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We suggest a procedure for calculating correlation functions of the local

densities of states (DOS) at the plateau transitions in the Integer Quantum

Hall effect (IQHE). We argue that their correlation functions are appropri-

ately described in terms of the SL(2,C)/SU(2) WZNW model (at the usual

Kač–Moody point and with the level 6 ≤ k ≤ 8). In this model we have iden-

tified the operators corresponding to the local DOS, and derived the partial

differential equation determining their correlation functions. The OPEs for

powers of the local DOS obtained from this equation are in agreement with

available results.
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I. INTRODUCTION

Under the conditions of low temperature and strong perpendicular magnetic field, a
two-dimensional electron gas exhibits a striking macroscopic manifestation of a quantum
phenomenon, namely the quantum Hall effect [1, 2]: the Hall conductivity exhibits quan-
tized plateaus at well defined multiples of e2/h (a fundamental constant). In samples where
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the rôle of random impurities (disorder) is more important than electron-electron interac-
tions, the plateaus occur at integer multiples of e2/h giving rise to the so-called integer
quantum Hall effect (IQHE). It is widely believed that in the absence of a magnetic field,
all wavefunctions for non-interacting, disordered electrons in two dimensions are localized.
In the presence of a magnetic field however, a delocalized state occurs at the centre of the
(disorder broadened) Landau level, with energy Ec. As one tunes the electron energy E (by
varying the magnetic field), through the centre of a Landau level, the localization length,
ξ, diverges as ξ = |E − Ec|−ν , where numerical simulations indicate that ν ∼ 2.3.1 The
plateaus with differing σxy are separated by these critical points. A theoretical description
of these points remains one of the most challenging unresolved problems in the theory of
disordered systems.

In the field-theoretic approach to the problem of disordered electrons, the presence of a
static potential preserves the one-body energy, so the frequency becomes simply a parameter
of the action and one may consider each frequency separately. This reduces the problem of
disordered electrons in d spatial dimensions to a d-dimensional Euclidean field theory. The
natural description of the plateau transitions in the IQHE, should therefore be in terms of
the critical point of some two-dimensional Euclidean field theory, to which one may apply
the powerful machinery of conformal field theory (CFT) — see for example the books [3–5].
Despite persistent efforts over the last fifteen years, the form of the effective action describing
the critical point is still uncertain.

The first field-theoretical description of the disordered Landau level was given by Levine,
Libby and Pruisken [6] and Pruisken [7] in the form of a non-linear sigma model with a topo-
logical term. On the basis of this model, Khmelnitskii suggested a two-parameter scaling
theory [8] of the IQHE. In this theory, all the (renormalization group) flow lines merge into
one of a number of fixed points occurring at integer multiples of the Hall conductance (mea-
sured in units of e2/h) corresponding to the existence of plateaus in the IQHE. In addition,
the flow-diagram contains unstable fixed points, corresponding to the transition states oc-
curring between plateaus. These flows were justified in a dilute instanton gas approximation
by Levine, Libby and Pruisken [9] and independently by Knizhnik and Morozov [10]. Un-
fortunately, the extrapolation towards the conjectured fixed points lies at strong coupling,
and quantitative results are lacking. In the original derivation of the model, Pruisken and
collaborators employed the method of replicas, leading to a sigma model defined on the
manifold U(2n)/U(n)×U(n) with n → 0. A more rigorous formulation using Efetov’s su-
persymmetry approach [11,12] was given in [13], and led to a sigma model on the manifold
SU(1, 1|2)/U(1|1)× U(1|1). The action may be written in the following form,

S =

∫

d2x str

[

− 1

8α
(∂µQ)

2 +
1

8
σ0
xy (Q [∂xQ, ∂yQ]) +

1

2
πρ0ηΣ

3Q

]

, (1.1)

1We note, that in a system of size L, the number of states with wave functions that reach the

boundaries is ∼ ρ(E)L2−1/ν . Since the density of states, ρ(E), remains a smooth function of energy,

this number is always macroscopic. However, the density of delocalized states ∼ L−1/ν and goes

to zero in the limit of infinite sample size.
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where Q is a 4× 4 supermatrix satisfying the conditions,

strQ = 0, Q2 = 1, (1.2)

Σ3 = diag(1,−1, 1,−1) (in the boson-fermion supermatrix representation), σ0
xy(E) is the

bare Hall conductance at energy E, ρ0 is the average density of states at energy E, and η is
the imaginary frequency which serves as a symmetry breaking field. At weak disorder, α≪ 1,
the bare value of the inverse coupling constant, α−1, coincides with the bare longitudinal
conductance σ0

xx(E) at energy E. To be more precise, one can directly relate the bare
parameters of the action to experimentally observable quantities of a mesoscopic system of
size L ∼ l (the mean free path). At E = Ec, one has σ0

xy =
1
2
, and the model is expected to

be critical at large distances.
The second term appearing in (1.1) is topological, and despite the fact that its presence is

crucial for the critical behaviour, its effect cannot be spotted in a perturbative expansion in
powers of α; it does not contribute to the equations of motion and hence does not contribute
to the loop expansion of the beta function. The effects of the topological term become visible
only for samples of size greater than ξ ∼ l exp[πσ0

xx
2
], where l is the electron mean free path.

In the model (1.1), with σ0
xy = 0, the length scale ξ corresponds to the localization length;

with σ0
xy = 1/2, this scale is the transmutation length (in field-theoretic jargon) and signifies

a crossover to the regime of universal critical fluctuations.
It is widely believed that the model (1.1) has a non-trivial infrared fixed point at some

α∗ and σxy = 1/2. However, one cannot simply substitute α∗ with the experimental value
of (σ∗

xx)
−1 (the inverse longitudinal conductance) in order to obtain the effective action at

the critical point. The reason for this is that the fixed point occurs at strong coupling,
where the fundamental fields of the model (1.1) are strongly fluctuating. In this regime,
the coupling constant α, being dependent on the regularization procedure, can no longer be
identified with any measurable quantity. This phenomenon is well known in asymptotically
free gauge theories — the gauge coupling constant has meaning only at short distances, and
cannot be defined in a universal way in the infrared.2 In QCD, for example, gluons do not
exist as asymptotic states in the infrared — there is a mass transmutation phenomenon
and the emerging degrees of freedom are massive. In the quantum Hall effect, however, we
expect the emerging infrared theory to be a massless CFT, and so one should not stretch
the analogy too far. A better analogy is the Seiberg duality [14] appearing in N = 1
supersymmetric gauge theories, with Nc colours and Nf flavours, in the so-called conformal
window, 3Nc/2 < Nf < 3Nc. There is an infrared (IR) fixed point in this theory, in the
vicinity of which, the theory can be described as an infrared limit of another gauge theory
(with the same number of flavours and Nf −Nc colours). If Nf is close to 3Nc/2 the original
theory is strongly coupled near the IR fixed point, whereas the second is only weakly coupled;
the appropriate IR behaviour is given by the second (dual) formulation.

2Notable exceptions to the rule are theories with spontaneously broken gauge symmetry (in which

case zero-charge U(1) can also emerge) where the coupling constant can be defined in the infrared

through either an effective Fermi four-fermion interaction or Thompson scattering.
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Another example of this nature occurs in the deformation of the minimal model Mp

of two-dimensional CFT, by the operator Φ1,3 [15, 16]. The theory in the infrared can be
described either as a strongly fluctuating asymptotically free Mp model, or as a weakly
fluctuating infrared free Mp−1 model, deformed by the irrelevant operator Φ3,1. Again, it is
the second (dual) description which is required in the infrared.

These analogies encourage us to believe that the theoretical description of the plateau
transitions in the IQHE will ultimately lie in a reformulation of the model (1.1), in terms of
degrees of freedom more appropriate for the infrared region.

An alternative approach to the study of the plateau transitions is based on the Chalker–
Coddington Network Model [17]. This model has been reformulated in Hamiltonian form as
a Replica Spin Chain [18, 19], and as a Superspin Chain [20–23]. The Superspin Chain, is
a lattice model with nearest neighbour antiferromagnetic exchange between ‘spins’, which
are generators of the gl(2|2) algebra. The advantage of such reformulations is that one
may approach the critical point more accurately by tuning the parameters of the network.
This makes the model indispensable for numerical simulations. However, the Chalker–
Coddington model (or the spin chain models) are lattice theories, and one still needs to
derive their continuum limits in order to describe the critical fluctuations. The derivation
of such limits remains an open problem.

Exasperated by long and futile efforts to find a rigorous derivation of the effective action
at the critical point, Zirnbauer has drawn upon a great many sources and conjectured its
possible form [24]3. Such a conjecture ought to be justified, amongst other considerations,
by its ability to reproduce existing results for physical quantities at the critical point. In [24]
this has been successfully done for the two-point conductance. In the present paper we shall
concentrate on the correlation functions of the local density of states (DOS).

The structure of our paper is as follows: in section II we discuss a possible form for
the correlation functions at the transitions. In particular, we discuss the operator product
expansion (OPE) for moments of the local density of states ρq, which reflects the multifrac-
tality of the critical wavefunctions. The two-point correlation function of the local DOS is
given as a particular limit of a four-point function. The latter function includes two opera-
tors with anomalous dimension zero (vacuum insertions) which serve to redefine the ground
state of the theory. In section III we discuss more fully the important rôle played by these
operators. In section IV we discuss a possible connection between the properties of the
required two-dimensional conformal field theory, and non-perturbative results [27] obtained
by studying the one-dimensional limit of model (1.1). The analysis of the one-dimensional
case brings us to the idea that one can study the behaviour of the local DOS in terms
of the SL(2,C)/SU(2) Wess–Zumino–Novikov–Witten (WZNW) model. In sections V and
VI we study one of the candidate theories for describing the plateau transitions, namely
the PSL(2|2) WZNW model [24]. The non-compact bosonic sector of this theory is the
SL(2,C)/SU(2) WZNW model. In section VII we use the SL(2,C)/SU(2) WZNW model
to study the correlation functions of the local DOS. Finally we present concluding remarks

3Here we would like to mention the recent paper [25] containing interesting suggestions with

respect to derivation of the critical theory.
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(including open problems) and technical appendices.

II. CONSTRAINTS ON CANDIDATE THEORIES

Any conformal field theory purporting to describe the plateau transitions must satisfy a
number of constraints, some of which have been discussed by Zirnbauer [24]. For the purpose
of this paper, we believe the following are important requirements:

1. The model should be defined over a manifold associated with some supergroup, and
must contain a non-trivial (non-unit) operator with zero scaling dimension (see, for
example [11]).

2. The model must reproduce all known scaling dimensions.

3. Restricting our two-dimensional CFT to a finite-width strip geometry (in a suitable
limit to be discussed below, and in section IV) one should recover certain known
quasi-one-dimensional results.

We shall now take each of these constraints in turn, and consider some of their consequences.

A. Supermanifold and Zero-Dimension Operator

Given our belief that a (presently unknown) non-perturbative treatment of model (1.1)
will ultimately describe the plateau transitions in the IQHE, it is entirely natural to expect
the resulting effective action to be defined over some supermanifold. However, in order
to combine conformal symmetry with bosonic and fermionic degrees of freedom, one will
ultimately face a zero-mode problem: if the effective action at the critical point contains
only terms with derivatives, the integral over the zero modes (constant fields) leaves the
partition function ill-defined. Explicitly,

∫

dQ0 =

∫

dB

∫

dF (2.1)

is indeterminate since the integral over the fermionic fields, F , is zero, whereas the integral
over the bosonic fields, B, is infinite (assuming that manifold is non-compact as in the
original model (1.1)). In the sigma model (1.1) this problem is solved by the presence of the
additional term

Sη = η

∫

d2x str(Σ3Q) (2.2)

This term is responsible for energy level broadening in the original theory. The correspond-
ing operator has zero scaling dimension4 and its value does not change in all orders of
perturbation theory. The term is highly relevant and generates a length scale Lη ∼ η−1/2.

4We note that the present theory is a purely spatial one, and all dimensions are expressed in

terms of units of length, not time. From this point of view time is dimensionless and the frequency,

η ∼ 1/[Time], corresponds to a dimensionless operator.
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The zero modes are also eliminated when one considers an open system. The possibility of
escape through the boundaries gives rise to non-uniform (i.e. energy-dependent) broadening
of the energy levels. For this reason closed and open systems may require slightly different
approaches. In this paper we consider only closed systems and shall not discuss any problems
related to the conductance. In a closed system one has to introduce boundary conditions as
was suggested by Zirnbauer [26] and subsequently used by various authors [27, 28]. In the
field theory approach these boundary conditions can be realized by the insertion of certain
operators into correlation functions. Such insertions naturally lead to a dependence of the
correlation functions on the distance LB from the boundary. However, if the boundary
operator contains a non-trivial zero dimension operator (we shall call this operator Ψ0), one
can obtain a finite answer for the correlation function on sending the boundaries to infinity.

B. Local DOS

In a closed system one cannot study conductance. The only remaining quantities to study
are the wave functions. Since wave functions are not observables, the original sigma model
does not generate them directly, but rather allows one to calculate correlation functions
of the local density of states (DOS). We believe that these correlation functions can be
expressed solely in terms of the (non-compact) bosonic sector of the full theory. (For the
one-dimensional case this point is discussed in [11], and for two dimensions in [28].)

In a system of finite size where all energy levels are discrete, the local DOS is defined as

ρ(x, E) =
∑

a

|ψa(x)|2δ(E −Ea) (2.3)

where a denotes eigenstates of the system. However, this definition is not suitable for
calculation of averages of the local DOS because products of delta functions yield infinities.
These infinities are removed if one introduces a finite level broadening replacing the delta
functions by the Lorentzians:

δ(E −Ea) →
1

π

η

(E −Ea)2 + η2
(2.4)

As we have mentioned above, in the sigma model the level broadening comes from term
(2.2). This term does not break conformal invariance provided the level broadening is much
smaller than the mean level spacing, ηL2 << 1. Even such small broadening does the trick of
removing infinities from correlators of the local DOS. In what follows we consider normalized

powers of the DOS defined as

[ρ]q = (ηρ)q (2.5)

In the context of the sigma model (1.1) the normalized [ρ]q is identified with {ηstr(ΣQk)}q
where k is a certain constant matrix.

In a closed system the wave function on the boundary does not depend on the fields, that
is equal to unity. However, it may occur (and we shall further explain why this is the case
for the theories in question) that the unit operator is not a primary field of the problem.
Then one needs to decompose the unit operator in terms of the primaries:
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I(z) = Ψ0(z) +

∫

dµ(p)Ψp(z) (2.6)

In this decomposition Ψ0 has zero conformal dimension and the other fields Ψp(z) have
positive dimensions 5.

Working with the normalized DOS and the boundary operators present one can define
the correlation functions in the infinite system (we imagine this system as a long strip of
length 2L with periodic boundary conditions in the transverse direction) ). In the limit

lim
L→∞

ηL2→0

〈I(−L)(ηρ)q(x)(ηρ)q(y)I(L)〉 = lim
L→∞

〈Ψ0(−L)[ρq](x)[ρq](y)Ψ0(L)〉 (2.7)

only Ψ0 operators survive as L → ∞. Taking this into account and also that expression
(2.7) is valid in the strip geometry, one obtains the following expression for the two-point
correlation function in the infinite plane:

[ρq](r1)[ρq](r2) = lim
|r3|→0,|r4|→∞

〈[ρq](r1)[ρq](r2)Ψ0(r3)Ψ0(r4)〉 (2.8)

Here we use the overbar to denote disorder averaging, and use the angular brackets to
denote the correlation functions of our field theory. In the case of strip geometry which can
be obtained from the plane by a conformal transformation, the point of origin is mapped
onto minus infinity. We shall return to a more detailed discussion of this procedure towards
the end of Section IV.

C. Scaling Dimensions

The theory we seek should reproduce all known scaling dimensions associated with the
plateau transition in the IQHE. The most famous of these is the localization length exponent,
ν, mentioned in the introduction.6

5An analogue of this decomposition is equation (3.7) of [27]:

W (1)(X, τ) = 2X1/2

[

K1(2X
1/2) +

2

π

∫ ∞

0
dp

p

1 + p2
sinh

πp

2
Kip(2X

1/2) exp(−1 + p2

4
τ)

]

where Kn is the modified Bessel function of the third kind and W (1)(X, τ) is a solution of a

differential equation

(

X2 ∂2

∂X2
−X

)

W 1(X, τ) =
∂W (1)(X, τ)

∂τ

with the boundary condition W (1)(X, 0) = 1; here τ plays the role of z.

We see that at zero τ this is indeed the decomposition of unity and at infinite τ only the first

term 2X1/2K1(2X
1/2) survives - which is an analogue of Ψ0(z).

6If we assume that the correlation length is generated by a single operator, of scaling dimension d

coupled to (σxy − 1/2) and assume further a linear relationship between the Hall conductance and
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Other available information comes from the behaviour of the local DOS, ρ(E, r), in a
two-dimensional sample of side L. At the critical point, ρ(r) = ρ(E = Ec, r), they are known
to satisfy the following fusion rules7 [29]:

ρp(r1)ρ
q(r2) ∼ |r1 − r2|−d(p)−d(q)+2d(p+q)ρp+q(r2) (2.9)

ρp(r1) ∼ L−d(q) (2.10)

where, once again, the bar stands for disorder averaging; we reserve angle brackets for field-
theoretic correlation functions. (Recall that the local DOS are normalized in such a way that
their correlation functions are finite in the limit of vanishing level broadening.) Numerical
simulations (see [30] and references therein) indicate that8 (see Appendix A3),

d(q) = 2q(1− q)/k, 2/k = 0.28± 0.03. (2.11)

This gives 6 < k < 8.
The quadratic dependence of d(q) gradually becomes linear for |q| > 2.5. We note that

the scaling dimensions become negative for q < 0 and q > 1, well inside the interval of validity
(2.11). This suggests that the conformal field theory we are looking for is non-unitary.

D. Quasi-One-Dimensional Results

Transfer matrix calculations for model (1.1) in a quasi-one-dimensional, closed (no ex-
ternal leads), infinite sample, yield the following form for the two-point correlation function
of the local DOS (see equations (3.58), (3.63) and (3.64) of [27]):

[ρq](x1)[ρq](x2) =

∫

dµ(p) |〈0|Qq|p〉|2 exp
(

−|x12|d̃(p)/4ξ
)

, (2.12)

where

d̃(p) = 1 + p2 (2.13)

dµ(p) =
2p sinh(πp)

π2
dp (2.14)

〈0|Qq|p〉 =
∫ ∞

0

dX Xq−2W0(X)W(−1+ip)/2(X) (2.15)

∼ |Γ[q + (1 + ip)/2]|2 |Γ[q − (1 + ip)/2]|2

|E−Ec| in the vicinity of the transition, we conclude that the scaling dimension of the operator is

d = 2− 1/ν ∼ 1.57.

7We adopt the usual CFT nomenclature in anticipation of the Virasoro-primary nature we shall

subsequently motivate for the local DOS.

8 The proportionality constant in this expression is denoted as 2/k with some hindsight: the

parameter k will ultimately be identified as the level of the SL(2,C)/SU(2) WZNW theory.
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and ξ is the correlation length. The functions Wj satisfy the following eigenvalue equation
(

X2 ∂2

∂X2
−X

)

Wj(X) = j(j + 1)Wj(X). (2.16)

The solutions to this equation may be written in the form

Wj(X) = 2
√
XK(1+2j)(2

√
X) (2.17)

where Kp is the modified Bessel function of the third kind. The relevance of these quasi-
one-dimensional calculations for the critical theory in two dimensions, will be discussed in
detail in section IV. We simply note here that the correspondence emerges when one places
the CFT on a strip of width 2πR. If the infinite plane is parametrized by the coordinates
(z, z̄), and the strip by (w, w̄), one may effect this mapping by means of the conformal
transformation w = R ln z. Under certain conditions (in particular, one has to consider
R ∼ ξ) such a strip may be regarded as a quasi-one-dimensional wire.

III. DISCRETE AND CONTINUOUS REPRESENTATIONS

To the reader familiar with conformal field theory, equations (2.9) and (2.12) may appear
contradictory. If ρq is a primary field, under what representation of the symmetry group of
the theory does it transform? Whatever the symmetry group of the ‘grand’ theory turns
out to be, we expect it to be some subgroup (or coset) of Gl(2|2), and as such may support
both discrete and continuous representations. Equation (2.9) suggests that ρq transforms
according to a discrete representation, whereas equation (2.12) suggests that ρq is not a
single primary field, but a linear combination of fields with different scaling dimensions.9

We suggest a resolution of this paradox which is independent of any particular form of
the plateau theory. The solution is intimately connected to the zero-mode problem and the
existence of a (non-trivial) zero-dimension operator discussed in section IIA. We suggest
that the two-point function of the normalized (see the discussion around Eq.(2.5)) local DOS
is given by the limit of the four-point function of some CFT,

[ρq](r1)[ρq](r2) = lim
|r3|→0,|r4|→∞

〈[ρq](r1)[ρq](r2)Ψ0(r3)Ψ0(r4)〉. (3.1)

Let us discuss this suggestion in detail. Invariance under the projective transformations
of the plane10, restricts the above four-point function (which we denote by Gq(1, 2, 3, 4)) to
have the form

Gq(1, 2, 3, 4) =
1

|z12|4hq
Fq(z, z̄); z =

z32z41
z31z42

, (3.2)

9A simple resolution of the paradox that the integral (2.12) generates simple powers is denied by

the analytical properties of the exponential function which prevent one from deforming the contour

of integration onto the poles of the matrix element (2.15).

10Namely transformations of the form w = (az + b)/(cz + d), where ad− bc = 1.

9



where we have used the fact that ρq has conformal dimension hq(= dq/2), and Ψ0 has zero
conformal dimension. By definition, the function (3.2) is invariant under the permutation
of z1 and z2 which implies

Fq(z, z̄) = Fq(1/z, 1/z̄). (3.3)

In order to reproduce the fusion rules of the local DOS (2.9) one needs to consider the limit,
z12 → 0. The three-point correlation functions are fixed by conformal invariance, their
holomorphic dependence being given by

〈Oh1(1)Oh2(2)Oh3(3)〉 = C123 z
−h1−h2+h3
12 z−h1−h3+h2

13 z−h2−h3+h1
23 (3.4)

where C123 are the so-called structure constants of the theory. Using this fact, one obtains
the desired limit

〈[ρq](1)[ρq](2)Ψ0(3)Ψ0(4)〉 → |z12|−4hq+2h2q 〈[ρ2q](2)Ψ0(3)Ψ0(4)〉
= |z12|−4hq+2h2q C00

2q |z2|−2h2q , (3.5)

(recall that z3 = 0, z4 → ∞). This result fixes the asymptotics of Fq(z) as 1− z → 0 in the
following manner:

Fq(z) ∼ (1− z)h2q . (3.6)

As we shall now demonstrate, the two-point function of the local DOS in the strip geometry
explores different asymptotics of Fq(z). One can map the plane to the strip by the trans-
formation w = R ln z; point 3 goes to −∞ and point 4 goes to +∞. As a result one obtains
(the holomorphic part of) the correlation function as follows:

Gq(1, 2, 3, 4) = [2R sinh(w12/2R)]
−2hqFq [exp(w12/R)] . (3.7)

Notice that in the strip geometry the correlation function is translationally invariant. In the
limit Rew12 ≫ R the behaviour of this function is governed by the asymptotics of Fq(z) for
|z| ≫ 1. In the limit Rew21 ≫ R it is governed by the asymptotics for |z| ≪ 1. (These two
limits are related by the crossing invariance condition (3.3).) We see that the fusion rule
(2.9) and the expansion in continuous representations (2.12) appear in different channels of
the four-point function.

Thus the two-point function of the local DOS explores different asymptotics of the func-
tion F in different geometries. In this way one may to expect to resolve the paradox.

We conclude this Section with a list of Operator Product Expansions (OPE) which are
necessary to reproduce the above results. First we shall specify our normalization conven-
tions. We normalize all two-point correlation functions of primary fields Oh from discrete

representations as follows:

〈Oh(1)Oh′(2)〉 = δh,h′ z−2h
12 . (3.8)
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The operators from continuous representations Vp(z) are normalized by the invariant mea-
sure dµ/dp on the group11:

〈Vp(1)V−p′(2)〉 =
δ(p− p′)

dµ/dp
z
−2h(p)
12 . (3.9)

Adopting these conventions, one may write the OPEs in the following manner:

[ρq](1)[ρp](2) = C(q+p)
qp |z12|−2hq−2hp+2h(q+p) [ρ(q+p)](2) + · · · (3.10)

[ρq](1)Ψ0(2) = |z12|−4hq Cq
00Ψ0(2) +

∫

dµ(p)|z12|−4hq+2h(p)Cq
0,q(p)Vp(2) + · · · (3.11)

where the ellipsis stand for less singular terms. With these conventions one finds the following
asymptotics for F(z):

F(z → 0) = C2q
qq C

2q
00 |z|2h2q + · · · (3.12)

F(z → ∞) = |z|4hq

[

[Cq
00]

2 +

∫

dµ(p) |Cq
0,p|2 |z|−2h(p) + · · ·

]

. (3.13)

IV. CFT ON THE STRIP

A. General Considerations

In the absence of a rigorous derivation of the critical model describing the plateau tran-
sitions in the IQHE, one is forced to make some assumptions about the general form of the
action. Given the form of the model (1.1), it is natural to assume that this action is of the
sigma model type, and probably includes the Wess–Zumino term. The reason for including
the Wess–Zumino term is related to the fact that nearly all critical sigma models that we
know of require such a term to ensure criticality. Models of this kind are known as Wess–
Zumino–Novikov–Witten (WZNW) models; their actions either have a full group symmetry,
G, or are defined on a coset space, G/H , with H being a subgroup of G. The symmetry
manifold of the required WZNW model is some supergroup manifold, whose symmetry is
almost certainly greater than that of the original model (1.1).

The WZNW action may be written in the form

S =

∫

d2x
[√
ggµνGab[X ]∂µX

a∂νX
b + ǫµνBab[X ]∂µX

a∂νX
b
]

(4.1)

where Xa are fields representing the coordinates on some group (or coset) manifold, Gab is
the metric tensor on this manifold, and Bab is an antisymmetric tensor. We define the action
on a curved (world sheet) surface with a metric gµν (µ, ν = 1, 2).

11It is highly likely that for the true theory, the measure coincides with the one given by equation

(2.14) and h(p) = c(1+ p2)/8. However, in this general discussion we do not need to be so specific.
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A very important feature of the action (4.1) is that the second term does not contain
the world sheet metric. Consequently, the classical stress-energy tensor, Tµν = δS/δgµν , is
determined solely by the first term. In particular, the most important components for the
critical model are given by,

Tzz = Gab[X ]∂zX
a∂zX

b, Tz̄z̄ = Gab[X ]∂z̄X
a∂z̄X

b (4.2)

where z = x0 + ix1, z̄ = x0 − ix1. Here, the reader should not get the false impression that
the Wess–Zumino term is not important. Unlike the topological term in action (1.1) it does
contribute to the equations of motion. Since the model (4.1) is supposed to be critical, these
equations (to be understood as identities for correlation functions in the quantum theory)
are

Tzz̄ = 0, ∂z̄Tzz = 0, ∂zTz̄z̄ = 0. (4.3)

Their fulfillment depends on the Wess–Zumino term through the dynamics of the underlying
fields Xa.

The smallness of 1/k means that there are many fields in the theory with conformal
dimensions much smaller than unity. This gives weight to the idea that the critical point
occurs in the region where the coupling constant of the sigma model is relatively small. Thus,
one may attempt to describe the critical point using the semiclassical approximation. We
shall formulate the semiclassical approximation with the specific aim of establishing contact
between our calculations, and the calculations of correlation functions of the local DOS for
quasi-one-dimensional systems performed by Mirlin [27] and Fyodorov and Mirlin [32].

In the infinite plane, parametrized by coordinates (z, z̄), conformal invariance restricts
the two-point function of primary fields of conformal dimension (h,h̄) to be of the form

〈φ(z1, z̄1)φ(z2, z̄2)〉 = (z1 − z2)
−2h(z̄1 − z̄2)

−2h̄. (4.4)

Under a conformal transformation of the plane, w = w(z), this correlation function trans-
forms like a tensor of rank (h, h̄):

〈φ(w1, w̄1)φ(w2, w̄2)〉 =
2
∏

i=1

(

dz

dw

)h

wi

(

dz̄

dw̄

)h̄

w̄i

〈φ(z1, z̄1)φ(z2, z̄2)〉. (4.5)

One may pass from the infinite plane to a strip of width 2πR by means of the conformal
transformation w = R ln z. Combining this transformation with (4.4) and (4.5), one obtains
the two-point function in the strip geometry:

〈φ(w1, w̄1)φ(w2, w̄2)〉 = [2R sinh (w12/2R)]
−2h [2R sinh (w̄12/2R)]

−2h̄ . (4.6)

Introducing coordinates (τ ,σ) along and across the strip respectively (w = τ+iσ, w̄ = τ−iσ;
−∞ < τ <∞, 0 < σ < 2πR ), one may expand (4.6) in the following manner,

〈φ(τ1, σ1)φ(τ2, σ2)〉 =
∞
∑

n=0

∞
∑

m=−∞

Cnm e
−(h+h̄+n)|τ12|/R e−i(h−h̄+m)|σ12|/R (4.7)
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One may also obtain the two-point function in the operator formalism, leading to the
Lehmann expansion:

〈φ(τ1, σ1)φ(τ2, σ2)〉 =
∑

α

|〈0|φ̂|α〉|2 e−Eα|τ12|−iPα|σ12| (4.8)

where Eα and Pα are the eigenvalues of the Hamiltonian and the momentum operator
respectively, in the state |α〉. Comparing (4.7) and (4.8) one obtains a relationship between
the eigenvalues of the Hamiltonian and the momentum operator, and the scaling dimensions
in the corresponding CFT:

Eα =
h+ h̄ + n

R
, Pα =

h− h̄+m

R
. (4.9)

Restricting our attention to fields with h = h̄ = d/2, one may rewrite (4.6) in the form

〈φ(τ1, σ1)φ(τ2, σ2)〉 = R−2d [2 cosh (τ12/R)− 2 cos (σ12/R)]
−d . (4.10)

One observes that for τ12 ≫ R the asymptotic form of the correlation function is independent
of σ,

〈φ(τ1, σ1)φ(τ2, σ2)〉 ∼ R−2d exp (−dτ12/R) (τ12 ≫ R) (4.11)

and in this limit one should set n = m = 0 in equations (4.7) and (4.9).
Let us now place the model (4.1) on a thin strip of width 2πR, and neglect any σ-

dependence of the fields Xa. From our considerations in the previous paragraph, such a
procedure preserves the (large τ) asymptotics of the correlation functions. The action (4.1)
becomes

S = 2πR

∫

dτ Gab[X ]∂τX
a∂τX

b, (4.12)

which may be recognised as the action for a free, non-relativistic particle, of mass m = 4πR.
The corresponding Hamiltonian is the Laplace–Beltrami operator (multiplied by −1/2m),

Ĥ =
−1

8πR
√
G

∂

∂Xa

(√
GGab ∂

∂Xb

)

(4.13)

As we have already established, the eigenvalues of this Hamiltonian are related to the
spectrum of scaling dimensions in our CFT by equation (4.9). Moreover, solution of this
Schrödinger equation allows one to obtain explicit expressions for the eigenstates, |α〉, ap-
pearing in (4.8).

B. Emergence of the SL(2,C)/SU(2) symmetry

We now wish to establish contact with the one-dimensional calculations based on the
original model (1.1). As is well established, the scaling trajectories for different values of
σ0
xy only start to deviate at the scale ξ ≫ l (the mean free path). For the sigma model this
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scale is in the deep infrared, whereas for the (unknown) critical theory this scale serves as an
ultraviolet cut-off. The critical theory is conformally invariant, and one may map it to the
strip in the manner described above; we assume that the general form of such expressions
holds for strips as narrow as R ∼ ξ. Similarly, we assume that the results [27] hold for strips
as wide as ξ.

On the one hand, the functions (2.17) entering into the matrix elements (2.15) should
be eigenfunctions of the Laplace–Beltrami operator for the critical model we seek. On the
other hand, as we are going to show, these functions are solutions of the eigenvalue problem
for the Laplace–Beltrami operator on the manifold SL(2,C)/SU(2). This is striking because
the SL(2,C) symmetry was not the classical symmetry of the original sigma model and in
fact appears due to the elaborate limit η → 0 described in the previous sections.

Let us describe the details. An arbitrary element h ∈ SL(2,C)/SU(2) admits the
following decomposition (see equation (18) of [31] and make the trivial replacements
(φ, µ+, µ−, ) → (θ, µ, µ∗)),

h =

(

1 0
µ∗ 1

)(

eθ 0
0 e−θ

)(

1 µ
0 1

)

(4.14)

where θ ∈ R, µ ∈ C, and µ∗ is the complex conjugate of µ. Adopting this parameterization,
one may write the SL(2,C)/SU(2) WZNW action in the following form (see equation (19)
of [31]),

S =
k

4π

∫

d2x
[

4∂θ∂̄θ + e2θ∂µ∂̄µ∗
]

. (4.15)

One may now read off the corresponding metric Gab (c.f. (4.1)) and deduce the form of the
Laplace–Beltrami operator (4.13) on the SL(2,C)/SU(2) symmetric space. The resulting
eigenvalue equation reads (X = exp(−θ)):

−
(

X2 ∂2

∂X2
+X

∂2

∂µ∗∂µ

)

Fλ(µ, µ
∗, X) = λFλ(µ, µ

∗, X). (4.16)

The functions Wj satisfying equation (2.16) are related to the following eigenfunctions of
(4.16):

Fj = exp[ikµ∗ + ik∗µ]Wj(X/|k|) (4.17)

with eigenvalues λ = −j(j + 1). At the same time the µ-independent solutions of Eq.(4.16)
represented by the functions X−j have the same eigenvalues. We suggest that these functions
with j = −q represent [ρ]q operators. The matrix element (2.15) is then just a Clebsh-Gordan
coefficient.

These facts establish a relationship between the SL(2,C)/SU(2) WZNW theory and the
results of the one-dimensional calculations described in section II. The functions Wj appear-
ing in the matrix elements (2.15) are related to the eigenfunctions Fj of the Hamiltonian
(4.16). Both the vacuum state j = 0 and the excited states (the states with j = −1/2+ip/2)
belong to the coherent state representations of the SL(2,R) group (see Appendix A4 and [33]
for details). The representations of the excited states are distinct in the respect that their
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angular momentum is a complex number with continuously varying imaginary part. The
scaling dimension of the vacuum state is zero whereas those of the excited states are pro-
portional to λ = (1 + p2)/4. They coincide with the exponents in equation (2.13). The
constant wave function, though being a solution of equation (4.16), is not orthogonal to the
eigenfunctions and therefore does not belong to the basis of eigenstates. In the subsequent
sections we shall study the SL(2,C)/SU(2) WZNW model in more detail, and show how it
may emerge as an independent subsector of some ‘grand’ (supergroup manifold) theory.

The appearance of the SL(2,C)/SU(2) symmetry absent in the original sigma model
where it is explicitly broken at finite frequencies is a highly non-trivial fact and deserves
comment. The calculations of the local DOS performed in [27, 32] employ the general reg-
ularization procedure described in Section II. Taking the limit η → 0 and keeping (ηQ)
constant involves working in the limit of very large values of fields. In this limit the η-term
(2.2) in the action becomes of order of unity (such that η-dependence disappears) and con-
tributes the term linear in X to the Schrödinger equation (2.16). One can say that this term
is some sort of “quantum anomaly”.

Thus, in the original sigma model the term linear in X is generated as a potential
contribution. On the other hand, as we have seen from equations (4.16) and (4.17), equation
(2.16) can be interpreted as a subsector of the pure Laplace-Beltrami-type equation (4.16),
which contains no potential terms. This subsector specifies representations of the particular
type (4.17). It is important that the representations of [ρ]q (that is the discrete series)
are solutions of the same equation (4.16), but in the µ-independent subsector. This fact
allows one to consider (4.17) and [ρ]q as representations of the same group. Thus the one-
dimensional limit has a hidden dynamical symmetry and this fact gives another argument
in favour of our conjecture that the critical point possesses the SL(2,C)/SU(2) symmetry.

V. GAUGED WZNW MODELS

In this section we consider the WZNW model on the supergroup manifold
PSL(2|2)=SL(2|2)/GL(1) (see Appendix IX for more details on supergroups). These two-
parameter models are quite remarkable in that they are believed to be conformal along
(marginal) lines of parameter space, rather than isolated points [34,35]. Zirnbauer has pro-
posed a theory describing the plateau transitions in a region of this parameter space not
endowed with the Kač–Moody symmetry [24]. For the purposes of this paper we consider
the model where the Kač–Moody symmetry is present (the ‘Kač–Moody’ point). In par-
ticular, in section VI, we demonstrate that the bosonic and fermionic sectors decouple; the
non-compact bosonic sector is described by the SL(2,C)/SU(2) WZNW model.

The standard Goddard–Kent–Olive (GKO) procedure [36] for dealing with such coset
spaces may be formulated as a gauged WZNW model (for more details see [3–5]). The
equations for correlation functions can be obtained by the gauge dressing of the conventional
Knizhnik–Zamolodchikov equations [37]. We consider the WZNW model on the SL(2|2)
group first and then gauge away the GL(1) subsector. In order to make our arguments
transparent, we discuss some general aspects of the theory of WZNW models.

A convenient starting point for discussing the coset G/H , is the (Euclidean) WZNW
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action on the supergroup manifold G,

Ŝ[g] = Ŝ0[g] + kΓ̂[g], (5.1)

where

Ŝ0[g] =
1

4λ2

∫

d2ξ str
(

∂µg−1 ∂µg
)

(5.2)

Γ̂[g] =
−i
24π

∫

d3x ǫµνρ str
(

g−1∂µg g
−1∂νg g

−1∂ρg
)

. (5.3)

The matrix field g(ξ) is taken to be an element of some supergroup G, the hats indicate
the presence of the supertrace12, ξµ = (ξ1, ξ2) are the coordinates of our two-dimensional
(Euclidean) space, λ2 and k are dimensionless parameters (~ = 1). The Wess–Zumino term,
Γ̂[g], is defined by the integral over the three-dimensional ball with coordinates xα; the
boundary being identified with our two-dimensional space. Since the Wess–Zumino term
contributes to the equations of motion (see below), and hence to the perturbative beta
function, it is not to be confused with the topological term.

The action (5.1) satisfies the Polyakov–Wiegmann identity13 [38],

Ŝ[ab] = Ŝ[a] + Ŝ[b] +

∫

d2ξ ωµν str(a−1∂µa b∂νb
−1); ωµν =

δµν

2λ2
− ikǫµν

8π
. (5.4)

The classical equation of motion follows from the requirement that the action be stationary
(0 = δS ≡ S[g+ δg]−S[g]) under the replacement g → g+ δg ≡ g(1+ g−1δg). Substituting
the latter form of the variation into (5.4), and keeping terms of order δg,

0 = δS = −
∫

d2ξ ωµν str(g−1∂µg ∂ν(g
−1δg)) ⇒ ∂ν(ω

µνg−1∂µg) = 0. (5.5)

Thus for λ2 = 4π/k the field equation becomes

∂(g−1∂̄g) = 0 ⇐⇒ ∂̄(∂gg−1) = 0. (5.6)

We shall denote the action Ŝ[g] at the Kač–Moody point (λ2 = 4π/k) by the symbol Ŵ [g]:

Ŵ [g] ≡ kÎ[g] =
k

16π

∫

d2ξ str(∂µg−1∂µg) + kΓ̂[g]. (5.7)

12In the subsequent analysis removal of the hats in any term corresponds to the replacement of

supertrace by ordinary trace. Our conventions for supertrace (and superdeterminant) are defined

in Appendix IX.

13In the proof of the Polyakov–Wiegmann identity we exploit the cyclic property of the trace. For

supermatrices, it is the supertrace which has this property (see Appendix IX). The form of the

Polyakov–Wiegmann identity for supermatrices is the same as that for ordinary matrices, providing

we replace trace by supertrace.
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The action (5.7) is invariant under the semi-local transformation

g(z, z̄) → Ω(z)g(z, z̄)Ω̄−1(z̄) (5.8)

where Ω(z) and Ω̄(z̄) are arbitrary elements of G. This invariance is made manifest by the
Polyakov–Wiegmann identity (5.4) with λ2 = 4π/k,

Ŵ [ab] = Ŵ [a] + Ŵ [b] +
k

2π

∫

d2ξ str(a−1∂̄a b∂b−1). (5.9)

One may consider promoting this semi-local symmetry to a true local symmetry, with the
introduction of auxiliary gauge fields. In particular, the action

Ŵ [g, h, h̃] = Ŵ [h−1gh̃]− Ŵ [h−1h̃] (5.10)

is clearly invariant under the combined (gauge) transformations

g → λ(z, z̄)gλ−1(z, z̄), h→ λ(z, z̄)h, h̃→ λ(z, z̄)h̃. (5.11)

Applying the Polyakov–Wiegmann identity (5.9) and defining the following gauge fields

A = h̃∂h̃−1, Ā = h∂̄h−1 (5.12)

one may rewrite the action (5.10) in the following form,

Ŵ [g, A, Ā] = Ŵ [g] +
k

2π

∫

d2ξ str
(

Ag−1∂̄g − Ā∂gg−1 + Ag−1Āg −AĀ
)

(5.13)

= Ŵ [g] +
k

2π

∫

d2ξ str
(

AJ̄A + ĀJA
)

(5.14)

where we have introduced the gauge invariant generalizations of the conserved currents (5.6):

J̄A = g−1(∂̄ + Ā)g, JA = −(∂ + A)gg−1. (5.15)

The gauge fields A and Ā are non-propagating, and play the rôle of Lagrange multipliers
forcing certain currents to vanish. Choosing the gauge fields so that the currents associated
with the group H are set to zero, we may describe the coset space G/H . The action (5.13)
will be our staring point in the next section.

VI. DECOUPLING AT THE KAČ–MOODY POINT

In order to see how the SL(2,C)/SU(2) WZNW may emerge as an independent subsector
of the Zirnbauer model (at the Kač–Moody point) or some other ‘grand’ supermanifold
theory, we parametrize the supergroup manifold using the Gauss decomposition. The use of
such decompositions is well established in the the free-field approach to WZNW models (see,
for example [39] and references therein). In particular, such an approach has been followed
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in the study of the gl(n|n) current algebras and associated topological field theories [40].
We consider the gauged WZNW model14,

Ŵ [g, A, Ā] = Ŵ [g] +
k

2π

∫

str
(

Ag−1∂̄g − Ā∂gg−1 + Ag−1Āg −AĀ
)

(6.1)

in which the supergroup element, g ∈ SL(2|2), admits the following Gauss decomposition
(see equation A7)

g = eΦγ; γ =

(

11 0
λ 11

)(

a 0
0 b

)(

11 χ
0 11

)

(6.2)

where Φ ∈ C, λ and χ are arbitrary 2×2 Grassmann-odd matrices, and a and b are arbitrary
2 × 2 unimodular matrices (det(a) = det(b) = 1) with Grassmann-even entries. One may
recover the Zirnbauer’s ‘base manifold’ by taking a ∈ SL(2,C)/SU(2) and b ∈ SU(2). In
order to set the gl(1) currents equal to zero, and thus describe the PSL(2|2) coset, we choose
(see equation A10)

A =
µ

2
Σ, Ā =

µ̄

2
Σ; Σ =

(

11 0
0 −11

)

(6.3)

Applying the Polyakov–Wiegmann identity (5.9) to the first term of (6.1),

Ŵ [g] = Ŵ [eΦ] + Ŵ [γ] +
k

2π

∫

∂̄Φ str
(

γ∂γ−1
)

= Ŵ [γ] (6.4)

where we have used the fact that Ŵ [eΦ] = 0 and that str (γ∂γ−1) = 0. Repeated application
of the Polyakov–Wiegmann identity (5.9) shows that

Ŵ [γ] = W [a]−W [b] +
k

2π

∫

tr(b−1∂̄λa∂χ). (6.5)

Using the fact that str(Σ · · · ) = tr(· · · ) for arbitrary arguments, the second term in (6.1)
may be written

k

2π

∫

[

tr
(µ

2
γ−1∂̄γ − µ̄

2
∂γγ−1 +

µµ̄

4
γ−1Σγ

)

+ 2µ∂̄Φ− 2µ̄∂Φ
]

. (6.6)

Straightforward matrix manipulation of γ, together with the fact that tr(a−1∂̄a) = 0,
tr(∂aa−1) = 0, and likewise for b, yields

tr(γ−1∂̄γ) = 2tr
(

b−1∂̄λaχ
)

, (6.7)

tr(∂γγ−1) = 2tr
(

b−1λa∂χ
)

, (6.8)

tr(γ−1Σγ) = −4tr
(

b−1λaχ
)

. (6.9)

14Throughout this section
∫

≡
∫

d2ξ.
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Combining the above results we may write

Ŵ [g, A, Ā] = W [a]−W [b] +
k

2π

∫

[

tr
(

b−1(∂̄ − µ̄)λa(∂ + µ)χ
)

+ 2µ∂̄Φ− 2µ̄∂Φ
]

. (6.10)

It is convenient to introduce new fermionic fields λ′ and χ′ via

λ = bλ′, χ = a−1χ′. (6.11)

Since a and b are unimodular matrices, the corresponding Jacobian is unity. The trace term
becomes

tr
[(

∂̄ − µ̄+ b−1∂̄b
)

λ′
(

∂ + µ+ a∂a−1
)

χ′
]

= tr
[

(∂̄ + Āb)λ′(∂ + Aa)χ′
]

(6.12)

in which we have reparametrized, µ = ∂α, and µ̄ = ∂̄β, and introduced the gauge fields

Āb = (eβb−1)∂̄(e−βb), Aa = (e−αa)∂(eαa−1). (6.13)

We make a further change of fermionic variables

λ′′ =
(

∂̄ + Āb
)

λ′, χ′′ = (∂ + Aa)χ′ (6.14)

and note that one may express the corresponding Jacobian in terms of the WZNW action
on the matrices a and b (not b−1) respectively [38, 41]. Recalling that the fermionic fields
are 2×2 matrices, this leads to a level shift of 2 in the WZNW models defined over a and b.
Such level shifts were also encountered in [34, 40]. One obtains the following action for the
PSL(2|2) WZNW model,

kÎ[PSL(2|2)] = (2 + k)I[a] + (2− k)I[b] + · · · (6.15)

in which the ellipsis indicates terms independent of a and b; these include the contributions
of the bosonic fields α and β, the fermions λ′′ and χ′′ and ghosts. In the case of the Zirnbauer
‘base manifold’, a ∈SL(2,C)/SU(2) and b ∈SU(2). The level shifts are important here, and
the resulting contribution to the central charge from these (renormalized) WZNW models
is level-independent:

C =
3(k + 2)

(k + 2)− 2
+

3(k − 2)

(k − 2) + 2
= 6 (6.16)

In particular, one observes that the SL(2,C)/SU(2) WZNW model emerges as an indepen-

dent subsector of the theory.

VII. CORRELATION FUNCTIONS OF LOCAL DENSITY OF STATES

We have provided evidence to suggest that the correlation functions of the normalized

local DOS may be obtained from the critical SL(2,C)/SU(2) WZNW model, in which the
level k is fixed by the known scaling dimensions (2.11). This model has been studied before,
even in the context of the theory of disorder [31]. From the preceding sections, we have seen
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how this theory may be embedded, for example, into a larger theory such as the PSL(2|2)
model (at the Kač–Moody point). Taking into account the level shifts induced in this
embedding one may write the action for the SL(2,C)/SU(2) WZNW model (4.15) in the
following form

S =
(k + 2)

4π

∫

d2x
[

4∂θ∂̄θ + e2θ∂µ∂̄µ∗
]

(7.1)

A comparison between the decomposition of SL(2,C)/SU(2) appearing in (4.14) and the
Gauss decomposition of SL(2,R)

g =

(

1 0
γ 1

)(

eθ 0
0 e−θ

)(

1 ψ
0 1

)

(7.2)

where γ, θ, φ ∈ R is convenient at this stage. In particular, one may obtain the parametriza-
tion of SL(2,C)/SU(2) from that of SL(2,R), by first complexifying the real parameters
γ and ψ, and then making the identification γ∗ = ψ. In this way, one may obtain the
SL(2,C)/SU(2) correlation functions from the (much studied) SL(2,R) WZNW model15 one
treats γ and ψ as independent real fields and performs the appropriate continuation wherever
necessary.

The action (7.1), is characterized by a single coupling constant k, which determines the
scaling dimensions:

dj = −2j(j + 1)/k (7.3)

There are no restrictions on the value of k, and the values of j are related to representations
of the SL(2,R) group (see Appendix A4).

As we have discussed in Section III, the available information about the local DOS
appears to be self-contradictory. On the one hand, the fusion rules for [ρ(r)]q suggest
that these are operators belonging to the sl(2,R) representation with j = −q and with
scaling dimensions given by (7.3). On the other hand, the two-point correlation function in
the strip geometry is given by an integral over continuous representations of sl(2,R), with
j = −1/2 + ip/2. As we have demonstrated in Section III, this paradox is resolved if, in
fact, the two-point function of the local DOS is given as the limit of a four-point function
in our field theory:

Gq(1, 2) = lim
|r3|=0,|r4|→∞

〈[ρq](1)[ρq](2)Ψ0(3)Ψ0(4)〉 (7.4)

The four-point correlation function appearing in this relation (which we shall subse-
quently denote by Gq(1, 2, 3, 4)) is determined by the Knizhnik–Zamolodchikov equations

15Despite the fact that the SL(2,R) model cannot be defined as an Euclidean path integral, it

can be defined algebraically. Following this procedure one can derive the Knizhnik- Zamolod-

chikov equation for the correlation functions. This equation is not different from the corresponding

equation for the SL(2,C)/SU(2) model.
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for the SL(2,R) WZNW model; these equations have been derived in [37,42]. The operators
in (7.4) are matrix elements of infinite-dimensional matrices realizing particular representa-
tions of the group (information about representation theory of sl(2,R) is given in Appendix
4). Instead of working with these particular matrix elements, it is more convenient to calcu-
late the correlation function between all possible tensors belonging to representations with
j = 0, j = −q. We emphasise that one does not need to worry about exact definition of
Ψ0 because the Knizhnik–Zamolodchikov equations together with the asymptotics of the
solution automatically select the necessary primary fields. By that token Ψ0 standing in
the correlation function is the very primary field with zero scaling dimension we need. It
is necessary to mention here that there may be several fields with zero dimensions with
different symmetry properties and unusual OPE [43] leading to other solutions of Knizhnik–
Zamolodchikov equations for correlation function (7.4). However these solutions are excluded
since they do not lead to the desirable quasi-one-dimensional asymptotics.

We introduce the fields ρq(z, y),Ψ0(z, y) as described in Appendix 4. Now each point in
(7.4) is characterized by two complex coordinates z and y. Invariance under the projective
transformations of the plane16, together with the sl(2,R) Ward identities, restricts the four-
point function to have the form,

Gq(1, 2, 3, 4) =
1

|z12|4hq |y12|4q
Fq(z, z̄; t, t̄); z =

z32z41
z31z42

, t =
y32y41
y31y42

, (7.5)

where we have used the fact that [ρq] has conformal dimension hq(= dq/2), and sl(2,R) spin
j = −q, whereas Ψ0 has zero conformal dimension and j = 0. By definition, the function
(7.5) is invariant under the permutation of z1 and z2 which implies

Fq(z, z̄; t, t̄) = Fq(1/z, 1/z̄, 1/t, 1/t̄). (7.6)

In the limit, z12 → 0, corresponding to the fusion of the local DOS, one obtains

〈[ρq](1)[ρq](2)Ψ0(3)Ψ0(4)〉 → |z12|−4hq+2h2q 〈[ρ2q](2)Ψ0(3)Ψ0(4)〉
= |z12|−4hq+2h2q C00

2q |z3 − z2|−2h2q , (7.7)

where C00
2q is a structure constant of the conformal field theory. This fixes the asymptotics

of Fq(z) at 1− z, 1− y → 0:

Fq(z, y) ∼ (1− z)h2qy2q (7.8)

We may explore different asymptotics of Fq(z) in the strip geometry. Under the transfor-
mation z = exp(w/R) the point 3 goes to −∞ and the point 4 goes to +∞. Considering
only the holomorphic part and omitting the y-dependence, one obtains

Gq(1, 2, 3, 4) = [2R sinh(w12/2R)]
−2hqFq [exp(w12/R)] (7.9)

16Namely transformations of the form w = (az + b)/(cz + d), where ad− bc = 1.
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Thus in the strip geometry the correlation function is translationally invariant. The limit
Rew12 ≫ R is governed by the asymptotics of Fq(z) as z → ∞ and the limit Rew21 ≫ R
is governed by the asymptotics as z → 0. Both limits are related by the crossing invariance
condition (7.6).

Thus, the fusion rule (2.9) and the expansion in continuous representations (2.12) appear
in different channels of the four-point function, thus resolving the apparent paradox.

According to [37, 42] the Knizhnik–Zamolodchikov equation for model (7.1) is given by

{

k
∂

∂zi
−

∑

j 6=i

1

zij

[

(yij)
2 ∂2

∂yi∂yj
+ 2(yij)

(

jj
∂

∂yi
− ji

∂

∂yj

)

− 2jijj

]

}

G(1 · · ·4) = 0 (7.10)

as may be seen by combining equations (A30) and (A45) together with a suitable redefinition
of k. Substituting (7.5) into this equation, and using the global conformal invariance to map
(z1, z2, z3, z4) → (1, z, 0,∞) (and similarly for y using the sl(2,R) Ward identities) one arrives
at the following partial differential equation for F(z, t)

∂2tF
(t− z)t(t− 1)

z(z − 1)
+ ∂tF

[

(1− t)2

z − 1
+
t(2q − t)

z

]

+ k∂zF = 0 (7.11)

¿From equation (7.8) we conclude that in the ‘discrete’ channel |z − 1| ≪ 1, F = (z −
1)h2qf(t). Equation (7.11) may now be written as

(1− t)2∂t[t∂tf ] + kh2qf = 0. (7.12)

The solution of this equation takes the form

f [t = 1/(1− x)] = F (2q, 1− 2q, 1; x),

= [∂x]
2q−1

[

x4q−1(1− x)−1
]

,

= (2q − 1)!(t−1 − 1)2q +

2q−1
∑

k=0

(1− t−1)−kk!Ck+2q
4q−k . (7.13)

Since equation (7.12) is invariant under the transformation t → 1/t the second linearly
independent solution is

f̃(t) = f(1/t) (7.14)

and the entire crossing invariant solution at |z − 1| << 1 is given by

F(z, z̄; t, t̄) = |1− z|2h2q{A[f(t)f(t̄) + f(1/t)f(1/t̄)] +B[f(t)f(1/t̄) + f(t̄)f(1/t)]} (7.15)

Following equation (3.6) at |z| ≪ 1 (the ‘continuous’ channel) we look for the solution
in the form of a linear combination of power law solutions:

F =

∫

dµ(p)|z|2D(p)/kFp(t, t̄) (7.16)
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where

D(p) = (1 + p2)/4− khq = (q − 1/2)2 + p2/4. (7.17)

The function Fp obeys the equation:

t2(1− t)∂2t F + t(2q − t)∂tF +D(p)F = 0. (7.18)

After the change of variables t = 1/τ one obtains the hypergeometric equation:

τ(1− τ)∂2τF + [1− (2− 2q)τ ]∂tF −D(p)F = 0 (7.19)

There are two independent solutions of this equation:

F (1)
p (t) = F (j, j∗, 1; 1/t),

F (2)
p (t) = ln t F (j, j∗, 1; 1/t) +R(1/t), (7.20)

where j = 1/2− q+ ip/2 and R(x) is regular as x→ 0. Thus, the general solution (7.16) at
small |z| is

F =

∫

dµ(p)|z|2D(p)/kCab(p)F
(a)
p (t)F (b)

p (t̄) (7.21)

where the matrix Cab (a, b = 1, 2) is determined by the crossing symmetry (3.3). At the
moment we do not have a complete solution of equation (7.11) which prevents us from
determining all the constants in our equations and OPEs. It appears, however, that the
solution is possible. Here we shall just outline the method leaving the detailed analysis for
our next publication.

The general solution contains the parameters yi which replace matrix indices for operators
belonging to infinite dimensional representations. Presumably the local DOS corresponds to
certain matrix elements. In order to identify ρq it is instructive to take a closer look at the
solution on the strip. Combining equation (7.9) with equation (7.21) we obtain the following
expression for the asymptotics of the two-point correlation function of operators ρq(w, y):

ρq(w1, y1)ρq(w2, y2) = |y12|−4q

∫

dµ(p) exp
[

−(1 + p2)|τ12|/2kR
]

Cab(p)Fa(t)Fb(t̄) (7.22)

where w = τ+iσ (0 < σ < 2πR). In the limit |τ12| ≫ R the prefactor of the integral becomes
unity. One recovers the correlation function (2.15) leaving in the expansion of (7.22) in t, t̄
only the term t−2q t̄1−2q.

We use this fact to determine which matrix element represents ρq. Therefore let us
assume that this is a matrix element of ρq(y) containing yn. In order to extract it from
the y-dependent correlation function one has to integrate it with the weight y−1−n over a
contour in the y-plane surrounding zero. Then we have

∫ 4
∏

i=1

dyi y
−1−n
1 y−1−n

2 y−2q
12 F(t) =

∫

dξ1dξ2(ξ1ξ2)
−(1+n)ξ

2(1−q)
12

∫

dt t−2n−2q+2F(t)

∫

dx
x

(1− x)2(x− t)2
∼

∫

dτF (j.j∗, 1; τ)
1 + τ

(1− τ)3
τ 2(q+n−1)
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where we have performed the transformation

x =
y32
y31

, y4 =
y1y32 − ty2y31
y32 − ty31

.

Notice that we integrate over y3, y4 with unit weight. In order to recover the term τ 2q−1 in the
expansion of the hypergeometric function corresponding to the necessary matrix element,
one has to put n = −2q. Thus we identify ρq with the highest weight of the j = −2q
representation.

The Knizhnik-Zamolodchikov equation (7.11) can be solved by the method suggested
in [42]. Let us make the change of variables:

F(z, t) = ta(t− 1)b(t− z)czd(z − 1)eY (t, z) (7.23)

where

a = −(1 + k)/2, b = q − (k + 1)/2, c = 1/2− q,

d = −(2q − 1)/2k, e = (2q − 1)2/2k. (7.24)

In terms of Y , equation (7.11) becomes

− k−1∂2t Y =
z(z − 1)

t(t− 1)(x− t)
∂zY +

1− 2t

t(t− 1)
∂tY +

+ [h1(t− z)−2 + h2t
−2 + h3(t− 1)−2 − κ[t(t− 1)]−1]Y (7.25)

where

κ = h1 + h2 + h3 − h4 − (3k + 2)/4 (7.26)

This equation coincides with the equation for the 5-point function of vertex operators in the
Liouville theory

SL =

∫

d2x

[

k

4π
(∂µφ)

2 + 2(k + 1)Rφ+ η exp(−2φ)

]

(7.27)

(R is the Riemann curvature of the world sheet) with the central charge equal to

Ĉ = 1 + 6(
√
k + 1/

√
k)2 (7.28)

The operators of the WZNW model are identified as vertex operators of the Liouville theory:

Vn = exp(nφ) (7.29)

with certain ns.
This establishes a link between the Liouville theory and the theory of the local DOS at

the plateau transitions in the IQHE.
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VIII. CONCLUSIONS

We summarize here the results of this paper:

1. We have described a general procedure for calculating correlation functions of local
DOS at the plateau transitions in the IQHE. This procedure requires insertions of
additional vacuum operators into any correlation function, so as to modify the ground
state.

2. We have provided arguments, that the correlation functions of the local DOS are
appropriately described in terms of the SL(2,C)/SU(2) WZNW model at the usual
Kač–Moody point and with a suitably chosen level k. The comparison with the nu-
merics gives 6 < k < 8. In this model we have identified the operators corresponding
to the properly normalized local DOS, and calculated their correlation functions.

3. We have demonstrated that the SL(2,C)/SU(2) WZNW model may emerge as an in-
dependent subsector of some supergroup theory, and may indeed describe a disordered
system.

There are many unresolved problems which require further study. A number of these are
outlined below.

The model contains a free parameter k which we fix by comparison with the known
scaling dimensions. It is not clear at the moment what mechanism is responsible for pinning
k to this particular value. The example given in Appendix A6 demonstrates the kind of
surprises one can expect in dealing with theories on non-compact manifolds.

We have studied in some detail only the correlation functions and scaling dimensions
of the local DOS. We are not in a position to discuss the correlation function exponent ν
which is, presumably, determined by an operator which does not belong to the non-compact
bosonic sector of the theory.

Even in the non-compact bosonic sector of the theory there are important unsolved prob-
lems. For example, we have not yet solved the Knizhnik–Zamolodchikov equation (7.11)
which determines the two-point correlation function of the local DOS. In subsequent publi-
cations we shall describe a procedure for calculation of the multi-point correlation functions.
This will allow us to explain the termination of the multifractal spectrum. As we have
mentioned in Section IIC the multifractal spectrum of the local DOS terminates at q ∼ 2.5.
If the SL(2,C)/SU(2) WZNW model is the correct model for the local DOS, it must possess
some termination mechanism. This may be a mechanism similar to the one described in [31]
in the context of the theory of Dirac fermions with gauge potential disorder. The latter
mechanism was related to the logarithmic nature of the theory.
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APPENDIX:

1. Supergroups

In this section we provide a brief introduction to supergroups. For the reader interested
in further details we refer them to the book [12] and references therein. For the purposes of
this paper we consider matrices of the form

M =

(

a σ
ρ b

)

(A1)

where a and b are respectively n × n and m × m matrices containing even elements of a
Grassmann algebra, and σ and ρ are respectively n ×m and m × n matrices consisting of
odd elements of a Grassmann algebra. Such matrices are called supermatrices. The set of
such complex (respectively real) square supermatrices is denoted by M(m|n;C) (respectively
M(m|n;R)). The supertrace of M is defined as

str(M) = tr(a)− tr(b) (A2)

where the symbol tr stands for the conventional trace. This definition provides the invariance
under cyclic permutations:

str(M1M2 · · ·Mn) = str(MnM1 · · ·Mn−1) (A3)

for arbitrary supermatrices M1, · · · ,Mn. The superdeterminant (or Berezinian) of M is
defined as

sdet(M) =
det(a− σb−1ρ)

det(b)
. (A4)

This definition provides the factorization property of the superdeterminant:

sdet(M1M2 · · ·Mn) = sdet(M1)sdet(M2) · · · sdet(Mn). (A5)

The general linear supergroup GL(m|n;C) (respectively GL(m|n;R)) is the supergroup
of invertible complex (respectively real) supermatrices, the group composition law being the
product of supermatrices. In particular, an arbitrary element g ∈ GL(n|n) admits the Gauss

decomposition [40]

g =

(

11 0
λ 11

)(

A 0
0 B

)(

11 χ
0 11

)

(A6)

where A and B (λ and χ) are arbitrary n×n Grassmann-even (respectively Grassmann-odd)
matrices.
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The special linear supergroup SL(m|n;C) is the subsupergroup of supermatrices M ∈
GL(m|n;C) such that sdet(M) = 1. This requirement forces det(A) = det(B) in the Gauss
decomposition (A6). Thus, an arbitrary element g ∈ SL(n|n;C), may be decomposed as

g = exp(Φ)

(

11 0
λ 11

)(

a 0
0 b

)(

11 χ
0 11

)

(A7)

where Φ ∈ C, and a and b are arbitrary n × n unimodular matrices (det(a) = det(b) = 1)
with Grassmann-even entries.

2. Superalgebras

In addition to supergroups, one may also introduce the notion of a Lie superalgebra, in
which the Lie bracket is replaced by a generalised bracket (commutator/anticommutator)
that depends on whether the generators considered are ‘bosonic’ or ‘fermionic’. A particu-
larly useful dictionary of Lie superalgebras has been compiled in [44].

The superalgebra gl(2|2) is generated by sixteen independent matrices, which in a suitable
basis may be chosen as the twelve off-diagonal matrices consisting of a single entry of unity,
together with the matrices

T13 =

(

σ3 0
0 0

)

T14 =

(

0 0
0 σ3

)

I =

(

11 0
0 11

)

Σ =

(

11 0
0 −11

)

(A8)

where σ3 = diag(1,−1), and 11 denotes the 2 × 2 unit matrix. The Lie algebra sl(2|2) is
generated by supertraceless matrices, and may be obtained from the above representation
by removing Σ. An arbitrary sl(2|2) valued current may be expanded as

J(z) = i(z)I + σ(z)Σ +
14
∑

i=1

ti(z)Ti. (A9)

The Lie algebra sl(2|2) contains a non-trivial centre; the unit matrix I commutes with all the
generators. The algebra psl(2|2) is obtained by removing this generator. One may isolate
the contribution to the sl(2|2) current arising from the identity component by the following
relation

i(z) =
1

4
str(ΣJ) =

1

4
trJ (A10)

3. Scaling Dimensions

We take a d-dimensional sample of material of side L and divide it into N = (L/l)d boxes
of side l. The probability of finding an electron in box i (the so called box-probability) is
given by

Pi =

∫

ddri |ψ(r)|2. (A11)
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The average value of the box probability scales in the following manner

〈P 〉 = 1

N

N
∑

i=1

Pi ∼
(

l

L

)d

(A12)

for all normalized wavefunctions (
∑N

i Pi = 1) and is not useful in distinguishing between
localized, extended, and critical wavefunctions. We are led to consider the scaling of the
moments of the box-probabilities

〈P q〉 ∼
(

l

L

)d+τq

(A13)

which serves to define new exponents τq. Consistency with (A12) requires17

τ1 = 0 τ0 = −d. (A14)

It is often advantageous (especially in numerical simulations) to introduce the Legendre
transform, f , of τ(q),

f(αq) ≡ qαq − τq, (A15)

where

αq ≡
dτq
dq
. (A16)

It follows that

df(α)

dα
= q (A17)

Thus, the function f(α) has a maximum at q = 0. Using (A14) and (A15),

f(α)max = f(α0) = d. (A18)

The slope of f(α) is unity at the value of α corresponding to q = 1,

df(α)

dα

∣

∣

∣

∣

q=1

= 1. (A19)

Combining (A14) and (A15) we also find that,

f(α1) = α1 (A20)

17 For a uniform electron distribution 〈P q〉uniform = 1
N

∑N
i=1

(

1
N

)q ∼
(

l
L

)dq
and one finds that

τq = (q − 1)d. It is conventional to define generalised dimensions, Dq, such that τq ≡ (q − 1)Dq.

The scaling relation (A13) may equivalently be written 〈P q〉 ∼
(

l
L

)d+(q−1)Dq
. We note that (A14)

implies D0 = d.
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The constraints (A18), (A19) and (A20) allow us to write a parabolic approximation in terms
of one parameter, α0 (the position of the maximum)18

f(α) = d− (α− α0)
2

4(α0 − d)
. (A21)

This parabolic approximation together with the definitions (A15) and (A16) gives rise to
the relation

q
dτ

dq
− τ = d−

(dτ
dq

− α0)
2

4(α0 − d)
(A22)

This equation is solved exactly by the polynomial

τq = −d+ α0q − (α0 − d)q2. (A23)

Recalling the scaling relation (A13) one obtains

〈P q〉 ∼
(

l

L

)α0q−(α0−d)q2

. (A24)

The local density of states is given by

ρ = δ−1P ∼ LdP. (A25)

Hence

〈ρq〉 ∼ 1

L(α0−d)q(1−q)
. (A26)

Numerical simulations for d = 2 give α0 ≈ 2.28.

4. Representations of the SL(2,R) Group

The Lie algebra sl(2) is generated by three independent traceless matrices, which, in the
spin basis may be taken as

J− =

(

0 0
1 0

)

, J0 =
1

2

(

1 0
0 −1

)

, J+ =

(

0 1
0 0

)

. (A27)

Their commutation relations read

[J+, J−] = 2J0, [J0, J±] = ±J±, (A28)

18Assume f(α) = d−A(α−α0)
2 where A is a constant to be determined; this takes into account

(A18). Condition (A19) implies α1 = α0 − 1/(2A). Substituting this into the equation following

from (A20), namely α1 = d−A(α1 − α0)
2, determines A.
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and should be familiar from the theory of angular momentum. It is readily seen that the
differential operators

J− =
∂

∂y
, J0 = y

∂

∂y
− j, J+ = 2jy − y2

∂

∂y
(A29)

obey the same commutation relations (A28) when acting on the space of differentiable func-
tions.

In this differential realisation, the monomial yj+m plays the rôle of the state vector |j,m〉.
One observes that ∂/∂y acts as a kind of lowering operator, and y acts as a kind of raising
operator. It is convenient to modify our basis slightly by defining t+1 = −J+, t0 = J0,
t−1 = J−. This enables us to write the generators in the following compact form

tl = y(l+1) ∂

∂y
− (l + 1)jyl; l = −1, 0,+1 (A30)

Their commutation relations read

[t+, t−] = −2t0, [t0, t±] = ±t± (A31)

That is to say we have structure constants,

f 0+
+ = 1 = −f 0−

−, f+−
0 = −2 (A32)

The Killing form reads (with the ordering +, 0,−, and cv = 2)

ηab =





0 0 2
0 −1 0
2 0 0



 , ηab =





0 0 1
2

0 −1 0
1
2

0 0



 (A33)

More generally, one can construct representations defining their action on functions f(y):

Âf(y) = |cy + d|2j sign (cy + d)2ǫf

(

ay + b

cy + d

)

(A34)

where ad− cb = 1.
The operator ρq discussed in the text belongs to the j = −q representation and is

annihilated by t−:

t+j=−qρ
q = 0, ρqt− = 0 (A35)

In other words one may perform the following expansion

ρq(y, ȳ) =
∑

k,k̄=0

y−2q−kȳk̄Φ
(−q)

k,k̄
(A36)

In this representation t3 is diagonal :

t3Φk,k̄ = −(q + k)Φk,k̄ (A37)

The operator Φ0 belongs to the representation where t3 cannot be diagonalized:

t+Φ0 = µΦ0, Φ0t
− = µΦ0 (A38)

For more information see, for example [33].
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5. The Knizhnik-Zamolodchikov Equation

The stress-energy tensor of WZNW models is proportional to the scalar product of
currents. Therefore the Virasoro generator with n = −1 acting on any primary field gives

L−1|φi〉 =
2

k + cv
ηabJ

a
−1J

b
0 |φi〉 =

−2

k + cv
ηabJ

a
−1t

b
i |φi〉 (A39)

We consider the insertion of the zero vector

|χ〉 =
[

L−1 +
2

k + cv
ηabJ

a
−1t

b
i

]

|φi〉 = 0 (A40)

inside the correlation function of a set of primary fields. We note that the insertion of the
operator Ja

1 in the correlator can be expressed as

〈φ1(z1) · · · (Ja
−1φi)(zi) · · ·φn(zn)〉 =

1

2πi

∮

zi

dz

z − zi
〈Ja(z)φ1(z1) · · ·φn(zn)〉 (A41)

= −
∑

j 6=i

1

2πi

∮

zi

dz

(z − zi)

taj
(z − zj)

〈φ1(z1) · · ·φn(zn)〉 (A42)

= −
∑

j 6=i

taj
(zi − zj)

〈φ1(z1) · · ·φn(zn)〉 (A43)

Therefore

〈φ1(z1) · · ·χ(zi) · · ·φn(zn)〉 =
[

∂zi −
2

k + cv

∑

j 6=i

ηab t
a
i ⊗ tbj

zi − zj

]

〈φ1(z1) · · ·φn(zn)〉 (A44)

and by construction this must vanish:
[

∂zi −
2

k + cv

∑

j 6=i

ηab t
a
i ⊗ tbj

zi − zj

]

〈φ1(z1) · · ·φn(zn)〉 = 0. (A45)

This is the Knizhnik–Zamolodchikov equation. The solutions to this equation are the corre-
lation functions of primary fields.

6. BRST Invariance and ∆ = 0 Conformally Invariant Deformation

Let us consider a WZNW model at level −k19 deformed by its kinetic term:

S(g) = SWZNW (g−1) − ǫ

∫

d2zΩ(z, z̄) (A46)

19The notation is choosen in such a way that for k > 0 the action for the SL(N,C)/SU(N) model

is positive.
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where

Ω(z, z̄) = Ja(z)J̄ b(z̄)φab(z, z̄), (A47)

and

J =
1

2
kg−1∂g, J̄ =

1

2
k∂̄gg−1, φab = trg−1tagtb. (A48)

The perturbation operator Ω possesses a number of interesting properties. Let us com-
pute the commutator of the Kač–Moody current Ja(z) with the operator Ω. Denoting its
chiral part O(z) we get

[Ja(y), O(z)] =

∮

dζ

2πi

1

ζ − z
{[Ja(y), J b(ζ)]φb(z) + J b(ζ)[Ja(y), φb(z)]}

=

∮

dζ

2πi

1

ζ − z
{fab

c J
c(ζ)φb(z)δ(y, ζ) +

1

2
kφa(z)δ′(y, ζ) + fab

c J
b(ζ)φc(z)δ(y, z)}

=

∮

dζ

2πi

1

ζ − z

{

fab
c f

cb
d

ζ − z
φd(z)δ(y, ζ) +

1

2
kφa(z)δ′(y, ζ) +

fab
c f

bc
d

ζ − z
φd(z)δ(y, z)

}

+

∮

dζ

2πi

1

ζ − z
[fab

c Ψcd(z)δ(y, ζ) + fac
b Ψcb(z)δ(y, z)]. (A49)

Here

Ψcb(z) =: Jc(z)φb(z) : . (A50)

By taking contour integrals, we obtain

[Ja(y), O(z)] = (−1

2
k + cV )φ

a(z)δ′(y, z). (A51)

Thus for the entire operator Ω we get find

[Ja(z),Ω(w, w̄)] =

(

−1

2
k + cV

)

J̄ b(w̄)φab(w, w̄)δ′(z, w). (A52)

For the SL(N,C)/SU(N) model where cV = N this commutator vanishes when k = 2N.
(as in the main text the level k is defined such that the central charge is given by C =
k(N2 − 1)/(k −N)).

In other words, when k = 2N , the operator Ω is invariant under the Kač–Moody symme-
try. Since the Virasoro operators are quadratic combinations of the Kač–Moody currents, the
operator Ω is automatically invariant under the conformal transformations. In particular,

[L0,Ω] = ∆Ω = 0. (A53)

Indeed,

∆(k = 2N) = 0. (A54)
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The operator Ω forms a closed OPE algebra

Ω(z)Ω(0) = Ω(0). (A55)

The constant term on the right hand side is absent because the operator Ω has zero norm;
this follows from equation (A52).

Thus, a the SL(N,C)/SU(N) WZNW model at level k = 2N perturbed by the operator
Ω must be conformally invariant for arbitrary parameter ǫ. This can be seen in the following
way: The property (A55) implies that away from the conformal point the following relation
holds

∂̄T = ∂Θ, (A56)

where T and Θ are the components of the stress-energy tensor. Moreover, the trace is given
as follows

Θ = βΩ Ω, (A57)

where βΩ is the renormalization group beta-function of the coupling ǫ. Since Ω is not a
marginal operator, βΩ 6= 0. However, the following is true

∂Θ = [L−1,Θ] = βΩ[L−1,Ω]. (A58)

Since [Ln,Ω] = 0 for any n, we arrive at

∂̄T = 0, (A59)

i.e. the stress-energy tensor component T is still a holomorphic function even away from
the critical point. This means that the perturbed theory remains conformal for an arbitrary
perturbation. This also means that the most stable point in this case is not k = 1 as for the
SU(N) WZNW model, but k = 2N .

The described possibility is not realized for the PSL(2|2) model where cV = 0. Though
the scaling dimension of the Ω operator in this case is equal to 2 and it may appear being
exactly marginal, the fact that it does not commute with J ’s may be an indication that
the line of critical points obtained by studying perturbative series [34, 35] is destroyed by
non-perturbative effects. This is an open interesting question.
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