
STRONG GENERATORS OF THE SUBREGULAR W-ALGEBRA

WK−N (slN , fsub) AND COMBINATORIAL DESCRIPTION AT

CRITICAL LEVEL

NAOKI GENRA AND TOSHIRO KUWABARA

Abstract. We construct explicitly strong generators of the affine W-algebra
WK0−N (slN , fsub) of subregular type A. Moreover, we are able to describe

the OPEs between them at critical level. We also give a description the affine
W-algebra W−N (slN , fsub) in terms of certain fermionic fields, which was

conjectured by Adamović.

1. Introduction

For a reductive Lie algebra g, a nilpotent element f ∈ g and k ∈ C, the affine
W-algebra Wk(g, f) is defined as a vertex algebra constructed by the generalized
quantum Drinfeld-Sokolov reduction; see [9, 18, 19, 20]. In this paper, we discuss the
affineW-algebraWK0−N (slN , fsub) associated with slN and a subregular nilpotent
element fsub ∈ slN with level K0 − N , which we call the subregular W-algebra.
Recently, in [15, Section 6], the first author described the subregular W-algebra
by using certain screening operators, and showed that the subregular W-algebra is

isomorphic to a vertex algebra W
(2)
N introduced by Feigin and Semikhatov in [10].

For a principal nilpotent element fpr ∈ slN , the corresponding affine W-algebra
WK0−N (slN , fpr) is a vertex algebra such that, at critical levelK0 = 0,W−N (slN , fpr)
coincides with the center of affine vertex algebra V −N (slN ), called the Feigin-
Frenkel center. In [5, Section 2], Arakawa and Molev explicitly constructed strong
generators of the vertex algebraWK0−N (slN , fpr). Their images through the Miura
map are described by a certain noncommutative analog of the elementary symmet-
ric polynomials, which recovers a result of Fateev and Lukyanov in [8]. They also
constructed explicit strong generators of affine W-algebras correponding to rectan-
gular nilpotent elements in glN ([5, Section 3]).

In Section 3 of this paper, we discuss construction of certain strong generators
for the subregular W-algebra WK0−N (slN , fsub). Our construction is based on the
Feigin-Semikhatov description ofWK0−N (slN , fsub), which describesWK0−N (slN , fsub)
as intersection of the kernels of screening operators on a certain lattice vertex al-
gebra. We construct elements Wm (m = 2, . . . , N) of the lattice vertex algebra
by using the noncommutative elementary symmetric polynomials of the elements
of the Heisenberg part of the lattice vertex algebra, and show that they lie in the
intersection of the kernels of the screening operators (Definition 3.8 and Proposi-
tion 3.5). We also show that these elements are algebraically independent in the
Zhu’s C2 Poisson algebra of the vertex algebra WK0−N (slN , fsub), and it implies
that the elements W2, . . . , WN−1, together with the generators E, H, F of Feigin-
Semikhatov’s, strongly generate WK0−N (slN , fsub) (Theorem 3.14).

In Section 4, we discuss the subregular W-algebra W−N (slN , fsub) at critical
level, K0 = 0. At critical level, the vertex algebra W−N (slN , fsub) has a nontrivial
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center as a vertex algebra, and the center is naturally isomorphic to the Feigin-
Frenkel center of the affine vertex algebra V −N (slN ). We show that our elements
W2, . . . , WN strongly generate the center (Proposition 4.2). Moreover, we give an
explicit form of OPEs between the strong generators (Theorem 4.4).

In [1], Adamović conjectured that the subregular W-algebra W−N (slN , fsub) is
isomorphic to a vertex algebra generated by certain fields, consisting of certain
fermionic fields and the generators of the Feigin-Frenkel center. We prove his con-
jecture by using our strong generators (Theorem 4.5).
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2. Subregular W-algebras and Feigin-Semikhatov screenings

The subregularW-algebraWK0 =WK0−N (slN , fsub) at level K0−N is a vertex
algebra defined by the generalized quantum Drinfeld-Sokolov reduction associated
with slN , fsub and K0 ∈ C [18], where fsub = e−α2

+ · · · + e−αN−1
∈ slN is a

subregular nilpotent element in slN . We introduce a free field realization of WK0

following [10] and [15].
We follow [12, 17] for definitions of vertex algebras, and denote by A(z) =

Y (A, z) =
∑
n∈ZA(n)z

−n−1 a field on V for an element A in a vertex algebra

V . Let K be an indeterminate and WK
C[K] the subregular W-algebra associated

with slN , fsub,K over C[K]. From the proof of a vanishing theorem of the BRST
cohomology in [19, 20] (for WK0 , but the same proof can be applied for WK

C[K]),

it follows that WK
C[K] ⊗ CK0

= WK0 . Here, CK0
= C[K]/(K − K0) ' C is a

one-dimensional C[K]-module on which K acts by K0. See e.g. [4]. Let V =
C[K]AN−1⊕· · ·⊕C[K]A1⊕C[K]Q⊕C[K]Y be a free C[K]-module of rank N + 1.
We define a symmetric bilinear form on V given by the Gram matrix



AN−1 AN−2 AN−3 · · · · · · A2 A1 Q Y

AN−1 2K −K 0 0 · · · · · · · · · · · · 0
AN−2 −K 2K −K 0 · · · · · · · · · · · · 0
AN−3 0 −K 2K −K 0 · · · · · · · · · 0
...

... · · · · · · · · · · · · · · · · · · · · ·
...

...
... · · · · · · · · · · · · · · · · · · · · ·

...
A2 0 · · · · · · · · · · · · 2K −K 0 0
A1 0 · · · · · · · · · 0 −K 2K −K 0
Q 0 · · · · · · · · · · · · 0 −K 1 1
Y 0 · · · · · · · · · · · · 0 0 1 0


.

Consider a Heisenberg vertex algebra HK over C[K] associated with the bilinear
form on V. It is a vertex algebra generated by the elements Ai, Q and Y (i = 1,
. . . , N − 1) subject to the OPE a(z)b(w) ∼ (a, b)/(z − w)2 where a, b = Ai, Q or
Y , and ( , ) is the bilinear form on V. For a vector w ∈ V, let HKw be the Fock
representation of HK of heighest weight (w, ). See [12, Section 5.4.1]. We denote



Strong generators of the subregular W-algebra 3

the highest weight vector of HKw by e
∫
w. The direct sum VKC[K] =

⊕
m∈ZHKmY is

equipped with a vertex algebra structure. Indeed, the vertex operator em
∫
Y (z) =∑

n e
m

∫
Y

(n) z−n−1 corresponding to the highest weight vector em
∫
Y is a field with

the following OPEs

em
∫
Y (z)en

∫
Y (w) ∼ 0, a(z)em

∫
Y (w) ∼ (a,mY )

z − w
em

∫
Y (w)

for m, n ∈ Z, and a ∈ V and the derivative of em
∫
Y (z) is given by ∂em

∫
Y (z) =

◦
◦mY (z)em

∫
Y (z)◦◦ .

Similarly to e
∫
Y (z), we also have the vertex operator e

∫
Q(z) (resp. e

∫
Ai(z))

associated with Q ∈ V (resp. Ai ∈ V for i = 1, . . . , N − 1). The OPEs between
these vertex operators and fields of VKC[K] are given as follows:

a(z)e
∫
b(w) ∼ (a, b)

z − w
e
∫
b(w), e

∫
Ai(z)em

∫
Y (w) ∼ 0,

e
∫
Q(z)em

∫
Y (w) ∼ (z − w)mem

∫
Y+

∫
Q(w),

where a, b ∈ V, i = 1, . . . , N − 1 and m ∈ Z. The residue of e
∫
Q(z) (resp.

e
∫
Ai(z)) gives an operator on VKC[K] such that e

∫
Q

(0) : HKmY −→ HKmY+Q (resp.

e
∫
Ai

(0) : HKmY −→ HKmY+Ai
) for m ∈ Z and i = 1, . . . , N − 1. The operators e

∫
Q

(0) ,

e
∫
Ai

(0) are called screening operators. The vertex algebra given as intersection of the

kernels of these screening operators were introduced by Feigin and Semikhatov in
[10]. Recently, the first author showed that their vertex algebra is isomorphic to
the subregular W-algebra.

Proposition 2.1 ([15], Theorem 6.9). As a vertex algebra over the ring C[K], we
have an isomorphism

µK : WK
C[K]

∼−−→Ker e
∫
Q

(0) ∩
N−1⋂
i=1

Ker e
∫
Ai

(0) .

Since WK
C[K]⊗CK0 =WK0 , we have an embedding WK0 ↪→ VK0 for all K0 ∈ C.

We remark that the embedding is obtained as the composition of three maps
µ, µW , µβγ defined as follows. Applying the specialization functor ? ⊗ CK0

to em-
beddings

Ker e
∫
Q

(0) ∩
N−1⋂
i=1

Ker e
∫
Ai

(0) → Ker e
∫
Q

(0) ∩Ker e
∫
A1

(0) → Ker e
∫
Q

(0) → V
K
C[K],

we have vertex algebra homomorphisms

WK0
µ−−→ V τK0−N (g0) ' V K0−2(sl2)⊗ V K0(CN−2)

µW−−−→ Dch(C1)⊗ V K0(CN−1)
µβγ−−−→ VK0 ,

where V τK0−N (g0) is the affine vertex algebra associated with the Lie subalgebra g0

and the bilinear form τK0−N on g0 defined in [15, (2.2)], and Dch(C1) is the vertex
algebra of βγ-system of rank one. It then follows that µ, µW , µβγ are injective
maps, called the Miura map forWK0 [19, 15], Wakimoto realization for V K0−2(sl2)
[24, 11] and Friedan-Martinec-Shenker bosonization [14] respectively.
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3. Strong generators of the subregular W-algebra

In this section, we explicitly construct elements W2, . . . , WN of the subregular
W-algebra, and show that E, F , H, W2, . . . , WN−1 strongly generate the ver-
tex algebra WK0 = WK

C[K] ⊗ CK0
for any K0 ∈ C. We also show that W2, . . . ,

WN generate the Poisson center in Zhu’s C2-Poisson algebra of WK0 and they are
algebraically independent.

Set `N (K) = K(N − 1)/N − 1. Define three elements in VKC[K]

H = `N (K)Y +Q+
N − 1

N
A1 + · · ·+ 2

N
AN−2 +

1

N
AN−1,

E = e
∫
Y , F = −ρN · · · ρ2ρ1e

−
∫
Y ,

where ρi = (K − 1)(∂ + Y(−1)) + Q(−1) +
∑i−1
j=1Aj(−1) for i = 1, . . . , N . Note

that ρ1e
−

∫
Y = Q(−1)e

−
∫
Y because ∂e−

∫
Y = −Y(−1)e

−
∫
Y . In [10], Feigin and

Semikhatov showed that these three elements generate the vertex algebra WK
C[K].

The first goal of the present paper is to construct a set of strong generators of
WK

C[K], including these three elements H, E and F .

Define N elements in the Heisenberg part HK of the vertex algebra VKC[K]

Xi = −K
N
Y −

i−1∑
j=1

j

N
Aj +

N−1∑
j=i

N − j
N

Aj ∈ HK

for i = 1, . . . , N . Then, we have ρi = (K − 1)∂ +H(−1) −Xi(−1) for i = 1, . . . , N .
Also, we define

X0 = −K
N
Y +Q+

N − 1

N
A1 + · · ·+ 1

N
AN−1 ∈ HK ⊂ VKR

and ρ0 = (K − 1)∂ +H(−1) −X0(−1) = (K − 1)(∂ + Y(−1)).
Recall the definition of the noncommutative elementary symmetric polynomials

(cf. [21, (12.48)]). Let ξ1, . . . , ξN be mutually noncommutative N operators on
a certain vector space. Define the m-th noncommutative elementary symmetric
polynomial in ξ1, . . . , ξN ,

em(ξ1, . . . , ξn) =
∑

i1>i2>···>im

ξi1ξi2 · · · ξim .

Note that we arrange the operators reverse-lexicographically.
We extend the vertex algebra WK

C[K] (resp. VKC[K]) by the commutative ring

R := C[K, (K−1)−1], and writeWK
R =WK

C[K]⊗C[K]R (resp. VKR = VKC[K]⊗C[K]R).

First, we define elements of VKR and prove that they lie in WK
R . Later, we will

normalize them to construct elements of WK
C[K]. For m = 1, . . . , N , we define an

element of VKR

(1) W ′m =

N∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
1≤i1<···<iN−k≤N

em(

k-times︷ ︸︸ ︷
ρ0, . . . , ρ0, ρi1 , . . . , ρiN−k).

We also introduce the generating function of these elements W ′m (m = 1, . . . ,
N). Let u be an indeterminate which commutes with all other elements. Note that,
for operators ξ1, . . . , ξN , we have

(u+ ξN ) · · · (u+ ξ1) =

N∑
m=0

em(ξ1, . . . , ξN )uN−m
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by the definition of em. Setting ρi(u) = u+ ρi, we have

(2) W̃ (N)(u) :=

N∑
m=0

W ′mu
N−m

=

N∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
N≥i1>···>iN−k≥1

ρi1(u) · · · ρiN−k(u)ρ0(u)k1,

where W ′0 is equal to 1 up to multiplication by a certain constant.
We will show that the elements W ′m (m = 1, . . . , N) belong to the subregularW-

algebra WK
R by calculating the action of the screening operators e

∫
Q

(0) , e
∫
Ai

(0) (i = 1,

. . . , N − 1).

Lemma 3.1. (1) For i = 1, . . . , N − 1, j = 0, . . . , N and m ∈ Z, we have

[ e
∫
Ai

(m) , ρj(u) ] =


(m(K − 1) +K)e

∫
Ai

(m−1) (j = i),

(m(K − 1)−K)e
∫
Ai

(m−1) (j = i+ 1),

m(K − 1)e
∫
Ai

(m−1) (j 6= i, i+ 1)

in
⊕

m∈Z HomC[K](HKmY ,HKmY+Ai
)[u].

(2) For j = 0, . . . , N and m ∈ Z, we have

[ e
∫
Q

(m), ρj(u) ] =


(m− 1)(K − 1)e

∫
Q

(m−1) (j = 0),

(m(K − 1)−K)e
∫
Q

(m−1) (j = 1),

m(K − 1)e
∫
Q

(m−1) (j = 2, . . . , N)

in
⊕

m∈Z HomC[K](HKmY ,HKmY+Q)[u].

Proof. Note that (Ai, Xi) = K, (Ai, Xi+1) = −K, (Ai, Xj) = 0 for j 6= i, i+ 1, and
(Q,X0) = −K + 1, (Q,X1) = −K, (Q,Xj) = 0 for j = 2, . . . , N . Also, we have
(Ai, H) = (Q,H) = 0 for any i = 1, . . . , N − 1. Then, both (1) and (2) can be
checked by direct computation. �

Proposition 3.2. For i = 1, . . . , N − 1, we have e
∫
Ai

(0) W̃
(N)(u) = 0.

Proof. First, note that we have

e
∫
Ai

(0) ρN (u) · · · ρi+2(u)ρi+1(u) · · ·1 = ρN (u) · · · ρi+2(u)e
∫
Ai

(0) ρi+1(u) · · ·1

since the screening operator e
∫
Ai

(0) commutes with ρj(u) for j 6= i, i+1 by Lemma 3.1.

In W̃ (N)(u), there exists three kinds of terms; i) · · · ρi+1(u)ρi(u) · · ·1, terms with
both factors ρi+1(u) and ρi(u), ii) · · · ρi+1(u) · · ·1 or · · · ρi(u) · · ·1, terms with either
ρi+1(u) or ρi(u), iii) · · · (ρi+1(u))∧(ρi(u))∧ · · ·1, terms without ρi+1(u) nor ρi(u).

We consider the action of e
∫
Ai

(0) in these three cases individually.

i) By Lemma 3.1 (1), we have

e
∫
Ai

(0) · · · ρi+1(u)ρi(u) · · ·1

= · · · [ e
∫
Ai

(0) , ρi+1(u) ]ρi(u) · · ·1 + · · · ρi+1(u)[ e
∫
Ai

(0) , ρi(u) ] · · ·1

= K · · · (ρi+1(u)− ρi(u))e
∫
Ai

(−1) · · ·1 − K · · · ((−1)(K − 1) +K)e
∫
Ai

(−2) · · ·1

= K · · ·
{
Ai(−1)e

∫
Ai

(−1) − e
∫
Ai

(−2)

}
· · ·1 = 0.
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Here we used [e
∫
Ai

(m) , H(−1) − Xj(n)] = 0 for j 6= i, i + 1 with m, n ∈ Z, and

e
∫
Ai

(−2) =
(
Ai(−1)e

∫
Ai
)

(−1)
.

ii) Note that the generating function W̃ (N)(u) is symmetric by permutation be-
tween factors ρ1(u), . . . , ρN (u). This implies that, for a term (· · · )1ρi+1(u)(· · · )21
of type ii), we also have a term (· · · )1ρi(u)(· · · )21 of exactly the same form except
for replacing ρi+1(u) by ρi(u). Here the factors different from ρi+1(u) and ρi(u)
are denoted by (· · · )j (j = 1, 2). Then, by Lemma 3.1 (1), we have

e
∫
Ai

(0)

{
(· · · )1ρi+1(u)(· · · )21 + (· · · )1ρi(u)(· · · )21

}
= (· · · )1

(
−Ke

∫
Ai

(−1)

)
(· · · )21 + (· · · )1

(
+Ke

∫
Ai

(−1)

)
(· · · )21 = 0.

iii) A term without ρi+1(u) and ρi(u) trivially vanishes by the action of the

screening operator e
∫
Ai

(0) by Lemma 3.1 (1).

As a consequence, we have e
∫
Ai

(0) W̃
(N)(u) = 0. �

The action of another screening operator e
∫
Q

(0) is more complicated. Previous to

the calculation of e
∫
Q

(0) W̃
(N)(u) we prepare the following lemma.

Lemma 3.3. For m ≥ 0, we have

e
∫
Q

(0)

(
ρ1(u)ρ0(u)m1− (m+ 1)(K − 1) + 1

(m+ 1)(K − 1)
ρ0(u)m+11

)
= 0.

Proof. To prove the equality of the lemma, note that

[ e
∫
Q

(0) , ρ0(u)l ] =

l∑
i=1

(−1)i(K − 1)i
l!

(l − i)!
ρ0(u)l−ie

∫
Q

(−i),

[ e
∫
Q

(−1), ρ0(u)l ] =

l+1∑
i=2

(−1)i−1(K − 1)i−1 l!

(l − i+ 1)!
iρ0(u)l−i+1e

∫
Q

(−i),

by Lemma 3.1 (2).
First we deal with the first term of the equality of the lemma. Using the fact

ρ1(u) = ρ0(u) +Q(−1) and the identity

Q(−1)ρ0(u)m−i =

m−i∑
j=0

(−1)j
(m− i)!

(m− i− j)!
ρ0(u)m−i−jQ(−j−1),
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we obtain

(3) e
∫
Q

(0) ρ1(u)ρ0(u)m1 = ρ1(u)e
∫
Q

(0) ρ0(u)m1−Ke
∫
Q

(−1)ρ0(u)m1

= −Kρ0(u)me
∫
Q

(−1)1

+K

m+1∑
i=2

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
iρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
i=1

(−1)i(K − 1)i
m!

(m− i)!
ρ1(u)ρ0(u)m−ie

∫
Q

(−i)1

=

m+1∑
i=1

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
iρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
i=1

(−1)i(K − 1)i
(m+ 1)!

(m− i+ 1)!
ρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
i=1

(−1)i(K − 1)i
m!

(m− i)!
Q(−1)ρ0(u)m−ie

∫
Q

(−i)1

=

m+1∑
i=1

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
iρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
i=1

(−1)i(K − 1)i
(m+ 1)!

(m− i+ 1)!
ρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
i=1

m−i∑
j=0

(−1)i+j(K − 1)i+j
m!

(m− i− j)!
ρ0(u)m−i−jQ(−j−1)e

∫
Q

(−i)1.

Next, for the second term of the equality of the lemma, we have

(4) e
∫
Q

(0)

(m+ 1)(K − 1) + 1

(m+ 1)(K − 1)
ρ0(u)m+11

=

m+1∑
i=1

(−1)i(K − 1)i
(m+ 1)!

(m− i+ 1)!
ρ0(u)m+1−ie

∫
Q

(−i)1

+

m+1∑
i=1

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
ρ0(u)m+1−ie

∫
Q

(−i)1.

The second term in the RHS of (3) and the first term in the RHS of (4) are canceled

out. Since ∂e
∫
Q = Q(−1)e

∫
Q, we have

k∑
j=0

Q(−j−1)e
∫
Q

(−k+j)1 = ke
∫
Q

(−k−1)1
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for k ≥ 1. Thus

e
∫
Q

(0)

(
ρ1(u)ρ0(u)m1− (m+ 1)(K − 1) + 1

(m+ 1)(K − 1)
ρ0(u)m+11

)
=

m+1∑
i=2

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
(i− 1)ρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
k=1

k∑
j=0

(−1)k(K − 1)k
m!

(m− k)!
ρ0(u)m−kQ(−j−1)e

∫
Q

(−k+j)1

=

m+1∑
i=2

(−1)i(K − 1)i−1 m!

(m− i+ 1)!
(i− 1)ρ0(u)m−i+1e

∫
Q

(−i)1

+

m∑
k=1

(−1)k(K − 1)k
m!

(m− k)!
ρ0(u)m−kke

∫
Q

(−k−1)1 = 0.

�

Proposition 3.4. We have e
∫
Q

(0) W̃
(N)(u) = 0.

Proof. We split terms in the definition of W̃ (N)(u) into two parts; terms with the
factor ρ1(u) and terms without ρ1(u). Using the fact that the screening operator

e
∫
Q

(0) commutes with ρi(u) for all i 6= 0, 1, together with Lemma 3.3, we calculate

e
∫
Q

(0) W̃
(N)(u)

= e
∫
Q

(0)

N∑
m=0

(−1)m
( m∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
N≥i1>···>iN−m≥1

ρi1(u) · · · ρiN−m(u)ρ0(u)m1

= e
∫
Q

(0)

{ N∑
m=0

(−1)m
( m∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
N≥i1>···>iN−m−1≥2

ρi1(u) · · · ρiN−m−1
(u)ρ1(u)ρ0(u)m1

+

N∑
m=0

(−1)m+1
(m+1∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
N≥i1>···>iN−m−1≥2

ρi1(u) · · · ρiN−m−1
(u)ρ0(u)m+11

}
= 0

as desired. �

By Proposition 3.2 and Proposition 3.4, we have W ′m ∈ Ker e
∫
Q

(0) ∩
⋂N−1
i=1 Ker e

∫
Ai

(0)

for m = 1, . . . , N . Now, we have the following proposition as a consequence of
Proposition 2.1.

Proposition 3.5. For m = 1, . . . , N , we have W ′m ∈ WK
R .

To construct elements of the vertex algebra WK
C[K], we need to normalize the

elements W ′m for m = 2, . . . , N .

Lemma 3.6. Let q be an indeterminate. For l, m ≥ k, we have the following
identity:

N∑
l=k

(−1)l−k
(
N −m+ k

l

)(
l

k

) l∏
j=k+1

(
1 +

q

j

)
=

(−1)N−m

(N −m)!

N−m−1∏
j=0

(q − j).
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Proof. By direct calculation, we have

N∑
l=k

(−1)l−k
(
N −m+ k

l

)(
l

k

) l∏
j=k+1

(
1 +

q

j

)

=

N−m∑
l=0

(−1)l
(
N −m+ k

l + k

)
1

l!

l∏
j=1

(q + k + j)

=
(N −m+ k)!

(N −m)!k!

N−m∑
l=0

(−N +m)l(q + k + 1)l
(k + 1)l

1l

l!
,

where (x)l =
∏l−1
j=0(x+j). The RHS can be described in terms of the hypergeometric

function 2F1(a, b, c; z), and then in terms of the Γ-function Γ(z) using Gauss’s
hypergeometric theorem. Thus

N∑
l=k

(−1)l−k
(
N −m+ k

l

)(
l

k

) l∏
j=k+1

(
1 +

q

j

)
=

(N −m+ k)!

(N −m)!k!
2F1(−N +m, q + k + 1, k + 1; 1)

=
(N −m+ k)!

(N −m)!k!

Γ(k + 1)Γ(N −m− q)
Γ(N −m+ k + 1)Γ(−q)

=
(N −m+ k)!

(N −m)!k!

k!

(N −m+ k)!

N−m−1∏
j=0

(−q + j) =
(−1)N−m

(N −m)!

N−m−1∏
j=0

(q − j).

�

Lemma 3.7. Let ξ0, ξ1, . . . , ξN be operators. For m = 1, . . . , N , we have

N∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
1≤i1<···<iN−k≤N

em(

k-times︷ ︸︸ ︷
ξ0, . . . , ξ0, ξi1 , . . . , ξiN−k)

=
(N−m∏
j=1

j(K − 1)−K
j(K − 1)

) m∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

)
em−k(ξ1, . . . , ξN )ξk0 .

Proof. First, we have (below, we write em−k(ξ1, . . . , ξN ) by em−k for short)

N∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
1≤i1<···<iN−k≤N

em(

k-times︷ ︸︸ ︷
ξ0, . . . , ξ0, ξi1 , . . . , ξiN−k)

=

N∑
l=0

(−1)l
( l∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
i1>···>iN−l

min(l,m)∑
k=0

∑
j1<···<jm−k

ξij1 · · · ξijm−k

(
l

k

)
ξk0

=

N∑
l=0

(−1)l
( l∏
j=1

j(K − 1) + 1

j(K − 1)

)min(l,m)∑
k=0

∑
i1>···>im−k

(
N −m+ k

l

)(
l

k

)
ξi1 · · · ξim−kξk0

=

m∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

)

·
N∑
l=k

(−1)l−k
(
N −m+ k

l

)(
l

k

) l∏
j=k+1

(
1 +

1

j(K − 1)

)
em−kξ

k
0 .

Applying Lemma 3.6 for q = 1/(K − 1), we obtain the identity of the lemma. �
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Setting ξi = ρi in Lemma 3.7 yields the following identities for the elements W ′m
(m = 1, . . . , N):

W ′m =

N∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

) ∑
i1<···<iN−k

em(

k-times︷ ︸︸ ︷
ρ0, . . . , ρ0, ρi1 , . . . , ρiN−k)1

=
(N−m∏
j=1

j(K − 1)−K
j(K − 1)

) m∑
k=0

(−1)k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

)
em−k(ρ1, . . . , ρN )ρk01.

Definition 3.8. For m = 1, . . . , N , set

(5) W ′′m = (−1)m
(N−m∏
j=1

j(K − 1)

j(K − 1)−K

)
W ′m

=

m∑
k=0

(−1)m+k
( k∏
j=1

j(K − 1) + 1

j(K − 1)

)
· em−k(ρ1, . . . , ρN )ρk01 ∈ WK

C[K].

Note that (K − 1)−1ρ0 = ∂ + Y(−1) is an operator defined over C[K], and hence

W ′′m is a well-defined element in WK
C[K]. Then, we define elements Wm ∈ WK

C[K]

for m = 1, . . . , N inductively as follows:

(6) Wm = W ′′m −
m−1∑
k=0

(−1)m−k
(
N − k
m− k

)
Wk(−1)((K − 1)∂ +H(−1))

m−k1.

In particular, W0 = 1, W1 = 0.

In [10, Lemma 2.3.5], a conformal vector ω of the vertex algebra WK
C[K] ⊗

C[K,K−1] is explicitly given over C[K,K−1]. By direct calculation, we have the
following relations between W2, H and ω.

Proposition 3.9. We have the following identities between the elements W2 and
H, ω;

ω = −N
K
W2 −

N

2
∂H

in WK
C[K] ⊗ C[K,K−1].

In the rest of this section, we show that the N +1 elements E, F , H and Wm for
m = 2, . . . , N−1 strongly generate the subregularW-algebraWK0 =WK

C[K]⊗CK0

for K0 ∈ C.
For a vertex algebra V , let A(V ) = V/C2(V ) be Zhu’s C2 Poisson algebra of V ,

where C2(V ) = V(−2)V . For an element a ∈ V , we denote its image in A(V ) by

a ∈ A(V ).

Lemma 3.10. We have the identity

em(X1 −H, . . . ,XN −H) =

m∑
k=0

(−1)m−k
(
N − k
m− k

)
ek(X1, . . . , XN )H

m−k
.

Proof. Comparing the coefficients of uN−m of the expansions of the generating
functions

(u+XN −H) · · · (u+X1 −H) =

N∑
m=0

em(X1 −H, . . . ,XN −H)uN−m
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with

(u+XN −H) · · · (u+X1 −H) =

N∑
k=0

ek(X1, . . . , XN )(u−H)N−k

=

N∑
k=0

ek(X1, . . . , XN )

N−k∑
m=0

(
N − k
m− k

)
(−H)m−kuN−m

=

N∑
m=0

m∑
k=0

(−1)m−k
(
N − k
m− k

)
ek(X1, . . . , XN )H

m−k
uN−m,

we obtain the identity of the assertion. �

Lemma 3.11. For arbitrary K0 ∈ C, we have Wm = em(X1, . . . , XN ) in A(VK0)
for m = 1, . . . , N .

Proof. Since Y = e
∫
Y

(−2)e
−

∫
Y ≡ 0 modulo C2(VK0), it follows that (K − 1)−1ρ0 =

∂ + Y(−1) ≡ 0 modulo C2(VK0). Using (5) and Lemma 3.10, we have

W
′′
m = (−1)mem(ρ1, . . . , ρN )

= em(X1 −H, . . . ,XN −H) =

m∑
k=0

(−1)m−k
(
N − k
m− k

)
ek(X1, . . . , XN )H

m−k
.

Then, the assertion of the lemma follows from the definition (6) of Wm by induction
on m. �

Lemma 3.12. For arbitrary K0 ∈ C, the elements H, W 2, . . . , WN ∈ A(WK0)
are algebraically independent over the field C.

Proof. To show that H, W 2, . . . , WN are algebraically independent in A(WK0),
it is enough to show that they are algebraically independent in A(VK0), since we
have C2(WK0) ⊂ C2(VK0). Below we write em = em(X1, . . . , XN ) for short. First,
observe that non-zero elements in the lattice part of VKR modulo C2(VK0) form linear

combinations of em
∫
Y for m ∈ Z. Thus, Q, A1, . . . , AN−1 are linearly independent

in A(VK0), while Y = e
∫
Y

(−2)e
−

∫
Y ≡ 0 modulo C2(VK0). Since Xi ∈

⊕N−1
j=1 CAj

for all i = 1, . . . , N and H = X0 6∈
⊕N−1

j=1 CAj , H is algebraically independent of

W 2 = e2, . . . , WN = eN .

We identify the vector space
⊕N−1

j=1 CAj with the Cartan subalgebra

h =
{ N∑
i=1

ciεi ∈
N⊕
i=1

Cεi
∣∣∣ c1 + · · ·+ cN = 0

}
' CN−1

of slN by the standard way; Aj = εj − εj+1 (j = 1, . . . , N − 1). Under this

identification, we have Xi = εi − (1/N)
∑N
j=1 εj for i = 1, . . . , N . Then, the

symmetric polynomials e2, . . . , eN are algebraically independent and we have
C[h]SN = C[e2, . . . , eN ], while e1 = 0 by the classical fact on the Weyl-group-
invariant subalgebra C[h]SN . Thus, we have the assertion of the lemma. �

Proposition 3.13. The Poisson center of C2 Poisson algebra A(WK0) is generated
by W 2, . . . , WN .

Proof. We use the same notations em = em(X1, . . . , XN ) as in the proof of Lemma 3.12.
Since (Xi, Y ) = 0 for i = 1, . . . , N , it is easy to check that {Xi, E} = {Xi, F} = 0.
Thus, e2, . . . , eN are Poisson central elements in A(VK0). By [16, Lemma 6.12],
µβγ ◦ µW ◦ µ :WK0 −→ VK0 induces an embedding A(WK0) ↪→ A(VK0), and thus
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e2, . . . , eN are also Poisson central elements in A(WK0). Using results of [7], it
follows that the Poisson center of A(WK0) is isomorphic to C[h]SN . Then X2, . . . ,
XN are algebraically independent by Lemma 3.12. Thus, the Poisson center of
A(WK0) is C[W 2, . . . ,WN ] ' C[h]SN . �

It is easy to check that the elements E, H, W2, W3, . . . , WN−1, F have conformal
weights 1, 1, 2, 3, . . . , N − 1, N − 1 respectively. Note that, for arbitrary K0 ∈ C,
the vertex algebra WK0 is of type W(1, 1, 2, 3, . . . , N − 1, N − 1), i.e. WK0 has
N + 1 strong generators of conformal weight 1, 1, 2, 3, . . . , N − 1, N − 1.

Theorem 3.14. For arbitrary K0 ∈ C, the elements E, H, W2, . . . , WN−1, F
strongly generate the vertex algebra WK0 .

Proof. The vertex algebra V =WK0 is decomposed as V =
⊕

d≥0 Vd where Vd is the

subspace of conformal weight d. Since V is of type W(1, 1, 2, . . . , N − 1, N − 1), V1

is two-dimensional. Now that we know E and H are elements linearly independent
in V1, we have V1 = CE ⊕ CH.

By induction on d, we show that

(7) Vd ⊂ Span{a1(−n1) · · · ak(−nk)1 | ai = E,H,W2, . . . ,Wd, ni ≥ 1}
for d = 2, . . . , N − 1. Assume that (7) holds for Vd′ with d′ ≤ d− 1. Set

Ud = Vd ∩ Span{a1(−n1) · · · ak(−nk)1 | ai = E,H,W2, . . . ,Wd−1, ni ≥ 1}.
Since V has exactly one strong generator of conformal weight d, Ud is codimension
one in Vd. We show that Wd 6∈ Ud. Indeed, assume that we have an identity

(8) Wd =
∑
p

c(p)a
(p)
1(−n1) · · · a

(p)
kp(−nkp )1,

where c(p) ∈ C, a
(p)
i = E, H, W2, . . . , Wd−1 and ni ≥ 1. Terms a

(p)
1(−n1) · · · a

(p)
kp(−nkp )1

containing E(−n) (n ≥ 1) have positive H(0)-eigenvalues while H(0)Wm = 0 for all
m and H(0)H = 0. By using decomposition of Ud into H(0)-eigenspaces, we may

assume that the identity (8) holds for a
(p)
i = H, W2, . . . , Wd−1. Taking modulo

C2(V ) in (8), we have an identity W d =
∑
p c

(p)a
(p)
1(−n1) · · · a

(p)
kp(−nkp )1 in the algebra

A(V ), which contradicts Lemma 3.12. Hence we have Wd 6∈ Ud. Thus, we have
Vd = Ud ⊕ CWd and the induction completes.

Similarly to the above, setting

UN−1 = VN−1 ∩ Span{a1(−n1) · · · ak(−nk)1 | ai = E,H,W2, . . . ,WN−1, ni ≥ 1},

we have dimVN−1/UN−1 = 2. Since the elementWN−1 is algebraically independent
of H, W 2, . . . , WN−2 in A(V ) by Lemma 3.12, we have WN−1 6∈ UN−1. Note that
the element F has weight −1 with respect to the action of H(0), and thus we have
F 6∈ UN−1 ⊕ CWN−1. Therefore we have VN−1 = UN−1 ⊕ CWN−1 ⊕ CF .

Since V have no strong generator with conformal weight bigger than N − 1, we
have

V = Span{a1(−n1) · · · ak(−nk)1 | ai = E,H,W2, . . . ,WN−1, F, ni ≥ 1}.
Thus, E, H, W2, . . . , WN−1, F strongly generate V . �

4. Structure of the subregular W-algebra at critical level

In this section, we consider the strong generators E, H, W2, . . . , WN−1, F of
the subregular W-algebra at critical level (K = 0), and study the OPEs between
these generators. In particular, we give a proof of the Adamović’s conjecture.
Throughout this section, we specialize K to 0, and consider the elements E, F , H,
W2, . . . , WN in the vertex algebra W−N (slN , fsub) =W0 =WK

C[K] ⊗ C0.
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The following lemma is essentially due to Molev. See [21, Proposition 12.4.4].

Lemma 4.1. For m = 1, . . . , N , we have the following identity

em(∂ −H(−1) +X1(−1), . . . , ∂ −H(−1) +XN(−1))

=

m∑
k=0

(
N − k
m− k

)
Wk(−1)(∂ −H(−1))

m−k.

Proof. Define ζm ∈ C[Xi(−n) | i = 1, . . . , N, n ≥ 1] by

N∑
m=0

ζm∂
m = (∂ +XN(−1)) · · · (∂ +X1(−1)).

Let u be an indeterminate. Replacing ∂ by u+ ∂ yields the identity

(u+ ∂ +XN(−1)) · · · (u+ ∂ +X1(−1)) =

N∑
k=0

ζk(u+ ∂)N−k

=
N∑
m=0

m∑
k=0

(
N − k
m− k

)
ζk∂

m−kuN−m.

On the other hand, the LHS is clearly equal to

N∑
m=0

em(∂ +X1(−1), . . . , ∂ +XN(−1))u
N−m,

and thus we have ζm1 = em(∂ + X1(−1), . . . , ∂ + XN(−1))1 = Wm. Since X1, . . . ,
XN are central, it follows that ζm = Wm(−1).

Since H(−1) commutes with Xi(−1) for i = 1, . . . , N , one can replace ∂ by
∂ −H(−1) in the above identity. Thus, we obtain that

em(∂ −H(−1) +X1(−1), . . . , ∂ −H(−1) +XN(−1))

=

N∑
m=0

m∑
k=0

(
N − k
m− k

)
Wk(−1)(∂ −H(−1))

m−k

as the coefficient of uN−m for m = 1, . . . , N . �

When K = 0, by Lemma 4.1, we have

W ′′m = (−1)mem(ρ1, . . . , ρN )1 = em(∂ −H(−1) +X1(−1), . . . , ∂ −H(−1) +XN(−1))1

=

m∑
k=0

(
N − k
m− k

)
ek(∂ +X1(−1), . . . , ∂ +XN(−1))(∂ −H(−1))

m−k1.

Then, for each Wm defined by (6), one can easily check by induction on m that

Wm = em(∂ +X1(−1), . . . , ∂ +XN(−1))1

for m = 0, 1, . . . , N . Recall that W0 = 1 and W1 = 0. Since Xi ∈
⊕N−1

j=1 CAj for

i = 1, . . . , N and (Aj , ) = 0 for j = 1, . . . , N − 1, the element Wm is central for
m = 2, . . . , N .

Proposition 4.2. The elements W2, . . . , WN strongly generate the center of the
vertex algebra W−N (slN , fsub).

Proof. By [6, Theorem 12.1] (which is originally stated in [2, Theorem 1.1]), the
center of the vertex algebra W−N (slN , fsub) coincides with the center of the uni-
versal affine vertex algebra V −N (slN ), and it is Z≥0-graded. Hence, the center of
W−N (slN , fsub) is the commutative vertex algebra of type W(2, 3, . . . , N). Note
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that the elements W 2, . . . , WN are algebraically independent in the C2 Poisson
algebra by Lemma 3.12. Then one can apply the same argument in the proof of
Theorem 3.14 to the elements W2, . . . , WN of the center, whence the assertion. �

Note that we know the OPEs
(9)

H(z)E(w) ∼ 1

z − w
E(w), H(z)F (w) ∼ −1

z − w
F (w), H(z)H(w) ∼ −1

(z − w)2
,

and E(z)E(W ) ∼ F (z)F (w) ∼ 0. To describe complete structure of the vertex
algebra W−N (slN , fsub) in terms of OPE, we need to compute the OPE between
E and F . First, by direct computation, we have the following lemma.

Lemma 4.3. We have the commutation relation [e
∫
Y

(m), ρi] = (−m − 1)e
∫
Y

(m−1) for

i = 1, . . . , N .

Now we describe the OPE between E and F in terms of our strong generators.

Theorem 4.4. We have the following OPE:

E(z)F (w) ∼ (−1)N+1
N−1∑
n=1

n!

(z − w)n

N−n∑
m=0

(
N −m
n

)(
Wm(−1)(∂−H(−1))

N−n−m1
)

(w).

Proof. For m ≤ N +1, using Lemma 4.3 together with the facts that e
∫
Y

(n)e
−

∫
Y = 0

for n ≥ 0 and e
∫
Y

(−1) commutes with ρi (i = 1, . . . N), we have

E(N−m)F = −e
∫
Y

(N−m)ρN · · · ρ1e
−

∫
Y

= −ρN · · · ρ1e
∫
Y

(N−m)e
−

∫
Y − · · · −

(N−m∏
j=1

(−j − 1)
) ∑
i1>···>im

ρi1 · · · ρime
∫
Y

(0) e
−

∫
Y

+
(N−m∏
j=1

(−j − 1)
) ∑
i1>···>im−1

ρi1 · · · ρim−1e
∫
Y

(−1)e
−

∫
Y

= (−1)N+1(N −m+ 1)!em−1(∂ −H(−1) +X1(−1), . . . , ∂ −H(−1) +XN(−1))1.

Applying Lemma 4.1, we obtain
(10)

E(N−m)F = (−1)N+1(N −m+ 1)!

m−1∑
k=0

(
N − k

m− k − 1

)
Wk(−1)(∂ −H(−1))

m−k−11.

This immediately implies the OPE relation of the theorem. �

Using the strong generators E, F , H and Wm (m = 2, . . . , N − 1), we will give
the explicit algebraic structure of both of the Zhu’s C2-Poisson algebra and Zhu
algebra of W−N (slN , fsub).

Let V =
⊕

∆≥0 V∆ be a Z≥0-graded vertex algebra, and we denote the degree of

a homogeneous element a ∈ V by ∆(a). For a ∈ V∆ and b ∈ V , we define

a ◦ b =

∆∑
j=0

(
∆

j

)
a(j−2)b, a ∗ b =

∆∑
j=0

(
∆

j

)
a(j−1)b.

Then, the vector space A(V ) = V/(V ◦V ) has a structure of an associative algebra
by the multiplication induced by ∗, called the Zhu algebra of V [25, 13, 7]. For
V = WK0−N (slN , fsub), the Zhu algebra A(WK0−N (slN , fsub)) = U(slN , fsub) is
known as the finiteW-algebra associated with slN and fsub by the result of De Sole
and Kac in [7], and in particular it does not depend on the level K0 −N . See also
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[3]. Moreover, in [22], Premet showed that the finite W-algebra U(slN , fsub) was
isomorphic to Smith’s algebra introduced by Smith in [23]. Below we describe the
structure of A(W−N (slN , fsub)).

Note that the vertex algebra V0 is Z-graded by ∆(Ai) = 1 for i = 1, . . . ,

N − 1, ∆(Q) = 1, ∆(Y ) = 1 and ∆(e±
∫
Y ) = ±1, which induces a Z≥0-grading

on W−N (slN , fsub) = W0 ⊂ V0; i.e. ∆(E) = 1, ∆(F ) = N − 1, ∆(H) = 1 and
∆(Wm) = m for m = 2, . . . , N . This grading on W0 coincides with the conformal
weight although W−N (slN , fsub) is not a vertex operator algebra.

First, consider the C2 Poisson algebra A := A(W−N (slN , fsub)). The elements
W 2, . . . , WN are Poisson central elements and algebraically independent by Propo-
sition 3.13 and Lemma 3.12. Thus, A is a Poisson algebra over C[W 2, . . . ,WN−1].
By (10) for m = N + 1, we have

EF =

N∑
k=0

(−1)k+1W kH
N−k

.

Together with the results of [7] (or [3], in which the principal cases are only con-
cerned, but one can easily adapt to the general cases), the Poisson algebra A is the
associated graded algebra of U(slN , fsub) with respect to the Kazhdan filtration.
In particular, A is the coordinate ring of the Slodowy slice S in slN associated with
fsub, which is known as the simultaneous deformation of the Kleinian singularity
of type AN−1. These fact gives an isomorphism of commutative algebras

A = C[E,F ,H,Wm |m = 2, . . . , N − 1]
/ (

EF −
N∑
k=0

(−1)k+1W kH
N−k)

,

and the subalgebra C[W 2, . . . ,WN ] is the Poisson center of A. It then follows from
(10) that the Poisson brackets between these elements are given by

{H,E} = E, {H,F} = −F , {E,F} =

N∑
k=0

(−1)k+1(k + 1)W kH
N−k−1

.

Let A := A(W0) be the Zhu algebra of W0 = W−N (slN , fsub), and W̃ =
W + (W0 ◦ W0) be the image of W under the canonical projection W0 � A =
W0/(W0 ◦W0) for all W ∈ W0. An easy consequence of Theorem 3.14 and Propo-

sition 4.2 is that A is generated by Ẽ, F̃ , H̃ and W̃m (m = 2, . . . , N − 1), and

the center of A coincides with C[W̃2, . . . , W̃N ]. By (9), we have that [H̃, Ẽ] = Ẽ

and [H̃, F̃ ] = −F̃ , and moreover, using (10) and the skew-symmetry F(n)E =∑
j≥0(−1)n+j−1∂j(E(n+j)F )/j!, [Ẽ, F̃ ] is a polynomial in H̃ of degree N − 1 with

coefficients in C[W̃2, . . . , W̃N−1]. Thus, the Zhu algebra A is isomorphic to Smith’s

algebra [23] over C[W̃2, . . . , W̃N−1], which recovers results by Premet [22, Theorem
7.10].

In [1], Adamović conjectured a construction of the vertex algebraW−N (slN , fsub)
by using fermionic fields, which we will recall below.

Set

α = Q+
N − 1

N
A1 + · · ·+ 1

N
AN−1, β = Y − α,

elements of the vertex algebra V0. Note that we have (α, α) = 1, (β, β) = −1,

(α, β) = 0. We consider the fermionic vertex operators Ψ±(z) := e±
∫
α(z) and

e±
∫
β(z). Since H = −β and e−

∫
Y = Ψ−(−1)e

−
∫
β , we have (∂ − H(−1))

n e−
∫
Y =
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(∂nΨ−)(−1)e
−β for n ≥ 0. Then, we have

F = −ρN · · · ρ1e
−

∫
Y

= (−1)N+1(∂ −H(−1) +XN(−1)) · · · (∂ −H(−1) +X1(−1))e
−

∫
Y

= (−1)N+1
N∑
m=0

Wm(−1)(∂ −H(−1))
N−me−

∫
Y

= (−1)N+1
N∑
m=0

Wm(−1)(∂
N−mΨ−)(−1)e

−β

since H(−1) commutes with Xi(−1) for i = 1, . . . , N . Therefore, we obtain the

following realization of the vertex algebra W−N (slN , fsub) as conjectured in [1]:

Theorem 4.5 (Adamović’s conjecture [1]). For N ≥ 2, the subregular W-algebra
W−N (slN , fsub) of type AN−1 is isomorphic to the vertex algebra strongly generated
by the following fields:

◦
◦e

∫
β(z)Ψ+(z)◦◦ , H(z), Wm(z) (m = 2, . . . , N − 1),

and

N∑
m=0

◦
◦Wm(z)e−

∫
β(z)∂N−mΨ−(z)◦◦ .
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