
Dynamical stability in strategic
communication with the information structure

and perturbations

Seigo Uchida∗

Abstract

We investigate dynamical stability for strategic communication

with the information structure and perturbations under the replicator

dynamics. To extend the theoretical framework proposed by Green

and Stokey (2007), we study dynamical stability of all equilibria with

the information structure which they introduced. We show that the

rest points of one kind of partition equilibrium and a determinate ac-

tion equilibrium can be stable under the replicator dynamics in the

case where there are two states, two actions, and two observations.

Moreover, we reveal the effects of the information structure and per-

turbations on the dynamical behavior. Without the information struc-

ture, dynamical stability depends on fewer elements of utility functions

and beliefs of an agent and a principal than with the information struc-

ture. Perturbations of the repilicator dynamics can stabilize complete

communication that has an unstable rest point under the replicator

dynamics.
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1 Introduction

We consider the dynamical behavior for strategic communication with the

inforfmation structure and perturbations under the replicator dynamics. In

the strategic communication which is studied in economics (Crawford and

Sobel, 1982, Green and Stokey, 2007), all members communicate through

the strategic use of signals. We study effects of the information structure

and perturbations on the dynamical behavior under the replicator dynamics.

The starting point for analysis is the model of information transmission

as studied by Green and Stokey (2007). In this game, after a state of nature

occurs, an agent receives an observation related to the state through an

information structure and sends it to a principal. The principal takes the

decision. Each utility of the agent and the principal depends on the state

and the action.

In this game, there are sets of equilibria. Following Green and Stokey

(2007), we focus on three types of equilibria: a partition equilibrium, a de-

terminate action equilibrium, and a random action equilibrium. We study

the dynamical behavior of these equilibria in the case where there are two

states, two actions, and two observations. In addition, we suppose that be-

liefs for an agent and a principal are identical.

We first study rest points of these equilibria and dynamical stability of
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these rest points with the information structure under the replicator dy-

namics. Sequentially, we study effects of the information structure on the

dynamical behavior under the replicator dynamics.

Next, we study the dynamical behavior of complete communication (one

kind of partition equilibrium) under the replicator dynamics with pertur-

bations which is called the selection–mutation dynamics (Hofbauer, 1985).

The dynamical behavior of strategic communication with common interest

under the selection–mutation dynamics is studied by Hofbauer and Huttegger

(2007, 2015) and Uchida and Fukuzumi (2019). Two of them show that per-

turbations of the replicator dynamics can stabilize the dynamical behavior

(Hofbauer and Huttegger, 2007; Uchida and Fukuzumi, 2019).

Our work makes three important contributions:

• We show that a partition equilibrium has a rest point under the replica-

tor dynamics, and that a determinate action equilibrium and a random

action equilibrium can be the rest point under the replicator dynam-

ics. Moreover, we also show that rest points of one kind of partition

equilibrium and a determinate action equilibrium can be stable under

the replicator dynamics.

• We show that without the information structure, the dynamical stabil-

ity of the strategic communication depends on fewer elements of utility

functions and beliefs of an agent and a principal than with the infor-

mation structure.

• We show that a rest point close to complete communication with the in-

formation structure that has an unstable rest point under the replicator

3
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dynamics can be asymptotically stable under the selection–mutation

dynamics.

The remainder of this paper is organized as follows. Section 2 provides

the formal model of strategic communication with the information structure.

Section 3 introduces types of equilibria and Section 4 introduces the dynam-

ics. Section 5 studies the stability of these equilibria under the replicator

dynamics. Section 6 studies the stability of complete communication under

the selection–mutation dynamics. Section 7 concludes.

2 Model

Our decision problems consist of two players; one is an agent and the other

is a principle. There are m states of the world by the set Θ = {θ1, ..., θM},

and N possible observations yn by the set Y = {y1, ..., yN}. An observation

is statistically related to the true state in Θ. The statistical relationship

between states and observations is called the information structure. It is

represented by an M ×N Markov matrix Λ = [λmn]. λmn is the probability

tha yn is observed if the true state is θm. There are k actions by the set

A = {a1, ..., aK}.

An agent receives an observation and sends it to a principal. However,

the agent may not send the same information as he observed. A principal

receives the information from the agent and chooses an action ak from A.

The von Neumann-Morgenstern utility levels of two players depend upon

the action and the state of nature. These utilities are represented by K×M

matrices UA
km = [ua

km] and UP
km = [up

km] for the principal and the agent. We

4

suppose that all elements of UA
km = [ua

km] and UP
km = [up

km] are positive. UA
km

and UP
km for the principal and the agent are realized if θm occurs and ak is

chosen by the principal.

The agent’s strategies are represented by an N ×N Markov matrix

R ∈ R△
N×N = {R ∈ RN×N

+ :
N∑
j=1

rij = 1, ∀i ∈ N},

where rnn′ is the probability that yn′ was sent given that the actual observa-

tion is yn.

The principal chooses the action ak ∈ A given that the information y′n

was sent by him. The principal’s strategy is represented by an N×K Markov

matrix

Z ∈ R△
N×K = {R ∈ RN×K

+ :
K∑
i=1

zji = 1, ∀j ∈ N},

where zn′k is the probability that ak is chosen given that yn′ was sent.

We denote different beliefs for the agent and the principal by π = (π1, ..., πM) ∈

∆M and π′ = (π′
1, ..., π

′
M) ∈ ∆M where ∆M is the set of all M-dimensional

probability vectors.

If the strategy choices are Z and R, the expected utilities for the agent

and the principal are respectively

trΠΛRZUA

and

trΠ′ΛRZUP

5
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where Π and Π′ denote the square matrices with the vectors π and π′ on the

diagonal and zeros elsewhere. 1

Our game Γm,n = {R△
N×N × Z△

N×K , trUΠΛRZ, trU ′Π′ΛRZ} is described.

We study the Nash equilibria of this game. Let B(Z) ∈ R△
N×N and

B(R) ∈ Z△
N×K denote the best-response correspondence of R and Z respec-

tively.

Lemma 1. A pair (R,Z) ∈ R△ is a Nash strategy of ΓN,K if and only if

R ∈ B(Z) and Z ∈ B(R).

3 Types of equilibria

ΓN,K has a large set of equilibria. Following Green and Stokey (2007), we

provide basic classifications of equilibria. First, we provide characteristics of

the information structure.

Definition 1 We say that an M ×N ′ information structure Λ′ is a partition

of Λ if Λ′ = ΛPDP ′, where P and P ′ are permutation matrices and D is an

N ×N ′ block diagonal Markov matrix in which each block has rank one.

When Λ′ = ΛPDP ′, there is a partition of the information space Y . If

1The agent’s expected utility is represented by

EUA =
∑
m

πm

∑
n

λmn

∑
n′

rnn′

∑
k

zn′ku
a
km.

The principal’s expected utility is represented by

EUP =
∑
m

π
′

m

∑
n

λmn

∑
n′

rnn′

∑
k

zn′ku
p
km.
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information value yk occurs under Λ′, the partition element containing yk is

reported through Λ′.

An equilibrium in this information structure, Λ′ = ΛPDP ′, is called a

partition equilibrium (Green and Stokey, 2007). In this equilibrium, ΛR is

a partition of Λ. In short, the observation that an agent received is sent as

itself or as partitioned information.

Definition 2 (Green and Stokey, 2007) We say that an equilibrium pair

(R,Z) is a partition equilibrium if Λ′ = ΛR is a partition of Λ. One

equilibrium of this type is the pair of strategies R = I, Z = I and RZ = I.

Another equilibrium is the pair of strategies in which Z has at least one

zero-column.

We consider the case in which there are two states, two actions, and two

observations. A partition equilibrium is represented by two forms

R1 =


 1 0

0 1


 , Z1 =


 1 0

0 1


 , R2 =


 α 1− α

α 1− α


 , Z2 =


 1 0

1 0


 , α ∈ [0, 1].

In addition to a partition equilibrium, there are two types of non–partition

equilibria in which a principal uses a pure or mixed strategy.

Definition 3 (Green and Stokey, 2007) We say that an equilibrium pair (R,

Z) is a determinate action equilibrium if Λ′ = ΛR is not a partition of

Λ, and each row of Z receiving positive weight under R has only a single

positive element.

In the case where there are two states, two actions, and two observations,
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a determinate action equilibrium is represented as follows:

R3 =


 1− α α

0 1


 , Z3 =


 1 0

0 1


 , 0 < α ≤ 1

2
.

Definition 4 (Green and Stokey, 2007) We say that an equilibrium pair

(R,Z) is a random action equilibrium if Λ′ = ΛR is not a partition of

Λ, and some row of Z receiving positive weight under R has two or more

nonzero entries.

In the case where there are two states, two actions, and two observations,

a random action equilibrium is represented by the form:

R4 =




1
2

1
2

0 1


 , Z4 =


 1 0

α 1− α


 , α ∈ (0, 1).

4 Dynamics

We now consider the replicator dynamics and the selection–mutation dy-

namics on the behavioral strategies, as per Hofbauer and Hutteger (2015).

In an extensive form of this game, a behavioral strategy is represented by a

probability measure over strategies of an agent and a principal.

We define an (n−1)-dimensional behavioral strategy simplex of an agent

when the agent receives an observation i ∈ N , defined by Si, as

Si = {(ri1, ri2, . . . , rin)|
n∑

j=1

rij = 1, rij ≥ 0 for each j ∈ N}.

Similarly, we define a (k − 1)-dimensional behavioral strategy simplex of

8

an principal when the principal receives the information j ∈ N , defined by

Sj, as

Sj = {(zj1, zj2, . . . , zjk)|
n∑

l=1

zjl = 1, zjl ≥ 0 for each j ∈ N}.

The space of behavioral strategies is defined by S = Πi∈NSi × Πj∈KSj.

Our dynamic selection process is described by a dynamical system of

differential equations defined for all points in S. In this paper, we consider

the case in which there are two states, two actions, and two observations.

The dynamical system is formulated as the following 8 differential equations:
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ṙ22 = r22(π1λ12z21u
a
11 + π1λ12z22u

a
21 + π2λ22z21u

a
12 + π2λ22z22u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22) + ε(1− 2r22),

ż11 = z11(π1λ11r11u
p
11 + π1λ12r21u

p
11 + π2λ21r11u

p
12 + π2λ22r21u

p
12

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22) + δ(1− 2z11),
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ṙ12 = r12(π1λ11z21u
a
11 + π1λ11z22u

a
21 + π2λ21z21u

a
12 + π2λ21z22u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22) + ε(1− 2r12),

ṙ21 = r21(π1λ12z11u
a
11 + π1λ12z12u

a
21 + π2λ22z11u

a
12 + π2λ22z12u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22) + ε(1− 2r21),
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ż22 = z22(π1λ11r12u
p
21 + π1λ12r22u

p
21 + π2λ21r12u

p
22 + π2λ22r22u

p
22

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12) + δ(1− 2z22).

where ε and δ are small, uniform mutation rates.

We denote this system by Ṡ = Φ(S). This dynamical system is called the

selection–mutation dynamics (Hofbauer, 1985). If ε = δ = 0, the selection–

mutation dynamics coincides with the replicator dynamics.

5 Dynamical stability under the replicator dy-

namics

In this section, we study dynamical stability under the replicator dynamics in the

case where there are two states, two actions, and two observations. In addition,

we suppose that beliefs for an agent and a principal are identical. In the following

results, we first check rest points of three types of equilibria. After that, we study

the dynamical stability of these rest points.

Theorem 5.1. Let (R1, Z1) and (R2, Z2) be partition equilibria of Definition 2

in the case where there are two states, two actions, and two observations. Then,

the partition equilibria (R1, Z1) and (R2, Z2) have rest points under the replica-

tor dynamics. The rest point (R1, Z1) is structurally stable under the replicator

10

dynamics when

π1λ11u
a
21 − π1λ11u

a
11 + π2λ21u

a
22 − π2λ21u

a
12 < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11u
p
21 − π1λ11u

p
11 + π2λ21u

p
22 − π2λ21u

p
12 < 0,

π1λ12u
p
11 − π1λ12u

p
21 + π2λ22u

p
12 − π2λ22u

p
22 < 0.

On the other hand, the rest point (R2, Z2) is structurally unstable under the

replicator dynamics.

Theorem 5.2. Let (R,Z) be a determinate action equilibrium in the case where

there are two states, two actions, and two observations. Then, the determinate

action equilibrium has a rest point under the replicator dynamics when

π1λ11u
a
11 − π1λ11u

a
21 + π2λ21u

a
12 − π2λ21u

a
22 = 0.

The rest point of (R,Z) is structurally stable under the replicator dynamics

when

(2α− 1)π1λ11u
a
11 + (2α− 1)π2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) < 0,

(1− 2α)π1λ11u
a
21 + (1− 2α)π2λ21u

a
22 − (1− α)π1λ11u

a
11 − (1− α)π2λ21u

a
12) < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11(u
p
21 − up11) + π2λ21(u

p
22 − up12) < 0,

απ1λ11(u
p
11 − up21) + π1λ12(u

p
11 − up21) + απ2λ21(u

p
12 − up22)− π2λ22(u

p
12 − up22) < 0.

Theorem 5.3. Let (R,Z) be a random action equilibrium in the case where

there are two states, two actions, and two observations. Then, the random action

11

  11Dynamical stability in strategic communication with the information structure and perturbations
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equilibrium has a rest point under the replicator dynamics when
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The rest point of (R,Z) is structurally unstable under the replicator dynamics.

Green and Stokey (2007) studied the welfare of an agent and a principal when

the information structure changes. We also study the role of the information

structure from the point of view of dynamical stability.

Theorem 5.4. Suppose that there is no information structure. Then, the

partition equilibrium (R1, Z1) of Definition 2 has a rest point under the replicator

dynamics. The rest point is structurally stable under the replicator dynamics when

ua21 − ua11 < 0, ua12 − ua22 < 0, up21 − up11 < 0, and up12 − up22 < 0.

Without the information structure, dynamical stability of the partition equilib-

rium (R1, Z1) depends only on utility functions as opposed to with the information

structure.

Theorem 5.5. Suppose that there is no information structure. Then, a deter-

minate action equilibrium (R3, Z3) has a rest point under the replicator dynamics

when

ua11 = ua21.

12

The rest point is structurally stable under the replicator dynamics when
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p
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p
12 − π1αu

p
21 − π2u

p
22 < 0.

Without the information structure, the condition of a rest point at a deter-

minate action equilibrium is simply ua11 = ua21 regardless of ua12, u
a
22, π1 and π2 as

opposed to with the information structure. Moreover, the condition of stability

at a determinate action equilibrium depends on fewer elements of utility functions

and beliefs of an agent and a principal than with the information structure.

We can check that a partition equilibrium (R2, Z2) of Definition 2 and a random

action equilibrium without the information structure are structurally unstable. 2

6 Dynamical stability under the selection–mutation

dynamics

Next, we study dynamical stability under the selection–mutation dynamics in the

case where there are two states, two actions, and two observations. In addition,

we suppose that beliefs for an agent and a principal are identical. First, we study

the rest point close to (R1, Z1) under the selection–mutation dynamics.

Theorem 6.1. Consider a partition equilibrium (R1, Z1) in the case where there

are two states, two actions, and two observations. For each pair of the mutation

2We omit the proof of these cases due to lack of space.
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namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the
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dynamical behavior for the sender–receiver game of Lewis type (Hofbauer and

Huttegger, 2007, Uchida and Fukuzumi, 2019). In this paper, we do not study

stability of the other equilibrium under the selection–mutation dynamics because

it is too difficult to solve the characteristic equation of the first-order approximated

Jacobian matrix evaluated at the rest point.

7 Conclusion

In this paper, we study the rest points and dynamical stability for the strategic

communication with the information structure and perturbations. With the infor-

mation structure, the existence of rest points and dynamical stability for strategic

communication depends on more elements of utility functions and more beliefs

of the agent and the principal than without the information structure. On the

other hand, perturbations of the replicator dynamics can stabilize the dynamical

behavior of complete communication that has an unstable rest point under the

replicator dynamics.

15

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14



14 Seigo Uchida

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14

dynamical behavior for the sender–receiver game of Lewis type (Hofbauer and

Huttegger, 2007, Uchida and Fukuzumi, 2019). In this paper, we do not study

stability of the other equilibrium under the selection–mutation dynamics because

it is too difficult to solve the characteristic equation of the first-order approximated

Jacobian matrix evaluated at the rest point.

7 Conclusion

In this paper, we study the rest points and dynamical stability for the strategic

communication with the information structure and perturbations. With the infor-

mation structure, the existence of rest points and dynamical stability for strategic

communication depends on more elements of utility functions and more beliefs

of the agent and the principal than without the information structure. On the

other hand, perturbations of the replicator dynamics can stabilize the dynamical

behavior of complete communication that has an unstable rest point under the

replicator dynamics.

15

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14

  15Dynamical stability in strategic communication with the information structure and perturbations

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14

dynamical behavior for the sender–receiver game of Lewis type (Hofbauer and

Huttegger, 2007, Uchida and Fukuzumi, 2019). In this paper, we do not study

stability of the other equilibrium under the selection–mutation dynamics because

it is too difficult to solve the characteristic equation of the first-order approximated

Jacobian matrix evaluated at the rest point.

7 Conclusion

In this paper, we study the rest points and dynamical stability for the strategic

communication with the information structure and perturbations. With the infor-

mation structure, the existence of rest points and dynamical stability for strategic

communication depends on more elements of utility functions and more beliefs

of the agent and the principal than without the information structure. On the

other hand, perturbations of the replicator dynamics can stabilize the dynamical

behavior of complete communication that has an unstable rest point under the

replicator dynamics.

15

rates (ε, δ), there is a neighborhood of the partition equilibrium (R1, Z1) that

contains a unique rest point (R∗
1(ε, δ), Z

∗
1 (ε, δ)) when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

We find a rest point close to a partition equilibrium (R1, Z1) under the selection–

mutation dynamics. We can show the value of the rest point explicitly.

Corollary 1. The first–order approximated entries of the rest point (R(ε, δ), Z(ε, δ))

∈ S close to a partition equilibrium (R1, Z1) are explicitly given as follows:

R1 =


 1− 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε 1

π1λ11ua
11+π2λ21ua

12−π1λ11ua
21−π2λ21ua

22
ε

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε 1− 1

π1λ12ua
21+π2λ22ua

22−π1λ12ua
11−π2λ22ua

12
ε


,

Z1 =


 1− 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ 1

π1λ11u
p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ

1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ 1− 1

π1λ12u
p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ.


.

We can study the stability of a rest point under the selection–mutation dy-

namics by using these values of Corollary 1.

Theorem 6.2. Consider a partition equilibrium (R1, Z1) that has an unstable

rest point under the replicator dynamics in the case where there are two states,

two actions, and two observations. Then, the rest point close to the corresponding

partition equilibrium (R∗
1, Z

∗
1 ) can be asymptotically stable under the selection–

mutation dynamics.

Perturbations of the replicator dynamics can stabilize the dynamical behavior

for the strategic communication of Green and Stokey (2007) type, following the

14
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Appendix

Proof of Theorem 5.1

We consider the case in which there are two states, two actions, and two

observations:

Λ =


 λ11 λ12

λ21 λ22


 , UA =


 ua11 ua12

ua21 ua22


 , UP =


 up11 up12

up21 up22


 , πA = πP = (π1, π2).

Partition equilibria are represented by two forms:

R1 =


 1 0

0 1


 , Z1 =


 1 0

0 1


 , R2 =


 α 1− α

α 1− α


 , Z2 =


 1 0

1 0


 .

Our dynamical system S′ = Φ′(S) of the replicator dynamics consists of 8

differential equations:

ṙ11 = r11(π1λ11z11u
a
11 + π1λ11z12u

a
21 + π2λ21z11u

a
12 + π2λ21z12u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22),

ṙ12 = r12(π1λ11z21u
a
11 + π1λ11z22u

a
21 + π2λ21z21u

a
12 + π2λ21z22u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22),

ṙ21 = r21(π1λ12z11u
a
11 + π1λ12z12u

a
21 + π2λ22z11u

a
12 + π2λ22z12u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22),

ṙ22 = r22(π1λ12z21u
a
11 + π1λ12z22u

a
21 + π2λ22z21u

a
12 + π2λ22z22u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22),

16

ż11 = z11(π1λ11r11u
p
11 + π1λ12r21u

p
11 + π2λ21r11u

p
12 + π2λ22r21u

p
12

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22),

ż12 = z12(π1λ11r11u
p
21 + π1λ12r21u

p
21 + π2λ21r11u

p
22 + π2λ22r21u

p
22

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12),

ż21 = z21(π1λ11r12u
p
11 + π1λ12r22u

p
11 + π2λ21r12u

p
12 + π2λ22r22u

p
12

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12),

ż22 = z22(π1λ11r12u
p
21 + π1λ12r22u

p
21 + π2λ21r12u

p
22 + π2λ22r22u

p
22

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12).

By substituting the entries of (R1, Z1) and (R2, Z2) into the above equations,

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest

points at the partition equilibria (R1, Z1) and (R2, Z2).

Sequentially, we check dynamical stability of the partition equilibrium (Z1, R1).

The characteristic equation of the Jacobian matrix evaluated at the rest point

(Z1, R1) is given by

(λ+π1λ11u
a
11+π2λ21u

a
12)(λ−π1λ11u

a
21−π2λ21u

a
22+π1λ11u

a
11+π2λ21u

a
12)(λ−

π1λ12u
a
11−π2λ22u

a
12+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ11u

p
11+

π2λ21u
p
12)(λ−π1λ11u

p
21−π2λ21u

p
22+π1λ11u

p
11+π2λ21u

p
12)(λ−π1λ12u

p
11−π2λ22u

p
12+

π1λ12u
p
21 + π2λ22u

p
22)(λ+ π1λ12u

p
21 + π2λ22u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when

π1λ11u
a
21 − π1λ11u

a
11 + π2λ21u

a
22 − π2λ21u

a
12 < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11u
p
21 − π1λ11u

p
11 + π2λ21u

p
22 − π2λ21u

p
12 < 0,

π1λ12u
p
11 − π1λ12u

p
21 + π2λ22u

p
12 − π2λ22u

p
22 < 0.

17
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Appendix

Proof of Theorem 5.1

We consider the case in which there are two states, two actions, and two

observations:

Λ =


 λ11 λ12

λ21 λ22


 , UA =


 ua11 ua12

ua21 ua22


 , UP =


 up11 up12

up21 up22


 , πA = πP = (π1, π2).

Partition equilibria are represented by two forms:

R1 =


 1 0

0 1


 , Z1 =


 1 0

0 1


 , R2 =


 α 1− α

α 1− α


 , Z2 =


 1 0

1 0


 .

Our dynamical system S′ = Φ′(S) of the replicator dynamics consists of 8

differential equations:

ṙ11 = r11(π1λ11z11u
a
11 + π1λ11z12u

a
21 + π2λ21z11u

a
12 + π2λ21z12u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22),

ṙ12 = r12(π1λ11z21u
a
11 + π1λ11z22u

a
21 + π2λ21z21u

a
12 + π2λ21z22u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22),

ṙ21 = r21(π1λ12z11u
a
11 + π1λ12z12u

a
21 + π2λ22z11u

a
12 + π2λ22z12u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22),

ṙ22 = r22(π1λ12z21u
a
11 + π1λ12z22u

a
21 + π2λ22z21u

a
12 + π2λ22z22u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22),

16

ż11 = z11(π1λ11r11u
p
11 + π1λ12r21u

p
11 + π2λ21r11u

p
12 + π2λ22r21u

p
12

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22),

ż12 = z12(π1λ11r11u
p
21 + π1λ12r21u

p
21 + π2λ21r11u

p
22 + π2λ22r21u

p
22

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12),

ż21 = z21(π1λ11r12u
p
11 + π1λ12r22u

p
11 + π2λ21r12u

p
12 + π2λ22r22u

p
12

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12),

ż22 = z22(π1λ11r12u
p
21 + π1λ12r22u

p
21 + π2λ21r12u

p
22 + π2λ22r22u

p
22

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12).

By substituting the entries of (R1, Z1) and (R2, Z2) into the above equations,

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest

points at the partition equilibria (R1, Z1) and (R2, Z2).

Sequentially, we check dynamical stability of the partition equilibrium (Z1, R1).

The characteristic equation of the Jacobian matrix evaluated at the rest point

(Z1, R1) is given by

(λ+π1λ11u
a
11+π2λ21u

a
12)(λ−π1λ11u

a
21−π2λ21u

a
22+π1λ11u

a
11+π2λ21u

a
12)(λ−

π1λ12u
a
11−π2λ22u

a
12+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ11u

p
11+

π2λ21u
p
12)(λ−π1λ11u

p
21−π2λ21u

p
22+π1λ11u

p
11+π2λ21u

p
12)(λ−π1λ12u

p
11−π2λ22u

p
12+

π1λ12u
p
21 + π2λ22u

p
22)(λ+ π1λ12u

p
21 + π2λ22u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when

π1λ11u
a
21 − π1λ11u

a
11 + π2λ21u

a
22 − π2λ21u

a
12 < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11u
p
21 − π1λ11u

p
11 + π2λ21u

p
22 − π2λ21u

p
12 < 0,

π1λ12u
p
11 − π1λ12u

p
21 + π2λ22u

p
12 − π2λ22u

p
22 < 0.
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Appendix

Proof of Theorem 5.1
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 λ11 λ12

λ21 λ22
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
 , UP =
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 up11 up12

up21 up22


 , πA = πP = (π1, π2).

Partition equilibria are represented by two forms:

R1 =


 1 0

0 1


 , Z1 =


 1 0

0 1


 , R2 =


 α 1− α

α 1− α


 , Z2 =


 1 0

1 0


 .

Our dynamical system S′ = Φ′(S) of the replicator dynamics consists of 8

differential equations:

ṙ11 = r11(π1λ11z11u
a
11 + π1λ11z12u

a
21 + π2λ21z11u

a
12 + π2λ21z12u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22),

ṙ12 = r12(π1λ11z21u
a
11 + π1λ11z22u

a
21 + π2λ21z21u

a
12 + π2λ21z22u

a
22

−π1λ11r12z21u
a
11 − π1λ11r12z22u

a
21 − π2λ21r12z21u

a
12 − π2λ21r12z22u

a
22

−π1λ11r11z11u
a
11 − π1λ11r11z12u

a
21 − π2λ21r11z11u

a
12 − π2λ21r11z12u

a
22),

ṙ21 = r21(π1λ12z11u
a
11 + π1λ12z12u

a
21 + π2λ22z11u

a
12 + π2λ22z12u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22),

ṙ22 = r22(π1λ12z21u
a
11 + π1λ12z22u

a
21 + π2λ22z21u

a
12 + π2λ22z22u

a
22

−π1λ12r22z21u
a
11 − π1λ12r22z22u

a
21 − π2λ22r22z21u

a
12 − π2λ22r22z22u

a
22

−π1λ12r21z11u
a
11 − π1λ12r21z12u

a
21 − π2λ22r21z11u

a
12 − π2λ22r21z12u

a
22),
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ż11 = z11(π1λ11r11u
p
11 + π1λ12r21u

p
11 + π2λ21r11u

p
12 + π2λ22r21u

p
12

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22),

ż12 = z12(π1λ11r11u
p
21 + π1λ12r21u

p
21 + π2λ21r11u

p
22 + π2λ22r21u

p
22

−π1λ11r11z12u
p
21 − π1λ12r21z12u

p
21 − π2λ21r11z12u

p
22 − π2λ22r21z12u

p
22

−π1λ11r11z11u
p
11 − π1λ12r21z11u

p
11 − π2λ21r11z11u

p
12 − π2λ22r21z11u

p
12),

ż21 = z21(π1λ11r12u
p
11 + π1λ12r22u

p
11 + π2λ21r12u

p
12 + π2λ22r22u

p
12

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12),

ż22 = z22(π1λ11r12u
p
21 + π1λ12r22u

p
21 + π2λ21r12u

p
22 + π2λ22r22u

p
22

−π1λ11r12z22u
p
21 − π1λ12r22z22u

p
21 − π2λ21r12z22u

p
22 − π2λ22r22z22u

p
22

−π1λ11r12z21u
p
11 − π1λ12r22z21u

p
11 − π2λ21r12z21u

p
12 − π2λ22r22z21u

p
12).

By substituting the entries of (R1, Z1) and (R2, Z2) into the above equations,

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest

points at the partition equilibria (R1, Z1) and (R2, Z2).

Sequentially, we check dynamical stability of the partition equilibrium (Z1, R1).

The characteristic equation of the Jacobian matrix evaluated at the rest point

(Z1, R1) is given by

(λ+π1λ11u
a
11+π2λ21u

a
12)(λ−π1λ11u

a
21−π2λ21u

a
22+π1λ11u

a
11+π2λ21u

a
12)(λ−

π1λ12u
a
11−π2λ22u

a
12+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ12u

a
21+π2λ22u

a
22)(λ+π1λ11u

p
11+

π2λ21u
p
12)(λ−π1λ11u

p
21−π2λ21u

p
22+π1λ11u

p
11+π2λ21u

p
12)(λ−π1λ12u

p
11−π2λ22u

p
12+

π1λ12u
p
21 + π2λ22u

p
22)(λ+ π1λ12u

p
21 + π2λ22u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when

π1λ11u
a
21 − π1λ11u

a
11 + π2λ21u

a
22 − π2λ21u

a
12 < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11u
p
21 − π1λ11u

p
11 + π2λ21u

p
22 − π2λ21u

p
12 < 0,

π1λ12u
p
11 − π1λ12u

p
21 + π2λ22u

p
12 − π2λ22u

p
22 < 0.
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Sequentially, we check the dynamical stability of the partition equilibrium

(Z2, R2). The characteristic equation of the Jacobian matrix evaluated at the

rest point (Z2, R2) has eight eigenvalues. One of them is zero. Thus, this system

is structually unstable.

Proof of Theorem 5.2

A determinate action equilibrium is represented by the form:

R3 =


 1− α α

0 1


 , Z3 =


 1 0

0 1


 .

By substituting the entries of (R3, Z3) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2);



ṙ11 = (1− α)(απ1λ11u
a
11 + απ2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) = 0,

ṙ12 = α((1− α)π1λ11u
a
21 − (1− α)π1λ11u

a
11 + (1− α)π2λ21u

a
22 − (1− α)π2λ21u

a
12) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point when π1λ11u
a
11 + π2λ21u

a
12 − π1λ11u

a
21 −

π2λ21u
a
22 = 0.

Next, we check the dynamical stability of the determinate action equilib-

rium (Z3, R3). The characteristic equation of the Jacobian matrix evaluated at

the rest point (Z3, R3) is given by (λ − (2α − 1)π1λ11u
a
11 − (2α − 1)π2λ21u

a
12 +

απ1λ11u
a
21+απ2λ21u

a
22)(λ−(1−2α)π1λ11u

a
21−(1−2α)π2λ21u

a
22+(1−α)π1λ11u

a
11+

(1− α)π2λ21u
a
12)(λ− π1λ12u

a
11 − π2λ22u

a
12 + π1λ12u

a
21 + π2λ22u

a
22)(λ+ π1λ12u

a
21 +

π2λ22u
a
22)(λ + (1 − α)π1λ11u

p
11 + (1 − α)π2λ21u

p
12)(λ − (1 − α)π1λ11u

p
21 + (1 −
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α)π1λ11u
p
11 − (1 − α)π2λ21u

p
22 + (1 − α)π2λ21u

p
12)(λ − απ1λ11u

p
11 + απ1λ11u

p
21 −

π1λ12u
p
11+π1λ12u

p
21−απ2λ21u

p
12+απ2λ21u

p
22−π2λ22u

p
12+π2λ22u

p
22)(λ+π1λ11u

p
21+

π1λ12u
p
21 + π2λ21u

p
22 + π2λ22u

p
22) = 0.

Thus, this system is structurally stable when

(2α− 1)π1λ11u
a
11 + (2α− 1)π2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) < 0,

(1− 2α)π1λ11u
a
21 + (1− 2α)π2λ21u

a
22 − (1− α)π1λ11u

a
11 − (1− α)π2λ21u

a
12) < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11(u
p
21 − up11) + π2λ21(u

p
22 − up12) < 0,

απ1λ11(u
p
11 − up21) + π1λ12(u

p
11 − up21) + απ2λ21(u

p
12 − up22)− π2λ22(u

p
12 − up22) < 0.

Proof of Theorem 5.3

A random action equilibrium is represented by the form:

R4 =




1
2

1
2

0 1


 , Z4 =


 1 0

α 1− α


 .

By substituting the entries of (R4, Z4) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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Sequentially, we check the dynamical stability of the partition equilibrium

(Z2, R2). The characteristic equation of the Jacobian matrix evaluated at the

rest point (Z2, R2) has eight eigenvalues. One of them is zero. Thus, this system

is structually unstable.

Proof of Theorem 5.2

A determinate action equilibrium is represented by the form:

R3 =


 1− α α

0 1


 , Z3 =


 1 0

0 1


 .

By substituting the entries of (R3, Z3) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2);



ṙ11 = (1− α)(απ1λ11u
a
11 + απ2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) = 0,

ṙ12 = α((1− α)π1λ11u
a
21 − (1− α)π1λ11u

a
11 + (1− α)π2λ21u

a
22 − (1− α)π2λ21u

a
12) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point when π1λ11u
a
11 + π2λ21u

a
12 − π1λ11u

a
21 −

π2λ21u
a
22 = 0.

Next, we check the dynamical stability of the determinate action equilib-

rium (Z3, R3). The characteristic equation of the Jacobian matrix evaluated at

the rest point (Z3, R3) is given by (λ − (2α − 1)π1λ11u
a
11 − (2α − 1)π2λ21u

a
12 +

απ1λ11u
a
21+απ2λ21u

a
22)(λ−(1−2α)π1λ11u

a
21−(1−2α)π2λ21u

a
22+(1−α)π1λ11u

a
11+

(1− α)π2λ21u
a
12)(λ− π1λ12u

a
11 − π2λ22u

a
12 + π1λ12u

a
21 + π2λ22u

a
22)(λ+ π1λ12u

a
21 +

π2λ22u
a
22)(λ + (1 − α)π1λ11u

p
11 + (1 − α)π2λ21u

p
12)(λ − (1 − α)π1λ11u

p
21 + (1 −

18

α)π1λ11u
p
11 − (1 − α)π2λ21u

p
22 + (1 − α)π2λ21u

p
12)(λ − απ1λ11u

p
11 + απ1λ11u

p
21 −

π1λ12u
p
11+π1λ12u

p
21−απ2λ21u

p
12+απ2λ21u

p
22−π2λ22u

p
12+π2λ22u

p
22)(λ+π1λ11u

p
21+

π1λ12u
p
21 + π2λ21u

p
22 + π2λ22u

p
22) = 0.

Thus, this system is structurally stable when

(2α− 1)π1λ11u
a
11 + (2α− 1)π2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) < 0,

(1− 2α)π1λ11u
a
21 + (1− 2α)π2λ21u

a
22 − (1− α)π1λ11u

a
11 − (1− α)π2λ21u

a
12) < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11(u
p
21 − up11) + π2λ21(u

p
22 − up12) < 0,

απ1λ11(u
p
11 − up21) + π1λ12(u

p
11 − up21) + απ2λ21(u

p
12 − up22)− π2λ22(u

p
12 − up22) < 0.

Proof of Theorem 5.3

A random action equilibrium is represented by the form:

R4 =




1
2

1
2

0 1


 , Z4 =


 1 0

α 1− α


 .

By substituting the entries of (R4, Z4) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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  19Dynamical stability in strategic communication with the information structure and perturbations

Sequentially, we check the dynamical stability of the partition equilibrium

(Z2, R2). The characteristic equation of the Jacobian matrix evaluated at the

rest point (Z2, R2) has eight eigenvalues. One of them is zero. Thus, this system

is structually unstable.

Proof of Theorem 5.2

A determinate action equilibrium is represented by the form:

R3 =


 1− α α

0 1


 , Z3 =


 1 0

0 1


 .

By substituting the entries of (R3, Z3) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2);



ṙ11 = (1− α)(απ1λ11u
a
11 + απ2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) = 0,

ṙ12 = α((1− α)π1λ11u
a
21 − (1− α)π1λ11u

a
11 + (1− α)π2λ21u

a
22 − (1− α)π2λ21u

a
12) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point when π1λ11u
a
11 + π2λ21u

a
12 − π1λ11u

a
21 −

π2λ21u
a
22 = 0.

Next, we check the dynamical stability of the determinate action equilib-

rium (Z3, R3). The characteristic equation of the Jacobian matrix evaluated at

the rest point (Z3, R3) is given by (λ − (2α − 1)π1λ11u
a
11 − (2α − 1)π2λ21u

a
12 +

απ1λ11u
a
21+απ2λ21u

a
22)(λ−(1−2α)π1λ11u

a
21−(1−2α)π2λ21u

a
22+(1−α)π1λ11u

a
11+

(1− α)π2λ21u
a
12)(λ− π1λ12u

a
11 − π2λ22u

a
12 + π1λ12u

a
21 + π2λ22u

a
22)(λ+ π1λ12u

a
21 +

π2λ22u
a
22)(λ + (1 − α)π1λ11u

p
11 + (1 − α)π2λ21u

p
12)(λ − (1 − α)π1λ11u

p
21 + (1 −

18

α)π1λ11u
p
11 − (1 − α)π2λ21u

p
22 + (1 − α)π2λ21u

p
12)(λ − απ1λ11u

p
11 + απ1λ11u

p
21 −

π1λ12u
p
11+π1λ12u

p
21−απ2λ21u

p
12+απ2λ21u

p
22−π2λ22u

p
12+π2λ22u

p
22)(λ+π1λ11u

p
21+

π1λ12u
p
21 + π2λ21u

p
22 + π2λ22u

p
22) = 0.

Thus, this system is structurally stable when

(2α− 1)π1λ11u
a
11 + (2α− 1)π2λ21u

a
12 − απ1λ11u

a
21 − απ2λ21u

a
22) < 0,

(1− 2α)π1λ11u
a
21 + (1− 2α)π2λ21u

a
22 − (1− α)π1λ11u

a
11 − (1− α)π2λ21u

a
12) < 0,

π1λ12u
a
11 − π1λ12u

a
21 + π2λ22u

a
12 − π2λ22u

a
22 < 0,

π1λ11(u
p
21 − up11) + π2λ21(u

p
22 − up12) < 0,

απ1λ11(u
p
11 − up21) + π1λ12(u

p
11 − up21) + απ2λ21(u

p
12 − up22)− π2λ22(u

p
12 − up22) < 0.

Proof of Theorem 5.3

A random action equilibrium is represented by the form:

R4 =




1
2

1
2

0 1


 , Z4 =


 1 0

α 1− α


 .

By substituting the entries of (R4, Z4) into our dynamical system S′ = Φ′(S),

we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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



ṙ11 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ12 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = α(−1
2π1λ11u

p
21 − π1λ12u

p
21 − 1

2π2λ21u
p
22 − π2λ22u

p
22

+1
2π1λ11u

p
11 + π1λ12u

p
11 +

1
2π2λ21u

p
12 + π2λ22u

p
12) = 0,

ż22 = (1− α)(12π1λ11u
p
21 + π1λ12u

p
21 +

1
2π2λ21u

p
22 + π2λ22u

p
22

−1
2π1λ11u

p
11 − π1λ12u

p
11 − 1

2π2λ21u
p
12 − π2λ22u

p
12) = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when π1λ11u
a
11 − π1λ11u

a
21 + π2λ21u

a
12 − π2λ21u

a
22 = 0, 12π1λ11u

p
21 − 1

2π1λ11u
p
11 +

π1λ12u
p
21 − π1λ12u

p
11 +

1
2π2λ21u

p
22 − 1

2π2λ21u
p
12 + π2λ22u

p
22 − π2λ22u

p
12 = 0.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

has eight eigenvalues. One of them is zero. Thus, this system is structurally

unstable.

Proof of Theorem 5.4

We consider the case in which there is no information structure. Our dynamical

system of the replicator dynamics consists of 8 differential equations:

20




ṙ11 = r11(π1z11u
a
11 + π1z12u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21),

ṙ12 = r12(π1z21u
a
11 + π1z22u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21),

ṙ21 = r21(π2z11u
a
12 + π2z12u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22),

ṙ22 = r22(π2z21u
a
12 + π2z22u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22),

ż11 = z11(π1r11u
p
11 + π2r21u

p
12 − π1r11z11u

p
11 − π2r21z11u

p
12 − π1r11z12u

p
21 − π2r21z12u

p
22),

ż12 = z12(π1r11u
p
21 + π2r21u

p
22 − π1r11z12u

p
21 − π2r21z12u

p
22 − π1r11z11u

p
11 − π2r21z11u

p
12),

ż21 = z21(π1r12u
p
11 + π2r22u

p
12 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12),

ż22 = z22(π1r12u
p
21 + π2r22u

p
22 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12).

By substituting the entries of (R1, Z1) into the above equations, we obtain

rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest points at the

partition equilibrium (R1, Z1).

Sequentially, we study the dynamical stability of these rest points. The char-

acteristic equation of the Jacobian matrix evaluated at the rest point (Z1, R1) is

given by (λ+π1u
a
11)(λ−π1u

a
21+π1u

a
11)(λ−π2u

a
12+π2u

a
22)(λ+π2u

a
22)(λ+π1u

p
11)(λ−

π1u
p
22 + π1u

p
11)(λ− π2u

p
12 + π2u

p
22)(λ+ π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when ua21−ua11 < 0, ua12−ua22 < 0, up22−

up11 < 0, and up12 − up22 < 0.

Proof of Theorem 5.5

As with Theorem 5.4, by substituting the entries of (R4, Z4) into our dynamical

system of Proof of Theorem 5.4, we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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



ṙ11 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ12 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = α(−1
2π1λ11u

p
21 − π1λ12u

p
21 − 1

2π2λ21u
p
22 − π2λ22u

p
22

+1
2π1λ11u

p
11 + π1λ12u

p
11 +

1
2π2λ21u

p
12 + π2λ22u

p
12) = 0,

ż22 = (1− α)(12π1λ11u
p
21 + π1λ12u

p
21 +

1
2π2λ21u

p
22 + π2λ22u

p
22

−1
2π1λ11u

p
11 − π1λ12u

p
11 − 1

2π2λ21u
p
12 − π2λ22u

p
12) = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when π1λ11u
a
11 − π1λ11u

a
21 + π2λ21u

a
12 − π2λ21u

a
22 = 0, 12π1λ11u

p
21 − 1

2π1λ11u
p
11 +

π1λ12u
p
21 − π1λ12u

p
11 +

1
2π2λ21u

p
22 − 1

2π2λ21u
p
12 + π2λ22u

p
22 − π2λ22u

p
12 = 0.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

has eight eigenvalues. One of them is zero. Thus, this system is structurally

unstable.

Proof of Theorem 5.4

We consider the case in which there is no information structure. Our dynamical

system of the replicator dynamics consists of 8 differential equations:

20
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ṙ11 = r11(π1z11u
a
11 + π1z12u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21),

ṙ12 = r12(π1z21u
a
11 + π1z22u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21),

ṙ21 = r21(π2z11u
a
12 + π2z12u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22),

ṙ22 = r22(π2z21u
a
12 + π2z22u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22),

ż11 = z11(π1r11u
p
11 + π2r21u

p
12 − π1r11z11u

p
11 − π2r21z11u

p
12 − π1r11z12u

p
21 − π2r21z12u

p
22),

ż12 = z12(π1r11u
p
21 + π2r21u

p
22 − π1r11z12u

p
21 − π2r21z12u

p
22 − π1r11z11u

p
11 − π2r21z11u

p
12),

ż21 = z21(π1r12u
p
11 + π2r22u

p
12 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12),

ż22 = z22(π1r12u
p
21 + π2r22u

p
22 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12).

By substituting the entries of (R1, Z1) into the above equations, we obtain

rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest points at the

partition equilibrium (R1, Z1).

Sequentially, we study the dynamical stability of these rest points. The char-

acteristic equation of the Jacobian matrix evaluated at the rest point (Z1, R1) is

given by (λ+π1u
a
11)(λ−π1u

a
21+π1u

a
11)(λ−π2u

a
12+π2u

a
22)(λ+π2u

a
22)(λ+π1u

p
11)(λ−

π1u
p
22 + π1u

p
11)(λ− π2u

p
12 + π2u

p
22)(λ+ π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when ua21−ua11 < 0, ua12−ua22 < 0, up22−

up11 < 0, and up12 − up22 < 0.

Proof of Theorem 5.5

As with Theorem 5.4, by substituting the entries of (R4, Z4) into our dynamical

system of Proof of Theorem 5.4, we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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ṙ11 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ12 = 1
2((

1
2 − 1

2α)π1λ11u
a
11 + (12 − 1

2α)π2λ21u
a
12

−(12 − 1
2α)π1λ11u

a
21 − (12 − 1

2α)π2λ21u
a
22) = 0,

ṙ21 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = α(−1
2π1λ11u

p
21 − π1λ12u

p
21 − 1

2π2λ21u
p
22 − π2λ22u

p
22

+1
2π1λ11u

p
11 + π1λ12u

p
11 +

1
2π2λ21u

p
12 + π2λ22u

p
12) = 0,

ż22 = (1− α)(12π1λ11u
p
21 + π1λ12u

p
21 +

1
2π2λ21u

p
22 + π2λ22u

p
22

−1
2π1λ11u

p
11 − π1λ12u

p
11 − 1

2π2λ21u
p
12 − π2λ22u

p
12) = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when π1λ11u
a
11 − π1λ11u

a
21 + π2λ21u

a
12 − π2λ21u

a
22 = 0, 12π1λ11u

p
21 − 1

2π1λ11u
p
11 +

π1λ12u
p
21 − π1λ12u

p
11 +

1
2π2λ21u

p
22 − 1

2π2λ21u
p
12 + π2λ22u

p
22 − π2λ22u

p
12 = 0.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

has eight eigenvalues. One of them is zero. Thus, this system is structurally

unstable.

Proof of Theorem 5.4

We consider the case in which there is no information structure. Our dynamical

system of the replicator dynamics consists of 8 differential equations:
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ṙ11 = r11(π1z11u
a
11 + π1z12u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21),

ṙ12 = r12(π1z21u
a
11 + π1z22u

a
21 − π1r12z21u

a
11 − π1r12z22u

a
21 − π1r11z11u

a
11 − π1r11z12u

a
21),

ṙ21 = r21(π2z11u
a
12 + π2z12u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22),

ṙ22 = r22(π2z21u
a
12 + π2z22u

a
22 − π2r22z21u

a
12 − π2r22z22u

a
22 − π2r21z11u

a
12 − π2r21z12u

a
22),

ż11 = z11(π1r11u
p
11 + π2r21u

p
12 − π1r11z11u

p
11 − π2r21z11u

p
12 − π1r11z12u

p
21 − π2r21z12u

p
22),

ż12 = z12(π1r11u
p
21 + π2r21u

p
22 − π1r11z12u

p
21 − π2r21z12u

p
22 − π1r11z11u

p
11 − π2r21z11u

p
12),

ż21 = z21(π1r12u
p
11 + π2r22u

p
12 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12),

ż22 = z22(π1r12u
p
21 + π2r22u

p
22 − π1r12z22u

p
21 − π2r22z22u

p
22 − π1r12z21u

p
11 − π2r22z21u

p
12).

By substituting the entries of (R1, Z1) into the above equations, we obtain

rij = 0 and zji = 0 for each i, j ∈ (1, 2). Thus, this system has rest points at the

partition equilibrium (R1, Z1).

Sequentially, we study the dynamical stability of these rest points. The char-

acteristic equation of the Jacobian matrix evaluated at the rest point (Z1, R1) is

given by (λ+π1u
a
11)(λ−π1u

a
21+π1u

a
11)(λ−π2u

a
12+π2u

a
22)(λ+π2u

a
22)(λ+π1u

p
11)(λ−

π1u
p
22 + π1u

p
11)(λ− π2u

p
12 + π2u

p
22)(λ+ π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system is structurally stable when ua21−ua11 < 0, ua12−ua22 < 0, up22−

up11 < 0, and up12 − up22 < 0.

Proof of Theorem 5.5

As with Theorem 5.4, by substituting the entries of (R4, Z4) into our dynamical

system of Proof of Theorem 5.4, we obtain rij = 0 and zji = 0 for each i, j ∈ (1, 2):
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ṙ11 = π1u
a
11 − π1(1− α)ua11 − π1αu

a
21 = 0,

ṙ12 = π1u
a
21 − π1αu

a
21 − π1(1− α)ua11 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when ua11 = ua21.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

is given by

(λ+αua21 − (1− 2α)ua11)(λ− (1− 2α)ua21 + (1−α)ua11)(λ− π1u
a
12 + π2u

a
22)(λ+

π2u
a
22)(λ+ (1− α)π1u

p
11)(λ+ (1− α)π1u

p
21 + (1− α)π1u

p
11)(λ− π1αu

p
11 − π2u

p
12 +

π1αu
p
21 + π2u

p
22)(λ+ π1αu

p
21 + π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system can be structurally stable when −αua21 + (1 − 2α)ua11 <

0, (1− 2α)ua21 − (1−α)ua11 < 0, π2u
a
12 − π2u

a
22 < 0, up21 − up11 < 0, π1αu

p
11 + π2u

p
12 −

π1αu
p
21 − π2u

p
22 < 0.

Proof of Theorem 6.1

Assuming that there is a rest point close to a partition equilibrium (R1, Z1),

we write down the rest point as follows:

R1 =


 1− ε1 ε1

ε2 1− ε2


 , Z1 =


 1− δ1 δ1

δ2 1− δ2


 .

Our dynamical system Ṡ = Φ(S) of the selection–mutation dynamics consists

22

of 8 differential equations. 3 By substituting the entries (z̃ij , r̃ji) of (R
∗
1, Z

∗
1 ) into

8 differential equations, we obtain the following system:

ṙ11 = (1− ε1)(π1λ11(1− δ1)u
a
11 + π1λ11δ1u

a
21 + π2λ21(1− δ1)u

a
12 + π2λ21δ1u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22)

+ε(1− 2(1− ε1)),

ṙ12 = ε1(π1λ11δ2u
a
11 + π1λ11(1− δ2)u

a
21 + π2λ21δ2u

a
12 + π2λ21(1− δ2)u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22)

+ε(1− 2ε1),

ṙ21 = ε2(π1λ12(1− δ1)u
a
11 + π1λ12δ1u

a
21 + π2λ22(1− δ1)u

a
12 + π2λ22δ1u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22)

+ε(1− 2ε2),

ṙ22 = (1− ε2)(π1λ12δ2u
a
11 + π1λ12(1− δ2)u

a
21 + π2λ22δ2u

a
12 + π2λ22(1− δ2)u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22)

+ε(1− 2(1− ε2)),

ż11 = (1− δ1)(π1λ11(1− ε1)u
p
11 + π1λ12ε2u

p
11 + π2λ21(1− ε1)u

p
12 + π2λ22ε2u

p
12

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22)

+δ(1− 2(1− δ1)),

ż12 = δ1(π1λ11(1− ε1)u
p
21 + π1λ12ε2u

p
21 + π2λ21(1− ε1)u

p
22 + π2λ22ε2u

p
22

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12)

+δ(1− 2δ1),

ż21 = δ2(π1λ11ε1u
p
11 + π1λ12(1− ε2)u

p
11 + π2λ21ε1u

p
12 + π2λ22(1− ε2)u

p
12

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2δ2),

ż22 = (1− δ2)(π1λ11ε1u
p
21 + π1λ12(1− ε2)u

p
21 + π2λ21ε1u

p
22 + π2λ22(1− ε2)u

p
22

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2(1− δ2)).

.

3See p 10 in this paper.
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ṙ11 = π1u
a
11 − π1(1− α)ua11 − π1αu

a
21 = 0,

ṙ12 = π1u
a
21 − π1αu

a
21 − π1(1− α)ua11 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when ua11 = ua21.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

is given by

(λ+αua21 − (1− 2α)ua11)(λ− (1− 2α)ua21 + (1−α)ua11)(λ− π1u
a
12 + π2u

a
22)(λ+

π2u
a
22)(λ+ (1− α)π1u

p
11)(λ+ (1− α)π1u

p
21 + (1− α)π1u

p
11)(λ− π1αu

p
11 − π2u

p
12 +

π1αu
p
21 + π2u

p
22)(λ+ π1αu

p
21 + π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system can be structurally stable when −αua21 + (1 − 2α)ua11 <

0, (1− 2α)ua21 − (1−α)ua11 < 0, π2u
a
12 − π2u

a
22 < 0, up21 − up11 < 0, π1αu

p
11 + π2u

p
12 −

π1αu
p
21 − π2u

p
22 < 0.

Proof of Theorem 6.1

Assuming that there is a rest point close to a partition equilibrium (R1, Z1),

we write down the rest point as follows:

R1 =


 1− ε1 ε1

ε2 1− ε2


 , Z1 =


 1− δ1 δ1

δ2 1− δ2


 .

Our dynamical system Ṡ = Φ(S) of the selection–mutation dynamics consists
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of 8 differential equations. 3 By substituting the entries (z̃ij , r̃ji) of (R
∗
1, Z

∗
1 ) into

8 differential equations, we obtain the following system:

ṙ11 = (1− ε1)(π1λ11(1− δ1)u
a
11 + π1λ11δ1u

a
21 + π2λ21(1− δ1)u

a
12 + π2λ21δ1u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22)

+ε(1− 2(1− ε1)),

ṙ12 = ε1(π1λ11δ2u
a
11 + π1λ11(1− δ2)u

a
21 + π2λ21δ2u

a
12 + π2λ21(1− δ2)u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22)

+ε(1− 2ε1),

ṙ21 = ε2(π1λ12(1− δ1)u
a
11 + π1λ12δ1u

a
21 + π2λ22(1− δ1)u

a
12 + π2λ22δ1u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22)

+ε(1− 2ε2),

ṙ22 = (1− ε2)(π1λ12δ2u
a
11 + π1λ12(1− δ2)u

a
21 + π2λ22δ2u

a
12 + π2λ22(1− δ2)u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22)

+ε(1− 2(1− ε2)),

ż11 = (1− δ1)(π1λ11(1− ε1)u
p
11 + π1λ12ε2u

p
11 + π2λ21(1− ε1)u

p
12 + π2λ22ε2u

p
12

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22)

+δ(1− 2(1− δ1)),

ż12 = δ1(π1λ11(1− ε1)u
p
21 + π1λ12ε2u

p
21 + π2λ21(1− ε1)u

p
22 + π2λ22ε2u

p
22

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12)

+δ(1− 2δ1),

ż21 = δ2(π1λ11ε1u
p
11 + π1λ12(1− ε2)u

p
11 + π2λ21ε1u

p
12 + π2λ22(1− ε2)u

p
12

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2δ2),

ż22 = (1− δ2)(π1λ11ε1u
p
21 + π1λ12(1− ε2)u

p
21 + π2λ21ε1u

p
22 + π2λ22(1− ε2)u

p
22

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2(1− δ2)).

.

3See p 10 in this paper.
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



ṙ11 = π1u
a
11 − π1(1− α)ua11 − π1αu

a
21 = 0,

ṙ12 = π1u
a
21 − π1αu

a
21 − π1(1− α)ua11 = 0,

ṙ22 = 0,

ż11 = 0,

ż12 = 0,

ż21 = 0,

ż22 = 0.

Thus, this system has the rest point at the random action equilibrium (R4, Z4)

when ua11 = ua21.

Next, we check the stability of the random action equilibrium (R4, Z4). The

characteristic equation of the Jacobian matrix evaluated at the rest point (R4, Z4)

is given by

(λ+αua21 − (1− 2α)ua11)(λ− (1− 2α)ua21 + (1−α)ua11)(λ− π1u
a
12 + π2u

a
22)(λ+

π2u
a
22)(λ+ (1− α)π1u

p
11)(λ+ (1− α)π1u

p
21 + (1− α)π1u

p
11)(λ− π1αu

p
11 − π2u

p
12 +

π1αu
p
21 + π2u

p
22)(λ+ π1αu

p
21 + π2u

p
22) = 0, where λ is the eigenvalue.

Thus, this system can be structurally stable when −αua21 + (1 − 2α)ua11 <

0, (1− 2α)ua21 − (1−α)ua11 < 0, π2u
a
12 − π2u

a
22 < 0, up21 − up11 < 0, π1αu

p
11 + π2u

p
12 −

π1αu
p
21 − π2u

p
22 < 0.

Proof of Theorem 6.1

Assuming that there is a rest point close to a partition equilibrium (R1, Z1),

we write down the rest point as follows:

R1 =


 1− ε1 ε1

ε2 1− ε2


 , Z1 =


 1− δ1 δ1

δ2 1− δ2


 .

Our dynamical system Ṡ = Φ(S) of the selection–mutation dynamics consists
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of 8 differential equations. 3 By substituting the entries (z̃ij , r̃ji) of (R
∗
1, Z

∗
1 ) into

8 differential equations, we obtain the following system:

ṙ11 = (1− ε1)(π1λ11(1− δ1)u
a
11 + π1λ11δ1u

a
21 + π2λ21(1− δ1)u

a
12 + π2λ21δ1u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22)

+ε(1− 2(1− ε1)),

ṙ12 = ε1(π1λ11δ2u
a
11 + π1λ11(1− δ2)u

a
21 + π2λ21δ2u

a
12 + π2λ21(1− δ2)u

a
22

−π1λ11ε1δ2u
a
11 − π1λ11ε1(1− δ2)u

a
21 − π2λ21ε1δ2u

a
12 − π2λ21ε1(1− δ2)u

a
22

−π1λ11(1− ε1)(1− δ1)u
a
11 − π1λ11(1− ε1)δ1u

a
21 − π2λ21(1− ε1)(1− δ1)u

a
12 − π2λ21(1− ε1)δ1u

a
22)

+ε(1− 2ε1),

ṙ21 = ε2(π1λ12(1− δ1)u
a
11 + π1λ12δ1u

a
21 + π2λ22(1− δ1)u

a
12 + π2λ22δ1u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22)

+ε(1− 2ε2),

ṙ22 = (1− ε2)(π1λ12δ2u
a
11 + π1λ12(1− δ2)u

a
21 + π2λ22δ2u

a
12 + π2λ22(1− δ2)u

a
22

−π1λ12(1− ε2)δ2u
a
11 − π1λ12(1− ε2)(1− δ2)u

a
21 − π2λ22(1− ε2)δ2u

a
12 − π2λ22(1− ε2)(1− δ2)u

a
22

−π1λ12ε2(1− δ1)u
a
11 − π1λ12ε2δ1u

a
21 − π2λ22ε2(1− δ1)u

a
12 − π2λ22ε2δ1u

a
22)

+ε(1− 2(1− ε2)),

ż11 = (1− δ1)(π1λ11(1− ε1)u
p
11 + π1λ12ε2u

p
11 + π2λ21(1− ε1)u

p
12 + π2λ22ε2u

p
12

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22)

+δ(1− 2(1− δ1)),

ż12 = δ1(π1λ11(1− ε1)u
p
21 + π1λ12ε2u

p
21 + π2λ21(1− ε1)u

p
22 + π2λ22ε2u

p
22

−π1λ11(1− ε1)δ1u
p
21 − π1λ12ε2δ1u

p
21 − π2λ21(1− ε1)δ1u

p
22 − π2λ22ε2δ1u

p
22

−π1λ11(1− ε1)(1− δ1)u
p
11 − π1λ12ε2(1− δ1)u

p
11 − π2λ21(1− ε1)(1− δ1)u

p
12 − π2λ22ε2(1− δ1)u

p
12)

+δ(1− 2δ1),

ż21 = δ2(π1λ11ε1u
p
11 + π1λ12(1− ε2)u

p
11 + π2λ21ε1u

p
12 + π2λ22(1− ε2)u

p
12

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2δ2),

ż22 = (1− δ2)(π1λ11ε1u
p
21 + π1λ12(1− ε2)u

p
21 + π2λ21ε1u

p
22 + π2λ22(1− ε2)u

p
22

−π1λ11ε1(1− δ2)u
p
21 − π1λ12(1− ε2)(1− δ2)u

p
21 − π2λ21ε1(1− δ2)u

p
22 − π2λ22(1− ε2)(1− δ2)u

p
22

−π1λ11ε1δ2u
p
11 − π1λ12(1− ε2)δ2u

p
11 − π2λ21ε1δ2u

p
12 − π2λ22(1− ε2)δ2u

p
12)

+δ(1− 2(1− δ2)).

.

3See p 10 in this paper.
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We remove redundant equations ṙij and żji for i = j = 1 and i = j = 2.

Let Df denote the Jacobian matrix of ṙij and żji with respect to ε1, ε2, δ1 and

δ2, that is,

Df =




∂ṙ12
∂ε1

∂ṙ12
∂ε2

∂ṙ12
∂δ1

∂ṙ12
∂δ2

∂ṙ21
∂ε1

∂ṙ21
∂ε2

∂ṙ21
∂δ1

∂ṙ21
∂δ2

∂ż12
∂ε1

∂ż12
∂ε2

∂ż12
∂δ1

∂ż12
∂δ2

∂ż12
∂ε1

∂ż21
∂ε2

∂ż21
∂δ1

∂ż21
∂δ2




.

Let det (Df(x)) denote the determinant ofDf(x) at point x = (ε1, ε2, δ1, δ2; ε, δ).

Since

Df(0)

=




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




at the point (ε1, ε2, δ1, δ2; ε, δ) = (0, 0, 0, 0; 0, 0), we have Df(0) ̸= 0 when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ22u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

Proof of Corollary 1

Tayler’s formula for the function (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ), δ2(ε, δ)) about (ε, δ) =

(0, 0) is given by




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




.
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Because (ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) is a solution of the system

fI(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0); 0, 0) = 0, I = 1, 2, 3, 4, we obtain

(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) = (0, 0, 0, 0).

By the implicit function theorem and the fact that

Df(0) =




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




.

We obtain




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)




= −(Df(0)−1)




∂f1
∂ε (0)

∂f1
∂δ (0)

∂f2
∂ε (0)

∂f2
∂δ (0)

∂f3
∂ε (0)

∂f3
∂δ (0)

∂f4
∂ε (0)

∂f4
∂δ (0)




= −(Df(0)−1)−1




1 0

1 0

0 1

0 1




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12




,

25



24 Seigo Uchida

We remove redundant equations ṙij and żji for i = j = 1 and i = j = 2.

Let Df denote the Jacobian matrix of ṙij and żji with respect to ε1, ε2, δ1 and

δ2, that is,

Df =




∂ṙ12
∂ε1

∂ṙ12
∂ε2

∂ṙ12
∂δ1

∂ṙ12
∂δ2

∂ṙ21
∂ε1

∂ṙ21
∂ε2

∂ṙ21
∂δ1

∂ṙ21
∂δ2

∂ż12
∂ε1

∂ż12
∂ε2

∂ż12
∂δ1

∂ż12
∂δ2

∂ż12
∂ε1

∂ż21
∂ε2

∂ż21
∂δ1

∂ż21
∂δ2




.

Let det (Df(x)) denote the determinant ofDf(x) at point x = (ε1, ε2, δ1, δ2; ε, δ).

Since

Df(0)

=




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




at the point (ε1, ε2, δ1, δ2; ε, δ) = (0, 0, 0, 0; 0, 0), we have Df(0) ̸= 0 when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ22u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

Proof of Corollary 1

Tayler’s formula for the function (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ), δ2(ε, δ)) about (ε, δ) =

(0, 0) is given by




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




.
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Because (ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) is a solution of the system

fI(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0); 0, 0) = 0, I = 1, 2, 3, 4, we obtain

(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) = (0, 0, 0, 0).

By the implicit function theorem and the fact that

Df(0) =




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




.

We obtain




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)




= −(Df(0)−1)




∂f1
∂ε (0)

∂f1
∂δ (0)

∂f2
∂ε (0)

∂f2
∂δ (0)

∂f3
∂ε (0)

∂f3
∂δ (0)

∂f4
∂ε (0)

∂f4
∂δ (0)




= −(Df(0)−1)−1




1 0

1 0

0 1

0 1




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12




,
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We remove redundant equations ṙij and żji for i = j = 1 and i = j = 2.

Let Df denote the Jacobian matrix of ṙij and żji with respect to ε1, ε2, δ1 and

δ2, that is,

Df =




∂ṙ12
∂ε1

∂ṙ12
∂ε2

∂ṙ12
∂δ1

∂ṙ12
∂δ2

∂ṙ21
∂ε1

∂ṙ21
∂ε2

∂ṙ21
∂δ1

∂ṙ21
∂δ2

∂ż12
∂ε1

∂ż12
∂ε2

∂ż12
∂δ1

∂ż12
∂δ2

∂ż12
∂ε1

∂ż21
∂ε2

∂ż21
∂δ1

∂ż21
∂δ2




.

Let det (Df(x)) denote the determinant ofDf(x) at point x = (ε1, ε2, δ1, δ2; ε, δ).

Since

Df(0)

=




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




at the point (ε1, ε2, δ1, δ2; ε, δ) = (0, 0, 0, 0; 0, 0), we have Df(0) ̸= 0 when

π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ22u

a
12 ̸= 0,

π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 ̸= 0,

π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 ̸= 0,

π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22 ̸= 0.

Proof of Corollary 1

Tayler’s formula for the function (ε1(ε, δ), ε2(ε, δ), δ1(ε, δ), δ2(ε, δ)) about (ε, δ) =

(0, 0) is given by




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




.
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Because (ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) is a solution of the system

fI(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0); 0, 0) = 0, I = 1, 2, 3, 4, we obtain

(ε1(0, 0), ε2(0, 0), δ1(0, 0), δ2(0, 0)) = (0, 0, 0, 0).

By the implicit function theorem and the fact that

Df(0) =




π1λ11u
a
21 + π2λ21u

a
22 − π1λ11u

a
11 − π2λ21u

a
12 0 0 0

0 π1λ12u
a
11 + π2λ22u

a
12 − π1λ12u

a
21 − π2λ22u

a
22 0 0

0 0 π1λ11u
p
21 + π2λ21u

p
22 − π1λ11u

p
11 − π2λ21u

p
12 0

0 0 0 π1λ12u
p
11 + π2λ22u

p
12 − π1λ12u

p
21 − π2λ22u

p
22




.

We obtain




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)




= −(Df(0)−1)




∂f1
∂ε (0)

∂f1
∂δ (0)

∂f2
∂ε (0)

∂f2
∂δ (0)

∂f3
∂ε (0)

∂f3
∂δ (0)

∂f4
∂ε (0)

∂f4
∂δ (0)




= −(Df(0)−1)−1




1 0

1 0

0 1

0 1




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12




,
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where 0 = (0, 0, 0, 0; 0, 0). Thus, Tayler’s formula described above becomes




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12





 ε

δ




+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




,

where oI(ε, δ), I = 1, 2, 3, 4, stands for the second- or higher-order terms of ε

and δ. Thus, we obtain the first-order approximated values of ε1, ε2, δ1 and δ2,

respectively, as follows:

ε1 = 1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22
ε+ o1(ε, δ),

ε2 = 1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε+ o2(ε, δ),

δ1 = 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ + o3(ε, δ),

δ2 = 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ + o4(ε, δ).

We find the first-order approximated rest point. □

Proof of Theorem 6.2

Suppose that Λ = I, π1 = π2 =
1
2 , U

A =


 1 0

0 1
2


 , and UP =


 1 0

1
2 2


.
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In this case, the characteristic equation of the first-order approximated Jaco-

bian matrix evaluated at the rest point close to the partition equilibrium is given

by (λ− ε− 2δ+ 1
2)(λ+ ε− 9

2δ+
1
2)(λ+ 3

4ε−
5
4δ+

1
4)(λ− 1

2ε+4δ+ 1
4)(λ− ε− 2δ+

1
2)(λ− ε+1)(λ+ 1

2ε)(λ+ 1
2ε+

1
2δ+

1
2)

2 = 0, where λ is the eigenvalue. Thus, this

system is structurally stable.

Without perturbations, ε = δ = 0. Thus, this characteristic equation has zero

eigenvalue. It is structurally unstable.

27



26 Seigo Uchida

where 0 = (0, 0, 0, 0; 0, 0). Thus, Tayler’s formula described above becomes




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12





 ε

δ




+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




,

where oI(ε, δ), I = 1, 2, 3, 4, stands for the second- or higher-order terms of ε

and δ. Thus, we obtain the first-order approximated values of ε1, ε2, δ1 and δ2,

respectively, as follows:

ε1 = 1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22
ε+ o1(ε, δ),

ε2 = 1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε+ o2(ε, δ),

δ1 = 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ + o3(ε, δ),

δ2 = 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ + o4(ε, δ).

We find the first-order approximated rest point. □

Proof of Theorem 6.2

Suppose that Λ = I, π1 = π2 =
1
2 , U

A =


 1 0

0 1
2


 , and UP =


 1 0

1
2 2


.
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In this case, the characteristic equation of the first-order approximated Jaco-

bian matrix evaluated at the rest point close to the partition equilibrium is given

by (λ− ε− 2δ+ 1
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2δ+
1
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4ε−
5
4δ+

1
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2)(λ− ε+1)(λ+ 1

2ε)(λ+ 1
2ε+

1
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1
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2 = 0, where λ is the eigenvalue. Thus, this

system is structurally stable.

Without perturbations, ε = δ = 0. Thus, this characteristic equation has zero

eigenvalue. It is structurally unstable.
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where 0 = (0, 0, 0, 0; 0, 0). Thus, Tayler’s formula described above becomes




ε1(ε, δ)

ε2(ε, δ)

δ1(ε, δ)

δ2(ε, δ)




=




ε1(0, 0)

ε2(0, 0)

δ1(0, 0)

δ2(0, 0)




+




∂ε1
∂ε (0, 0)

∂ε1
∂δ (0, 0)

∂ε2
∂ε (0, 0)

∂ε2
∂δ (0, 0)

∂δ1
∂ε (0, 0)

∂δ1
∂δ (0, 0)

∂δ2
∂ε (0, 0)

∂δ2
∂δ (0, 0)





 ε

δ


+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




=




1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22

0

1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12

0

0 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22

0 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12





 ε

δ




+




o1(ε, δ)

o2(ε, δ)

o3(ε, δ)

o4(ε, δ)




,

where oI(ε, δ), I = 1, 2, 3, 4, stands for the second- or higher-order terms of ε

and δ. Thus, we obtain the first-order approximated values of ε1, ε2, δ1 and δ2,

respectively, as follows:

ε1 = 1
π1λ11ua

11+π2λ21ua
12−π1λ11ua

21−π2λ21ua
22
ε+ o1(ε, δ),

ε2 = 1
π1λ12ua

21+π2λ22ua
22−π1λ12ua

11−π2λ22ua
12
ε+ o2(ε, δ),

δ1 = 1
π1λ11u

p
11+π2λ21u

p
12−π1λ11u

p
21−π2λ21u

p
22
δ + o3(ε, δ),

δ2 = 1
π1λ12u

p
21+π2λ22u

p
22−π1λ12u

p
11−π2λ22u

p
12
δ + o4(ε, δ).

We find the first-order approximated rest point. □

Proof of Theorem 6.2

Suppose that Λ = I, π1 = π2 =
1
2 , U

A =


 1 0

0 1
2


 , and UP =


 1 0

1
2 2


.
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In this case, the characteristic equation of the first-order approximated Jaco-

bian matrix evaluated at the rest point close to the partition equilibrium is given

by (λ− ε− 2δ+ 1
2)(λ+ ε− 9

2δ+
1
2)(λ+ 3

4ε−
5
4δ+

1
4)(λ− 1

2ε+4δ+ 1
4)(λ− ε− 2δ+

1
2)(λ− ε+1)(λ+ 1

2ε)(λ+ 1
2ε+

1
2δ+

1
2)

2 = 0, where λ is the eigenvalue. Thus, this

system is structurally stable.

Without perturbations, ε = δ = 0. Thus, this characteristic equation has zero

eigenvalue. It is structurally unstable.
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