phe-
nomenon that a Markovian particle moves continuously in the int&iof the state spacP without reaching
the boundaryD:

Theorem 1.2 Assume that hypothesis (G) is satisfied. We define a linear opesatioom the space (D)
into itself as follows.

(1) The domain D<) of & is the space

D(«7) =C?D). (1.4)

(2) &/u=Au for every ue D(&).

Then the operatory is closablein the space (D), and its minimal closed extensi@h= <7 is the infinitesimal
generator of some Feller semigrog }+>o onD.

Remark 1.3 Some remarks are in order:

1° Altomare et al. [2] through [5] consider@nvexcompact domaifk with not necessarily smooth boundary
JdK and a second-order differential operatowhich degenerates on a subset of the bound&rgontaining
the extreme points d€. They prove that the closureof the operato¥ generates a Feller semigro{ifi }t>0
and further that the Feller semigro{i }+>0 can be approximated by iterates of modified Bernstein—Schnabl
operators ( [4]). It should be emphasized that Theorem 1.2 coincides with [2, Theorem 4.1], [3, Theorem
4.3] and [5, Theorem 3.1] witK := D if the boundarydK is smooth, as in Example 1.1.

2° Theoreml.2 is proved by Bony—Couege—Priouret [8] in the elliptic case (see [8 EDeme XVI]) and then
by Cancelier [9] in thenon-characteristic case?D = >3 (cf. [9, Theorme 7.2]).

By a version of the Hille—Yosida theorem in semigroup theory, the proof of Theorem 1.2 is reduced to the study
of the homogeneous Dirichlet problem in the theory of partial differential equations. However, if hypothesis (G)
is satisfied, the proof of Theorem 1.2 is reduced to the study of the equation

(#/ —A)u=f inD (1.5)

without any boundary condition. In this way, the essential step in the proof is the following existence and
unigueness theorem for the equation (1.5) in the frameworkoddét spaces:
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4 K. Taira: Feller semigroups and degenerate elliptic operators lll

Theorem 1.4 Assume that hypothesis (G) is satisfied. For each intege2ythere exists a constaff, 1 >0
such that ifA > A1, the equation

(A—A)u=f inD (*)a

has a unique solution u in thedtter space @+9(D) for any function fe C™+9(D) with0 < 8 < 1. Furthermore,
the solution u satisfies the inequality

[ullem-o By < Cm1o(A) [ fllem:o (o) (1.6)

where Gn9(A) > Ois a constant independent of f.

Rephrased, Theorem 1.4 asserts that if hypothesis (G) is satisfied, the equgtibas a solution withoss
of two derivativezompared with the elliptic case.

1.1 Background of the paper

In this subsection we consider a second-order, boundary conditigth real coefficients such that, in terms of
local coordinategxi, Xz, ..., Xn—1) on the boundary portiol, U 23,

Lu(X) = Lou(x') + y(X)u(x) + u(X) Z;‘ (X) - 8(x) AuX) (1.7)
= (LleaJ(x dx.(?xJ Z B (X )

FYO0U0) + () T () — 5(¢) AU

Here:

(1) Thea'l are the components ofG symmetric, contravariant tensor of ty@ onx,U23and
N-1

al(X)&é& >0 forallX € SUZzandE’ = 3N & dxj € Ty (Z2U %),
i1=1
whereT;; (2, U X3) is the cotangent space B U X3 atx..

(2 B eC®(ZUZz)for1<i<N-1.

(3) yeC*(XUZ%3) andy(xX) <0onXU ;.

(4) peC?(Xux3)andu(x) > 0onX U 3s.

(5) 0 €eC®(5UZ%3) andd(X) > 0onZU 53,

(6) n=(ng,...,ny) is the unit inward normal t&> U 23.

The boundary conditioh. defined by formula (1.7) is called a second-ordfentcel’ (Wentzell) boundary
condition( [35]). The four terms ol are supposed to correspond to the diffusion along the boundary, the
absorption phenomenon, the reflection phenomenon and the viscosity phenomenon, respectively (cf. [11]).

We say that the boundary conditibris transversabn the boundary portio, U >3 if it satisfies the condition:

U(X)+0(X)>0 onXuUZs. (1.8)

Probabilistically, the transversality condition (1.8) implies that either reflection or viscosity phenomenon occurs
at each point ob> U 23.
We are interested in the following problem:
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Problem 1.5 For analytic datdA, L) given by formulas (1.1) and (1.7), construct a Feller semigfoigp>o
onD.

Our functional analytic approach to Markov processes is distinguished by the extensive use of the ideas and
techniques characteristic of the recent developments in the theory of elliptic boundary value problems which may
be considered as a modern theory of the classical potential theory ( [14], [18], [34], [30]).

Remark 1.6 Problem 1.5 was studied by Taira [24, Theorem 1], [25, Main Theorem] and [26, Main Theorem]
under the following hypothesis (cf. Figure 3.1 in Section 3):

The boundaryD consist of a finite number of connectegpbersurfaces (H)

of the setsy, 21, 2> and23: 0D = 32U 21U, U 23, butZ, U 23 # 0.
It should be emphasized that hypothesis (H) excludes hypothesis (G), but includes the two casetDwhere
2oU21U2panddD = 2pu 2 U 23,

We give an overview of general results on generation theorems for Feller semigroups studied mainly by the
author via the theory of pseudo-differential operators in Table 1.1 below ( [23], [24], [25], [26], [27], [32]).

Degeneracy Ventcel’ Domain
of type % on conditionL of D(2() or D(«) studiedby
the operatorA theform (1.7)
0D =233 H+56>0 ( )={ueC(D): [23, Theorem 2.2]
[hypothesis (H)] ondD = 23 C(D),Lu=00ndD}
(Z0=21=2,=0)
oD = u=56=0,y=1 D(«/) = {ue C?D), [24, Theorem 1]
JoUZ1U2rUZ3 onz,U23 u=Au :OOHZZU23}
[hypothesis (H)] (Dirichlet case) A=of
oD = H+06>0 D) ={ueC(D): [25, Main Theorem]
SoUS iU U S, on>,U233 AueC(D),Lu=00onXUZ33} [26, Main Theorem]
[hypothesis (H)]
oD=53UZ%;3 u=y=0,0=1 D) ={ueC(D): [32, Theorem 1]
[hypothesis (H)] ondD = 2,U%3 Aue C(D), Au=0ondD}
(5o=21=0) (Lo=0)
oD=5U5 null D(«/) =C?(D), thepresent
[hypothesis (G)] A=/ paper

Table 1.1 An overview of generation theorems for Feller semigroups by degenerate elliptic operators

1.2 Outline of the paper

The rest of this paper is organized as follows. Section 2 provides a brief description of basic definitions and
results about Feller semigroups that forms a functional analytic background for the proof of Theorem 1.2. Our
proof of Theorem 1.2 is based on a Feller semigroup version of the classical Hille—Yosida theorem (Theorem 2.1)
in terms of thepositive maximum principl@PMP).

In Section 3, we study the equation

Au=f inD (%)

under hypothesis (G) in the framework of spaces of bounded measurable functions, and prove an existence and
uniqueness theorem of weak solutions of the equatigr(Theorem 3.3), by using a method elliptic regu-
larizationsjust as in Olénik—Radkewvt [18], Cancelier [9] and Taira [24]. The proof of Theorem 3.3 is based

on the local sequential weak compactness theorem of Hilbert spaces and Mazur’s theorem in normed linear
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6 K. Taira: Feller semigroups and degenerate elliptic operators lll

spaceg [36, Chapter V]). It is hypothesis (G) that makes it possible to develop the basic machineryrok©le
Radkev€ [18] with a minimum of bother and the principal ideas can be presented more concretely and explicitly.
Moreover, we study the equation

(A—A)u=f inD (¥)a
in the framework of Sobolev spaces whérés a real spectral parameter. By applying Theorem 3.3 with
A=A—-A, ci=(A-A)l=c—A,

we can obtain that if hypothesis (G) is satisfied and: 0, then the equatiofw), has a unique weak solution
u e L*(D) for any functionf € L*(D) (Theorem 3.5).

In Section 4, we prove two regularity theorems (Theorems 4.1 and 4.7) for the weak solutions of the equation

(%), constructed in Theorem 3.5 in the framework of Sobolev spaces when the spectral palaimetksrto+co.

We remark thaw®= (D) = L*(D). This section is the heart of the subject. In the proof,uhéorm estimates

for approximate solutions of the equatipf, play an essential role (Lemma 4.3 and Lemma 4.9). Furthermore,
we make use of Sobolev imbedding theorems into Lipschitz spaces ( [1], [17], [37]) and also the Ascadi—Arzel
theorem. Theorem 1.4 follows from Theorems 4.1 and 4.7 by a well-kmealrinterpolation argumentlue to
Lions—Peetre [16] (Theorem 4.12). Indeed, thidér spac€™+9(D) is a real interpolation space between the
Sobolev spaced/™ (D) = C"11(D) andw™+1=(D) = C™}(D) (seeformula (4.68)).

It should be emphasized that the uniform estimates for approximate solutions of our method of elliptic reg-
ularizations are obtained from thveeak maximum principléor second-orderdegenerateelliptic differential
operators due to Bony [7], Oleik—Radkewvt [18, Chapter lll, Section 1], Troianiello [34, Subsection 3.7.2] and
also Taira [31, Section 8.

The last Section 5 is devoted to the proof of Theorem 1.2. We verify all the conditions of the Hille—Yosida—
Ray theorem (see Theorem 2.1) for the operatodefined by formula (1.4), by making use of Theorem 1.4 for
m:= 2 or Theorem 4.12 (Theorem 5.1 and Lemma 5.2) and the positive maximum principle (Claim 5.1).

2 Feller semigroups

This section provides a brief description of the basic definitions and results about Feller semigroups, which forms
a functional analytic background for the proof of Theorem 1.2. For detailed study of this subject, the reader might
be referred to Dynkin [10], Lamperti [15] and Taira [28].

Let K be acompactmetric space and |€2(K) be the space of real-valued, bounded continuous functions on
K. The spac€(K) is a Banach space with the maximum norm

1]} = max| f (x)].
cK

A family {Ti}+>0 of bounded linear operators acting 6(K) is called aFeller semigrouppnK if it satisfies
the following three conditions:
() Tiys=T-Tsforallt, s> 0 (the semigroup property) whefge = | = the identity.
(i) The family {T;} is strongly continuous ihfort > 0:

IirB ITirsf—Tif|| =0 foreveryf € C(K).
S

(iii) The family {T;} is non-negative and contractive 6(K):

feCK),0<f(x)<1 onK = 0<Tf(x)<1 onK.

If {Tt }t>0 is a Feller semigroup oK, then we define itéfinitesimal generato®l by the formula

. Tu—
2Au=Ilim tut u’ (2.1)
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provided that the limit (2.1) exists in the spaCéK).
We conclude this section by giving useful criteria in terms offibsitive maximum principléf. [19, Theorem
1.2]; [8, Theoeme de Hille-Yosida—Ray]; [28, Theorem 9.50]):

Theorem 2.1(Hille-Yosida—Ray)Let B be a linear operator from the spac¢lQ into itself. We assume that
(a) Thedomain OB) of B isdensen the space (K).

(B) If ue D(B) andmaxck u(x) > 0, then there exists a poingf K such that thgositive maximum principle

{U(Xo) = maxcu, (PMP)

Bu(x) <0
holds true.

(y) For someag > 0, the range Rdol — B) of agl — B isdensen the space (K).

Then the operator B islosablein the space (K), and its minimal closed extensi@his the infinitesimal gener-
ator of some Feller semigrouf }t>o on K.

3 Existence and uniqueness theorem for the equatiofx)

In this section, we will study the equatigr) in the framework of spaces of bounded measurable functions, and
prove an existence and uniqueness theorem of weak solutions, by using a meghipdiofegularizationsas in
Oleinik—Radkevt [18] and also as in Cancelier [9].

Basic definitions and facts about function spaces suctbtdeirispaces, Sobolev spaces and Besov spaces can
be found in Adams—Fournier [1], Berghéfstriom [6], Gilbarg—Trudinger [14] and Triebel [33].

3.1 Definition of weak solutions of the homogeneous Dirichlet problem

Let D be a bounded domain &N, N > 2, with smooth boundargD. In this subsection we assume that the
degenerate elliptic operatédrgiven by formula (1.1) satisfies the following hypothesis (F) (see Figure 3.1):

The boundaryD consist of a finite number of connecteygpersurfaces (F)
of the setsy, 21, 2> and23: dD = 3pU 21 USoU 23.

We remark that hypothesis (F) includes both hypotheses (G) and (H).

Fig. 3.1 The degeneracy of typg on the differential operatok

Let A* bethe formal adjoint differential operator &f:
2

S o +N N‘”Rx)—b‘(x) N i)
dx.dxJ X X%

i J:l
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8 K. Taira: Feller semigroups and degenerate elliptic operators lll

N aZalj N ob |
+ +c(x) | v(x).
<|| 1aX'dXJ Zldx' )

Then it is easy to see that tRé&chera function b for the operatoA* is given by the formula (cf. formula (1.2))

N

b*(X) = _'Zl (bi (X)— i ‘;‘j‘:; (%)) n = —b(x) forallx € aD. (3.1)
= =

Following Olanik—Radkevt [18, Chapter 1], we consider the homogeneous Dirichlet problem for the operator
A under hypothesis (H): For a given functiére L(D), find a functionu € L*(D) such that

{Au: f inD, (D)

u=20 onz,UZ2s.

Now we give the precise definition of a weak solution of the homogeneous Dirichlet problem (D) (see [18,
p. 30, Definition]):

Definition 3.1 A functionu € L*(D) is called aweak solutiorof the homogeneous Dirichlet problem (D) if
we have the formula

/u~A*vdx:/ f-vdx
D D

for every functionv € C?(D) satisfyingthe conditiorv =0 onZ; U 33.

Our definition of a weak solution may be justified by using the following Green formula for the opefators
andA* (see [18, formula (1.1.14)], [24, Theorem 2.2]):

Theorem 3.2(Green) Assume that hypothesis (F) is satisfied. For all functions u and ¥ (B we have the

formula
/(Au~vfu-A*v)dx: f/ <o"uvuﬁv) daf/ b(X)u-vdo. (3.2)
D s\ 9V ov aD\%p
Hered/dv is the conormal derivative associated with the operator A:

N B {9

and b is the Fichera function for A andxdis the surface element éD.

3.2 Existence and uniqueness of weak solutions of the equati¢n)

We recall that we cannot impose any boundary condition on the bouddannder hypothesis (G), sinc® =
23=0.
In this subsection, following [18, Theorem 1.5.1] and [24, Theorem 2.3] we will prove an existence and
unigueness theorem for weak solutions of the equation
Au=f inD. (%)

More precisely, we will prove that there exists a unique functianL* (D) such that (see Definition 3.1)
/ u-A'vdx= / f-vdx forallve C?(D) satisfyingv =0 onZ3;. (3.3)
JD JD
Theorem 3.3 Assume that hypothesis (G) is satisfied and further that

c(x) = (Al)(x) <0 onD. (3.4)
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Then,for any function fe L*(D) there exists a weak solutionaiL”(D) of the equatior{(x). Furthermore, the
weak solution u satisfies the inequality

1
[Ull o) < P [l (3.5)
where
Co :=min(—c(x)) > 0. (3.6)
xeD
Steps Elliptic regularizations Data Solutions
( Dirichlet problem(D), f eCY(D) ug € C>*9(D)
(1 Equation() f cCY(D) u=w-—limgoUs € L"(D)
Au= f Ug, € C*9(D)
(I-1) Equation(+)n f, € CY(D) Up=W—limg, o ugg,n €L*(D)
AUn = fn Uak,n S C2+ (6)
(In-2) Equation(x) f e L*(D) u=w-—limy_,Uy € LL*(D)
AU — f f — Iimn*)oo fn
fn € Cl(ﬁ) Un =W-— ||m£kl0 ng,n S Loo(D)

Table 3.1 An overview of the proof of Theorem 3.3

Proof. The proof of Theorem 3.3 is based on a methodllgdtic regularizationsand theweak maximum
principle, just as in Olénik—Radkewt [18]. The proof is divided into three steps (see Table 3.1).
Step (I): First, letf € C1(D), f arbitrary We will show that the equation

Au=f inD (%)

has a weak solution € L?(D). More precisely, we will show that the formula

/u~A*vdx:/ f-vdx 3.3)
D D

holds true for all € C?(D) satisfyingv = 0 on 3 (see Definition 3.1).
Following Olanik—Radkevt [18], we consider thBomogeneous Dirichlet problefor a second-order, elliptic
differential operator

As = eA+A,
whereg > 0 andA is the usual Laplacian. More precisely, we consider the Dirichlet problem
Acu:=f inD,
’ (D)e
u-=0 ondD,

It is known (see [14, Theorem 6.14]) that the Dirichlet problg), has a unique solution. € C?+9(D) for all
0< 0 < 1, sincef € CY(D).
The weak convergence of approximate solutiopsase | 0 follows from the weak maximum principle and
the local sequential weak compactness of Hilbert spaces. Indeed, since we have, by condition (3.4) and formulas
(3.5) and (3.6),
(Agl) (X) = (A1)(x) = c(x) < —cp onD,

by applying theweak maximum principl® the elliptic differential operatof: we obtain that

! max|f(x)| = é [fllcp) foralle>0. (3.7)

u B) = Max|ug(X)| < —
el ) = maxjue (] < o mas
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10 K. Taira: Feller semigroups and degenerate elliptic operators lll

Hencejf |D| is the volume of the domaiD, it follows from the uniform estimate (3.7) that
D
Uiz < v/IDT U o) < \/C|: |l foralle>o. (3.8)

That is, the solutiongug} are norm bounded in the Hilbert spalc&D) for all € > 0. However, it is known
([36, p- 126, Theorem 1]) that the unit ball in a Hilbert spacgdgquentially weakly compact.

Therefore, we can find a subsequefiag }_; of {us} that convergeseaklyto some functioniin L?(D), as
&1 0:

u=w-limug inL%D). (3.9)

&J0

Step (I1): Next, we will show that, for any functiofi € C(D) theweak limit functionu € L?(D), defined by
formula (3.9), satisfies the inequality

Ullie) < — HfIILw (3.10)

andis a weak solution of the equation
Au=f inD. (%)

It should be emphasized that the inequality (3.10) impliesitiguenessf weak solutions of the equatidr).
Substep (II-1): In order to estimate the solutiofis, } of the Dirichlet problemD),, we need the following
lemma (see [24, Lemma 2.4]):
Lemma 3.4 Assume that hypothesis (F) and condit{8m)are satisfied. For each g C®(D (D) with0< 6 <1,
let v; € C%*9(D) bea unique solution of the homogeneous Dirichlet problem for the elliptic differential operator
A, =eA+A:

Acve =g inD, D)
ve =0 onadD. €
Then the solutionysatisfies the estimates
X,n;azxwrad/g(%)\ <Mldlc) (3.11a)
max|gradve (X')| <M lgllc(o) » (3.11b)
X'ey
C

X,rr;aZX|gradvs(>()| < 19llcm)- (3.11c)

where M > 0 and C> 0 are constantsndependentfe > 0and0< 06 < 1.

Substep (1I-2): Now, by applying Lemma 3.4 with := f andv; := u to the solutionsi, , of the homoge-
neous Dirichlet probleniD), under hypothesis (G), we obtain from estimate (3.11c) that

max|gradug (x)| < (3.12)

s
X/EZ - \/E C(D>

Then,by using Green’s formula (3.2) for the differential operatdgs= €A + A andA; = €A + A", we have, for
all v e C?(D) satisfyingv = 0 onthe set>;,

/Df-vdx:/DAgug~vdx (3.13)

_ * dUg ov
_/Dug-Agvdx— /Zlb(x’)ug~vda—e (/ao (dr1v_u£0n> da)
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=€ / Ug - Avdx+ / Ug - A*vdx—e %vda.
Jb Jb Jz, On
However, we can ledy | 0 in formula (3.13) withe := g to obtain the desired formula (3.3). Indeed, by estimate
(3.12) it follows that the last term of the right-hand side of formula (3.13) tends to zexo|dk
Therefore, we have proved that the weak limit functios a weak solution of the equatidr).
Substep (lI-3): On the other hand, it is easy to verify that the set

K:{Wem( ) Wy < ol }

is convex and strongly closed in the Hilbert spac¢D), sinceL? convergence of a sequence implies almost
everywhere convergence of some subsequence (see [13, Lemma 2.5.2, Theorems 2.4.3 and 2.3.1]). Thus, it
follows that the convex sdt is weakly closedn L2(D), by applying Mazur’s theorem (see [36, p. 125, Theorem
11)).

Hence, by combining the uniform estimate (3.7) and assertion (3.9) we obtain that

u=w-Ilimug, € K
8.0 Ek )

since we have the assertion
{ug } cK forall &

Summing up, we have proved that the weak limit functioa L*(D), defined by formula (3.9), is a unique
weak solution of the equatia) for any functionf € C1(D), and satisfies the inequality (3.10).

Step (lll): Finally, let f € L*(D), f arbitrary. By using Friedrichs mollifiers (see [34, Subsection 1.3.2]), we
can find a sequendgfn}%_; in the spac€!(D) suchthat

max| fn(X)| < [ f{| e (p) - (3.143)
xeD
fn— f inL?(D)asn — oo, (3.14b)

Substep (I1l-1): Letugn € C%9(D) bea unique solution of the homogeneous Dirichlet problem

(SA “rA)Ug.n = fn II’I D,
(D)en
Ug’n = 0 on 0D
Then, by Step (II) we find that the equation
Au,=f, inD (*)n
has a unique weak solution
Un = W— gk%usk’n e L*(D),
which satisfies theniform estimateécf. estimate (3.8) and inequalities (3.10) and (3.14a))
[Unl[2(p) < 7‘H [ follie@py < ~—— ||f\|Loc forallne N (3.15)
and
[lunll <£||f I i||fH forallne N (3.16)
nliL=(p) = ¢, Inlit=o) = ¢ k= . .

Substep (IlI-2): First, since the unit ball in a Hilbert spacedsquentially weakly compact, by using the
uniform estimate (3.15) we can find a subsequenge} of the sequencéun} that convergesveaklyto some
functionuin L2(D) asn’ — oo:

u=w- lim uy inL?D). (3.17)

n —oo
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12 K. Taira: Feller semigroups and degenerate elliptic operators lll

Hence,by lettingn’ — o in the equation),y we obtain from assertion (3.17) that the weak limit function
satisfies the desired formula (3.3) (see Substep (1I-2)). That is, the weak limit functidr?(D) is a weak
solution of the equatiof).

Secondly, it follows from an application of Mazur's theorem ( [36, p. 125, Theorem 11]) that th¢ iset
weakly closedn L?(D). Therefore, by combining the uniform estimate (3.16) and assertion (3.17) we find that
ue K, since{u,} C K for all n € N (see Substep (II-3)). That is, the weak limit functior L* (D) satisfies the
desired inequality (3.5).

The proof of Theorem 3.3 is now complete. O

By applying Theorem 3.3 with
A:=A-A, c:=(A—A)l=c—A,

we can obtain the following:
Theorem 3.5 Assume that hypothesis (G) is satisfied and further that

c(x) = (Al)(x) <0 onD.
If A > 0, the equation
(A—A)u=f inD (¥)a

has a unique weak solutionalL™(D) for any function fe L*(D). Furthermore, the weak solution u satisfies
the inequality

1
[Ulle(py < Aico [l (o) - (3.18)

where

Co :=min(—c(x)) > 0.
xeD
Rephrased, Theorem 3.5 asserts that if hypothesis (G) is satisfied, the e@xjgtibas a solution witthoss of
two derivativesompared with the elliptic case (cf. [18, Theorem 1.8.1]; [9%diBme 4.4], [24, Theorem 2.3]).

4 Regularity theorems of the equation(x),

In this section, we study the equation
(A—A)u=f inD (%)

in the framework of Sobolev spaces when the spectral parathatards to+o. More precisely, we will prove
two higher regularitytheorems for weak solutions of the equatie#, constructed in Theorem 3.5 in the frame-
work of the Sobolev spac&¥™> (D) when the spectral parametertends to+e (Theorem 4.1 fod > A; and
Theorem 4.7 fod > A, with each integem > 2). We remark thatv®* (D) = L*(D). This section is the heart
of the subject.

4.1 Lipschitz continuity of weak solutions of the equation(x),

In this subsection we will prove that if hypothesis (G) is satisfied, the equétignhas a solution withoss of
two derivativessompared with the elliptic case (cf. [18, Theorem 1.8.1]; [9%¢dibme 4.4], [24, Theorem 3.1]).
More precisely, we will prove a regularity theorem for the equatio in the Sobolev spad&/>* (D) for A > Ay
(Theorem 4.1). This gives a sufficient condition for thipschitz continuityfor weak solutions of the equation
(%)) (Remark 4.2):
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Theorem 4.1 Assume that hypothesis (G) is satisfied. There exists a corstan® such that ifA > A,, the
equation(«), has a unique weak solutiona&iW(D) for any function f¢ W1*(D). More precisely, we have
the formula

/f~vdx:/u~(A*—/\)vdx 4.1)
D D

for all v € C?(D) satisfyingthe condition v= 0 on the se&; (see Definition 3.1).
Furthermore, the weak solution u satisfies the inequality (cf. inequ@lify8))

[ullwrepy < C2(A) [ fllwaepy » (4.2)

where G(A) > Ois a constant independent of f.

Remark 4.2 We find from Adams—Fournier [1, Lemma 4.28], MlaZiemer [17, Corollary 1.73] and Ziemer
[37, Theorem 2.2.1] that the weak solutiore W>(D) of the equatior(x), coincides almost everywhere with
a Lipschitz continuous function iD and further that there exists a constnt> 0 such that

lu(x) —u(y)| < K [[uljwrepy [x—y| foralmostallx,y € D.

That is, W>*(D) = C%%(D).

Steps Elliptic regularizations Data Solutions
(1) Dirichlet problem(D), fec2Q) U €C*9(Q)
(1-4) feC?(Q) U=limg, oUg, inC(Q)
u=limg, 00, € W(Q)
Ug, €C0(Q)
(11-1) Dirichlet problem(D), feC?(Q) U=limg, 00, € W°(Q)
U, €C*0(Q)
(I-2) Equation(x), f € C?(D) u=Ulp € W (D)
(A—A)u=f fec@) U= limg, o0, € W=(Q)
| =
(IV-1) Equation(x); n fo e C2(D) Un = Un|p € WH(D)
(A=2A)up = fy fn e C2(Q) Un =limg, ;0Ug, n € WH2(Q)
fn D = fn
(IV-2) Equation(), f e W=(D) u=limy_,, Uy in C(D)
(A—A)u=f f=1iMp o0 fn ue WL (D)
f, € C*(D) Un = Un|p e W"(D)

Table 4.1 An overview of the proof of Theorem 4.1, whate' = (D) = C01(D)

Proof. The proof of Theorem 4.1 is based on a methodllibtic regularizationsand theweak maximum
principle, just as in Subsection 3.2. The proof is divided into four steps (see Table 4.1).

Step (1): First, we modify the domai® and the differential operatéx so that the boundary is of typgs. By
hypothesis (G), we can choose a bounded dor@aiith smooth boundargQ such that (see Figure 4.1)

D=DuU(X%uUZ%)CQ.
Without loss of generality, we may assume that
c(x)= (A1) X) <0 onQ.
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14 K. Taira: Feller semigroups and degenerate elliptic operators lll

Fig. 4.1 The modified domaif and the original domai®

Now we take a functiom € C*(Q) suchthat

ax)=0 inD,
a(x) >0 inQ\D,

and consider the homogeneous Dirichlet problem foredliptic differential operatoeA + A+ a(x)A — A for
£>0andA > 0:

(eA+A+aX)A—-NT.=f inQ, ~
~ (D)s)\
u:=0 onoQ. ’

Then the boundargQ of the modified domaif is of type >3 for the differential operatof + a(x) A, since we
have the condition

N N
()i +ai) 5 12 >0 onon. “3)

i,j=1 i=

Letfe C?(Q), f~arbitrary Then itis known (see [14, Theorem 6.19]) that the homogeneous Dirichlet problem
(D). has a unique solutiot, € C39(Q) for all 0 < 8 < 1, sincef € C?(Q). Furthermore, it follows from an
application of theveak maximum principlehat

. . 1 = 1
= <Zm =_ 4.4
Ul @) mxeax|ug(x)| 3 Xeax‘f(x)‘ 3 Hf‘ @ forall e >0, (4.4)

since we have the inequality (cf. inequality (3.4) and formula (3.6))
(EA+A+aX)A—A)1(X)=c(X)—A <—A onQ.

Step(I): In Substep (1I-3), by using the uniform estimate (4.4) for the soluti¢ts;, we will show that there
exists a subsequenggg,, } which convergesiniformlyon Q to a functiont € WL (Q), asg, | 0 (see assertions
(4.17))

U= lim 0y, e W*(Q),
£o10 K (@)

The uniform convergence of the subsequefigs } is based on the Ascoli—Arzztheorem.

In Substep (I1-4), the proof of the assertior W= (Q) will be carried out by using the following lemma for
the homogeneous Dirichlet problem in then-characteristic caséf. [18, Lemma 1.8.1], [24, Lemma 3.4]):
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Lemma 4.3 Assume that the boundadQ is of type>; for the differential operator AJQ = >3). Then there
exists a constang > 0 such that ifA > yi, the homogeneous Dirichlet problem

{(&‘A +A-ANus="f inQ, (D)

us=0 onoQ

has a unique solutionguc C3+9(Q) for any function fe C1*9(Q) with 0 < 8 < 1. Moreover, the solutionu
satisfies theiniform estimate

[Uellcr @y <M1(A) [ fllcr ) forall e >0, (4.5)

where M (A) > Ois a constantindependentf & > 0and0 < 6 < 1.
Proof. First, it follows from an application of theeak maximum principlr the elliptic differential oper-
atore A +A— A that the solutioni; € C3+9(Q) satisfieghe uniform estimate

[Uellc@) <+ ||f||C forall € > 0, (4.6)

since we have the inequality (cf. inequality (3.4) and formula (3.6))
(EA+A-A)1(X)=c(X)—A <—A onQ.
Thus,in order to prove the uniform estimate (4.5), it suffices to show that

max|gradug (X)| < M(A) [ f[lc1 g foralle >0, (4.7)
xeQ

whereM(A) > 0 is a constant independent ®f> 0 and 0< 6 < 1. Indeed, we then have the desired uniform
estimate (4.5)

1
lUellos @) < llVellem) +maxigradue ()] < 5 [ Fllc@) +M(A) I flles @)
<Mz(A )Hf||cl@ forall € > 0,

with 1
Mi(A) = 0 +M(A).

Substep (11-1): In order to prove the uniform estimate (4.7), following Cancelier [9, p. 1694] we consider a
continuous function associated with a second-ordiegeneratelliptic differential operatoA of the form (1.1)
such that
(Al)x) <0 onQ.

Definition 4.4 We define a bilinear formBa(-,-) on the product spadg?(Q) x C?(Q) by the formula

Ba(¢, @) =A@ -Y)—AP -Y—¢ Ay (4.8)
=2 % all (x ?%-(Al)(Ww for all ¢, ¥ € C(Q).

i,]=1
We remark that the functioBa(¢, ¢ ) is continuous and non-negative tn Indeed, we have, for alp € C>(Q),

N 20 2 -
_ ) >
(8,919 =2 5 00 G100 G0~ (AL (07 20 ond
sincethe matrix(aij (x)) is non-negative definite ar(@1)(x) < 0onQ.
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16 K. Taira: Feller semigroups and degenerate elliptic operators lll

Thenext result may be proved just as in the proof of Cancelier [€0fme 4.1] (cf. [24, Lemma 3.2]):
Lemma 4.5 If ¢ € C3(Q), we let

¢

dx.( ) forxe Q,

p1(X) = Zi

Ri(X) = (Apy) (X) — EBA(&P a(p)(x) forxe Q.

ng ng

and

Then,for eachn > 0 there exist constant8y(n) > 0 andB;1(n) > 0 such that we have, for all& Q,

o dp 9
R0 <1 3 B G5 ) 00+ Bom) 1910+ Bum) 91+ 5 1401

Remark 4.6 When the differential operatdkis replaced by a familfA+ €A — A} of perturbed differential
operators for & € <1 andA > 0, then the constanf%(n) andBi1(n) areindependentf € andA.

Substep (1I-2) (End of Proof of Lemma 4.3): We let

dug

2
d—xi(x) forx e Q.

pi(x) =

(i) First, we assume that the functip# attains its positive maximum at amterior point x of Q:

Then, since the matri(<aij (x)) is non-negative definite, we obtain that

((eA+A)pD) (Xo) < (AL)(x0) P1(¥%0) = C(Xo) Pi(X0)- (4.9)

However, it follows from an application of Lemma 4.5 with

1 _
ni=5, A=ed+A-), ¢ :=u. cC*0(@Q)
that
dus dug =
A+A-2) B R forallxe Q
(ea+ 9= 3 Beacns (o S ) 0 +REY) foralix <D
wherethe error ternR] satisfies the estimate
dug du
91< 3 3 Buacns (e o 0 (@10)

1 _
+Bo(L/2) luelZ g + Br(1/2) U [Er gy + 5 I T2 Torallxe Q.
Herewe remark (cf. Remark 4.6) that the constgBg6l/2) and1(1/2) in inequality (4.10) are independent of

£>0andA > 0.
Hence, since(xg) < 0 we obtain from inequalities (4.9), (4.10) and (4.6) that

A pi(xo) < (A —c(x0)) pi(x0) < (A —eA —A) p1) (%o) (4.11)

—((ea+A=2)0) 00)~ 3 Buacns (ot G ) )
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dug dug
*/Z Bea+a-a <o'?x 0X/> (Xo)
Jdug dug
B
/z eA+A-A (o”'x 0Xg> (Xo)
0u£ due
< =

1
<1/2>||ug||c B/ el B + 5 1l

S50(1/2)\\Us||c(§)+I31(1/2)(||U5Hc F0E00)) + 5 112

L (Bo(1/2) +Bu(1/2) g + Ba(L/2)BE00) + 5 2

<

Thereforejf A > 0 is so large that
A>yi=2p(1/2),
then it follows from inequality (4.11) that

maxpf (X) = pi(¥o) < C(A) [ [|Es g

xeQ
with
1
C(A) =+ (1+2(Po(1/2) +B1(1/2))).
Thus, we have proved that
£ 2 £ (y/

rxrl%xpl(X) <CA) I fllcr) + max py (x), (4.12)
or equivalently

max|gradus (X)| < /C(A) [| (1) + max |gradug (X)| . (4.12)

xeQ X'€dQ

(i) On the other hand, it follows from an application of Lemma 3.4 with
D:=Q, 23:=0Q, A:=A-A, g:=1f vei=u;
that we have, by estimate (3.11a),

max |gradug (X')| <Mo(A)[|f[lcq foralle >0, (4.13)
X'edQ

whereMg(A) > 0 is a constanindependentf € > 0 and 0< 6 < 1.
Therefore, the desired estimate (4.7) (and hence estimate (4.5)) follows by combining estimi&gsauid
(4.13):

m%x]gradu‘g )| < VE) Ifllcrg) +Mo(A) [ fllem <MA) [ fllcag foralle >0,
Xe
with
M(A) = max{«/C()\), Mo(/\)}.
The proof of Lemma 4.3 is complete. O
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18 K. Taira: Feller semigroups and degenerate elliptic operators lll

Substep(ll-3): Let f € C2(Q), f arbitrary Now we can prove that there exists a subsequgngg of the
sequencd g } which converges uniformly of to a functionti € C(Q), asg J. 0.

We recall (see condition (4.3)) that the boundag is of type 23 for the differential operatoA+ a(x) A.
Hence, by applying Lemma 4.3 with

A:=A+ax)a, f:=feC?Q), U :=U, wi:=A,

we can find a constait; > 0 such that ifA > A1, then the unique solution, € C3+9(§) of the homogeneous
Dirichlet problem

(eA+A+a)A—-N)U.=f inQ, -
N (D)ea
U =0 onodQ
satisfies thainiform estimate
Ul im <M f| .
1Te gy < Ma(A) H f Hcl@ forall & > 0, (4.14)

wherel\ﬁl()\) > 0 is a constanindependenof € > 0 and 0< 6 < 1. We find from the uniform estimate (4.14)
that the sequencfl;} is uniformly boundedndequicontinuousn Q. Hence, by virtue of the Ascoli—-Arzal

theorem we can choose a subsequdgg} of {U¢} that convergesniformlyto a functiont € C(Q), asg | O:

0=lim T, inC(Q). (4.15)

Thenit follows from the uniform estimate (4.4) that the limit functiarsatisfies the inequality

[Ullc) < AE H fNH(:@)- (4.16)

Substep(ll-4): Moreover, we can choose a subsequefigg, } of the sequencfl, } that converges uniformly
to the functioni € C(Q), asgy | 0, such that

U= sllmo Ug, INC(Q), (4.17a)
u= lim b, € W(Q), (4.17b)
Ek/LO

417
o (4.170)

|8gr) = 10l + llgradi e @) < C1(A) ||

with some constar@; (A) > 0.
Indeed, by using the uniform estimate (4.14) (and inequality (3.8)) we obtain that the first partial derivative
{0;0g, } satisfies the uniform estimate

10105 [| 21y < VIQI|95Te[| =) < V19 [|Tg[|criqy forall &> 0and 1< j < N.

This proves that the sequenf@ U, } is norm bounded in the Hilbert spaté(Q) for all & >0 and 1< j <N.

Since the unit ball in a Hilbert spacesesquentially weakly compadf. [36, p. 126, Theorem 1]), we can find
a subsequencfjUg,, } of the sequencéd;ig, } and a functionw; € L2(Q) such thav Ug, convergesveaklyto
Wj in L2(Q) asge | 0, forall 1< j <N:

Wi =w— IiTodegk, inL2(Q)forall1<j<N. (4.18)
&

Then we have, by assertion (4.15) or (4.17a),

Jju= IiTOaj Ug, = Wj € LZ(Q) in the sense ddistributions forall 1 < j <N. (4.19)
&
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clQ) }

is convex and strongly closed Lf(Q). Thus, it follows from an application of Mazur’s theorem that the convex
setK is weakly closedn L?(Q) (see [36, p. 125, Theorem 11]). However, we have, by inequality (4.14),

Onthe other hand, it is easy to verify that the set

R={7e L2(@): [l < Wah) |7

Ol €K forall1<j<N.
Hence, we find from assertions (4.18) and (4.19) that

Oji=W; =w-— lim 9jUz, €K forall 1< j <N,
Sk/lo

that is,
1011 o) < Ma(A) H FHcl@ forall 1< j <N. (4.20)

By combining assertion (4.15) and inequalities (4.16) and (4.20), we have proved that there exists a subse-
quence(Ug,, } of {Ug, } such that the limit function

i=Ilim Uy, inC(Q
gol0 ¥ @)

satisfieghe desired assertions (4.17b) and (4.17c) with

Gi(A) = 5 +NMi(A).

Step (Ill): Let f € C?(D), f arbitrary We will show that there exists a weak solutiore W (D) of the
equation(*), which satisfies the inequality

Ul o) < C1(A) [ fllcr ) - (4.21)

Substep(lll-1): By using the Seeley extellsion operator ( [1, Theorems 5.21 and 5.22], [20, Theorem], [29,
Theorem 4.21]), we can construct an extendiaf f to the domaim in such a way that

feC?(@), (4.22a)
|7 <l (4.22b)

cl@

Thenthe homogeneous Dirichlet probled), , has a unique solutioi; € C3+(Q). Hence, we obtain from
Green's formula (3.2) that

/ F.ydx= / £AT, -de+/ a(x)AUg~de+/ (A—A) T - dx (4.23)
Q Q Q Q
_ s/ 0 ~A\7dx+/ 0 - A (a(X)7) dx+/ O - (A" — A)Vdx
Q Q Q
for all vV € C?(Q) satisfyingv = 0 ondQ, sincea(x') V(x') = 0 ondQ.
However, we recall (see assertions (4.17)) that the subseqfiende;_, converges uniformly to the function

ucW*(Q), asge | 0:
u= lim Gg, € W(Q).

Ek/l,o
By letting g¢ | 0 in formula (4.23) withe := &, we obtain that
/F.de:/ G-A(a(x)\7)dx+/ 0. (A" — A)Vdx (4.24)
Q Q Q
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20 K. Taira: Feller semigroups and degenerate elliptic operators lll

for all Ve C?(Q) satisfyingthe conditiorv = 0 ondQ (see Definition 3.1).
Therefore, we have proved that, for any functioa C2(Q) thehomogeneous Dirichlet problem

{ (~Aj— ax)A—A)i=f inQ, ©),
u=0 onodQ

has a unique weak solutiane W1 (Q) which satisfies inequality (4.17c).
Substep (I1I-2): If f € C?(Q) is a Seeley extension df, then the homogeneous Dirichlet probl¢), has

a unique weak solution
U= sli/TO Ug, € wie(Q),
as is shown in Substep (l1l-1). In this substep, we will show thatdélgriction
u:=0jp e WH>(D)
is a weak solution of the desired equation
(A—Au=flp=f inD. ()

We remark that the desired inequality (4.21) follows from inequalities (4.17c) and inequality (4.22b), since we
have the inequality

<CL(A) I flleyo) -

w0y < Ilwaeie) < CoM) [T, o <

Step(1): We study formula (4.1) for alt € C?(D) satisfyingthe conditiorv = 0 on the sef; (see Definition
3.1). To do so, we replace the functieiby a functionvgs for 6 > 0 sufficiently small, wheres € C*(Q) such
that 0< @5 < 1 onQ andthatgs = 0 in thed-neighborhoodss of ZoU 2; and inQ\ D and further thatgs = 1 in
D outside the 3-neighborhood ofoU 2 (see formula (4.26) below), just as in the proof of [18, Theorem 1.8.1].

More precisely, by hypothesis (G) we can introduce a local coordinate system

y= (yl;yz; cee 7YN)
in a tubular neighborhood of the bound@€ such that
Q={yn>0}, 9Q={yn=0}.

Assume that, in terms of this coordinate system, the adjoint differential opéyatdrA is of the form

N o 2
A'v= z a'l(y) L

+ S BY( )ﬂ'f'c*( W (4.25)
i,J=1 0yidyj i; y ayi YV .

If & > 0 is sufficiently small, we choose a functig € C*(Q) suchthat 0< ¢@5(y) < 1 onQ andfurther that

0 inthed-neighborhoodss of U 27 and inQ\ D,
rpa(y)z{ X o 0t \ (4.26)

1 inD outside the &-neighborhood>,5 of ZpU ;.
We may assume that the functigi(y) depends only on the variabjg and that we have, a%| 0,

%ps
o

995 _

=0(5 1) and
Ay (677)

0(67%) inatubular neighborhood @Q.

Now letv € C?(D), v arbitrary such that = 0 on 5. Then it follows that the functiomgs belongs taC?(D)
andsatisfies the condition
v(X)@s(X) =0 ondQ.
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Thus,by applying formula (4.24) to the function:= v@s € C2(Q) we obtain from condition (4.26) that

/f-V(p5dx:/u-(A*—)\)(vcp5)d>g (4.27)
D D

sincea(x)v(x)@s(x) = 0in Q andu = Up.

Step (2): We will show that formula (4.27) tends to formula (4.1)as0.

(i) First, by using the Lebesgue dominated convergence theorem we obtain from condition (4.26) that the
left-hand side of formula (4.26) tends to the left-hand side of formula (4.8)]23:

lim / fov dx:/f-vdx 4.28
3/0.JD (p6 JD ( )

(ii) Secondly, we can rewrite the right-hand side of formula (4.27) in the following form:

/u~(A*—A)(V(p5)dx:/u-((A*—/\)v)(p5dx (4.29)
D JD
: : N 0v 095
+/ uv- (A*@s —c* dx+2/ u- dx
s (A"@s —Cc*(Y)@s) I <| 12:1 dy. 3y,
=19 +19 415,

Indeed, by formula (4.25) it suffices to note that
N 2

A 00) = 3 a0 )+ 3 B 7 () 4 ) ()

N 0% av o5 N . dv
— a” _|_ a” 74_ I i
<sz_1 (¥) ay, ay,> @ |le dyi 3y, _;B (¥) oy | %

N (9 (V3 [9(05
+(c(Y)V) @5 +V a'l(y)5—=> B'(y
° mzzl 9yiy; Z aYi
N o Ovags
=A'V-@s+V- (A*@s—C' +2'§ al(y)=— =2,
@5+ V- (A" g5 —C(Y)05) i,; W5y, 3y,

sincea'l (y) = all(y)for 1 <i, j <N.
Now we will calculate the limit of the three termg, 1 and1$ asé | 0.
(ii-a) For the term 9, we have, by the Lebesgue dominated convergence theorem,

|im|5:/u. A —A)vd 4.30
310 L 5 ( yvdx ( )
just as in assertion (4.29).

(ii-b) For the termd? andI$, we remark that the integral§ and1 are taken over the®neighborhoods,s
of the set

0D =25pU2;

where the funcUongd%s and ai g’i may be different from zero. Thus, by passing to the local coordinate system
(Y1,¥2,--.,Yn) we obtain from formula (4.25) oA* that

2
2=/ (a““(y)ai"HBN(y)"""‘) VUK (y)dy.

oYy OYn

ov d(p(j dV 0(05
I5:2/ aN y)dy+2 / K(y)dy,
3 o Ny)5— v ayN )dy 21 - dy. Eye u(y)k (y)dy,
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sincethe functiongs(y) depend®nly on the variabley. Herek (y) is some smooth density function.
First, we consider the limit of the terh§ asé | 0: Since we have the three assertions

o a"N(y)=0(8?) nearthe seEoU 31,
2
o % _
YR
e the measur§G,;s| of Gy is of orderd,

O(67%) nearthe seEoU 3y,

it follows that

. %@ .
lim a"N(y) =0y (y)u(y)k (y)dy = lim O (&) = 0. 4.31
I Jo,s (¥) 3, (Y)u(y)x (y)dy im (0) (4.31)

On the other hand, we remark that 0 on the se£; and further that the functioN(y) coincides with the
Fichera functiorb*(y) = —b(y) for the operatoA* on the sety (see formulas (1.3d) and (3.1)). This implies
that

e v(y)=0(0) nearZ,
e BN(y)=0(8) nearX.

Hence, we have the assertion

. oQs .
lim Ny)=22v(y)u(y)k (y)dy=limO(d) =0 4.32
I Jo, B W) Gy VO dy =lImO(0) =0, (4.32)

sinceg% =0(571) and|Gys| = O(8) asé | 0.

Therefore, we obtain from formulas (4.31) and (4.32) that

lim1$ =0. (4.33)

(ii-c) Next we consider the limit of the termf asod | 0: Since we have the assertions

ea"N(y)=0(8%) nearsouUsy,

o 2% _

0(671) nearsuzy,
OYN ( ) 0~

it follows that

. ov 0@s .
lim aNN(y)=— =2 u(y)k(y)dy = limO(5?) = 0. 4.34
im I, ) Ayn Iy (Y)k(y)dy im (0%) (4.34)

Furthermore, since the matr{xr'l (x)) is non-negative definite, we find that
aN(y)=0 onXuZfor1<i<N-—1,

and so _
ea™N(y)=0(5) nearpuUZiforl<i<N-1.
Thus, we have the assertion
v 095

N-1 ,
iy, /625 aNY) 3y gy VK= mO(3) =0, (4.35)

sinceg% =0(671) and|Gys| = O(d) asd | 0.
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Hence we obtain from formulas (4.34) and (4.35) that

im1$ =o0. (4.36)

(ii-d) Summing up, we obtain from formulas (4.29), (4.30), (4.33) and (4.36) that the right-hand side of
formula (4.27) tends to the right-hand side of formula (4.1 490:

l C(AF—A =1limI2 +1
im [ u-( ) (V@5 ) dx gjg 1+

m12 Iiml5:/u~ A" —A)vdx 4.37
m I 2+5¢0 = ( ) (4.37)

i
310
(iii) Therefore, the desired formula (4.1) follows from formula (4.27) by combining formulas (4.28) and (4.37),
provided thatf € C?(D).
Step(IV): Finally, let f € W1 (D) = C%Y(D), f arbitrary We will prove that the equatiofx), has a weak
solutionu € W1 (D) = C%1(D) which satisfies the desired inequality (4.2).
Substep (IV-1) By using Friedrichs mollifiers (see [34, Subsection 1.3.2]) and Remark 4.2, we can find a
sequence f,}*_, in C?(D) suchthat
[ fallcro) < [Ifllwie(p) (4.38a)
fo— f InC(D) asn— . (4.38b)

Let f, bea Seeley extension df, to the domaim such that
fne C?(Q),
fa

< 5 < ©(D) -
cl@) ||fn||c1(D) < [ Flhwa. (D)

Let U, n € C39(Q) bea unique solution of the homogeneous Dirichlet problem

(eA+A+aX)A—A)Ugn= fn inQ, ~
~ (D)e,)\,n
Ugn=0 onodQ.
Then, by Substep (l11-1) we find that the homogeneous Dirichlet problem
(A+a(Xx)A—AN)lh=f, inQ, .
~ (D))\,n
Uuh=0 onoQ
has a unique weak solution
~ . ~ 1.0
Up = l‘l(,r?ougk“n e W*(Q).
Hence, it follows from an application of Step (l11-2) with:= f,, that therestriction
Un = Gn|D S Wl’oo(D)
is a weak solution of the equation
(A—A)uy= folp = fr inD. (*)an

Furthermore, it follows from estimate (4.17c) with= f, anddi ;= Uy and inequality (4.38a) that the solutigp
satisfies theiniform estimate

fn

lUnlhwes o) < 10nllwae(q) < C(A) <G [ fallerp) (4.39)

cl(Q)
<Ci(A)||f lweepy forallneN.
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Substep(IV-2): By using a Sobolev imbedding theorem (see Remark 4.2), we find from the uniform estimate
(4.39) that the sequende, }»_, is uniformly bounded@ndequicontinuousn the closurd®. Thus, by virtue of
the Ascoli—Arzeh theorem we can choose a subsequéngé of the sequencéu,} that converges uniformly to
a functionuin C(D) asn’ — co:

u= lim uy inC(D). (4.40)

n —oo
Therefore by using the equatiof), , with u, := uy, f, := fy and assertions (4.40) and (4.38b) we obtain
that
/ u- (A" —A)vdx=lm [ uy-(A*=A)vdx= lim [ fy-vdx
D n—o JD n'—ow JD

= / f-vdx forall ve C?(D) satisfyingthe conditiorv =0 on3;.
JD

This proves that the limit functiom € C(D) is a weak solution of the equatiox), (see Definition 3.1 with
A=A-A):

(A—A)u=f inD. ()

Moreover, just as in the proof of Step (l1) (cf. inequalities (4.16) and (4.20)) we find from the uniform estimate
(4.39) that

uecWi=(D), 4.2)
[Ullwiepy < C1(A) [ fllwreo) » '

where the constaf@;(A) = Cy(A) is independent of .
The proof of Theorem 4.1 is now complete. O

4.2 Higher regularity of weak solutions of the equation(x),

In this subsection we will provelsigher regularitytheorem of weak solutions of the equatig, in the Sobolev
spaceN™=(D) for A > A, with each integem > 2 (Theorem 4.7 and Remark 4.8), generalizing Theorem 4.1
forA > Ag:

Theorem 4.7 Assume that hypothesis (G) is satisfied. For each integer2nwe can find a constait, > 0
such that ifA > Ap, the equationx), has a weak solution @ W™ (D) for any function f€¢ W™*(D). More
precisely, we have the formula

/f~vdx:/u-(A*—/\)vdx (4.1)
D D

for all v € C?(D) satisfyingthe condition v= 0 on the set; (see Definition 3.1).
Furthermore, the weak solution u satisfies the inequality

[[ullwme oy < Cm(A) [ llwme () » (4.41)

where Gy(A) > Ois a constant independent of f.

Remark 4.8 We find from Adams—Fournier [1, Theorem 4.12, Part II], f4aliemer [17, Corollary 1.73] and
Ziemer [37, Theorem 2.2.1] that the weak solutionW ™ (D) of the equatiorix), coincides almost everywhere
with a function ofC™1(D) in D suchthat the derivative®u for |a| = m— 1 are Lipschitz continuous almost
everywhere irD and further that there exists a constipt> 0 such that

10%U(x) —%u(y)| < Km||ullyme(py [x—Yy| foralmostallx,y € D.
|aj=m-1

That is, W™ (D) = C™14(D).
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Steps Elliptic regularizations Data Solutions
(1) Dirichlet problem(D), , feC3Q) U €CHO(Q)
(1) Dirichlet problem(D), fcC3(Q) U= limg,oUg in C1(Q)
U= limg, ol € W2*(Q)
Ug, € CHO(Q)
(V) Equation(), f €C3(D) u= U € W2*(D)
(A—Au=f feC3@) U= limg ols € W2*(Q)
f”D = f
(V-1) Equation(x) n fn € C3(D) Un = Un|p € W?®(D)
(A= A)un = fo fa e C3(Q) Un = lim g0 Ug n € W2(Q)
ﬁ1 D = fn
(V-2) Equation(), f e WZ>(D) u=limy_,, Uy in C}(D)
(A—Au=f f =limp_o fn ueWw2>(D)
fn € C3(D) un € W2>(D)

Table 4.2 An overview of the proof of Theorem 4.7 fon= 2, wherew?* (D) = C11(D)

Proof. We prove Theorem 4.7 only in the case= 2. The general case may be proved by inductiomon
for m> 2 (see the proof of [18, Theorem 1.9.1]).

The proof is based on a methodafiptic regularizationsand theweak maximum principle, just as in Subsec-
tion 4.1. The proof is divided into five steps (see Table 4.2).

Step (1): We modify the domai and the differential operat@x so that the boundary is of types, just as in
the proof of Theorem 4.1 (see Figure 4.1):

D=DuU(5uUZz;) CQ,
(Al)(x) =c(x) <0 onQ.
We take a functiom € C*(Q) suchthat
a(x)=0 inD,
a(x) >0 inQ\D,
andconsider the homogeneous Dirichlet probléﬁ)gﬁ)‘ for theelliptic differential operator
eA+A+ax)A—A, £>0.

We recall (condition (4.3)) that the boundad?{) of the modified domaim is of type >3 for the differential
operatorA+ a(x)A.

First, letf € C3(D), f arbitrary We will show that there exists a weak solutior W2 (D) of the equation
(%), which satisfies inequality (4.41) fon= 2.

By using the Seeley extension operator, we can find an extefigibri to the domairQ such that

fec¥Q), (4.422)
< = . .
7 @ = e (4.42b)

Thenit is known (cf. [14, Theorem 6.19]) that the homogeneous Dirichlet problem

(eA+A+a()A—-N)U:=f inQ, -
- (D)S/\
Us =0 onoQ :
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hasa unique solutionl; € C**¢(Q) for all 0 < 6 < 1, sincef € C3(Q). We remark (see the uniform estimate
(4.4)) that the solutiom; satisfies the uniform estimate

1Telloq) )\H w'”‘c for all € > 0. (4.43)

Step (I1): In Step (Ill), by using the uniform estimate (4.43), we will show that there exists a subsequence
{Ug, }i_; Of the sequencgl; } which, together with all their derivatives of order2, converges weakly to some
functionl € W2*(Q), asg . 0 (see assertions (4.59)):

U= lim 0, € W2°(Q).
8010 % © @)

The proof of the assertioti € W2®(Q) is based on the following lemma for the homogeneous Dirichlet
problem in thenon-characteristic caseanalogous to Lemma 4.3 (cf. [18, Lemma 1.8.1], [24, Lemma 3.7]):

Lemma4.9 Assume that the bounda#f2 is of typeZ; for the differential operator AQ = >3). Then there
exists a constang > 0 such that ifA > y,, the homogeneous Dirichlet problem

EA+A-AN)u=f inQ,
{( e (D)ea

us =0 ondQ

has a unique solutiongue C*9(Q) for any function fe C29(Q) with 0 < 8 < 1. Moreover, the solutionu
satisfies theiniform estimate

[Uellc2@y < M2(A) [ fllczy forall e >0, (4.44)
where M(A) > Ois a constantndependentfe > 0and0 < 8 < 1.
Proof. We recall that
[Ugllcr @y < M1(A) [ fllcr g foralle>0. (4.5)

Thus, in order to prove estimate (4.44), it suffices to show that

N
max
XeQ j. =1

whereM(A) > 0 is a constant independentof> 0 and 0< 6 < 1. Indeed, we then have the desired estimate
Ug

2\ 1/2
(9x.dxJ )

< el +MA) ([luellcr g + I Fllcz )
< Mz(A )Hf||cz(9) for aII£>O,

d2u;
axax; ¥

o\ 1/2
) < M) (ellexy + 1 fllex)) - (4.45)

2

el < elesa (maxz

i,]=1

with
M2(A) :=max{M1(A) (1+M(A)),M(A)}.

Substep (11-1): In order to prove the uniform estimate (4.43), we make use of the following lemma, analogous
to Lemma 4.5 (cf. [9, TRoeme 4.1], [24, Lemma 3.6]):

Lemma4.10 If ¢ € CHQ), we let

forxe Q,

N 02
= 3 |
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and

N 2 2
Ra(X) = (Apz) (X) — ZlBA< ¢ , L )(x) forxe D,

0= 0%00%m~ 0% %m

whete the function R(-,-) is defined by formulé4.8). Then, for eacly > 0 there exist constani8;(n) > 0 and
Bz(n) > 0such that we have, for all® Q,

( 29 9%

N
- o9 o9
IR(X)[<n z Ba 0%00%m’~ 0%s0%m

£, m=1

) 00-+ B0 1180, Bel) 191y + 5 101

Remark 4.11 When the differential operatdkis replaced by a familyA+ A — A1} of perturbed differential
operators for &< € <1 andA > 0, then the constanfi (n) andf,(n) areindependentf € andA.

Substep (1I-2) (End of Proof of Lemma 4.9): We let
N
i,]=

(i) First, we assume that the functip attains its positive maximum at an iinterior poing af Q:

d%ug

f Q.
o"'x.dx, orxe

X

N 2

P5(X0) = max
X€Q|J 1

0%u,
0% 0X; )

Then, since the matri)(oalij (x)) is non-negative definite, we obtain that

((EA+A)P5) (X0) < (A)(X0) P5(¥0) = C(Xo) P5(X0)- (4.46)

However, it follows from an application of Lemma 4.10 with

1 _

ni=3, A=gd+A-Al ¢ :=u. eCHO(@),

that , ,
J°Ug  0°Ug _
A+A-A B _— RS for all Q
(eA+ ) P5(X) Zmz_l eA+A-) (c?Xgo"xm’ngdxm>(X)+ c(x) forallxeQ,

wherethe error ternR satisfies the inequality

1 N 0%u;, 0%y,
< = B _—
-2 21 EA+A-A (c?xﬁxm’ dxMxm) 9

£, m=

(4.47)

1 _
+B(1/2)|ueiEa ) + Ba(L/2)IUe Iz ) éllfllf;z@ forallxe Q.

Herewe recall (see Remark 4.11) that the const#htd /2) andB3,(1/2) in inequality (4.47) are independent of
€>0andA >0.
Hence, we obtain from inequalities (4.46), (4.47) and (4.5) that

A p5(%0) (4.48)
< (A —c(%0)) p5(x0) < ((A —€4 fA) p5) (%o)

(((en+A-2)pE) (%0 B 0% 0% (%)
pZ [nZ:l EA+A—A ngde7 anaXm Xo

N d%u 0%u
— Z Beata-a (E’g> (Xo)

0 fm 0X0%m’ OX0%m
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N (72U5 dzuf’:
= R0~ 3 Bainr (om0

1 N 0%u; 0%
<-2%v B T
< mzl eA+A-A (dXéde,aX[(? )(Xo)

+Ba(1/2)] e g+ Bo(L/ Dk o + 5 1oy

< Bi(1/2) uel 2y + Bo(1/2) (el By + PE00)) + 5 1122

< (B(1/2) +Bo(1/2)Ma(A ] 1 s g + Bol1/2)B500) + 5 1oy
Thereforejf A > 0 is so large that

A>ypi=20B(1/2),
then it follows from inequality (4.48) that

maxps(X) = p5(xo) < C(A) [ fllgeq, foralle >0, (4.49)

XeQ
with

= (142(B1(1/2) +B(1/2)Ms (A7)

(i) Next we assume that the functigsj attains its positive maximum at@undary point g of 0Q = >3, and

let
o\ 1/2 N o\ 1/2
X .

= (x)
0Xi0X;

C(A) =

N 2 2

ug,
dmam

U =/ P5(X0) = (max

xeQ . =1
(ii-a) Since we have the assertions

%% _ o onaQfori<j<N-1,
0Xj
we can prove the following claim just as in the proof of [24, assertion (3.40)]:
Claim 4.1 For everyn > 0, there exists a constantd¢h) > 0, independentf € > 0, such that

2
Ug Jug Jdug
< — —— .
xr'QgQ dxjde(X’)’_n (eA+A )\)<de> ﬁ de, (4.50)
forall 1< j<N-1.
However, by a direct calculation we find that
dug
(eA+A-A) (0)(1) (4.51)
7} 7 of 7}
= ax J((eA—kA A)ug) + [sAJrA—A,axj] e = 0, [£A+A A, '3 J]ug
af N ga™ 92u, N obfdu, dc N gum 92y, N v dug
> o ot 2 o ax o) TE\, 2, o axawn T 2, 9% 0%
e %) OXOXm Xj 0% X o1 OXj OXe0Xm /= OXj OX

where[P,Q] = PQ— QPis the commutator of the differential operat®andQ, and

A 9w N o, ow
Aw= 5 P ——+ 3 VX, 4.52a
mz:lll ( )dxMxm ,Zl ( )(?Xg ( )
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N 92w N ow
+ 5 bY(X)=— 4 c(x)w. 4.52b
nZ Maxm é; ( )M (x) ( )

Hence, we have, by formula (4.51),

(eA+A—2A) (3;’;)

with a constan€ > 0 independent of > 0 and 0< 6 < 1.
Therefore, by combining inequality (4.50) with

<[l +C (B + IUelry) fori<j<N-1, (453
C(Q)

T
T=3N"1¢C
andinequality (4.53) we obtain that
1/2
N—-1 aZUE 2 1
X : f 4.54
(IQ% 2. oo™ 5B+C (luclleyg + I flex)) (4.54)

where

' 11 1
C._max{zc,2+Mo 2N—1C .

(ii-b) In order to estimate the term
d2u;
m(xé)%

we choose a local coordinate systéyn,y», ..., yn) in a neighborhood afy € 9Q = X3 such that

% =0,
Q={yn>0}, 90Q={yn=0}.

By using formulas (4.52) for the differential operatdrandA, we may assume that the equation
(eA+A—-A)us =f interms of the coordinate syste(yy,y2,...,YN)

is of the form

920 N1 B 224
eA+A-M U = (a"N(y) +euNN(y)) = + a'l(y)+ eyl €
( e = (") +eu™(y) 5 .Jzzl( W) +enl ) 5e5

N-1
+ (BN (y) +evM(y 6U5+Z y)+evi( )g—l::+(c(y)—/\)ug

=f.
SinceaNN(0) > 0 (by 0= x; € Z3) anduNN(0) > 0 and sincal; = 0 ondQ, it follows that

02U, 1 oug
50 - g 1O~ (810 +ev(0) 120)).

Hence, we have the inequality

'dzug

0] <C (Iuellon 1) (4.55)
N

with a constan€” > 0 independent of > 0 and 0< 6 < 1.
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(ii-c) Finally, we remark that

9%u,
0% 0X;

=0 ondQforalll1<i,j<N-1. (4.56)

Therefore, by combining estimates (4.54) and (4.55) and formula (4.56) we find that

N o"’zug 2\ 1/2 1, o
(mgjz amx, ) S§0|2+(C+C)(Husllcl +flera )
sothat
6 <2(C'+C") (Iellcmy + I s ) - 457)

(iii) The desired estimate (4.45) (and hence estimate (4.44)) follows by combining estimates (4.49) and (4.57):

N
max
XeQ i,=

n 1/2
) < VEM oo +2(C+C) (ellox + | s

<M(A )(Hue”cl @ )

z?x.c?xJ )

with
) :=+/C(A)+2(C'+C").

The proof of Lemma 4.9 is complete. O
Step(Ill): Now, by applying Lemma 4.9 with
A=A+aXxA,
we can find a constadb > 0 such that ifA > A, the homogeneous Dirichlet problem

(eA+A+aX)A—-NT.=f inQ, ~
~ (D)s)\
u:=0 onodQ ’

has a unique solutiofi; € C**¢(Q) for all 0 < 8 < 1, provided thatf € C3(Q). Moreover, the solution
satisfies theiniform estimatécf. estimate (4.16) and inequality (4.42b))

1 ez < Ma(A) | ] e <MW [flczp) foralle >0, (4.58)

whereM3(A) > 0 is a constant independentof> 0 and 0< 6 < 1.

Therefore, by arguing as in the proof of Theorem 4.1 we can choose a subse@ugige, of the sequence
{U¢} which, together with all its derivatives of order 2, converges weakly to some functiarin the Hilbert
spacel?(Q) asg | 0. More precisely, we have the following assertions (cf. assertions (4.15) and (4.18) and
inequality (4.20)):

ufllmu‘Ek inCY(Q). (4.59a)
&0

Wij = —llm 1019 (U ) = 30,0 inL3(Q),forall 1<i, j <N. (4.59b)

[[Wij [ o <M2( )Iflezm forall1<ij<N. (4.59¢)
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Thus,by passing to the limit in the homogeneous Dirichlet prob[dﬁmgk’,\ asgg | 0 we obtain from assertions
(4.59) and the uniform estimate (4.58) that

U=limu, e W2*(Q),
610 Ek ( )

and further (see Substep (l11l-1) of the proof of Theorem 4.1) that the limit functisra weak solution of the
homogeneous Dirichlet problem

(A+a(x)A-Nu=f inQ, N
0 (D)a
u=0 onadQ.
Moreover, the weak solutiomsatisfies the inequality
[Ullwze(q) < Co(A) | f ez (4.60)

whereC,(A) > 0 is a constanindependenof £ > 0 and 0< 6 < 1.
Step (IV): Let f € C3(D), f arbitrary If f € C3(Q) is a Seeley extension dfto Q, by arguing as in Step (Ill)
of the proof of Theorem 4.1 we find that thestriction

u:=Up € W2*(D)
satisfies the equation
(A—Nu=flp=f inD, (*)a
sincea(x) =0inD.

Therefore, we obtain from inequality (4.60) that, for any functios C3(D) thereexists a weak solution
u € W?2*(D) of the equatior{x), which satisfies the inequality

ullwzeo) < [Tz < C2(A) [ fllceo) - (4.61)
Step (V): Finally, let f € W2*(D) = CYY(D), f arbitrary We will show that the equatiofx), has a weak
solutionu € W2 (D) = C1(D) which satisfies inequality (4.41) fon= 2.

Substep (V-1): By using Friedrichs mollifiers ( [34, Subsection 1.3.2]) and Remark 4.8mith2, we can
find a sequencéf,}i_, in C3(Q) suchthat

fi

< o .
e <l (4.622)

fo— f inCYD) asn— w. (4.62b)

LetUgn € C*%(Q) bea unique solution of the homogeneous Dirichlet problem

(EA+A+aX)A—A)Uen=f inQ, .
— ' (D)e,)\,n
Ugn=0 onoQ.

Then, by Step (lll) we find that the homogeneous Dirichlet problem
(A+aX)A—A)lh=f, inQ, ~
~ (D))\,n
uh=0 onoQ

has a Unique weak solution
Un = lim e W=™(Q).
n ol €N ( )
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Moreover, by Step (IV) it follows that theestriction
Un := Un|p € W2*(D)
satisfies the equation
(A=A)Up=folp=f, inD. (*)an

Moreover, we find from inequality (4.61) withh:= u, and f := f,, and inequality (4.62a) that the solutiop
satisfies theiniform estimate

fi

[[Unllwze(p) < C2(A) || fallczm) < C2(A)

—_ Co(A) || fllwzep) forallneN. (4.63)

Step (V-2): By virtue of the uniform estimate (4.63) and Remark 4.8 with- 2, we can choose a subsequence
{uy} of the sequencéu,} that converges uniformly to a functianin C(D) asn’ — o (cf. assertion (4.40)):

u= lim uy inCYD). (4.64)

n' —oo

Justas in Substep (IV-2) of the proof of Theorem 4.1, it follows from assertions (4.62b) and (4.64) that the limit
functionu € W2 (D) is a weak solution of the equation

(A—A)u=f inD, )3
and further that the weak solutiarsatisfies the desired inequality (4.41) foe= 2:
||UHW2'°°(D) < CZ(A) H f ||W2Aoo(D> s

where the constari;(A) = Cy(A ) is independent of .
The proof of Theorem 4.7 (whem = 2) is now complete. O

4.3 Proof of Theorem 1.4

The existence and uniqueness theorem for the equation (1.5) follows from Theorem 4.7 by a well-known real
interpolation argument due to Lions—Peetre [16] (cf. [6, Theorem 6.4.5], [33, Theorem 2.4.2]). Indeed, it suffices
to note that the Hider spac&€™*®(D) is areal interpolation spacéetween the Sobolev spadé&™(D) and
wWm+Le (D) (see formula (4.68) below).

More precisely, we can obtain the following existence and uniqueness theorem for the e@ugtionthe
framework of the Hblder spacé:2+9(5), which proves Theorem 1.4 fon:= 2 (cf. [24, Theorem 3.8]):

Theorem 4.12 Assume that hypothesis (G) is satisfied. There exists a cogtan® such that ifA > A3, the
equation

(A—A)u=f inD (*)a

has a unique solution & C>*9(D) for any function fc C>*9(D) with 0 < 8 < 1. Moreover, the solution u
satisfies inequalityl.6)for m= 2 with

Coro(A) =Co(A)+0C3(A)% foro< @ <1 (4.65)

Proof. The proof is divided into three steps.
Step (1): First, by using Theorem 4.7 for= 2 andm = 3 we obtain the following two inequalities for all
A > Azt

[(A=A) " 200 <C2(A)||f||l200  forall f € W2=(D). (4.66)
[(A=A) "1 f]l30 <C3(A)| fll3 forall f € W3=(D). (4.67)
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Fig. 4.2 Proof of formula (4.65) foA > A3

Here,without loss of generality we may assume that> A».
The idea of our proof may be visualized by Figure 4.2 below.
Step (2): We define &eal interpolation space

(W2*(D),W3>(D)) for0< 6 <1,

0,00

between the Sobolev spad&€= (D) andW>*(D) as follows:

0 {o0] 0 K t7u
(W2 (D). WA (D), = {uE W2"(D): ula = sup 5 <o
>
where

K (t,u) =inf { Ul + U s 1 U= U+ Ui, Uo € WH(M), 1y €W 1(M) |

Then it is known that the Blder spac&?+¢ (D) coincideswith the interpolation space

c*9(D) = (W?*(D),W?*(D)),,, foro<6<i, (4.68)

with the norm|| - || g .
Indeed, it suffices to note the following three assertions (a), (b) and (c):

(a) For any integem < N, we have the inclusions (see Remarks 4.2 and 4.8)
C™(D) c W™(D) =C™ (D) C B (D).

(b) For any 0< 6 < 1, we have the formulas (see Bergliftrom [6, Theorem 6.4.5]; Triebel [33, Theorem
2.4.2))
(B%.(D),B2 (D)), = B2 (D) = C**°(D),
(C*(D),C%D))¢,., =C**°(D).
(c) Forany 0< 8 < 1, we have the inclusions

C2*9(D) = (C¥(D).C%(D)),, © (W2(D),W3"(D)) 4., C (B2 (D), B3 (D)), = C**®(D).
Step(3): Therefore, by an interpolation argument we obtain from inequalities (4.66) and (4.67) that
lullczre) = | (A=A)"* fllczre(y < Ca(A)°Ca(A)°|fllczro(y forall f € C*O(D).

This proves the desired formula (4.65).
The proof of Theorem 4.12 is complete. O

Copyright line will be provided by the publisher



34 K. Taira: Feller semigroups and degenerate elliptic operators lll

5 Proof of Theorem 1.2

In this last section we will prove the generation theorem of a Feller semigrolp(@heorem1.2). Our proof

is based on the Hille—Yosida—Ray theorem (Theorem 2.1) which is a Feller semigroup version of the classical
Hille—Yosida theorem in terms of thgositive maximum principle. We will verify three conditiofws), () and

(y) of Theorem 2.1 wittC(K) := C(D) andB := &7 underhypothesis (G).

5.1 Green operatorsGy
By using Theorem 4.12 with
A= a, A3 = o,

we can obtain following fundamental theorem (cf. [24, Theorem 4.1] under hypothesis (H)):

Theorem 5.1 Assume that hypothesis (G) is satisfied. There exists a comgtan0 such that ifa > ap, the
equation

(a—Aju=f inD (5.1)
has a unique solution & C>"¢(D) for any function fe C?"¢(D) with 0 < 8 < 1. Moreover, the solution u

satisfies the inequality

1
maxu(| < — max|f (). (5.2)
xeD a xeD

Theorem5.1 asserts that iff > ap, the equation (5.1) has a unique solutiog C2+9(5) for any function
f € C?9(D) with 0 < 8 < 1. Therefore, we can introduce a linear operator

Gy : C*9(D) — C?9(D)
asfollows: For eachf € C%+9(D), the functionu = G4 f € C2*9(D) is the unique solution of the equation
(a—Au=(a—A)(Gyf)=f inD. (5.3)

The operatoG, is called theGreen operatofor the equation (5.1).

Then we have the following fundamental result for the Green oper@gi&f. [24, Lemma 4.2]):

Lemma 5.2 The operator G for a > ap, considered from (D) into itself, is non-negative and continuous
with norm

1

IGa|l = |IGal|| = maxGq1(x) < for all a > ao. (5.4)
xeD a

Proof. First, we prove th@on-negativityof the Green operatds, for all a > ag. To do so, by virtue of
Friedrichs mollifiers ( [34, Subsection 1.3.2]) we may assume that
feC¥D) and f(x)>0 onD,

sincethe spac€®(D) is dense irC(D).
We modify the domairD and the differential operatdk just as in the proof of Theorem 4.1 (see Figure 4.1),
and consider the homogeneous Dirichlet prob(@ , for the elliptic differential operator

eA+A+ax)A—A, £>0,

where the boundargQ of the modified domai is of type 23 for the differential operatoA + a(x)A. By
using the Seeley extension operator ([1, Theorems 5.21 and 5.22], [20, Theorem], [29, Theorem 4.21]), we can
construct an extensiohof f to the domaim2 in such a way that

fec}(@ and f(x)>0 onQ.
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Then,by Step (lll) of the proof of Theorem 4.7 with := a it follows that the homogeneous Dirichlet problem

[fugmaan=t oo,

has auniqueweak solutiorv € W2*(Q). Furthermore, sinca(x) = 0 in D, we find from Step (Ill) of the proof
of Theorem 4.1 that theestriction
V="V, € W>*(D)

satisfies the equation N
(A—a)v=flp=f inD.

Sincef € C3(D), it follows from the equation (5.3) that
v=—Gqf € C*T9(D). (5.5)
Onthe other hand, since we have the condition

f(x) >0 onQ,

by applying theweak maximum principlfor the degeneratelliptic differential operatoA+a(x)A — a (see [7],
[18, Chapter Ill, Section 1], [34, Subsection 3.7.2], [31, Section 8]) we obtain that

V() <0 onQ. (5.6)
Thereforeby combining assertions (5.5) and (5.6) we have proved that
(Gaf)(x)=—v(x)=—-V(x) >0 onD.

This proves the non-negativity &, for all a > .
Finally, the desired inequality (5.4) follows from inequality (5.2) by taking 1.
The proof of Lemma 5.2 is complete. O

5.2 End of proof of Theorem 1.2
We recall thateZ is a linear operator from the spaC¢éD) into itself defined by the following:

(1) The domairD(«) of <7 is the space
D(«) = C?(D). (1.4)

(2) &/u= Aufor everyu e D(&).

We will verify three conditionga), (8) and(y) of Theorem 2.1 witlC(K) := C(D) andB := & underhypothesis
(G). The proof is divided into three steps.

Step (1): First, we verify conditior{a), that is, thedensityof the domairD(«) in the spac€(D).

Now let f € C3(D), f arbitrary Then we obtain that

Gy f €eC3(D)=D(«) forall a> ao.
However, it follows from an application of theniqueness theorefor the equation (5.1) that
Indeed, it suffices to note that the both sides satisfy the same equation
(a —A)u=—Af inD.
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In view of inequality (5.4), we have the inequality

If—aGqef| <~ IA-Afl+ > f] foralla>ao

Therefore, we have the assertion
lim ||f—aGqf||=0.
a—>+oo

This verifies conditior{a), since the spadg®(D) is dense in the spac@(D).
Step(Il): Next, in order to verify condition3), we assume that
ueD(«)=C?D) and mawu(x)>0.
xeD
Thenwe consider the following two cases:
(i) There exists aimterior point % of D such that

u(xg) = maxu(x) > 0.
xeD

(ii) There exists &oundary point § of dD = 3y U 21 such that
u(Xp) = maxu(x) > 0.

xeD
Cas«(i): In this case, we have the assertion
AR d°u
“/u(xo) = Au(xo) iﬁjzzla (0) 55 5x; (X0) +Cl0) o) <0,

since the matrixa'l (x)) is non-negative definite arex) < 0in D.
Case (ii): We choose a local coordinate systgmys,...,yn) in a neighborhood af, € 2o U X3 such that

X6 =0,
D={yn>0}, JD={yn=0},
and assume that, in terms of this coordinate system, the opéraaf the form

2

7] N-1 J N-1 5
*ufZ a”(y)Wduijr i; B'(V)T;+c(y)u. (5.7)

NN d%u
ayN i,=1

Au=ao (YY) —
oY

+B8N(y)

Here:
(i-a) aNN(0) =0andBN(0) > 0if X, =0¢€ ;.
(i-b) aNN(0) =0andBN(0) =0if x; =0 € .

Then we have the assertions

and also
N-1 02u

i7lz=1aIJ (0)3%0)/1‘ (0)<0, c(Ou©=<0.

Hence, it follows from formula (5.7) and conditions (ii) that

- BN(O)LI:‘(OHC(O)U(O) <0 ifxg=0¢€ 2,
A U(p) = Au(X) < {C(O)U(g <0 if Xy =0 € Zo.

Therefore, we have proved the followipgsitive maximum principléf. [24, p. 425, Claim]):
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Claim 5.1 If u € D(«) and maxsu > 0, then there exists a point& D = DU dD such that the positive
maximum principle

{u(x) =maxsu, (PMP)

u(x) <0

holdstrue.

This claim verifies conditiori3).

Step (l1I) : It remains to verify conditiorfy). By Theorem 5.1, we find that @ > oo, then the rang&(al —
<) contains adensesubspac€?+9(D) of C(D). This implies that the rangR(al — ) is dense in the space
C(D), for all a > ap.

Summing up, we have proved that the operatosatisfies three conditior{sr), () and(y) of Theorem 2.1
with C(K) := C(D) andB := « for all a > ag. Therefore, it follows from an application of the same theorem
that the operators is closablein the space&c(D), and its minimal closed extensi®h= <7 is the infinitesimal
generator of some Feller semigro{if }+o onD.

Theproof of Theorem 1.2 is now complete. O
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