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Chapter 19
Geographical and Seasonal Variations 
of the Shell Microstructures in the Bivalve 
Scapharca broughtonii

Kozue Nishida and Takenori Sasaki

Abstract  Cyclical ontogenetic changes of shell microstructures have been observed 
in the subfamily Anadarinae (Mollusca: Bivalvia, Arcidae) including fossil taxa. 
The changes in the bloody clam Scapharca broughtonii are controlled by tempera-
ture, which fluctuates seasonally, and can be used to determine the age of the indi-
viduals and to reconstruct paleoenvironments. In this study, samples of S. broughtonii 
from eight localities covering broad geographical regions at various latitudes in 
Japan, Korea, and Russia were examined to assess the utility of time series varia-
tions in microstructures for paleoenvironmental and paleoecological studies. All 
specimens showed cyclical changes in the relative thickness of the composite pris-
matic and crossed lamellar structures in the outer layer with ontogenetic progres-
sion, and thus, this feature can be used as a proxy for water temperature of their 
habitats. Specimens from southern latitudes showed higher annual shell growth 
rates than northern specimens, suggesting that low temperatures arrest shell growth 
in S. broughtonii and play a key role in determining the longevity and body size in 
S. broughtonii. In long-lived individuals from the four northernmost localities, the 
relative thickness of the composite prismatic structure tended to decrease as the 
individuals aged, which may be a consequence of declining physiological activity, 
such as organic matrix secretion.
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19.1  �Introduction

Shell microstructures of molluscs are highly diversified (Carter 1990), and the shell 
microstructures formed by a single individual can differ, depending on phylogenetic 
(Taylor et  al. 1969; Shimamoto 1986; Sato and Sasaki 2015), crystallographic 
(Ubukata 2001; Checa et al. 2009, 2013), and environmental (Carter 1980; Kennish 
1980; Lutz and Clark 1984) factors. Recently, Nishida et al. (2012) reported sea-
sonal changes in the relative thickness of the two microstructures (composite pris-
matic and crossed lamellar structures) in the outer layer of the bloody clam 
Scapharca broughtonii. The composite prismatic and crossed lamellar structures of 
the outer layer are formed on the exterior and interior sides, respectively (Fig. 19.1), 
with the composite prismatic structure being thicker at lower water temperatures 
(Nishida et al. 2012). Nishida et al. (2015) observed shell microstructures in cul-
tured specimens of S. broughtonii reared at five different temperatures, demonstrat-
ing experimentally the thermal dependency of the mode of shell microstructural 
formation in this species. Cyclical changes in microstructures with ontogeny have 
been observed in the subfamily Anadarinae (Mollusca: Bivalvia, Arcidae), includ-
ing fossil taxa (Kobayashi and Kamiya 1968; Kobayashi 1976a, 1976b; Nishida 
et al. 2012), and can be useful for age determination and temperature reconstruc-
tion. Knowledge on geographical variations in shell microstructural formation in S. 
broughtonii remains limited (Nishida et al. 2012). Thus, samples of S. broughtonii 
were collected for this study from eight localities at various latitudes in Japan, 
Russia, and Korea to assess the utility of the cyclic thickness fluctuation in shell 
microstructures in paleoenvironmental and paleoecological studies.

Fig. 19.1  An optical micrograph of the acetate peel of radial section of the outer layer near the 
outer shell margin in the specimen SB-IN3-01 collected at locality 4. With the growth toward to 
the right, fluctuations are observed in the relative thickness of the composite prismatic and crossed 
lamellar structures of the outer layer. Gray arrows indicate growth breaks. Abbreviations: CL, 
crossed lamellar layer; CP, composite prismatic layer
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19.2  �Materials and Methods

We examined S. broughtonii shells collected from six sites in Japan (Localities 1, 2, 
4, 5, 7, 8), one site in Russia (Locality 3), and one site in Korea (Locality 6) 
(Table 19.1, Fig. 19.2). Of the 12 specimens collected from Localities 2–6 and 8, 9 
were collected by dredge operations, and the remaining 3 specimens were likely 
collected also by dredging. The specimens at Locality 1 were cultured in a net, and 
the specimens at Locality 7 were cultured in a cage. Shell microstructures of those 
14 specimens were prepared by the acetate peel method (Kennish et al. 1980), and 
then the thickness of the composite prismatic and crossed lamellar structures and 
the total thickness of the outer layer were measured at approximately 1-mm inter-
vals following Nishida et al. (2012) with ImageJ/NIH image analysis software (ver-
sion 1.45; http://imagej.nih.gov/ij/). Data of three specimens from Localities 1, 2, 
and 7 (SB-MT3, SB-YR-101-1, and SB-KM10b-2, respectively) reported in Nishida 
et al. (2012) were used for comparison with the data obtained in this study. According 
to Nishida et al. (2012), the age of each individual could be estimated by the number 
of the growth break (summer break) intervals and the positive peaks observed in the 
relative thickness of the crossed lamellar structure.

19.3  �Results

The relative thickness of the composite prismatic and crossed lamellar structures in 
the outer layer of each specimen changed cyclically with ontogeny (Figs. 19.2 and 
19.3). The ratio of the composite prismatic structure thickness to the total outer 
layer thickness was 0% at the minimum and had a maximum value as high as 
58–80% (Figs. 19.2 and 19.3). For all specimens, the intervals between the cycle of 
relative thickness fluctuation of the two structures shortened with ontogeny, and the 
range of fluctuation in the relative thickness of the composite prismatic structure 
decreased in specimens older than 4 years (Figs. 19.2 and 19.3). In the specimens 
from Vladivostok (SB-RU11–01, SB-RU11-02; Fig. 19.2), the relative thickness of 
the composite prismatic structure fluctuated seasonally during earlier growth stages, 
while the fluctuations became smaller at later growth stages until the cyclic changes 
in the relative thickness became almost indiscernible.

To examine the variations in annual growth of individuals from the same locali-
ties, we compared at least two specimens each for four localities (Localities 1–3, 7; 
Figs. 19.3 and 19.4). Individuals cultured in the same cage at Locality 7 showed a 
similar pattern of microstructural changes (Fig. 19.3c, d). In contrast, growth pat-
terns of the individuals cultured at Locality 1 showed considerable variations 
(Fig. 19.3a, b).

Growth curves for the specimens from the eight localities are shown in Fig. 19.2. 
The annual shell growth rate was higher in the specimens from southern localities 
than in those from northern localities, corresponding to the general increase in water 
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Table 19.1  Specimens of S. broughtonii examined in this study. All specimens are registered at 
the Department of Historical Geology and Paleontology, University Museum, The University of 
Tokyo (UMUT). Asterisks indicate specimens reported by Nishida et al. (2012); specimens 1, 2a, 
2b, 3a, and 3b in Nishida et  al. (2012) are identified as specimens SB-MT3, SB-YU101–1, 
SB-YR102–4, SB-KM10b-2, and SB-KM10b-3, respectively, in this study

Locality 
number

Sampling 
site

Sampling 
method Depth

Collection 
date

Number 
of 
specimens

Specimen 
number

Collection 
number

Locality 
1

Mutsu Bay, 
Aomori 
Prefecture

Cultured 
in net

5–10 m 20 
September 
2010

N = 2 SB-MT3* UMUT 
RM31012

SB-MT4 UMUT 
RM32670

Locality 
2

(2–1) at 
38°05’ N, 
140°58′ E, 
Miyagi 
Prefecture, 
in the 
Pacific 
Ocean

Dredge 22–
23 m

28 
December 
2010

N = 3 SB-YR101–1* UMUT 
RM31013

SB-YR101–4 UMUT 
RM32671

SB-YR101–11 UMUT 
RM32672

(2–2) at 
38°09’ N, 
140°59′ E, 
Miyagi 
Prefecture, 
in the 
Pacific 
Ocean

Dredge 22–
23 m

28 
December 
2010

N = 3 SB-YR102–2 UMUT 
RM32673

SB-YR102–4* UMUT 
RM31014

SB-YR102–9 UMUT 
RM32674

Locality 
3

Off 
Vladivostok, 
Sea of Japan

Dredge? – July 2011 N = 2 SB-RU11–01 UMUT 
RM32675

SB-RU11–02 UMUT 
RM32676

Locality 
4

Nanao Bay, 
Ishikawa 
Prefecture, 
Sea of Japan

Dredge 30 m 01 
November 
2011

N = l SB-IN3–01 UMUT 
RM32677

Locality 
5

Kohama 
Bay, Fukui 
Prefecture, 
Sea of Japan

Dredge 4–5 m 24–27 
February 
2011

N = 2 SB-FK1 UMUT 
RM32678

SB-FK2 UMUT 
RM32679

Locality 
6

Jinhae-gu, 
Sea of 
Japan, 
Korea

Dredge? – 29 June 
2011

N = l SB-KOT-3 UMUT 
RM32680

(continued)
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temperature (Figs. 19.1, 19.4 and 19.5). Nishida et  al. (2012) reported that shell 
growth of the field-collected specimens of S. broughtonii was probably arrested at 
temperatures below 12 °C. The length of time in a year when the water temperature 
was above 12 °C was longer in the south than in the north (Fig. 19.2b).

19.4  �Discussion

All specimens showed cyclical ontogenetic changes in the relative thickness of the 
two structures (composite prismatic and crossed lamellar structures) in the outer 
shell layer. Thus, this character of shell microstructure in this species can be applied 
as a proxy of water temperature in different geographic regions. The annual shell 
growth rate was higher in southern specimens than in northern specimens (Fig. 19.5), 
probably due to the shorter duration of temperatures below 12 °C, a temperature 
range in which shell growth is reported to be arrested (Nishida et al. 2012). The 
specimens from Locality 8 (water temperature range 16–26 °C) probably grew all 
year round. On the other hand, the specimens from Locality 4 (0–25 °C) may form 
shells only for a period of approximately 4 months. Thus, low temperatures below 
12  °C are suggested to play a key role in the longevity and shell size in S. 
broughtonii.

Nishida et al. (2015) suggested that the faster growth at lower temperatures is 
achieved by dominantly building the composite prismatic structure, probably as an 
adaptive strategy to precipitate shells under cold water environments. However, as 
the composite prismatic structure is physically weaker than the crossed lamellar 
structure (Taylor and Layman 1972; Currey 1976), it is disadvantageous for main-
taining the shell mechanical strength. Thus, a trade-off between growth and physi-
cal characteristics (e.g., strength) should be considered in investigations of thermal 

Table 19.1  (continued)

Locality 
number

Sampling 
site

Sampling 
method Depth

Collection 
date

Number 
of 
specimens

Specimen 
number

Collection 
number

Locality 
7

At 33°58’ 
N, 131°50′ 
E off 
Kudamatsu 
city, 
Yamaguchi 
Prefecture, 
in the Seto 
Island Sea

Cultured 
in cage

10 m 22 
December 
2010

N = 2 SB-KM10b-2* UMUT 
RM31015

SB-KM10b-3* UMUT 
RM31016

Locality 
8

Tachibana 
Bay, 
Nagasaki 
Prefecture

Dredge 22–
23 m

11 
January 
2011

N = l SB-NT1 UMUT 
RM32681
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Fig. 19.2  The growth curves and changes in the relative thickness of the two structures in the 
outer layer at eight localities arranged from north to south along the coasts of Japan, Russia, and 
Korea. Arrow heads indicate growth breaks; black, gray, and white areas indicate composite pris-
matic structure, crossed lamellar structure, and missing sections of the outer layer, respectively, 
and the growth years are indicated by horizontal bars. The water temperature data are from the 
Japan Oceanographic Data Center (JODC, http://www.data.jma.go.jp/obd/stats/etrn/index.php).
Water temperature at each of the eight localities is shown with gray shading on months with water 
temperature above 12 °C and the number indicating the number of months with water temperature 
above 12 °C. The growth curve of Locality 7 is for the reference specimen cited from Nishida et al. 
(2012)
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adaptation of microstructures in molluscs. The growth strategy of S. broughtonii 
inferred by shell growth patterns and microstructures (e.g., to reach a larger body 
size and/or maturity faster) might be important in the growth stage before maturity. 
In long-lived specimens from Localities 1–4, the relative thickness of the composite 
prismatic structure tended to decrease as the individuals aged (Figs. 19.2 and 19.3). 

Fig. 19.3  Differences in shell microstructural records between two cultured individuals reared in 
the same localities. (a) Specimen SB-MT4 at Locality 1. (b) Specimen SB-MT3 at Locality 1, 
reported by Nishida et al. (2012). (c) Specimen SB-KM10b-2 at Locality 7, reported by Nishida 
et al. (2012). (d) Specimen SB-KM10b-3 at Locality 7. Arrows indicate growth breaks in the outer 
shell surface; black, gray, and white areas indicate composite prismatic structure, crossed lamellar 
structure, and missing sections of the outer layer, respectively

Fig. 19.4  Growth curves of the specimens from Localities 1, 2, 3, and 7 drawn based on the inter-
vals of the summer growth breaks and the positive peaks in the thicknesses of the crossed lamellar 
structure. Asterisks indicate specimens reported by Nishida et al. (2012); specimens 1, 2a, and 3a 
in Nishida et al. (2012) are identified as specimens SB-MT3, SB-YU101–1, and SB-KM10b-2, 
respectively, in this study. (a) Specimens SB-MT3 and SB-MT4 from Locality 1. (b) Specimens 
SB-YR101–1, SB-YR101–4, SB-YR101–11, SB-YR102–2, and SB-YR102–9 from Locality 2. 
(c) Specimens SB-RU11–01 and SB-RU11–02 from Locality 3. (d) Specimens SB-KM10b-2 and 
SB-KM10b-3 from Locality 7
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Although the primary factor controlling the relative thickness of the two structures 
in the outer layer would be the seasonal changes in water temperature, physiological 
factors related to aging may also control microstructural formation in S. broughto-
nii. Palmer (1983) suggested that the cost of shell production is cheaper in organic-
rich shells than in organic-poor shells. Composite prismatic structure in bivalve 
shells is richer in organics than is the crossed lamellar structure (Taylor and Layman 
1972; Nishida et al. 2015) and, thus, after sexual maturity, a decrease in the volume 
of composite prismatic structure in shells may be accompanied by a decline in phys-
iological activity, such as organic matrix secretion. Age-related changes in shell 
microstructures may show a trade-off between growth and physiological factors 
attributable to aging. At later growth stages of the individuals from Locality 3, the 
relative thickness of the composite prismatic structure became thinner with aging 
until cyclic changes in the relative thickness were almost indiscernible. Because this 
region is in the northern limit for this species, energetic cost might be needed not 
only for shell microstructural formation but also other physiological demands.

Differences observed in cultivation experiments may also have some effect. 
Patterns of the relative thickness of the two shell structures were more variable in 
the specimens from Locality 1, where they were cultured in a net hanging in the 
water column above the seafloor than in those from Locality 7, where they were 
cultured in a cage resting on the bottom sediment. Yurimoto et al. (2007) reported a 

Fig. 19.5  Observed water temperature and estimated annual shell growth rates at eight localities 
arranged from north to south. The temperature data are from the Japan Oceanographic Data Center 
(JODC, http://www.data.jma.go.jp/obd/stats/etrn/index.php). The average annual seawater tem-
perature at the eight localities approximately ranges from 7.8 to 20.0 °C. Annual shell growth rate 
was estimated from growth curves in Fig. 19.2. Annual growth rates of 1- and 2-year-old speci-
mens at Locality 4 were not estimated because no summer growth break was observed in the shell 
surface of the 1-year-old specimen
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lower monthly shell growth rate in the individuals of Scapharca kagoshimensis cul-
tivated in hanging nets than in those cultivated in cages on the seafloor and attrib-
uted this difference to buffeting of the suspended individuals by waves. Thus, the 
specimens from Locality 7 likely experienced less growth stress than those from 
Locality 1.
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