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Motivated by recent experiments on electronic transport through a carbon nanotube dot,

we investigate the role of the intra- and inter-orbital Coulomb interactions on the temperature

evolution of the conductance. It is shown that small amount (. 10%) of asymmetry between

these Coulomb repulsions substantially deforms the conductance profile at finite temperature,

particularly around half-filling. The nature of such thermal symmetry crossover is elucidated.
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In the last decade, electronic transport through semiconducting nanostructures has been

extensively studied for future applications of quantum nano-devices. As for a single quantum

dot, we have now understood fairly well that Coulomb interaction on the dot fundamentally

affects its transport. It not only constrains electrons to pass through a dot (the Coulomb

blockade phenomena1) but also gives rise to the singular conductance enhancement at low-

temperatures in an odd electron number on the dot (the Kondo effect2)). A prominent feature

of the latter phenomena is a universal temperature dependence scaled by the Kondo temper-

ature, where low-temperature conductance quantitatively agrees with the “universal curve”

predicted theoretically by the Anderson impurity model.3)

Recent experimental observations of the Kondo effect in carbon nanotube (CNT) dots4–6)

have rekindled interest in a role of strong interaction in two important aspects: enlarged sym-

metry and apparently nonuniversal temperature behavior. While the standard Kondo effect

occurs through a spin one-half degenerate single level, the enlarged symmetry may augment

the role of the spin degree. Carbon nanotube dots arguably have almost doubly degenerate

orbits in the topmost shell, producing a variety of low-temperature phenomena.7–14) At a

quarter filling Nd ≈ 1, the entanglement between spin and orbital degrees of freedom gives

rise to the SU(4) Kondo effect, with the Kondo temperature one order of magnitude higher

than the standard case.15) What is more intriguing is the temperature evolution around an

even valley Nd ≈ 2. While the experiment by Makarovski et al. has observed visible low-

temperature “Kondo-like enhancement” around Nd = 2,6) such enhancement was absent in

others.4, 5) Rather, a characteristic ‘dip’ is observed in the conductance profile around half-

filling (Vg ∼ 3V) (See Fig. 3(a) or Supplementary Information Fig. SI2 of Jarillo-Herrero et

al.5) and compare Fig. 2 (a) of Makarovski et al.6)). A few possibilities of the nature at half-
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filling have been argued actively so far, due to the singlet-triplet Kondo effect,5) the SU(4)

Kondo effect6, 16, 17) with/without some more complications. Observed temperature depen-

dence of conductance through CNT seems nonuniversal rather than universal.

In this Letter, motivated by the mentioned experiments on low-temperature transport

through a CNT dot, we investigate the role of the inter-orbital Coulomb repulsion and the

thermal symmetry crossover. Our main concern is on the temperature dependence of the

linear conductance profile particularly around half-filling. While the RG flow either at quarter-

filling or at half-filling has been shown to flow toward the SU(4) symmetric strong coupling

point,14) the absence of the exact SU(4) symmetry may affect substantially the behavior at

finite temperature. Indeed a small amount of interaction difference less than 10% will cause

a large deformation to the conductance profile at finite temperature (see Figs. 3 and 4 later).

We point out that the thermal crossover by interaction asymmetry provides a systematic

understanding to observed thermal evolutions.4–6)

Relatively large energy scale of the Coulomb interaction allows us to focus on the topmost

electron shell. Regarding a CNT dot, a great success of Anders et al. explaining Makarovski et

al. experiments makes us feel certain that the SU(4)-symmetric model is a good starting point

to model a CNT dot system; the topmost shell of CNT doubly degenerates in orbits i = 1, 2

and the view conforms to observations of SU(4)-Kondo effect at quarter-filling.15) The SU(4)-

symmetric model nevertheless misses something, failing to explain the temperature evolution

at half-filling of some experiments.4, 5) Within the universality of the topmost shell, we regard

the interaction asymmetry among the orbits a clue.

By this reasoning, we model the CNT dot by an orbitally degenerate Anderson model

with interaction asymmetry among orbits. On the dot, an electron interacts with an electron

in the same orbit i = 1, 2 by U or in the different orbit by U ′. The total Hamiltonian is given

by H = HD +HL +HT , where the dot HD, the noninteracting leads HL, and the coupling

between leads and the dot HT are defined by

HD =
∑

iσ

(εd n̂iσ + Un̂i↑n̂i↓) + U ′n̂1n̂2, (1)

HL =
∑

α

∑

kiσ

εk c
†
αkiσcαkiσ, (2)

HT =
∑

α

∑

kiσ

(

tkc
†
αkiσ

diσ + h.c.
)

. (3)

Here the number operator of the dot is defined by n̂i =
∑

σ n̂iσ =
∑

σ d
†
iσdiσ and the average

electron number on the CNT dot Nd = 〈
∑

i n̂i〉 is controlled from 0 to 4 by the gate voltage

εd. In the calculation below, we assume constant density of states ρα of the lead α and use

Γ =
∑

α Γα =
∑

α πρα|tk|
2 as a coupling parameter between the leads and the dot.

In the case of U ′ = U , the total Hamiltonian H retains the full SU(4) symmetry. The states
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(n1, n2) = (1, 0) and (0, 1) are degenerate at quarter-filling (Nd = 1) and so are (n1, n2) =

(2, 0), (1, 1) and (0, 2) at half-filling (Nd = 2). When one breaks the SU(4) symmetry by

decreasing U ′, the degeneracy is broken at half-filling, but unbroken at quarter-filling. This

simple argument indicates that the SU(4) symmetry at half-filling is more vulnerable than

that at quarter-filling. We will show later that this is indeed the case.

At T = 0, the system is fully renormalized into the strong coupling fixed point; the

linear conductance is expected to depend only on Nd, i.e., G(T = 0) = 4G0 sin
2
(

π
4Nd

)

(with G0 = e2/h) according to the Friedel sum rule. Such behavior has been confirmed

in experiments.6) Since Nd changes only slightly by decreasing the asymmetric parameter

η = U ′/U , the zero-temperature conductance is universal and the effect of asymmetry η < 1

emerges only at finite temperature.

Our analytical approach is based on an extension of the Kotliar-Ruckenstein formulation of

slave-boson mean field theory (KR-SBMT),18) where a bosonic field is attached to each type of

local excitations rather than decoupling the charge and spin degrees of freedom. The approach

has several advantages that other slave-boson cousins miss: it retains finite Coulomb repulsion

effect and reproduces Fermi liquid behavior at T = 0 with satisfying the Friedel sum rule.

The KR formulation of SBMT is believed to be a powerful non-perturbative method; it gives

reliable results not only qualitatively but also quantitatively up to the Kondo temperature,

agreeing successfully with numerical renormalization group methods and experiments.19, 20)

When KR-SBMT is extended to the dot with doubly degenerate orbits, 16 bose fields are

needed associated to each state of the dot: e for the empty, piσ for one electron with orbit i and

spin σ, xi for two electrons on the same orbit i, ysσ for two electrons at different orbits with

total spin (s, σ), hiσ for three electrons with a hole on iσ, and b for fully occupied state.21, 22)

To eliminate unphysical states, the completeness condition and the correspondence condition

between boson and fermion number niσ = Qiσ = p†iσpiσ +x†ixi+ y†1σy1σ +
1
2(y

†
00y00+ y†10y10)+

h†iσ̄hiσ̄ +
∑

σ′ h
†

īσ′
hīσ′ + b†b are imposed in terms of Lagrange multipliers λiσ. By applying

the mean field approximation, all the boson fields are replaced by the expectation values. On

determining these auxiliary parameters self-consistently at each temperature and each gate

voltage, the system reduces to the renormalized resonant level model with the effective dot

level ε̃d and the effective hopping t̃k = ziσtk,

Heff = HL +
∑

i

ε̃d n̂i +
∑

αkiσ

(

t̃k c
†
αkiσ

diσ + h.c.
)

. (4)

Here ziσ = (1−Qiσ)
− 1

2 [e†piσ + p†iσ̄xi + p†
īσ
y1σ + p†

īσ̄
(y00 + y10)/2 + x†

ī
hiσ̄ + (y†00 + y†10)hīσ̄/2 +

y†1σ̄hīσ + h†iσb]Q
− 1

2

iσ . The effective Hamiltonian eq. (4) conforms to the Fermi liquid descrip-

tion.23) The form of Heff enables us to find the linear/nonlinear conductance by the Meir-

Wingreen formula.24) We will present the result of the linear conductance for the symmetric

coupling between the leads and the dot ΓL = ΓR below.
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The effective Hamiltonian eq. (4) defines a natural energy scale, the characteristic tem-

perature

T ∗ =

√

ε̃2d + Γ̃2
∣

∣

∣

T=0
. (5)

where Γ̃ =
∑

α πρα|t̃k|
2 is the effective coupling between the dot and the leads. Interaction

effect is encoded in terms of ε̃d and Γ̃. Note that the scale T ∗ is defined in the entire range of

the gate voltage and it reduces to the usual Kondo temperature at the Kondo valley Nd = 1.

We evaluate renormalized parameters self-consistently at each εd and at temperature T .

Figure 1 demonstrates typical temperature evolutions of the conductance profile as a

function of the gate voltage with increasing asymmetry (a) U ′/U = 1.0, (b) 0.8, (c) 0.6,

and (d) 0.4, respectively. Even with a small asymmetry U ′/U = 0.8, a characteristic dip

structure at half-filling develops clearly at finite temperature, while only small deformation

is seen around quarter and three-quarter fillings. Overall widths of conductance peaks are

determined by U + 2U ′. Here the conductance profile at T = 0 can be considered universal,

fully recovering SU(4) symmetry in the sense that it is determined by the Friedel sum rule.

Interaction asymmetry manifests itself only at finite temperature as a thermal crossover by

modifying the conductance profile substantially around half-filling.

To clarify the nature of the temperature dependence and understand how the conductance

is affected by the asymmetric interaction particularly around Nd ≈ 2, we make a direct

comparison between the behaviors at quarter-filling and half-filling. Figure 2 (a,b) shows the

temperature dependence of the conductance at (a) Nd = 2 and (b) Nd = 1 for U ′/U = 1, 0.8,

0.6 and 0.4. By decreasing U ′ away from U ′ = U , it is clear that decreasing U ′ reduces the

characteristic energy scale at Nd = 2 but increases it at Nd = 1. The tendency is elucidated

by estimating the characteristic temperature T ∗ defined in eq. (5); while T ∗ at Nd = 2 is

already lower than that at Nd = 1 at U ′ = U , the difference of T ∗ becomes more amplified

by the presence of interaction asymmetry (Fig. 2 (c)). This behavior for Nd = 2 agrees well

with other numerical results.13, 16) Clearly, the conductance enhancement around Nd ≈ 2 is

destroyed more rapidly than at Nd ≈ 1 at finite temperature, which induces a substantially

large deformation in the conductance profile. At the filling corresponding to Coulomb blockade

peaks (Nd ≈ 1.5, 2.5), T ∗ is found almost unchanged by U ′/U .

Another important observation is on the universal temperature dependence. Insets of

Fig. 2 (a,b) show the data as a function of scaled temperature T/T ∗. As is seen, the curves

collapse well up to T . T ∗ (T ∗ is a upper scale restricting the validity of the present analysis).

It implies that the universal temperature dependence either at half-filling or at quarter-filling

reduces to the SU(4) symmetric case of U ′ = U . Additionally, Fig. 2 (d) shows that such

universal dependence differs slightly but significantly between Nd = 1, 2.17) It shows that

the thermal symmetry crossover observed at finite temperature is not considered a crossover

between different universality classes (between SU(4) and SU(2)×SU(2)). We can attribute
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the phenomena to renormalizing the characteristic temperature T ∗ by asymmetry U ′/U at

each gate voltage.

To stress the relevance of asymmetric interaction U and U ′ to experimentally observed

conductance profiles,4–6) we now present schematic calculations mimicking experimental situa-

tion, changing U ′/U slightly. In the comparison, we have in mind a rough estimate U ≈ 100K,

but we find the following characteristics pretty generic.

Figure 3 demonstrates the conductance profile of U ′/U = 0.997 with U = 30Γ (U = 15Γ

for the inset). With this small amount of asymmetry, the profile reproduces all the features

of the SU(4) symmetric model.17) A distinctive feature of the conductance profile in large

U/Γ region is that the Kondo enhancement by decreasing the temperature occurs either at

Nd ≈ 2 or at Nd ≈ 1 similarly. Regarding a smaller value of U/Γ, four peaks merge to form

one big peak showing the Kondo enhancement (see the inset). As was claimed already,17)

these temperature evolutions by the SU(4) symmetric Anderson model agree very well with

what is observed either at Vg ∼ 3.9V or at Vg ∼ 5.3V in Makarovski et al.6) When we resort

to the (heuristic) prescription in choosing U/Γ,25) our results agree very well to those by the

NRG results by Anders et al.. Detailed comparison will be presented elsewhere.

Figure 4 illustrates the temperature evolution of the conductance profile with all the same

parameters with Fig. 3 except for U ′/U = 0.9, whose value is deduced from the Coulomb

blockade peak spacings at T = 8K.5) The conductance profiles regarding a smaller U/Γ (the

inset) are almost identical with the symmetric case. To our surprise, however, the conductance

profiles with four peaks (U = 30Γ) is modified considerably by this relatively small asymmetry

(less than 10%), having a characteristic dip structure around half-filling. It is noted that in

Fig. 3(a) or Fig. SI2 of Jarillo-Herreo et al.,5) the conductance at Vg ≈ 3V is smaller than

that of Vg ≈ 2.8V or 3.2V at each temperature. We claim that Fig. 4 captures well essential

characteristics of experiments4, 5) with a reasonable choice of parameters.

How much asymmetry brings the system away from the SU(4) symmetric behavior of

Fig. 3 into that of Fig. 4? The characteristic temperature T ∗ at half-filling (of the symmetric

model) controls it; with T ∗ = 1.4 × 10−2U in Figs. 3 and 4, |U − U ′| . T ∗ is valid in the

former but |U −U ′| ≫ T ∗ in the latter. This difference affects the conductance profile at finite

temperature.

To understand experimental data fully, one more complication seems to remain. By de-

creasing the temperature below 8K, one conductance profile at half-filling (Vg ≈ 3V) begins

to enhance, conforming to the Kondo-like effect, but it eventually reduces below 2K.5) We

regard such behavior beyond our scope of description with a possible extra mechanism at an

energy scale much smaller than the Kondo temperature; some interesting possibilities such

as a slight difference of degenerate levels, exchange coupling and orbital-dependent coupling

have been argued, but it still remains to be seen.
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In conclusion, we have investigated the role of the inter- and intra-orbital interactions in

transport through a carbon nanotube dot. By using the KR formulation of slave-boson mean

field theory, we have shown that a small amount of asymmetry between the intra-orbital and

inter-orbital interactions can give rise to a substantial effect on the conductance profile at

finite temperature by renormalizing T ∗. It is suggested that interaction asymmetry at finite

temperature enables us to understand systematically the existing experimental data.4–6) We

also anticipate to observe a similar crossover phenomena by applying small amount of finite

bias voltage because it should serve as an energy cut-off similarly to finite temperature.

The authors appreciate W. Izumida and H. Tamura for helpful discussion. The work is

partially supported by Grant-in-Aid for Scientific Research (Grant No. 18500033) from the

Ministry of Education, Culture, Sports, Science and Technology of Japan.
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Fig. 1. (Color online) Temperature evolution of the conductance as a function of the gate voltage with

varying asymmetry U ′/U = 1.0, 0.8, 0.6, and 0.4. Temperatures are T/U = 0 (black), 1.67× 10−3

(green), 3.33× 10−3 (blue), and 8.33× 10−3 (red). U is set to U = 30Γ.
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Fig. 2. (Color online) Temperature dependence of the conductance (a) at Nd = 2 and (b) Nd = 1

by varying U ′/U = 1 (black), 0.8 (red), 0.6 (green) and 0.4 (blue). Other parameters are the

same with Fig. 1. (c) T ∗ as a function of interaction asymmetry U ′/U . (d) Universal temperature

dependence at Nd = 1 (solid) and at Nd = 2 (dotted) for U ′/U = 1.0.
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Fig. 3. (Color online) Schematic plotting for the comparison with CNT experiments:6) Conductance

as a function of the gate voltage for |U − U ′| ≪ T ∗, where U = 30Γ and U ′/U = 0.997. Inset

shows larger coupling parameter regime U = 15Γ.
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Fig. 4. (Color online) Schematic plotting for the comparison with CNT experiments:5) Conductance

as a function of the gate voltage for |U − U ′| ≫ T ∗. Parameters are the same with Fig. 3 except

for U ′/U = 0.9.
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