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Abstract

In this thesis, we study combinatorial games, in particular, a class of impartial games.
First, we study a combination (called the generalized cyclic Nimhoff) of the cyclic Nimhoff and

subtraction games. We give the G-value of the game when all the G-value sequences of the component
subtraction games have a common h-stair structure.

Next, we study a game (called Delete Nim) which requires the OR operation to calculate the G-
values of its positions. In addition, the concept called 2-adic valuation, which is described in number
theory, is utilized. This is very rare in analysis of impartial games, while the XOR operation is
commonly used for calculations of the G-values. Therefore, the research is expected to expand the
potential strategies for analysis of impartial games.
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1 Introduction

Combinatorial Game Theory is a theory devised by Conway, Berlekamp and others in 1970’s. It
mainly aims at algebraic analysis of the strategy for a competition game. For the comprehensive
knowledge on the theory, the reader should refer to the literature ([2], [3], [5], [9]). Here we describe
the knowledge (especially on the impartial game) required to read this thesis.

1.1 Impartial Games

Definition 1.1. Combinatorial games have the following characteristics:

• No chance elements (the possible moves in any given position is determined from the beginning).

• No hidden information (both players have complete knowledge of the game states).

Moreover, we assume the following:

• Two players alternately make a move.

• The player who makes the last move wins. (normal rule)

• All game positions are “short” (namely there are finitely many positions that can be reached
from a position, and any position cannot appear twice in a play).

In addition to the characteristics above, “impartial” combinatorial games have the following char-
acteristics:

• Both players have the same set of possible moves in any position.

Definition 1.2 (outcome classes). All impartial game positions are classified into two groups:

• N -position · · · the first player (the N ext player) has a winning strategy.

• P-position · · · the second player (the Previous player) has a winning strategy.

Let G be an impartial game position. If G is an N -position, there exists a move from G to a
P-position. If G is a P-position, there exists no move from G to a P-position.

1.1.1 Nim

Nim is a typical impartial game. The rules are as follows:

• It is played with several heaps of tokens.

• The legal move is to remove any number of tokens (but at least one token) from any single
heap.

• The end position is the state of no heaps of tokens.

We denote by N0 the set of all non-negative integers.

Definition 1.3 (nim-sum). The value obtained by adding numbers in binary form without carry is
called nim-sum. The nim-sum of m1, . . . ,mn ∈ N0 is written by

m1 ⊕ · · · ⊕mn.

Example 1.4. 3⊕ 5 = (011)2 ⊕ (101)2 = (110)2 = 6.
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Proposition 1.5. Let a, b, c ∈ N0. Nim-sum ⊕ satisfies the following properties:

(1) a⊕ (b⊕ c) = (a⊕ b)⊕ c

(2) a⊕ 0 = 0⊕ a = a

(3) a⊕ a = 0

(4) a⊕ b = b⊕ a

Thus, the set N0 forms an Abelian group with respect to nim-sum. Moreover, (N0, ⊕) is isomorphic
to the direct sum of countably many Z/2Z’s.

Theorem 1.6 (Bouton [4]). We denote the Nim position with heaps of sizem1, . . . ,mn by ⟨m1, . . . ,mn⟩.
Then,

m1 ⊕ · · · ⊕mn ̸= 0 ⇐⇒ ⟨m1, . . . ,mn⟩ is an N -position.
m1 ⊕ · · · ⊕mn = 0 ⇐⇒ ⟨m1, . . . ,mn⟩ is a P-position.

Definition 1.7. Let G and G′ be game positions. The notation G → G′ means that G′ can be
reached from G by a single move.

Example 1.8. In the case of Nim position ⟨7, 8, 10⟩: Since we have

7⊕ 8⊕ 10 = 5 ̸= 0,

this position is an N -position. Therefore, the first player has a winning strategy. The first player
should make a move to a position with total Nim-sum 0. We have

(7⊕ 8⊕ 10)⊕ 5 = 5⊕ 5 = 0.

Therefore, 5 should be Nim-sumed to the total. Since we have

7⊕ 5 = 2，8⊕ 5 = 13 and 10⊕ 5 = 15,

the good moves are 7 → 2, 8 → 13 and 10 → 15. However, the only legal good move is 7 → 2.

1.1.2 G-values

The notion of the G-values was introduced in an attempt to develop the theory about general impartial
games. It is a basic tool to classify positions of impartial games.

Definition 1.9 (minimum excluded number). Let T be a proper subset of N0. Then mex T is defined
to be the least non-negative integer not contained in T , namely

mex T = min(N0 \ T ).

Example 1.10. mex {0, 1, 2, 4, 5, 7} = 3, mex {1, 2, 4, 5, 7} = 0, mex ∅ = 0.

Definition 1.11 (G-value). The value G(G) called the G-value (or nim value or Grundy value or
SG-value, depending on authors) of G is defined as follows:

G(G) = mex{G(G′) | G → G′}.

In particular, the G-value of the end position is 0.

Example 1.12 (The G-value of a single heap in Nim). Let ⟨m⟩ be the Nim position with a single
heap of size m. Then

G(⟨m⟩) = m.
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Thus, all impartial game positions can be reduced to single heaps of Nim.
The following theorem is important.

Theorem 1.13 (Grundy [7], Sprague [10]). Let G be an impartial game position. Then

G(G) ̸= 0 ⇐⇒ G is an N -position.
G(G) = 0 ⇐⇒ G is a P-position.

The G-value is also useful for analysis of the disjunctive sum of games. If G and H are any
positions of (possibly different) impartial games, the disjunctive sum of G and H (written as G+H)
is defined as follows: each player must make a move in either G or H (but not both) on his turn.

Theorem 1.14 (Grundy [7], Sprague [10]). Let G and H be two game positions. Then

G(G+H) = G(G)⊕ G(H).

Corollary 1.15 (Grundy [7], Sprague [10]). The G-value of Nim position ⟨m1, . . . ,mn⟩ is the follow-
ing:

G(⟨m1, . . . ,mn⟩) = G(⟨m1⟩)⊕ · · · ⊕ G(⟨mn⟩)
= m1 ⊕ · · · ⊕mn.

In summary, if we know the G-values of the game positions:

• We can know the winning strategy.

• We can also know the winning strategy for the disjunctive sum of games.

• Computation of the G-value by definition generally causes combinatorial explosion, but an ex-
plicit expression for the G-value may reduce the complexity.

Therefore, the purpose of our research is to find an explicit formula of the G-value for each game.

1.2 Example of Impartial Games

1.2.1 Wythoff’s Nim

Shortly after Bouton published the studies on Nim [4], Wythoff conducted research on the P-positions
of a game which is nowadays called Wythoff’s Nim [13]. Wythoff’s Nim is a well-known impartial
game with two heaps of tokens. The moves are of two types:

• Remove any positive number of tokens from a single heap.

• Remove the same number of tokens from both heaps.

Note that Wythoff’s Nim is not a disjunctive sum of games.
The G-value of a general Wythoff’s Nim position is not known. It is one of the open problems

in Combinatorial Game Theory, but the following theorem is well-known about the P-positions of
Wythoff’s Nim.

Theorem 1.16 (Wythoff [13]). Let ⟨m,n⟩ be a Wythoff’s Nim position. If |n − m| = k, the P-
positions of Wythoff’s Nim are given by

⟨⌊kΦ⌋, ⌊kΦ⌋+ k⟩ or ⟨⌊kΦ⌋+ k, ⌊kΦ⌋⟩,

where Φ is the golden ratio, i.e. Φ = 1+
√
5

2 .

Wythoff’s work was one of the earliest researches on heap games which permit the players to
remove tokens from more than one heaps at the same time.
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1.2.2 Cyclic Nimhoff

Cyclic Nimhoff was researched by Fraenkel and Lorberbom [6]. Let h be a fixed positive integer. The
positions of cyclic Nimhoff are the same as those of Nim. The moves are of two types:

• Remove any positive number of tokens from a single heap.

• Remove si tokens from each ith heap such that 0 <

n∑
i=1

si < h.

Theorem 1.17 (Fraenkel and Lorberbom [6]). The G-value of position ⟨x1, x2, . . . , xn⟩ in the cyclic
Nimhoff is

G(⟨x1, x2, . . . , xn⟩) =

(⊕
i

⌊xi
h

⌋)
h+

((∑
i

xi

)
mod h

)
,

where
⊕
i

ai denotes the nim-sum of all ai’s and mod h means the remainder in the division by h.

1.2.3 Subtraction Games

Definition 1.18. Let S be a set of positive integers. In the subtraction game Subtraction(S), the
legal moves are to remove s tokens from a heap for some s ∈ S.

In particular, Nim is Subtraction(N+), where N+ is the set of all positive integers. There are a lot
of preceding studies on subtraction games [3].

We denote the G-value of the position with a single heap of size n by G(n).

Example 1.19. Let n be a size of a single heap in Subtraction(S). Let S = {2, 3}. Then the G-value
of a single heap in Subtraction({2,3}) is shown in the below Table 1.

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
G(n) 0 0 1 1 2 0 0 1 1 2 0 · · ·

Table 1: The G-value of a single heap in Subtraction({2,3})

In fact, we obtain

{G(n)}∞n=0 = 0̇,0,1,1,2̇,

where the dots above numbers indicate the beginning and the end of recursion of numbers.
We call sequence G(0), G(1), . . . the G-value sequence.

Definition 1.20 (periodic). Let A = {A(x)}∞x=0 be a sequence of integers. We say that A is periodic
with period p and preperiod n0, if

A(n+ p) = A(n) for all n ≥ n0.

We say that A is purely periodic if it is periodic with preperiod n0 = 0.

Definition 1.21 (arithmetic periodic). Let A = {A(x)}∞x=0 be a sequence of integers. We say that
A is arithmetic periodic with period p, preperiod n0, and saltus s, if

A(n+ p) = A(n) + s for all n ≥ n0.

1.2.4 All-but Subtraction Games

All-but subtraction games All-but(S) (i.e. Subtraction(N+ \ S) such that S is a finite set) were
studied in detail by Angela Siegel [8]. She proved that the G-value sequence is arithmetic periodic
and characterized some cases in which the sequence is purely periodic.
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2 On a Combination of the Cyclic Nimhoff and Subtraction Games

2.1 Generalized Cyclic Nimhoff

We define generalized cyclic Nimhoff as a combination of cyclic Nimhoff and subtraction games as
follows.

Definition 2.1. Let h be a fixed positive integer and S1, S2, . . . , Sn sets of positive integers. Let
⟨x1, x2, . . . , xn⟩ be the game position with n heaps of sizes x1, . . . , xn. We define subsets X1, X2, · · · ,
Xn, Y of game positions with n heaps as follows:

X1 = {⟨x1 − s1, x2, . . . , xn⟩ | s1 ∈ S1}
X2 = {⟨x1, x2 − s2, . . . , xn⟩ | s2 ∈ S2}

...

Xn = {⟨x1, x2, . . . , xn − sn⟩ | sn ∈ Sn}

Y = {⟨x1 − s1, x2 − s2, . . . , xn − sn⟩ | 0 <

n∑
i=1

si < h}.

In generalized cyclic Nimhoff GCN(h;S1, S2, . . . , Sn), the set of legal moves from position ⟨x1, x2, . . . , xn⟩
is X1 ∪X2 ∪ · · · ∪Xn ∪ Y .

Definition 2.2. Let h be a fixed positive integer and A = {A(x)}∞x=0 an arbitrary sequence of
non-negative integers. The h-stair B = {B(x)}∞x=0 of sequence A is defined by the following:

B(xh+ r) = A(x)h+ r

for all x ∈ N and for all r = 0, 1, · · · , h− 1.

Example 2.3. If A = 0, 0, 1, 5, 4, . . ., then the 3-stair of sequence A is

B = 0,1,2, 0,1,2, 3,4,5, 15,16,17, 12,13,14, . . . .

2.2 Main Results

Let us denote the G-value sequence of Subtraction(S) by GS = {GS(x)}∞x=0.

Theorem 2.4. Let A1,A2, . . . ,An be arbitrary sequences of non-negative integers and ⟨x1, x2, ..., xn⟩
a game position of the generalized cyclic Nimhoff GCN(h;S1, S2, . . . , Sn). If GSi is the h-stair of
sequence Ai for all i (1 ≤ i ≤ n), then

G(⟨x1, x2, . . . , xn⟩) =

(⊕
i

⌊
GSi(xi)

h

⌋)
h+

((∑
i

xi

)
mod h

)
.

Proof. For each i = 1, . . . , n, let xi = qih+ ri where 0 ≤ ri < h. Since GSi is the h-stair of sequence
Ai, GSi(xi) = Ai(qi)h+ ri. In other words, note that⌊xi

h

⌋
= qi,

⌊
GSi(xi)

h

⌋
= Ai(qi), xi ≡ GSi(xi) ≡ ri (mod h).

The proof is by induction. Let

Q(x1, x2, . . . , xn) =
⊕
i

⌊
GSi(xi)

h

⌋
=
⊕
i

Ai(qi),

R(x1, x2, . . . , xn) =
∑
i

xi mod h =
∑
i

GSi(xi) mod h =
∑
i

ri mod h.
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Then, it is sufficient to prove that

G(⟨x1, x2, . . . , xn⟩) = Q(x1, x2, . . . , xn)h+R(x1, x2, . . . , xn).

First, we show that for any k < Q(x1, x2, . . . , xn)h + R(x1, x2, . . . , xn), there exists a position
⟨x′1, x′2, . . . , x′n⟩ ∈ X1 ∪X2 ∪ · · · ∪Xn ∪ Y such that G(⟨x′1, x′2, . . . , x′n⟩) = k. There are two cases.

Case that Q(x1, x2, . . . , xn)h ≤ k < Q(x1, x2, . . . , xn)h+R(x1, x2, . . . , xn):
In this case, k can be written in formQ(x1, x2, . . . , xn)h+k′ by k′ such that 0 ≤ k′ < R(x1, x2, . . . , xn).

Since 0 < R(x1, x2, . . . , xn)−k′ ≤ R(x1, x2, . . . , xn) =
∑

i ri mod h and 0 < R(x1, x2, . . . , xn)−k′ < h,
there exist (k1, k2, . . . , kn) such that k1+ k2+ · · ·+ kn = R(x1, x2, . . . , xn)− k′ and kj ≤ rj for each j.
Then ⟨x1−k1, x2−k2, . . . xn−kn⟩ ∈ Y . In addition, Q(x1−k1, x2−k2, . . . , xn−kn) = Q(x1, x2, . . . , xn)
and R(x1 − k1, x2 − k2, . . . , xn − kn) = R(x1, x2, . . . , xn) − (k1 + k2 + · · · + kn) = k′. Therefore,
G(⟨x1 − k1, x2 − k2, . . . , xn − kn⟩) = Q(x1, x2, . . . , xn)h+ k′ = k from induction hypothesis.

Case that k < Q(x1, x2, . . . , xn)h:
In this case, k can be written in form Q′h + k′ by Q′ and k′ such that Q′ < Q(x1, x2, . . . , xn) =⊕

iAi(qi) and 0 ≤ k′ < h.
According to the nature of nim-sum, there exists j and g which satisfy Q′ = A1(q1)⊕A2(q2)⊕· · ·⊕

Aj−1(qj−1)⊕g⊕Aj+1(qj+1)⊕· · ·⊕An(qn) and g < Aj(qj). Without loss of generality, we assume j = 1.
That is, there exist g < A1(q1) which satisfies Q′ = g ⊕A2(q2)⊕ · · · ⊕An(qn). If we put r′1 to satisfy
that (r′1 + r2 + r3 + · · · + rn) mod h = k′ and 0 ≤ r′1 < h, then gh + r′1 < A1(q1)h + r1 = GS1(x1),
and therefore, there exists x′1 such that GS1(x

′
1) = gh + r′1 and x1 − x′1 ∈ S1. Thus, we have

⟨x′1, x2, . . . , xn⟩ ∈ X1. Therefore,

G(⟨x′1, x2, . . . , xn⟩) =
(⌊

GS1(x
′
1)

h

⌋
⊕
⌊
GS2(x2)

h

⌋
⊕ · · · ⊕

⌊
GSn(xn)

h

⌋)
h

+ (x′1 + x2 + · · ·+ xn) mod h

= (g ⊕A2(q2)⊕ · · · ⊕ An(qn))h+ k′ = Q′h+ k′ = k

from induction hypothesis.
Next, we show that, if ⟨x1, x2, . . . , xn⟩ → ⟨x′1, x′2, . . . , x′n⟩, then

Q(x1, x2, . . . , xn)h+R(x1, x2, . . . , xn) ̸= Q(x′1, x
′
2, . . . , x

′
n)h+R(x′1, x

′
2, . . . , x

′
n).

Clearly, the claim is true if ⟨x′1, x′2, . . . , x′n⟩ is in Y , since R(x′1, x
′
2, . . . , x

′
n) ̸= R(x1, x2, . . . , xn). There-

fore, we assume that ⟨x′1, x′2, . . . , x′n⟩ is in X1 without loss of generality, namely x′j = xj (j > 1) and
x1 − x′1 ∈ S1. Let x

′
1 = q′1h+ r′1 (0 ≤ r′1 < h).

If Q(x1, x2, . . . , xn)h + R(x1, x2, . . . , xn) = Q(x′1, x2, . . . , xn)h + R(x′1, x2, . . . , xn), then we have
Q(x1, x2, . . . , xn) = Q(x′1, x2, . . . , xn) and R(x1, x2, . . . , xn) = R(x′1, x2, . . . , xn). Then, r1 = r′1 since
R(x1, x2, . . . , xn) = R(x′1, x2, . . . , xn), and ⌊GS1(x1)/h⌋ = ⌊GS1(x

′
1)/h⌋ since Q(x1, x2, . . . , xn) =

Q(x′1, x2, . . . , xn). Therefore GS1(x1) = GS1(x
′
1), but it is impossible because x1 − x′1 ∈ S1.

There are a variety of subtraction games with the h-stair of a simple integer sequence as their
G-value sequence.

Example 2.5 (Nim). For any h, GN+(x) = x =
(⌊

x
h

⌋)
h+ (x mod h).

Example 2.6 (Subtraction({1, . . . , l−1}) and its variants). If {1, . . . , l−1} ⊂ S ⊂ N+ \{kl | l ∈ N+}
and h | l, then

GS(x) = x mod l =

(⌊
x mod l

h

⌋)
h+ ((x mod l) mod h).

Example 2.7 (All-but({h, 2h, . . . , kh})). If S = N+ \ {h, 2h, . . . , kh}, then GS(x) is the h-stair of
{0, 0, . . . , 0︸ ︷︷ ︸

k+1

, 1, 1, . . . , 1︸ ︷︷ ︸
k+1

, 2, 2, . . . , 2︸ ︷︷ ︸
k+1

, . . .}.
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Example 2.8 (All-but({s1, s2}) [8]). If s2 > s1, then GS(x) is the s1-stair of a sequence of positive
integers.

Theorem 2.4 allows us to combine several subtraction games which have the G-value sequences of
form h-stair for common h. For example, for GCN(4; N+, {1, 2, 3, 4, 5, 6, 7}, N+ \ {4, 8}), we have the
following:

G(⟨x1, x2, x3⟩) =
(⌊x1

4

⌋
⊕
⌊
x2 mod 8

4

⌋
⊕
⌊x3
12

⌋)
× 4 + (x1 + x2 + x3) mod 4.

Suppose that a subtraction set S is given. Then we can define a new subtraction set S′ such that
the G-value sequence of Subtraction(S′) is the h-stair of the G-value sequence of Subtraction(S).

Theorem 2.9. Let S be an arbitrary subtraction set and let S′ = N+ \ {(N+ \ S)h}. Then

GS′(n) = GS

(⌊n
h

⌋)
h+ (n mod h).

Proof. Let n = qh + i where 0 ≤ i < h. Then the formula to be shown is GS′(qh + i) = GS(q)h+ i.
The proof is by induction on n (= qh+ i).

First, we show that there exists a move to a position with any smaller G-value rh + k than
GS(q)h+ i. There are two cases.

Case that r = GS(q) and k < i: Since 0 < i− k < h, there exists a move gh+ i → gh+ k and we
have

GS′(gh+ k) = GS(q)h+ k = rh+ k

by induction hypothesis. Case that r < GS(q) and 0 ≤ k < h:
By the definition of GS(q), there exists q′ such that q − q′ ∈ S, GS(q

′) = r and

GS′(q′h+ k) = GS(q
′)h+ k = rh+ k

by induction hypothesis. So we only need to prove that there is move to q′h + k. If i ̸= k, clearly
there exists a move qh+ i → q′h+ k.

Assume that i = k and that there does not exist a move qh+ i → q′h+ k. Then

(q − q′)h /∈ S′ ⇒ (q − q′)h ∈ (N+ \ S)h ⇒ q − q′ ∈ (N+ \ S) ⇒ q − q′ /∈ S,

which is a contradiction. Next, we show that, if n = qh+ i → n′ = q′h+ k, then

GS′(n′) ̸= GS(q)h+ i.

If GS′(n′) = GS(q)h + i, then we have GS(q) = GS(q
′) and k = i by induction hypothesis, but it is

impossible by the definition of GS(q). Because

q − q′ /∈ S ⇒ q − q′ ∈ (N+ \ S) ⇒ (q − q′)h ∈ (N+ \ S)h ⇒ (q − q′)h /∈ N+ \ {(N+ \ S)h} ⇒ n− n′ /∈ S′.

Therefore, Theorem 2.4 has sufficiently wide application.
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3 Delete Nim

3.1 Rules of the Delete Nim

The rules of Delete Nim are as follows:

• There are two heaps of tokens.

• The player selects a non-empty heap and deletes the other heap and removes 1 token from the
selected heap and splits the heap into two (possibly empty heaps).

Example 3.1. ⟨11, 9⟩ → ⟨5, 3⟩ → ⟨4, 0⟩ → ⟨2, 1⟩ → ⟨1, 0⟩ → ⟨0, 0⟩.

3.2 OR operation

Definition 3.2. We denote by ∨ the usual OR operation of two numbers in binary notation.

Example 3.3. 3 ∨ 5 = 112 ∨ 1012 = 1112 = 7.

Example 3.4. 9 ∨ 12 = 10012 ∨ 11002 = 11012 = 13.

3.3 Main Results

Theorem 3.5. We denote the position of Delete Nim with two heaps of x tokens and y tokens by
⟨x, y⟩. Then,

G(⟨x, y⟩) = v2((x ∨ y) + 1),

where vp(n) is the p-adic valuation of n; that is,

vp(n) =

{
max{l ∈ N : pl | n} (n ̸= 0)

∞ (n = 0).

Proof. Let x =
∑

i 2
ixi, y =

∑
i 2

iyi (xi, yi ∈ {0, 1}) and h = v2((x ∨ y) + 1).
First, we show that ⟨x, y⟩ has no next position ⟨x′, y′⟩ such that h = v2((x

′ ∨ y′) + 1) by contra-
diction. Note that x′ + y′ = x− 1 or x′ + y′ = y − 1.

If h = 0, then x and y are even. Therefore, x′ + y′ is an odd number and v2((x
′ ∨ y′) + 1) ̸= 0,

which is a contradiction.
Let x′ =

∑
i 2

ix′i, y′ =
∑

i 2
iy′i (x′i, y

′
i ∈ {0, 1}). If h > 0, then x′h = y′h = 0 and for any

k < h, x′k = 1 or y′k = 1. Therefore, 2h − 1 ≤ ((x′ + y′) mod 2h+1) ≤ 2h+1 − 2, and thus, 2h ≤
((x′ + y′ + 1) mod 2h+1) ≤ 2h+1 − 1. Then, xh = 1 or yh = 1, which is a contradiction.

Next, we show that for any h′ < h, ⟨x, y⟩ has a next position such that h′ = v2((x
′∨y′)+1). Since

h = v2((x ∨ y) + 1), without loss of generality, xh′ = 1. Let x′ = x− 2h
′
and y′ = 2h

′ − 1. Evidently,
x′h′ = 0, y′h′ = 0, y′k = 1 (k < h′), and x′ + y′ = x − 1. Therefore, ⟨x′, y′⟩ is a next position of ⟨x, y⟩
and h′ = v2((x

′ ∨ y′) + 1).

A game similar to Delete Nim was introduced in [11]. The rules are as follows:

• There are two (non-empty) heaps of tokens.

• The player selects one of the heaps and deletes it, and splits the other heap into two (non-empty)
heaps.

We call this game Variant of Delete Nim (VDN).

Example 3.6. ⟨8, 5⟩ → ⟨7, 1⟩ → ⟨4, 3⟩ → ⟨3, 1⟩ → ⟨2, 1⟩ → ⟨1, 1⟩.
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The N -positions and P-positions of VDN have been already shown [11]. However, the G-values of
the positions of the game have not been discussed.

Theorem 3.7 ([11]). Let G be a VDN position.

At least one of the heaps has an even numbers of tokens ⇐⇒ G is an N -position.
Both heaps have an odd number of tokens ⇐⇒ G is a P-position.

VDN can be shown to be isomorphic to Delete Nim, in the following sense.

Definition 3.8. Let G and H be game positions. We say that G is isomorphic to H, if G and H
have the same game tree.

Theorem 3.9. Let F be the function denoted by

F ⟨x, y⟩ = ⟨x− 1, y − 1⟩.

Then, F is an isomorphism from the set of all positions of VDN to that of Delete Nim. Namely,

⟨x, y⟩ → ⟨x′, y′⟩ ⇐⇒ F ⟨x, y⟩ → F ⟨x′, y′⟩.

Proof. Evidently, the end positions of the games hold this isomorphism. Let ⟨x′ − 1, y′ − 1⟩ be a next
position of ⟨x−1, y−1⟩ in Delete Nim. Then, without loss of generality, (x′−1)+(y′−1) = (x−1)−1.
In contrast, ⟨x, y⟩ of VDN has the next position ⟨x′, y′⟩ because x′ + y′ = x. For the other side, let
⟨x′, y′⟩ be a next position of ⟨x, y⟩ in VDN. Then, without loss of generality, x′ + y′ = x. In contrast,
⟨x−1, y−1⟩ of Delete Nim has the next position ⟨x′−1, y′−1⟩ because (x′−1)+(y′−1) = (x−1)−1.
Therefore, there is a one-to-one correspondence between ⟨x − 1, y − 1⟩ of Delete Nim and ⟨x, y⟩ of
VDN.

Corollary 3.10. By Theorem 3.9, we can compute the G-value of position ⟨x, y⟩ of VDN as

v2(((x− 1) ∨ (y − 1)) + 1).
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