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Abstract 

 

Curved folding is a field of origami that is becoming popular in recent years, attracting 

many people by its beautiful appearance.  The creases on the flat paper are in the 

shapes of lines and curves.  By folding the paper along the creases, a piece of paper 

becomes a 3D shape.  While such paper arts have been created by many artists and 

hobbyists, the behavior of the paper in curved folding is not clear.  The folding motions, 

or the shapes of the paper in between the flat unfolded state and the final folded state, 

are not easy to clarify and to visualize because the curved surface has the flexibility to 

change its bending directions.  In other words, the ruling, the straight lines on a 

developable surface perpendicular to the bending direction, transits on the surface while 

the paper is being folded.  Nonetheless, visualizing the paper shape being folded has a 

significance in using the curved folding technique in many applications, such as metal 

plate manufacturing in curved folded shape using machines.  Understanding the shape 

of the paper while being deformed is essential for the automation of the process.  It may 

also be useful in designing a new crease pattern or help users learn how to fold the curved 

folding efficiently. 

In this thesis, prototypes of a graphical user interface (GUI) system are proposed, 

which model and visualize the curved folding while allowing the ruling transition during 

the folding motion.  Through the GUI, the user can design the shape of the paper by 

changing the 2D or 3D shape of the curved crease and its folding angle.  The curved 

surfaces are represented by quad strips adjacent to the curved crease, having the quads 

divided by the rulings.  As the user changes the shape or the folding angle of the crease, 

the directions of the rulings are derived, and the paper shape is generated.  In the 

simulation of the folding and the unfolding motions, the folding angle is changed 

continuously within the original angle and zero, the flat state.  Then the shapes of the 

quads are updated at every time step of the motion as the rulings are recalculated from 

the new curve shape and the folding angle. 

To start the research, we performed some preliminary experiments about the folding 

motion simulation using the 3D models while prohibiting the moving of the rulings.  

This experiment was carried out to verify the necessity of the model supporting the 

ruling transition while the bending direction of the paper changes.  The result shows 

that the rigid folding method does not simulate such case, and the spring-mass model 

supports with some strain.  Then, an initial attempt to estimate the paper shapes being 

folded is introduced.  The paper with some color pattern printed was captured by RGBD 

camera to obtain the 3D shape of the paper.  This trial had been pended due to the low 

performance of the camera but demonstrated the necessity of the 3D model of the curved 

folded paper, which leads to our research. 

As a basic method of the research, the process of modeling a piece of paper with one 

curved crease is first introduced, including the calculation method of the discretized 

curved fold model, the procedure of user manipulation, and the method of evaluating the 

developability and the visual appearances.  Then, the special cases where the curved 

crease contains an inflection point is introduced, with a solution to such cases.  As the 

further development, the method to deal with multiple creases are brought up, such as 

the user interface to add some creases on the existing curved surfaces.  The method 



 

 

carries some difficulties in adjusting the shape of the added crease so that the derived 

rulings are not crossing on the paper, which we proposed some solutions.  Another 

achievement is the modeling method of rotationally symmetric curved folding.  It is 

realized by placing some simple segments of curved folded surfaces in rotational 

symmetry.  The folding motion of such shape which requires the rulings to transit in 

the intermediate state was visualized successfully with small gaps between the segments.  

For all 3D models created, the developability of the polygon model is verified numerically 

and evaluated with the visual comparison with photos of real paper. 
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Chapter 1.  

Introduction 
 

This chapter gives an introduction to the modeling and visualization of the curved folding 

and its folding motion, which is the main topic of this thesis.  In Section 1.1, the curved 

folding, the main research area of the thesis, is first introduced.  In Section 1.2, as the 

motivation of the research, the uncertainty of the curved folded paper shapes, with some 

explanation about the property of the paper, is discussed, followed by the needs and the 

significance of understanding them.  Then, in Section 1.3, the contribution of our 

research is listed and explained, which is the modeling, visualizing, and enabling users 

to edit the curved folded paper model interactively.  Finally, the outline of this thesis 

and the list of publications are introduced in Section 1.4 and 1.5. 

 

1.1. The area of the research 

 

Curved folding is a field of origami that is becoming popular in recent years, attracting 

many people by its beautiful appearance.  The creases on the 2D crease pattern are in 

the shapes of lines and curves.  By folding the paper along the creases, a piece of paper 

becomes a 3D shape, as some examples shown in Figure 1-1.  The geometry of the 

curved folding is explained in Chapter 2.  Their shapes may be used for containers, lamp 

shapes, etc., and some other applications are introduced in Chapter 3, related work. 

 

   
(a)   (b)   (c) 

Figure 1-1 Examples of curved folding from flicker [Mitani].  (a) Huffman's Tower.  (b) 

Relief of a wave.  (c) Spherical wrapping. 

 

1.2. Motivation 

 

While the paper arts of curved folding have been created by many artists and hobbyists, 

the behavior of the curved folded paper is not yet so clear.  The folding motions, or the 

shapes of the paper in between the flat unfolded state and the final folded state, are not 

easy to clarify and to visualize because the curved surface has the flexibility to change 

its bending directions.  The smooth surfaces, made of paper or a thin plate, composing 

a curved folding is known to be developable surfaces, which may be flattened on to a 

plane without stretching or tearing (Figure 1-2).  When it is bent, the surface contains 

rulings, or the straight lines on the curved surface perpendicular to the surface’s bending 
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directions, with identical normal vectors at any point on a ruling.  Figure 1-3 shows a 

folding motion of a curved folding with one curved crease on a piece of paper generated 

by our method.  They are shown as a 3D polygon models and its 2D configurations, 

showing the crease curve and the rulings mapped to the 2D space of the flattened state.  

In both figures, rulings are depicted explicitly.  Unlike the classical paper folding with 

straight crease lines, the bending direction of the curved surface changes continuously 

as the paper is being folded, causing the directions of the rulings to transit.  The ruling 

configuration, or the directions of the rulings mapped to the 2D space, also changes if 

the 3D shape of the crease curve is deformed.  By curling or twisting the 3D crease curve, 

different appearances are created from the same 2D crease under the restriction of 

developability.  Because of this flexibility, it is not easy to predict possible 3D shapes or 

the folding motion of a curved folding. 

Nonetheless, visualizing the paper shape being folded has a significance in using the 

curved folding technique in many applications.  To manufacture a metal plate in curved 

folded shape using machines, such as RoboFolds [Epps_14], understanding the shape of 

the plate while being deformed is essential for the automation of the process.  It may 

also be useful in designing a new crease pattern by examining its foldability, that is if 

the shape is able to be folded without strain or self-collision.  Also, the users could learn 

how to fold the curved folding efficiently, which is sometimes difficult for beginners.  In 

this thesis, we will explore the method of modeling, visualizing, and designing the shape 

of the curved folding with the user manipulation, considering its folding motion and 

allowing its surface to change the bending direction while being folded. 

 

 

 

Figure 1-2 Developable surface. 
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Figure 1-3 Folding motion of curved crease and rulings as 3D polygon shape (top row) 

and 2D ruling configuration (bottom row).  Black curve shows the curved crease, purple 

lines show rulings on left side of the crease, and pink lines show rulings on the right side. 

 

1.3. Principal contribution 

 

In this thesis, prototypes of graphical user interface (GUI) system are proposed which 

model and visualize the curved folding, allowing the ruling transition during the folding 

motion.  The main contribution of this thesis is the followings: 

1. Interactive GUI system where the user can change the 2D crease curve, the 3D 

crease curve, and its folding angle while checking the resulting paper shape 

immediately. 

2. Simulation of the folding motion by the interpolation of the folding angle between 

the folded state and the flat unfolded state, updating the rulings and the paper 

shape in every time step. 

3. A method to handle a special case which the crease curve contains an inflection point 

where the curvature becomes zero. 

4. A method to add curved creases on an existing curved surface and to adjust the curve 

shape interactively to make a user intended paper shape. 

5. Generation of the folding motion of a rotationally symmetric curved folding, by 

modeling the paper as a set of simple segments aligned in rotational symmetry. 

 

The detail of each item is described below. 

As an interactive GUI system, shown in Figure 1-4, the user inputs and adjusts the 

parameters on some points on the curved crease to edit the shape of the curved folding.  

The parameters are the 2D and 3D curvatures, torsion, and the folding angle.  The 

system supports the user by two means, by the immediate feedback to enable interactive 

manipulation and by the restriction of the inputs to keep the curved surface smooth.  To 

enable the interactive manipulation, the system derives the shapes of the crease curve 

and the curved surfaces from the input parameters immediately and displayed on the 

screen, using the method introduced in Chapter 6 with the equations in Chapter 2.  To 

keep the generated surfaces to be in smooth shape, it restricts the user input to edit the 
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parameters only on some points evenly placed on the crease curve.  The parameters of 

all other points on the curve are calculated by the spline interpolation of the user input, 

making them change smoothly along the curve.  As a result, the shape of the crease 

curve is ensured to be continuous, the directions of the rulings change gradually along 

the curve, and the curved surfaces are always smooth.  Such a system supports the user 

to keep the parameters to be in the feasible region to make existable shapes in the real 

world.  Otherwise, a naive input may, for example, allow the ruling directions to be 

fluctuating and to cross each other on the surface, as shown in Figure 1-5, which are to 

be improved by the interactive editing. 

 

 
 

Figure 1-4 Prototype of GUI system. 

 

 

 

Figure 1-5 Example of generated curved folding with ruling crossing, failed to be in 

existable shape. 

 

While the design of the curved folding carries some difficulties, the simulation of 

folding motion is realized by a simple interpolation of the folding angles and the torsions 

of the 3D crease curve between the user input value and zero, the flat state.  As some 

examples shown in Figure 1-3 and Figure 1-6, the folding motion is the series of 3D paper 

shapes while being folded.  Using the equations and the methods in Chapter 2 and 6, 

we could derive the 3D shapes and the ruling directions straight forward from the given 

parameters.  The folding motion is generated by carrying out this fast, non-iterative 

calculation in every time step. 

    Our system also supports the special case where the crease curve contains an 

inflection point, which is a point with zero-curvature where the crease is a straight line 

in a very local region.  We added a process to rectify some parameters to meet the 
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property of the paper shape in the real world.  To be specific, the torsion of the 3D crease 

curve must be zero, and the folding angle must be constant around the zero-curvature 

point, to be explained in detail in Chapter 7.  Instead of directly restricting the user 

input, we took a method to rectify the parameters afterward.  With the rectification, the 

curved folding with the crease in shape of the letter S, having an inflection point in the 

center, is modeled successfully to be in an existable shape, as shown in Figure 1-6. 

 

 

 

Figure 1-6 Curved folding with curved crease having inflection point. 

 

In adding a curved crease on a curved folded surface, shown in Figure 1-7, the 

system provides some supportive user interface to help the user generate an intended 

and existable shape.  In the system, the curved crease is approximated by a B-spline 

curve to keep the smoothness, and the user is allowed to adjust its shape interactively 

by moving the control points of the parametric curve in 2D space.  Yet it is a quite 

delicate task so that the crossings of the rulings still easily occur by a naive manipulation.  

To resolve this problem, we provide some additional process to restrict the movement of 

the control point and to optimize their positions based on some cost functions.  This 

method was useful to some extent when the paper contains only a few creases.  But as 

the user adds more creases, adjusting the curve shape to resolve the rulings crossing 

would become extremely difficult. 

 

    

Figure 1-7 Curved folding with multiple creases.  The curved crease in the center, 

between purple and pink rulings, is the original crease.  The other two curved creases 

on the sides are the added creases. 
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Finally, we propose a method to generate the folding motion of rotational symmetric 

curved folding, shown in Figure 1-8, integrating the techniques introduced above.  In 

this work, we assume that the paper shape is rotationally symmetric at all stages of the 

folding motion, though in the real world it may temporarily be asymmetric.  The paper 

is modeled as a group of identical segments containing only one crease, placed in 

rotational symmetry, shown in the middle row of Figure 1-8 as a rendered piece with the 

rulings.  By editing one segment, the rest of the paper is cloned in accordance with the 

symmetric property of the crease pattern.  Consequently, the curved folding with 

several creases is modeled on the basis of our previous method, as each segment contains 

only a small number of creases.  Our model supports straight creases in the curved 

folding by allowing a small gap on the creases located between the segments. 

 

 

 

Figure 1-8 Fold motion of rotational symmetric curved folding.  Top row: rendered 3D 

model.  Middle row: wireframe model with one segment rendered with the rulings.  

Bottom row: photos of real paper. 
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1.4. Outline 

 

This thesis consists of 10 chapters.  The geometry of the curves, surfaces, and the curved 

folding is first explained in Chapter 2.  It is based on the general geometry and the 

equations introduced by Fuchs and Tabachnikov [Fuchs_99], which describes the 

relation between the folding angles, the shape of the crease curve mapped to the 2D 

paper, and the shape of the crease curve in 3D space.  Then the formula to calculate the 

rulings and the curved surface is explained.  These equations are used in our work in 

the following chapters. 

In Chapter 3, we review the related work.  Starting from the modeling method of 

developable surfaces and the curved folding, we introduce the research on their design 

methods and the simulation of folding motion, followed by the dynamic simulations 

proposed in recent years.  Then papers about the mathematical analysis on the curved 

folding are presented, some of which we use in our research.  At last, some applications 

using the curved folding are given. 

In Chapter 4, preliminary experiments on the simulation of the folding motion are 

performed and reported, using the 3D models with fixed rulings.  This experiment was 

carried out to verify the necessity of the model supporting the ruling transition while the 

bending direction of the paper changes.  The result shows that the rigid folding method 

does not simulate such case, and the spring-mass model supports with some strain. 

    In Chapter 5, an initial attempt to estimate the paper shapes being folded is 

introduced.  The paper was printed with some color pattern to identify the positions on 

the paper.  Then it was captured by RGBD camera to obtain the images and the 3D 

point cloud data with textures.  This trial had been pended due to the low performance 

of the camera but demonstrated the necessity of the 3D model of the curved folded paper, 

which leads to the work in Chapter 6. 

    The basic method of modeling a piece of paper with one curved crease is introduced 

in Chapter 6 and also used in the following chapters.  The content of this chapter 

includes the calculation method of the discretized curved folding model using the 

equations in Chapter 2, the procedure of user manipulation, and the method of 

evaluating model's developability and visual appearances.  In Chapter 7, the special 

case where the curved crease contains an inflection point is introduced, with the 

solutions to such cases. 

    As the further development, the method to work with the curved folding having 

multiple creases are proposed.  Chapter 8 introduces a user interface to add some 

creases on the existing curved surfaces, with some difficulties in adjusting its shape to 

make an existable paper shape and some solutions to it.  In Chapter 9, another method 

is proposed to model a rotationally symmetric curved folding by placing some simple 

segments of curved folded surfaces in rotational symmetry.  The folding motion of such 

shape, which requires the rulings to transit in the intermediate state, was visualized 

successfully with small gaps between the segments. 

    Finally, in Chapter 10, we summarize the contribution of our work and discuss the 

future work of this research. 
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1.5. Publications 

 

This thesis is based on the following publications: 

 

Journal papers (with peer review) 

1. Yuka Watanabe, Jun Mitani: Interactive Modelling of Curved Folds with Multiple 

Creases Considering Folding Motions. Computer-Aided Design & Applications, 16(3), 

2019, 452-465. 

2. Yuka Watanabe, Jun Mitani: Visualization of Folding Motion of Rotationally 

Symmetric Curved Folding. Computer-Aided Design & Applications. (to appear) 

 

International conference papers (with peer review) 

1. Yuka Watanabe, Jun Mitani: Modelling the Folding Motions of a Curved Fold. In 

Origami7: Proceedings of the 7th International Meeting on Origami in Science, 

Oxford, England, September 5-7, 2018, pages 1135-1150. 

2. Yuka Watanabe, Jun Mitani: Interactive Modelling of Curved Folds with Multiple 

Creases Considering Folding Motions. The 15th annual International CAD 

Conference (CAD'18), Paris, France, July 9-11, 2018, pages 204-208. 

3. Yuka Watanabe, Jun Mitani: Visualization of Folding Motion of Rotationally 

Symmetric Curved Folding. The 16th annual International CAD Conference 

(CAD'19), Singapore, Singapore, June 24-26, 2019, pages 197-201. 
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Chapter 2.  

The geometry of curved folding 
 

This chapter explains the geometry used for the modeling of curved folding. 

 

2.1. The geometry of curves and surfaces 

 

A curved folded paper is composed of the curves, representing the creases, and the 

surfaces, representing the areas on the paper surrounded by either the creases or the 

edges of the paper.  In this section, definitions and notations about the curve, the 

surface, and their properties are explained.  

 

2.1.1. Curves 

 

A curve is used to represent a crease of a curved folded paper.  It may be defined in 2D 

space or 3D space and is noted as 𝑿(𝑠), the position vector parametrized by the arc 

length 𝑠, as shown in Figure 2-1. 

 

 

 

Figure 2-1 Curve parametrized by arc length 𝑠. 

 

On the 3D curve, tangent vector 𝑻(𝑠), normal vector 𝑵(𝑠), and binormal vector 𝑩(𝑠) 

are the orthogonal unit vectors composing the Frenet frame on the curve, as shown in 

Figure 2-2. 

 

 

 

Figure 2-2 Frenet frame on 3D curve. 



 

10 

 

 

With the local coordinate system on the curve, the normal plane, the rectifying plane, 

and the osculating plane are defined as the planes containing two coordinates and 

perpendicular to the other coordinate, as shown in Figure 2-3. 

 

     

(a)       (b)    (c) 

Figure 2-3 Planes of space curve. (a) Normal plane.  (b) Rectifying plane.  (c) 

Osculating plane. 

 

The coordinates in the Frenet frame are calculated as  

 [

𝑻(𝑠)
𝑵(𝑠)
𝑩(𝑠)

] = [

𝑿′(𝑠)

𝑿′′(𝑠)/𝑘(𝑠)

𝑿′(𝑠) × 𝑿′′(𝑠)/𝑘(𝑠)

], (2.1) 

where 𝑘(𝑠) is the curvature of the curve.  The tangent vector 𝑻(𝑠) is calculated as a 

velocity of the curve respect to the arc length 𝑠 instead of time 𝑡, making the velocity to 

be a unit vector.  The normal vector  𝑵(𝑠)  is a unit vector in the direction of the 

acceleration of the curve, or the change in the tangent vector, meaning it is curved to this 

direction.  The curvature 𝑘(𝑠) is calculated as the magnitude of the acceleration, or the 

derivative of the tangent vector.  It shows how much it is curved, or the rate of the 

change in the direction of the tangent vector respect to the arc length, as shown in Figure 

2-4(a).  For a planer curve, the curvature is also defined as 𝑘 = 1 𝑅⁄ , the reciprocal of 

the radius 𝑅 of the osculating circle, as shown in Figure 2-4(b).  If the direction of the 

tangent change largely, the osculating circle becomes small, and the curvature, the 

reciprocal of the radius, becomes large. 

 

   

(a)      (b) 

Figure 2-4 Elements used for definition of curvature.  (a) Derivative of tangent vector.  

(b) Radius 𝑅 of osculating circle. 
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For the space curve, binormal vector 𝑩(𝑠) is defined as the outer product of the tangent 

vector 𝑻(𝑠) and the normal vector 𝑵(𝑠).  The torsion 𝜏(𝑠) measures the rotation of the 

normal vector 𝑵(𝑠)  and the binormal vector 𝑩(𝑠)  around the tangent vector.  By 

Frenet–Serret formula, the vectors 𝑻(𝑠), 𝑵(𝑠), 𝑩(𝑠), curvature 𝑘(𝑠) and torsion 𝜏(𝑠) 

are integrated as, 

 [

𝑻′(𝑠)

𝑵′(𝑠)

𝑩′(𝑠)

] = [

0 𝑘(𝑠) 0
−𝑘(𝑠) 0 𝜏(𝑠)
0 −𝜏(𝑠) 0

] [

𝑻(𝑠)
𝑵(𝑠)
𝑩(𝑠)

]. (2.2) 

For a planer curve, tangent vector 𝑻(𝑠), the normal vector 𝑵(𝑠), and the curvature 𝑘(𝑠)  

are calculated with the same equations.  Binormal vector 𝑩(𝑠) and the torsion 𝜏(𝑠) 

are not defined in the 2D space. 

Mathematically, the definition of curve includes a line as its special case having a 

straight shape, but usually, we note them separately as the curve being the curved shape 

and the line in the straight shape. 

 

2.1.2. Surfaces 

 

The surfaces represent the areas on the paper surrounded by either the creases or the 

edges of the paper.  It may be expressed as a 2D manifold in 3D space, parametrized by 

(𝑢, 𝑣), as shown in Figure 2-5. 

 

 
 

Figure 2-5 Surface parametrized by (𝑢, 𝑣). 

 

The shape of the surface may be characterized by the two principal curvatures 𝑘1, 𝑘2, 

which are the maximum and the minimum curvatures of a point on the surface.  Their 

directions, referred to as the principal directions, are orthogonal to each other, as shown 

in Figure 2-6.  The surface may be categorized by the Gaussian curvature 𝐾 , the 

product of two principal curvatures, and mean curvature 𝐻 , the average of the two 

principal curvatures.  Another description of the surface characteristic is the Gauss 

map, or Gaussian image, shown in Figure 2-7.  It is the normal vectors on the surface 

plotted on the sphere, showing the distribution of the surface orientation.  The shape of 

the surface is expressed by the normal distribution, such as in flat shape, bending in one 

direction, convex shape in all direction, etc. 
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(a)     (b)   (c) 

Figure 2-6 Principal curvatures 𝑘1, 𝑘2 as reciprocal of the radius of osculating circle 

𝑅1,  𝑅2 and principal directions 𝑽1,  𝑽2. 

 

    

(a)       (b) 

Figure 2-7 Gauss map.  (a) Surface with normal vectors.  (b) Gauss map of surface. 

 

The paper or a thin plate composing a curved folding is known to be a developable surface.  

It is a subset of ruled surface, which is a smooth surface made as a trajectory of a line, 

and every point on the surface is on a straight line, called a ruling, that lies on the surface 

(Figure 2-8(a)).  A developable surface also contains rulings, with every point on the 

surface having zero Gaussian curvature (Figure 2-8(b)).  In other words, the surface 

may be flattened on to a plane without stretching or tearing.  On a developable surface, 

the rulings lie on the surface in the direction perpendicular to the surface bending.  It 

is the principal direction with the minimum curvature, which equals to zero in case of 

zero Gaussian curvature.  The rulings never intersect on the surface except on the edge 

of the rulings, such as an apex of a cone.  On the ruling, the normal vectors are identical 

on any point of a ruling.  So, the Gauss map of a developable surface would be a thin 

curve since the normal vectors locally distribute in one direction. 

 

    

(a)     (b) 

Figure 2-8 Ruled surfaces.  (a) Ruled surface which is not developable.  (b) Developable 

surface. 
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2.1.3. Continuity of curves and surfaces 

 

The smoothness of curves and surfaces are described by the geometric continuity, as 

listed below, with the description about the differentiability with respect to arc length, 

and shown in Figure 2-9. 

G0: The curves/surfaces touch at the joint point / common edge, where it may not be 

differentiable. 

G1: The curves/surfaces also share a common tangent direction at the joint point / 

common edge.  It is differentiable on the point/edge, but not second-order 

differentiable. 

G2: The curves/surfaces also share a common center of curvature at the joint point / 

common edge.  It is second-order differentiable on the point/edge. 

In describing the continuity of the parametric function, there is another measurement 

denoted as the parametric continuity, or C0, C1, C2 continuity, whose differentiability is 

discussed with respect to the parameter, such as time and other variables not always 

proportional to the arc length.  It describes the dynamic behavior of a point on a 

trajectory rather than the curve shape itself.  In our work, we focus on the geometric 

continuity as we are interested in the shape of the curve or surface.  Since our methods 

use curvatures and torsion to calculate the rulings, as later explained in Section 2.3, the 

crease curve must be G2 continuous everywhere. 

 

   
 

   
 

(a)     (b)   (c) 

Figure 2-9 Continuity of curves and surfaces.  Top row: curves.  Bottom row: surfaces.  

(a) G0 continuity.  (b) G1 continuity.  (c) G2 continuity. 

 

2.2. Modeling of developable surface in discrete form 

 

There are many types of models which represent a sheet of paper, and some of them are 

introduced in Chapter 3, related works.  In our research, we use the ruling-based 

polygon model.  Figure 2-10(a), (b) shows a general 3D polygon model representing the 

curved folded paper by discretizing the continuous surfaces.  The curved surfaces are 

modeled as the quad strips adjacent to the curved crease with the rulings being the 

shared edges between the quads.  A curved crease, which is a continuous curve on a real 
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paper, is approximated by a sequence of edges shared by two quad strips, connecting the 

vertices on them.  Thus, the rulings are the edges starting at the vertices on the curve 

and lie on the curved surface in the directions perpendicular to the directions of the paper 

bending.  As this polygon model is based on the rulings, its geometry must be updated 

when the paper is bent in different directions, which naturally occurs in folding a piece 

of paper along a curved crease.  Figure 2-10(c) shows the creases and the rulings 

mapped onto the flattened 2D paper, which is used to illustrate the crease pattern and 

the 2D configuration of the rulings. 

     

 
(a)      (b)      (c) 

Figure 2-10 Modelling of curved folding.  (a) 3D polygon model.  (b) Description of 

elements in 3D polygon model.  (c) Creases and rulings mapped onto 2D space. 

 

On the discrete polygon model, Gaussian curvature on a vertex is calculated as, 

 𝐾 =2π − ∑𝛼𝑖 . (2.3) 

It is a deficiency of total corner angles adjacent to the vertex, shown in Figure 2-11, to 

2π.  If 𝐾 =0, the local area around the vertex is developable, as it can be flattened on a 

plane.  If 𝐾 <0, or the total corner angles are larger than 2π, two principal curvatures 

have different signs and the local shape is categorized as a saddle shape.  Conversely, if 

𝐾 >0 and the total corner angle is smaller than 2π, two principal curvatures have 

identical signs and the local shape would be a cap shape. 

 

 

 

Figure 2-11 Total corner angles adjacent to vertex. 
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2.3. The calculation of the curved folding 

 

In this section, the geometry and the calculation method of a curved crease and the 

adjacent curved surfaces are explained.  It follows the equations introduced by Fuchs 

and Tabachnikov [Fuchs_99], which are also organized and interpreted by Tachi in his 

work of building rigid foldable curved folding [Tachi_11b].  As an outline, the equations 

explain the relations between (i) the shape of crease curve in 3D space, (ii) the shape of 

the crease curve mapped onto the 2D space, and (iii) the folding angle.  Then the 

directions of the rulings mapped on the 2D space are calculated.  Finally, the rulings in 

3D space are derived using the rulings in 2D space, the direction of the curved crease in 

3D space, and the folding angle which defines the orientation of the curved surface 

adjacent to the curved crease.  The quad strips composing the discretized 3D polygon 

model of the curved folded surface is obtained as the quads having two rulings as their 

edges.  The relationship and the mathematical framework are also described 

thoroughly in [Demine_14]. 

The definitions of the vectors on the curve and the angles which define the rulings 

are shown in Figure 2-12, with the tangent vector 𝑻(𝑠) , normal vector 𝑵(𝑠) , and 

binormal vector 𝑩(𝑠) on the 3D crease curve 𝑿(𝑠).  The folding angle 𝛼(𝑠) is the angle 

between the surface and the osculating plane projected to the normal plane of the curve, 

being always the same for the left and right side.   The rulings angles 𝛽𝐿(𝑠) and 𝛽𝑅(𝑠) 

are the angles between the tangent vector and the rulings on the left and right side in 

the 2D mapped space. 

 

 

(a)         (b) 

Figure 2-12: Definitions of vectors and angles.  (a) 3D model.  (b) Crease curve with 

rulings mapped to 2D space. 

 

2.3.1. Equations 

 

Given a space curve 𝑿(𝑠) parameterized by the arc length s, its tangent vector 𝑻(𝑠), 

normal vector 𝑵(𝑠), and binormal vector 𝑩(𝑠) are given by the equation (2.1).  For the 

intuitive understandings, we use the coordinate system in which the binormal vector 

𝑩(𝑠) always orient to the backside of the paper.  Then, looking in the direction of the 

tangent vector 𝑻(𝑠), the normal vector 𝑵(𝑠) always orients to the right side of the 

crease curve and the curvature 𝑘(𝑠) takes a positive or negative value depending on 

whether the curve is clockwise or counterclockwise looking from the top.  The ideas of 

𝒓𝑅 
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such orientation fixed vectors and the signed curvature are also described in 

[Demine_14] as the top-side Frenet frame.  By the Frenet–Serret formula, shown as 

equation (2.2), and the fact that the vectors in the Frenet frame are normal vectors, the 

curvature and the torsion are derived as, 

 𝑘(𝑠) = |𝑻′(𝑠)|, (2.4) 

 𝜏(𝑠) = |𝑵′(𝑠) + 𝑘(𝑠)𝑻(𝑠)| = |−𝑩′(𝑠)|. (2.5) 

Similarly, the curvature in 2D is derived as 

 𝑘2𝐷(𝑠) = |𝑻2𝐷′(𝑠)|, (2.6) 

where 𝑻2𝐷(𝑠) is the tangent vector of the crease curve mapped to the 2D space. 

By [Fuchs_99], the relation between the folding angle, the 2D curve, and the 3D 

curve is 

 𝑘2𝐷(𝑠) = 𝑘(𝑠) cos𝛼(𝑠). (2.7) 

The geometric relations between the curve shape defined by the curvature and the 

torsion, the folding angle, and the rulings mapped to the 2D space are 

 cot 𝛽𝐿(𝑠) =
−𝛼(𝑠)′+𝜏(𝑠)

𝑘(𝑠) sin𝛼(𝑠)
, (2.8) 

 cot 𝛽𝑅(𝑠) =
𝛼(𝑠)′+𝜏(𝑠)

𝑘(𝑠) sin𝛼(𝑠)
. (2.9) 

Note that the signs of some parameters in equations (2.8) and (2.9) are different from 

those of Tachi and Fuchs due to the difference in the vector orientations.  At last, the 

rulings in 3D space are calculated as follows, 

 𝒓𝐿 =cos𝛽𝐿 𝑻 − sin𝛽𝐿 cos 𝛼𝑵 + sin 𝛽𝐿 sin 𝛼 𝑩 , (2.10) 

 𝒓𝑅 =cos𝛽𝑅 𝑻 + sin 𝛽𝑅 cos 𝛼𝑵 + sin 𝛽𝑅 sin 𝛼 𝑩 . (2.11) 

By these equations, the ruling directions on the 2D paper are derived from the 

parameters of the curve and the folding angle.  Then, the rulings in 3D space are 

calculated from the rulings in 2D, folding angle, and the Frenet frame.  However, as 

each ruling is calculated separately from the parameters on the local point, there may 

be some conflicts between the rulings, such as the rulings crossing on the 2D paper.  

This cannot occur on the real paper but may happen on the calculation if the inputs are 

not controlled properly.  The method to resolve the rulings crossing and to restrict the 

user input to avoid such cases is one of the important issues of our research.  There is 

also a problem of self-collision.  As the equations do not take care of the collision 

avoidance, some faces may happen to pass through another face by the calculation.  In 

our system, the user needs to check the shape visually and control the input to avoid the 

collisions. 
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2.3.2. Interpretations of the equations 

 

Equation (2.7) shows the relation between the curvature 𝑘(𝑠), the curvature in 2D space 

𝑘2𝐷(𝑠), and the folding angle 𝛼(𝑠).  As the folding angle 𝛼(𝑠) increases from 0 to 𝜋 2⁄ , 

cos 𝛼(𝑠) decreases from 1 to 0, and the curvature of the 3D curve 𝑘(𝑠) becomes larger 

relative to the curvature in 2D space 𝑘2𝐷(𝑠).  Figure 2-13 shows some 3D models of the 

curved folded surfaces generated from the same 2D crease and folded in different folding 

angles.  In the flat state, or 𝛼(𝑠) = 0, the curvature in 3D and 2D coincides (Figure 2-13 

(a)).  As the folding angle increases, the folded paper curls and the 3D curvature 

increases (Figure 2-13 (b)).  By folding the crease as much as possible to nearly 𝜋 2⁄ , 

the paper has to be rolled tightly, making the curvature of the 3D curve to approach 

infinity (Figure 2-13 (c)).  Note that the curved crease cannot be folded completely to 

𝛼(𝑠) = 𝜋 2⁄ . 

 

     
 (a)    (b)   (c) 

Figure 2-13 Curved folded surface in various folding angles.  (a) 𝛼(𝑠) = 0, 𝑘(𝑠) = 𝑘2𝐷(𝑠).  

(b) 0 < 𝛼(𝑠) < 𝜋 2⁄ , 𝑘(𝑠) > 𝑘2𝐷(𝑠).  (c) 𝛼(𝑠) → 𝜋 2⁄ , 𝑘(𝑠) → ∞. 

 

By equations (2.8) and (2.9), we can derive the ruling angles 𝛽𝐿(𝑠), 𝛽𝑅(𝑠) from the 

curvature 𝑘(𝑠), the torsion 𝜏(𝑠), and the folding angle 𝛼(𝑠).  Figure 2-14 shows the 

rulings in different folding angles.  As the derivative of the folding angle 𝛼(𝑠)′ is in the 

numerators of the equations (2.8) and (2.9) with different signs, the increase or the 

decrease of the folding angle along the crease curve affects the rulings on the left and 

right sides in the opposite directions.  Figure 2-15 shows the rulings in different torsions.  

As opposed to the derivative of the folding angles 𝛼(𝑠)′ , the torsion 𝜏(𝑠)  is in the 

numerators of the two equations with the same sign.  So, it affects the rulings on the 

both sides of the crease in the same direction.  By controlling the folding angles and the 

torsion, the rulings in 2D mapped space may be generated in various configurations.  

However, since the equations (2.8) and (2.9) has the curvature 𝑘(𝑠) and sin 𝛼(𝑠) in the 

denominator, the rulings are not calculated if the curvature 𝑘(𝑠) is zero or the folding 

angle 𝛼(𝑠) is zero.  Zero curvature corresponds to the crease curve having an inflection 

point or being a straight line.  Zero folding angle is the paper in a flat unfolded state. 
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(a)      (b)    (c) 

Figure 2-14 Rulings in various folding angles.  (a) Constant folding angle, 𝛼′(𝑠) = 0.  

(b) Increasing folding angle, 𝛼′(𝑠) > 0.  (c) Decreasing folding angle, 𝛼′(𝑠) < 0. 

 

        

(d)      (e)    (f) 

Figure 2-15 Rulings in various torsions.  (a) Planer curve, 𝜏(𝑠) = 0 .  (b) Positive 

torsion, 𝜏(𝑠) > 0.  (c) Negative torsion, 𝜏(𝑠) < 0. 

 

From the equation (2.7), we could roughly say that given two of the three elements, 3D 

curve, 2D curve, and folding angle, the other element is derived from the two elements.  

In other words, there are these three cases, 

Case A:  The 2D curve is derived from the 3D curve and the folding angle. 

Case B:  The 3D curve is derived from the 2D curve, the folding angle, and the torsion. 

Case C:  The folding angle is derived from the 2D and 3D curves. 

It is summarized in the equation since  

(i) The 3D space curve is defined by the curvature 𝑘(𝑠) and the torsion 𝜏(𝑠), and 

(ii) The 2D curve is defined by the 2D curvature 𝑘2𝐷(𝑠). 

In case B, the torsion 𝜏(𝑠) is also needed as it is not given by the equation (2.7).  Then, 

by equation (2.8) and (2.9), the ruling directions in 2D space, 𝛽𝐿(𝑠) and 𝛽𝑅(𝑠), are 

derived and, by equation (2.10) and (2.11), the 3D ruling directions are obtained using 

vectors 𝑻(𝑠), 𝑵(𝑠), and 𝑩(𝑠) derived from the 3D space curve. 
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Chapter 3.  

Related Work 
 

Curved folding is a well-studied research area in math, engineering, arts, etc.  It is 

emphasized in computer-aided design and manufacturing because the property of 

developable surfaces, made by bending and folding of a thin plate without stretching, is 

preferable in manufacturing.  In computer graphics, modeling method of a developable 

surface is studied to design and to create an animation of paper and other thin materials.  

In the following subsections, research about the developable surface and the curved 

folding are introduced. 

 

3.1. Modeling of developable surfaces and curved folding 

 

3.1.1. Modeling of developable surface 

 

The developable surface may be modeled in the computers as a continuous surface or a 

discrete polygon model.  One of the modeling methods is continuously aligning pieces of 

developable primitives such as cones, cylinders, or planes (Figure 3-1).  A cone spline 

surface is composed of pieces of right circular cones in different heights and base radii 

[Leopoldseder_03], [Chen_04].  Hwang et al. introduced an interactive modeling 

method of developable surfaces by wrapping a planar figure around cones and cylinders 

[Hwang_15]. 

Another modeling method of a continuous developable surface is constrained 

parametric surfaces (Figure 3-2).  Chu et al. modeled surfaces as quadratic or cubic 

developable Bézier patches, defined by two Bézier boundary curves constrained by the 

surface developability [Chu_02].  Similarly, the interactive method proposed by Tang et 

al. models developable surface as a pair of spline curves, and optimizes by the constraint 

solver to meet the condition of developability, though in this case the final surface is 

expressed in the form of ruling based polygon model [Tang_16]. 

As a discrete model, developable surfaces are modeled as equally divided mesh or 

nets, or a polygon model based on the rulings (Figure 3-3).  Burgoon et al. proposed a 

discrete shells model, where the paper is initially modeled as equally divided triangular 

meshes, and as it is being folded, new edges and vertices are added [Burgoon_06].  

Rabinovich et al. modeled the developable surface by DOG (Discrete orthogonal geodesic) 

Nets [Rabinovich_18a, b].  To ensure that the surface modeled in the discrete method is 

developable, one could check that the Gauss curvature of every quad is small according 

to the discrete surface theory proposed by [Hoffmann_16]. 

For ruling based polygon model, Bo et al. proposed an interactive modeling method 

of developable surface or its bending motions through a geodesic curve controlled by the 

user [Bo_07].  The surface is modeled as an envelope of the rulings generated by the 

curve.  Instead of giving the curve shape directly, the method of Solomon et al. allows 

the user to prescribe the 3D positions of points and lines defined in 2D space 

[Solomon_12].  Then the developable surface is refined by relaxing the rough polygon 
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model to the curved configuration that minimizes the nonlinear elastic thin plate energy.  

In the approximation of developable surfaces from given data, a discrete model is useful.  

Kilian et al. approximate nearly developable 3D shape data with curved creases by 

patches of discrete developable surfaces expressed as PQ strips with the rulings being 

the edges [Kilian_08] (Figure 3-4).  Perriallat et al. also modeled the developable 

surface approximated from sparse 3D points obtained from images by discrete polygons 

divided by the estimated rulings [Perriallat_13].  In our research, we also use the ruling 

based polygon model, as described in Section 2.2. 

 

    

(a)      (b)  

Figure 3-1 Developable surface composed of developable primitives.  (a) Cone spline 

surface [Chen_04].  (b) Mappings of different cones and cylinders [Hwang_15]. 

 

    

(a)      (b) 

Figure 3-2 Developable surface in the form of parametric surface.  (a) Cubic developable 

Bézier patches [Chu_02].  (b) Developable surface defined by spline curves [Tang_16]. 

 

   

(a)      (b) 

Figure 3-3 Developable surface as a net-based polygon model.  (a) Discrete shell origami 

[Burgoon_06]. (b) DOG nets [Rabinovich_18a]. 
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Figure 3-4 Developable surface as a ruling based polygon model [Kilian_08]. 

 

3.1.2. Approximation by developable surface 

 

There is a lot of research on approximating 3D data by developable surfaces because 

many products are manufactured from flat thin materials and are composed of 

developable shapes.  The input 3D data may be point clouds, 3D points obtained by 

stereo images, 3D mesh, etc.  In approximation of point cloud with one sheet or strip of 

developable surface, the Gaussian image, or the surface normal vectors plotted on a 

sphere, is often used in the initial stage to estimate the type of surface and the bending 

directions [Chen_04], [Peternell_04a,b], followed by the fitting of the recognized types of 

surface, such as cones, cylinders, or other developable surface.  Such method assumes 

the point cloud is dense enough so that the surface normal of a point could be calculated 

from the neighboring points.  To take as input the sparse 3D points obtained from 

images, the method of Perriallat et al. first defines the boundary of the surface and 

selects possible rulings from many candidate lines connecting pairs of sample points on 

the boundary, according to the 3D point distribution and the constraint that the rulings 

does not cross each other [Perriallat_13].  The surface is modeled as a discrete 

developable surface composed of planar polygons adjacent via the rulings.  In 

processing more complicated 3D shape, such as developable surface with creases, Kilian 

et al. reconstruct a 3D polygon mesh of a developable surface from an input 3D data, 

such as point clouds or 3D mesh, by initially fitting planar polygons on the 3D shape and 

then optimizing their shapes and orientations for its developability and the connectivity 

[Kilian_08]. 

Other than above research which takes nearly developable 3D data as an input, 

there are many methods to model object surfaces as pieces of developable surfaces.  Liu 

et al. propose a method to construct conical mesh, or planer quad mesh useful in 

architecture, to express curved surfaces by optimization [Liu_06].  Stein et al. takes 3D 

mesh data as an input and re-meshes it to be composed of some developable surfaces 

[Stein_18] (Figure 3-5).  There are also many papers on making developable strips from 

3D mesh data, for applications such as paper crafts [Mitani_04,06] and other 

manufacturing products [Liu_07], [Gonzalez-Quintial_15] (Figure 3-6).  There is also 

another approach for making a developable surface for product design, taking boundary 

curves as input [Rose_07], [Wang_08] (Figure 3-7). 
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(a)    (b) 

Figure 3-5 3D mesh data composed of developable surfaces [Stein_18]. (a) Original 3D 

data.  (b) Developable polygon data. 

 

  
(a)      (b)  

Figure 3-6 3D mesh data composed of developable strips [Liu_07].  (a) Triangulation of 

model.  (b) Triangulation flattening. 

 

   

(a)     (b)  

Figure 3-7 Developable surface made from boundary curves [Rose_07].  (a) Input 

boundary curves.  (b) Two possible developable surfaces. 

 

3.1.3. The design method of curved folding 

 

Though there is a lot of research on developable surfaces, there are not as many papers 

on how to design a new curved folding.  Sternberg introduced an idea of folding a piece 

of paper into the shape of voltex by the curved creases and discussed the tessellation of 

curved folding [Sternberg_09].  Mitani proposed a system to design curved folding with 

rotational sweep [Mitani_09], followed by the method of folding a curved surface on a 

planer curve and reflecting [Mitani_11].  To design more generalized shapes, Tang et al. 

proposed an interactive method where the user controls the 3D positions of some vertices, 

and the shapes are optimized by the constraint solver to meet the condition of 

developability [Tang_16]. 

Apart from curved folding strictly defined on completely developable surface, Zhu et 

al. proposed soft folding, where the user inputs the shape of the curved crease in 2D, its 

fold magnitude, and the sharpness [Zhu_13] (Figure 3-8).  A thin plate is folded or bent 

according to the input and forms 3D shapes in nearly developable surfaces, such as 

products made of thick cloth.  Another work of designing the folds along a curve is the 
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flat foldable structure proposed by Tachi [Tachi_11a,13].  The shape of the structure is 

designed according to the shape of the 3D folding curve.  However, the structure is not 

a curved folding because its folds are composed of two sheets joined together along a 

curve in the flat folded state and could not be flattened by unfolding. 

 

 

Figure 3-8 Soft folding [Zhu_13]. 

 

3.2. Simulation of a folding motion 

 

In the simulation of folding motion, the shape of the paper is modeled in every time step 

during the motion, keeping the continuity between adjacent time steps.  For such use, 

the developable surfaces are modeled as a discrete polygon model, with fixed or dynamic 

mesh configuration, as introduced in the following subsections. 

 

3.2.1. Simulation with fixed mesh data 

 

In the field of paper folding simulation, Tachi developed software to simulate the folding 

motion of the paper using the rigid folding method [Tachi_09].  The method represents 

the paper by planar polygons of fixed geometry hinged at the edges, mainly targeting the 

paper folded on straight lines.  He has also proposed a design method for flat-foldable 

vault structures composed of flat-foldable tubes assembled by welding two sheets 

[Tachi_11a,13] (Figure 3-9).  Although the structure is folded along the curve, the 

folding angles are restricted to be constant throughout the curve, which ensures the 

rulings to be fixed so that the structure could be modeled with the rigid folding method.  

It does not support any deformation where the ruling directions on the surface change 

during the folding motion.  Ghassaei et al. implemented a fast and interactive web 

application for origami simulation, which works on GPU [Ghassaei_18].  Their model is 

based on the constraints on edge length, folding angle, and the angle between the edges, 

allowing some stretching or shearing of the polygonal faces.  The flexibility of the model 

enables the polygon shape to transit from the flat state to the folded state but does not 

consider the developability nor the ruling transition in the intermediate state. 
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Figure 3-9 Flat foldable vault structure [Tachi_13]. 

 

3.2.2. Dynamic simulation of developable surface and curved folding 

 

In recent research, dynamic simulation methods of the developable surface have been 

proposed.  Narain et al. proposed a method to simulate a sheet of thin materials by 

adaptive mesh refinement, which could model irregular deformations such as crumpled 

paper [Narain_13].  As to the folding motion of curved folding, Kilian et al. also take an 

approach of re-meshing the triangular mesh according to the local surface curvatures in 

modeling the 3D shape of a paper in string actuated folding motion [Kilian_18] (Figure 

3-10).  Their methods are successful in representing various shapes, but resulting mesh 

data may contain thousands of faces, not necessarily suitable for observation of the 

rulings.  Rabinovich et al. introduced discrete orthogonal geodesic nets, which 

approximates a smooth developable surface by optimizing the corner angles of the quad 

mesh to be orthogonal [Rabinovich_18b] (Figure 3-11).  In their methods, a curved 

crease is modeled as the intersecting curve of the two DOF nets.  Their methods are 

successful in representing the shape of curved folded paper, but different from our 

research goal of providing a design system that the user can control the paper shape with 

the visualization of the rulings. 

 

 

Figure 3-10 String actuated folding motion [Kilian_18]. 

 

 

Figure 3-11 Curved folding by DOG nets [Rabinovich_18b]. 
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3.3. Analysis of curved folding 

 

Analysis of curved folding and the behavior of the rulings have been studied since before 

the computer graphics technologies have developed to be able to render or simulate 3D 

shapes interactively. 

David Huffman had studied about curved folding from both perspectives of math 

and art.  He had analyzed the local mathematical behavior of folding developable 

surface along curved creases [Huffman_76].  Fuchs and Tabachnikov introduced the 

mathematical relation between 2D and 3D crease curve, folding angle, and the directions 

of the rulings on the curved folding [Fuchs_99].  Their equations are interpreted and 

explained with examples of resulting crease curve shapes with different parameters to 

be used for the design of rigid folding of curved crease [Tachi_11b].  On the other hand, 

Huffman’s artworks on curved folding have been analyzed by Demine et al. with the 

cooperation of his family after his death [Demaine_10a,14,18] (Figure 3-12).  In their 

work, the rulings, which are not depicted in the original crease pattern, were estimated 

and each curve on the crease pattern was categorized as circle, ellipse, or parabolas.  

Their research on paper folding ranges widely, including the designing curved surface 

with straight pleated creases [Demaine_10b].  They proved that a straight crease could 

not be bent unless the paper is unfolded or folded completely, which also characterizes 

the difference between a curved crease and a straight crease.  They have summarized 

the art, applications, and mathematics on curved folding in [Demaine_11].  Dias et al. 

developed recursion equations to describe a series of concentric curved folds, which are 

prescribed by a single fold [Dias_12]. 

     

Figure 3-12 Curved folding by David Huffman. 

 

Duncan and Duncan studied the geometry of curved folding and proved their theory 

in two special cases, the 3D crease being a planar shape and constant folding angle 

[Duncan_82].  They had foreseen that such geometric rules would encourage the 

manufacturing using curved folding of sheet metal.  The shape of such curved fold was 

also studied in the area of mechanical science as the behavior of developable cone, or a 

thin disk supported on the rim of a bowl and its center pushed down by a thin object 

[Farmer_05].  Later, their works were studied and verified by Seffen using Gauss’s 

spherical image construction [Seffen_18].  Roeschel examined the case where two 

curved surfaces linked by a curved fold is both cylinders using the spherical image 

[Roeschel_16]. 
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3.4. Applications 

 

Some of the design implementation using the curved folding is summarized in Demaine 

et al., such as designs of a lamp, bench, column covers, and car design [Demaine_11].  

Other applications described in a paper are listed below. Frey et al. proposed a method 

to model and to design developable surface for sheet metal stamping to form a shape 

without stretching the material [Frey_04].  As an application for deployable structures 

on small spacecraft, a technique is presented to wrap a flat sheet around a hub to 

minimize its size, by folding the sheet along the crease in a slightly curved shape, 

considering the thickness of the sheet [Lee_13] (Figure 3-13).  Epps et al. found a 

company Robofolds, which manufactures curved folded metal sheets by robot hand 

[Epps_14] (Figure 3-14).  Miyashita et al. propose self-assembling origami propellers, 

where the curved creases are folded by heat to form the 3D shape of propellers 

[Miyashita_15] (Figure 3-15).  Nelson et al. describe a deployable compliant rolling-

contact element joint (D-CORE joint) that employs curved-folding origami techniques to 

enable the transition from a flat to deployed state [Nelson_16] (Figure 3-16). 

 

   

  (a)       (b) 

Figure 3-13 Deployable structures folded by curved folds [Lee_13].  (a) Unfolded 

configuration.  (b) Folded configuration. 

 

 

Figure 3-14 RoboFolds [Epps_14]. 
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Figure 3-15 Self-assembling origami propellers [Miyashita_15]. 

 

 

Figure 3-16 D-core joint made by curved folding [Nelson_16]. 

 

  



 

28 

 

Chapter 4.  

Simulation of curved folding with fixed 

rulings 
 

As noted in Section 3.2, the paper shapes are generally modeled as a discrete polygon 

model in simulating the folding motion.  Following the previous work, we will work with 

the discrete polygon model on this and the following chapters.  This chapter explains 

the preliminary and verification experiments on curved folding simulation using a fixed 

ruling model.  The fixed ruling model is a polygon model where the ruling configuration 

does not change during the folding motion.  The rulings are kept in the original 

directions on the 2D paper while the folding angle is updated.  The experiment was 

carried out to verify the necessity of the model supporting the ruling transition while the 

bending direction of the paper changes.  As introduced in the related work, there is 

software to simulate the folding motion of a paper modeled as fixed mesh data.  In the 

experiment, some example crease patterns are tested with the rigid folding method 

[Tachi_09] and the Origami simulator [Ghassaei_18].  The result shows that there are 

some cases that a paper model with curved creases cannot be folded by the rigid folding 

method, being locked because the folding motion, or the movement of the faces according 

to the folding angle, cannot be carried out without disjointing the shared edges between 

the other adjacent faces.  We also verified one of our curved fold model with the Origami 

simulator and observed that the paper model contains some strain while being folded.  

On both software, the self-collision is not restricted, and there were some cases that a 

plane is passing through another plane. 

 

4.1. Folding origami-sphere with the rigid folding 

 

Rigid origami is a modeling method of a paper folding with flat rigid sheets joined by 

hinges.  A well-known software targeting this type of model is the Rigid origami 

simulator, developed by Tachi [Tachi_09].  However, to carry out the preliminary 

experiment, we used the software implemented by Mitani.  Given a set of creases and 

the faces, the software gradually increases or decreases the folding angles of all creases 

simultaneously, moving the vertices to the position consistent to the folding angles and 

by restricting the change in the edge length.  The sample crease patterns are some 

variations of the origami-sphere as they are some good examples of curved crease 

containing both curved and straight creases.  Some segments of the origami-sphere cut 

out from the original crease pattern are also used to eliminate the constraints on the 

lengths of some edges.  The original crease patterns are designed using ori-revo 

[Mitani_09] and exported as 3D polygon models, as shown in Figure 4-1.  The input 

crease patterns and the results of the simulation are shown in Figure 4-2.  In most cases, 

the final shape of the polygon model converged to nearly flat shape, far from being a 

sphere shape as in Figure 4-1.  This is considered to be caused by the confliction 

between the vertex positions derived from the folding angle and the length of the edges.  
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By optimizing the folding angle to meet all the constraints, the folding angle is not able 

to increase and the folding motion stops.  If a part of the crease pattern is cut out in the 

radial direction, the straight creases seem to be folded more easily than the curved 

creases.  The curved crease is folded only if there are no other creases.  At first, this 

result seemed a bit strange because the origami-sphere is actually foldable using real 

paper.  Then observing the real paper being folded, we noticed that the bending 

directions of the curved surfaces are changing gradually during the folding motion and 

that we need to consider about the transition of the ruling directions. 

 

  

(a)        (b) 

Figure 4-1 3D models of origami-spheres designed by ori-revo.  (a) Sphere with six flaps, 

each quad strip having 12 rulings.  (b) Sphere with four flaps, quad strip having three 

rulings. 

 

No. Input crease pattern Result 

1 

 

Figure 4-1(a), 

whole crease pattern 

 

Not folded. 

2 

 

Figure 4-1(a), one surface cut off. 

 

Not folded. 
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3 

 

Figure 4-1(a), 1/2 cut out by the 

curved creases. 

 

Not folded. 

4 
 

Figure 4-1(a), 1/3 cut out by the 

straight creases. 

 

The strait crease is folded. 

The curved creases are not folded. 

5 
 

Figure 4-1(a), 1/6 cut out by the 

straight creases. 

 

The curved crease is folded. 

6 

 
Figure 4-1(a), center area with 

three rulings. 

 

Not folded. 

7 

 
Figure 4-1(a), the center area with 

one ruling. 

 

 

Two straight creases are folded and then 

unfolded. 
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8 

 
Figure 4-1(b), 

whole crease pattern. 

 

Not folded. 

9 

 

Figure 4-1(b), one surface cut off. 

 

The straight creases are folded with self-

collision. 

The curved creases are not folded. 

10 
 

Figure 4-1(b), 1/2 cut out by the 

curved creases. 

 

 

 

The straight creases are folded. 

The curved crease is folded incompletely 

11 
 

Figure 4-1(b), 1/4 cut out by the 

straight creases. 

 

The curved crease is folded. 

12 

 

Figure 4-1(b), the center area with 

one ruling 

 

Not folded. 
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13 

 

Figure 4-1(b), the center area with 

no ruling 

 

Folded. 

14 

 

Figure 4-1(b), the center area cut 

off, and the outer area with two 

rulings remains. 

 

Folded but not in the shape of a sphere. 

15 

 

Figure 4-1(b), the center area cut 

off, and the outer area with one 

ruling remains. 

 

Folded but not in the shape of a sphere. 

 

Figure 4-2 The result of the experiment of rigid folding. 
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4.2. Simulation of curved folding on Origami simulator 

 

The origami simulator is a web application developed by Amanda Ghassaei.  The crease 

pattern is imported from SVG, a 2D vector format, and the types of the creases is defined 

by the color of the lines, red is the mountain fold, blue the valley fold, black the boundary 

of the paper, yellow the facet crease which tries to remain flat, and magenta the edge 

where no force of folding is added.  The software provides the interface to control the 

degree of folding as fold percent.  It also visualizes the strain on the vertices by the color.  

The strain is a measurement of how much the material is being stretched or compressed.  

On this software, blue indicates zero strain and red indicates max strain, specified on 

the GUI.  The paper shape is calculated by the optimization of the spring-mass model, 

allowing some stretching or shearing of the polygonal faces.  Figure 4-3 shows the input 

crease patterns with one curved crease on the paper, and Figure 4-4 shows the results of 

the simulation using these crease patterns.  Figure 4-5 shows the input crease patterns 

of origami-sphere, and Figure 4-6 is its results.  Because of the flexibility of the spring-

mass model used in the system, apparently, the paper seems to be folded successfully 

guided by the fold percent input by the user.  However, by the color indicating the strain, 

with the configuration of max strain being 1%, the strain becomes very high if the 

generated paper shape does not match the directions of the rulings.  Specifically, for 

origami-sphere, the strain becomes very high in Figure 4-6(c) where the sphere is just 

about to be folded completely.  By these observations, it is considered that the polygon 

models with fixed rulings are not satisfactory for modeling the folding motion of curved 

folding. 

 

    

(a)        (b) 

Figure 4-3 The input crease pattern with one crease. 
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 (a)        (b) 

Figure 4-4 The result of Origami simulator for crease pattern in Figure 4-3.  Top row: 

fold percent 50%.  Middle row: fold percent 75%.  Bottom row: fold percent 100%. 
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Figure 4-5 The input crease pattern of origami-sphere. 

 

  

(a)      (b) 

    

 (c)      (d) 

 

Figure 4-6 The result of Origami simulator for crease pattern in Figure 4-5.  (a) Fold 

percent: 0%.  (b) Fold percent: 40%.  (c) Fold percent: 60%.  (d) Fold percent: 80%. 
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Chapter 5.  

Estimating paper shape from RGBD 

images 
 

To understand the shape of the paper while being folded, we first made an attempt to 

reconstruct its shape from a sequence of RGBD images capturing the deformation of the 

curved folded paper.  The procedure is described in Section 5.1.  But this trial has been 

pended as we noticed the specification and the performance of the 3D camera did not 

meet our requirement to measure the 3D shape of the curved folded paper, as referred 

in Section 5.2.  It may be another meaningful research topic in the future to utilize the 

partial low-resolution 3D data representing the real paper shape to control the shape of 

the 3D model generated by our method, described in the following chapters. 

 

5.1. Method 

 

Figure 5-1 shows an example of input data and the predefined configuration used in this 

work.  As shown in Figure 5-1(a), the curved folded paper is captured by a pair of an 

RGB camera and a depth sensor.  From the RGB image and the depth image captured 

by the input device, 3D point cloud data with texture is generated.  Our goal is to 

estimate the rulings and the 3D shape of the curved folded paper being folded, using the 

captured 3D data and the color pattern printed on the sheet of paper as shown in Figure 

5-1(b).  The purpose of using the color pattern is to identify the 3D position of each point 

of the paper so that the shape and the movement of the paper could be analyzed. 

 

5.1.1. RGBD camera 

 

The input device used for this trial was DepthSense© 325, released from SoftKinetic 

(Figure 5-2).  It is a short distance TOF sensor, capturing the RGB images and the 

distance map using infrared laser light, at the frame rate of 25-30 fps.  The main 

application of this product is to capture a human gesture rather than the measurement 

of the 3D shape itself.  Nevertheless, it is a low-cost, easily accessible camera which 

could capture the 3D shape data in a sequence of frames.  The specification is described 

in Table 5-1.  The images were captured using the sample program working on 

SoftKinetic DepthSense SDK. 
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(a)      (b) 

Figure 5-1 Data used in paper shape estimation.  (a) Captured data. (𝑐𝑢, 𝑐𝑣) is pixel 

position in RGB image, (𝑑𝑢, 𝑑𝑣) is pixel position in depth image, 𝑑𝑧 is the depth value 

on (𝑑𝑢, 𝑑𝑣), 𝑐𝑧 is the depth value on (𝑐𝑢, 𝑐𝑣) calculated from other parameters, and 

(𝑥, 𝑦, 𝑧) is 3D position of a point in the point cloud.  (b) Crease pattern with color pattern.  

(𝑐𝑝𝑥, 𝑐𝑝𝑦) is the 2D position on the crease pattern. 

 

 

Figure 5-2 DepthSense© 325. 

 

Table 5-1 Specification of DepthSense© 325 

 

Depth tracking range 15cm to 1 meter 

Depth sensor resolution QVGA (320×240) 

Depth sensor field of view 74˚ H – 57.9˚ V 

Color sensor resolution HD (720p) 

 

5.1.2. Camera calibration 

 

From the RGB image and the depth image captured by the input device, the 3D point 

cloud data is reconstructed and textured using the internal and external camera 

parameters.  Since the default settings of the camera parameters are not accurate for 
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such a low-cost input device, we performed the camera calibration by capturing the 

checkerboard pattern and re-calculating the camera parameters using OpenCV libraries.  

Some of the images used for the calibration are shown in Figure 5-3.  Because the 

checkerboard pattern detection on OpenCV library does not support such blurred corners 

or the black tiles with gaps, the corners were plotted manually and input to the 

calculation process. 

 

    

(a)          (b) 

Figure 5-3 Images used for camera calibration.  (a) Depth image.  (b) RGB image. 

 

5.1.3. Detection of patterns on RGB images 

 

To identify the points on the paper in the RGB images, we used the pseudo-random color 

pattern proposed by [Scholz_05] (Figure 5-1(b)).  The pattern contains 20×20 dots with 

three colors, red, green, and blue, assigned randomly and verified that each 3×3 pattern 

is unique in the whole pattern.  The predefined color pattern is printed on a piece of 

paper and captured by the RGBD camera.  For each RGB image captured, the dots on 

the paper are detected from each color component of the image separately and then put 

together with the color feature (Figure 5-4).  The detection of the dots from one 

component of the image is simply performed by binarizing the gray image with multiple 

thresholds and detecting blobs in a certain range of size.  Then by searching the 

neighboring dots, 3×3 patterns are detected and matched with the predefined color 

pattern, as illustrated in Figure 5-5.  Then the whole pattern is detected from the image 

starting from the local 3×3 pattern.  As shown in Figure 5-6, the initial detection result 

of 3×3 patterns is likely to include some false positives, which turn out to be outliers.  

After removing such outliers, other dots are integrated into the whole pattern by 

searching the detected blobs in the expected locations.  Finally, most of the dots in the 

pattern is detected from the input RGB image, being able to identify the location of each 

point in the image. 
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(a)      (b) 

   

(c)    (d)   (e) 

Figure 5-4 Detection of colored dots.  (a) Input image.  (b) Result of detection.  (c) Red 

component of the image.  (d) Green component.  (e) Blue component. 

 

 

(a)      (b) 

Figure 5-5 Matching of 3×3 patterns between (a) detected dots and (b) the predefined 

color pattern. 

 

   

(a)   (b)   (c) 

Figure 5-6 Process of detecting the whole pattern.  (a) Initial result of 3×3 patterns.  

(b) Outliers removed.  (c) Other detected dots integrated into the whole pattern. 
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5.1.4. Extraction of developable surface and the rulings 

 

Since the color pattern is detected in the RGB image, it is then projected on to the 3D 

space.  The purpose of this process is to extract the 3D point cloud corresponding to a 

developable surface, using the dots in 2D and 3D spaces, and to model the 3D data as a 

polygon model.  The projection onto the 3D space is carried out by collecting the 3D 

point cloud corresponding to the pixels of the detected dots.  Figure 5-7 shows an 

example of a color pattern detected on the curved folded paper and the pattern plotted 

on the 3D data.  Then the point cloud in one developable surface of the curved fold is 

extracted, as shown in Figure 5-8.  This process is carried out by extracting the point 

cloud which lies in the triangles or quads composed of the dots located in the target 

developable surface.  The rulings are estimated using the method of [Perriallat_13], as 

shown in Figure 5-9.  Sample points are placed on the creases and the paper edges, 

which compose the boundary of the area.  Initially, all pairs of the sample points are the 

possible rulings.  Then the pairs are scored according to the distribution of the point 

cloud between the two points.  As the point cloud is distributed on the lines connecting 

the two sample points, a higher score is given to that pair.  Then the lines connecting 

the pairs of sample points with scores higher than the threshold are adopted as rulings.  

If there is a ruling crossing other rulings, the ones with the lower score are eliminated.  

The faces between the rulings and the boundary of the area are then placed in the 3D 

space, as in Figure 5-9 (d) and (e).  The poses of the faces are calculated by the least 

square method to approximate the 3D point cloud located on the face. 

 

     

(a)   (b)   (c) 

Figure 5-7  Projection of detected dots on to 3d data.  (a) Color pattern detected on RGB 

image.  (b) Point cloud with color data.  (c) Detected color pattern plotted on 3D data. 

 

   

(a)   (b)   (c) 

Figure 5-8 Extraction of point cloud on one developable surface.  (a) predefined area on 

the color pattern.  (b) Corresponding area in the 3D data.  (c) Extracted point cloud. 
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(a)    (b)   (c) 

   

(d)      (e) 

Figure 5-9 Estimation of rulings and making polygon model.  (a) Detected dots plotted 

on 3D space.  (b) 3D point cloud plotted on the 2D space, with crease pattern and color 

pattern.  (c) Rulings estimated in 2D space.  (d) Polygon model of one surface 

reprojected in 3D space.  (e) Polygon model reprojected to the second surface in 3D space.  

 

5.2. Result and discussion 

 

Although the 3D point cloud on a developable surface is extracted and some rulings are 

estimated on the surface, we could not go any further to generate the 3D model of the 

curved folded developable surface solely from the captured point cloud data.  One cause 

for this is that the accuracy of the depth image and the resolutions of the depth and color 

images are not satisfactory for the 3D measurement.  As the depth image is captured 

by a TOF sensor, the depth value always includes some Gaussian noise, requiring some 

size of area to cancel the noise by averaging the pixels.  Since such data is not suitable 

in detecting the edges and the sharp creases, we took an approach to first estimate the 

developable surface surrounded by the creases and paper edges.  But this approach also 

requires the input 3D data to be accurate as the rulings may change according to the 

small displacement of the surface.  As to the image resolution, it is good for detecting 

20×20 color pattern on the paper facing the RGB camera.  But for curved folding with 

many creases, the pattern may not have sufficient size, or enough number of dots to 

identify a point on a paper.  In the previous subsection, the example curved folding 

contains only two curved creases.  But as the number of crease increases, the area of a 

developable surface becomes smaller, and so is the number of dots composing the color 

pattern.  The 20×20 color pattern does not have enough resolution if a developable 

surface does not contain 3×3 patterns in most of its area.  

There is also a problem of capturing a 3D object by a camera designed for a short 

distance.  Usually, such cameras have a relatively wide angle of view to capture a large 

area in short distance.  But this is a tradeoff between the range of the 3D surface 

directions that the camera is able to capture.  In other words, a camera with a wide 
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angle of view can only capture the surface facing close to the camera.  So, in case the 

3D object in a rounded shape, only a small part of its surface is captured.  With more 

creases, the occlusion by the other surfaces would be another obstacle. 

With above reasons, we concluded that it is impossible to measure and analyze the 

3D shape only from the captured data and that some pre-modeling of the developable 

surface is necessary to estimate the 3D shape from such partial and low-resolution data.  

The modeling method proposed and described in the following chapters is motivated by 

this trial. 
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Chapter 6.  

Curved folding with one crease 
 

As a base of our work, this chapter introduces the modeling and visualization of a curved 

fold with one curved crease.  The content includes the geometry and the calculation 

method of the paper shape in Section 6.1, the procedure of designing the curved fold and 

the generation of the folding motion in Section 6.2, and the evaluation of a simple curved 

fold as an example in Section 6.3.  In this chapter, we assume that the crease curve 

includes no inflection point. 

 

6.1. Calculation of crease and rulings 

 

In this section, the basic calculation method of the curved crease and the rulings, which 

defines the 3D shape of the curved folded paper, is explained.  It is based on the 

equations from Chapter 2.  In Subsection 6.1.1, the discrete version of the curve, the 

vectors, and the parameters are defined, and the calculation method used in our system 

is explained.  In Subsection 6.1.2, the actual procedure of the calculation is introduced. 

 

6.1.1. Discrete expression of the mathematical formula 

 

To apply the equations introduced in Chapter 2 to the calculation of the curved crease in 

a polygon model, we express the curve in the discrete form {𝑿𝑖}, a sequence of sample 

points aligned along the curve 𝑿(𝑠).  Similarly, the vectors and parameters on the point 

𝑿𝑖  are denoted as 𝑻𝑖 , 𝑵𝑖 , 𝑩𝑖 , 𝑘𝑖 , 𝜏𝑖 , 𝛼𝑖 , and 𝑘2𝐷𝑖 , instead of arc-length parametric 

functions 𝑻(𝑠), 𝑵(𝑠), 𝑩(𝑠), 𝑘(𝑠), 𝜏(𝑠), 𝛼(𝑠), and 𝑘2𝐷(𝑠).  𝑑𝑿𝑖, the derivative of 𝑿𝑖, is 

calculated as follows, using three consecutive sample points {𝑿𝑖−1,  𝑿𝑖 ,  𝑿𝑖+1} 

 𝑑𝑿𝑖 =
1

2
(
𝑑𝑿𝑖,𝑖−1

|𝑑𝑿𝑖,𝑖−1|
+

𝑑𝑿𝑖+1,𝑖

|𝑑𝑿𝑖+1,𝑖|
), (6.1) 

where 𝑑𝑿𝑖+1,𝑖 =𝑿𝑖+1 − 𝑿𝑖 , is a vector connecting two sample points.  Similarly, 

derivatives of the vectors 𝑑𝑻𝑖, 𝑑𝑵𝑖, and 𝑑𝑩𝑖 are calculated as 

 

{
 
 

 
 𝑑𝑻𝑖 =

1

2
(
𝑻𝑖−𝑻𝑖−1

|𝑑𝑿𝑖,𝑖−1|
+

𝑻𝑖+1−𝑻𝑖

|𝑑𝑿𝑖+1,𝑖|
)

𝑑𝑵𝑖 =
1

2
(
𝑵𝑖−𝑵𝑖−1

|𝑑𝑿𝑖,𝑖−1|
+

𝑵𝑖+1−𝑵𝑖

|𝑑𝑿𝑖+1,𝑖|
)

𝑑𝑩𝑖 =
1

2
(
𝑩𝑖−𝑩𝑖−1

|𝑑𝑿𝑖,𝑖−1|
+

𝑩𝑖+1−𝑩𝑖

|𝑑𝑿𝑖+1,𝑖|
)

, (6.2) 

which are the averages of two differences between the consecutive points, normalized by 

the distance.  Figure 6-1 shows an example of 𝑻𝑖  and 𝑵𝑖  calculated as the discrete 

derivatives 𝑑𝑿𝑖 and 𝑑𝑻𝑖.  As in the continuous form, vectors 𝑻𝑖, 𝑵𝑖, 𝑩𝑖, curvature 𝑘𝑖, 

and torsion 𝜏𝑖  are calculated from the 3D curve {𝑿𝑖}, using the following equations.  

According to equation (2.1) and the fact that 𝑻𝑖, 𝑵𝑖, 𝑩𝑖 are unit vectors, 
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{
 

 𝑻𝑖 =
𝑑𝑿𝑖

|𝑑𝑿𝑖|

𝑵𝑖 =
𝑑𝑻𝑖

|𝑑𝑻𝑖|

𝑩𝑖 =𝑻𝑖 ×𝑵𝑖

. (6.3) 

The discrete version of equation (2.4) and (2.5) are  

 𝑘𝑖 = |𝑑𝑻𝑖|, (6.4) 

 𝜏𝑖 = |𝑑𝑵𝑖 + 𝑘𝑖𝑻𝑖| = |−𝑑𝑩𝑖|. (6.5) 

Because the vectors and the parameters in the discrete form are calculated using three 

consecutive sample points {𝑿𝑖−1,  𝑿𝑖 ,  𝑿𝑖+1}, they are not calculated on the edge of the 

crease curve.  Having 𝐍 vertices {𝑿0, … , 𝑿𝑁−1} on the crease curve, the tangent vector 

𝑻𝑖 is calculated on {𝑿1, … , 𝑿𝑁−2}, the normal vector 𝑵𝑖, the binormal vector 𝑩𝑖 and the 

curvature 𝑘𝑖  are calculated on {𝑿2, … , 𝑿𝑁−3} , and the torsion 𝜏𝑖  is calculated on 

{𝑿3, … , 𝑿𝑁−4}.  In generating the 3D polygon model, the three vertices on each edge are 

not used, making 𝑿3 and 𝑿𝑁−4 to be used as the vertices on the ends. 

Conversely to the calculation described above, the 3D curve {𝑿𝑖} can be obtained 

from a sequence of curvatures {𝑘𝑖}  and torsions {𝜏𝑖} .  To carry it out, the system 

calculates the vectors {𝑻𝑖}, {𝑵𝑖}, {𝑩𝑖} sequentially from {𝑘𝑖} and {𝜏𝑖}, and then {𝑿𝑖} 

from {𝑻𝑖}.  As a first step, the vectors on one end of the curve are set as unit vectors 

orthogonal to each other, for example, 

 [𝑻0 𝑵0 𝑩0] = [
1 0 0
0 1 0
0 0 1

]. (6.6) 

Then, using curvature, torsion, and the vectors on the first vertex, the vectors on the 

second vertex are calculated as 

 {

𝑻1 = 𝑻0 + 𝑑𝑻0 =𝑻0 + 𝑘0𝑑𝑥𝑵0
𝑵1 = 𝑵0 + 𝑑𝑵0 = 𝑵0 − 𝑘0𝑑𝑥𝑻0 + 𝜏0𝑑𝑥𝑩0

𝑩1 =𝑻1 ×𝑵1

, (6.7) 

expanding 𝑑𝑻0 , 𝑑𝑵0 , 𝑑𝑩0  by substituting 𝑻′(𝑠), 𝑵′(𝑠), 𝑩′(𝑠), 𝑘(𝑠), 𝜏(𝑠) in equation 

(2.2) with 𝑑𝑻𝑖 , 𝑑𝑵𝑖 , 𝑑𝑩𝑖 , 𝑘𝑖 , 𝜏𝑖 .  Here, 𝑑𝑥  is the distance between two consecutive 

sample points, which we set constant.  The vectors on the following points are calculated 

as 

 {

𝑻𝑖 = 𝑻𝑖−2 + 2𝑑𝑻𝑖−1 = 𝑻𝑖−2 + 2𝑘𝑖−1𝑑𝑥𝑵𝑖−1
𝑵𝑖 = 𝑵𝑖−2 + 2𝑑𝑵𝑖−1 =𝑵𝑖−2 − 2𝑘𝑖−1𝑑𝑥𝑻𝑖−1 + 2𝜏𝑖−1𝑑𝑥𝑩𝑖−1

𝑩𝑖 =𝑻𝑖 ×𝑵𝑖

, (6.8) 

considering that the derivatives 𝑑𝑻𝑖, 𝑑𝑵𝑖, 𝑑𝑩𝑖 are calculated using three points as in 

equation (6.1).  Figure 6-2 shows 𝑻𝑖 derived from 𝑻𝑖−2 and 𝑑𝑻𝑖−1 = 𝑘𝑖−1𝑑𝑥𝑵𝑖−1, using 

equation (6.8).  At last, sample points on the curve are calculated as follows. 
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 𝑿𝑖 =𝑿𝑖−1 + 𝑑𝑥
𝑻𝑖+𝑻𝑖−1

|𝑻𝑖+𝑻𝑖−1|
. (6.9) 

Similarly, sample points of the 2D curve {𝑿𝟐𝑫𝑖} are calculated from the sequence of 2D 

curvatures {𝑘2𝐷𝑖} as follows. 

 [𝑻𝟐𝑫0 𝑵𝟐𝑫0] = [
1 0
0 1

], (6.10) 

 {

𝑻𝟐𝑫1 =𝑻𝟐𝑫0 + 𝑘2𝐷0
𝑑𝑥𝑵𝟐𝑫0

𝑵𝟐𝑫1 = [
−𝑻𝟐𝑫1𝑦

𝑻𝟐𝑫1𝑥
]

, (6.11) 

 {

𝑻𝟐𝑫𝑖 =𝑻𝟐𝑫𝑖−2 + 2𝑘2𝐷𝑖−1
𝑑𝑥𝑵𝟐𝑫𝑖−1

𝑵𝟐𝑫𝑖 = [
−𝑻𝟐𝑫𝑖𝑦

𝑻𝟐𝑫𝑖𝑥
]

, (6.12) 

 𝑿𝟐𝑫𝑖 =𝑿𝟐𝑫𝑖−1 + 𝑑𝑥
𝑻𝟐𝑫𝑖+𝑻𝟐𝑫𝑖−1

|𝑻𝟐𝑫𝑖+𝑻𝟐𝑫𝑖−1|
 (6.13) 

 

   

(a)     (b) 

Figure 6-1 Vectors in Frenet frame calculated as discrete derivatives of three consecutive 

sample points {𝑿𝑖−1, 𝑿𝑖 , 𝑿𝑖+1}.  (a) Tangent vector 𝑻𝑖.  (b) Normal vector 𝑵𝑖. 

 

 

Figure 6-2 Cumulative vector calculation on sequence of vertices. 
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6.1.2. The calculation process of crease and rulings 

 

In our system, the parameters on the sample points, {𝑘𝑖}, {𝜏𝑖}, {𝛼𝑖}, and {𝑘2𝐷𝑖}, are 

calculated by the spline interpolation of the parameters on the control points placed on 

the curved crease in even intervals, as shown in Figure 6-3.  The spline curves are in 

degree-three, making the parameters to change smoothly along the curve and assuring 

the rulings and the 3D shape to be also changing smoothly.  With the parameters on the 

sample points, the shapes of the 2D and 3D curves are reconstructed, as in Figure 6-3(c).  

The shapes of the curves are guaranteed of the G2 continuity, as the curvatures and the 

torsion are smooth functions with respect to arc length.  Then the ruling directions are 

derived by the equations in the previous subsections.  The steps of this process are listed 

below, and the parameters and elements processed in each step are summarized in Table 

6-1 for cases A, B, and C described in Section 2.2. 

 

 

(a)    (b)    (c) 

 

Figure 6-3 Interpolation and reconstruction of crease curve.  (a) 2D curvatures on the 

control points.  (b) 2D curvatures interpolated.  (c) Reconstructed 2D curve. 

 

Step 1. Parameters on all vertices are derived from the parameters of the control points 

by spline interpolation.  The rectification of torsion and folding angle, which will 

be introduced in Chapter 7, is applied at this stage if needed. 

Step 2. The 3D curve {𝑿𝑖} and/or 2D curve {𝑿2𝐷𝑖}, are reconstructed from the given 

parameters using equations (6.6) to (6.9) and equations (6.10) to (6.13).  

Step 3. The parameters and vectors are recalculated from the 2D and 3D curves to avoid 

the accumulation of numerical errors, using equations (6.13) to (6.15) or their 2D 

version. 

Step 4. Using equation (2.7), the parameters to be derived, depending on which case A-

C is used, are updated having the other two parameters as inputs. 

Step 5. In cases A and B, 3D curve {𝑿𝑖} or 2D curve {𝑿2𝐷𝑖}, are reconstructed using the 

derived parameters. 

Step 6. The parameters of the reconstructed curve are recalculated. 

Step 7. The rulings are calculated using equations (2.8) to (2.11). 
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Table 6-1 Parameters and elements processed in each step. 

 

  Case A Case B Case C 

Input 

elements 

3D curve 

Folding angle 

2D curve 

Folding angle 

2D curve 

3D curve 

Derived 

element 

2D curve 3D curve Folding angle 

Step 1 Interpolated 

parameters 

{𝑘𝑖}, {𝜏𝑖}, {𝛼𝑖} {𝑘2𝐷𝑖}, {𝛼𝑖} {𝑘𝑖}, {𝜏𝑖}, {𝑘2𝐷𝑖} 

Rectified 

parameters 

{𝜏𝑖}, {𝛼𝑖} {𝛼𝑖} {𝜏𝑖} 

Step 2 Reconstructed 

curve 

{𝑿𝑖} {𝑿2𝐷𝑖} {𝑿𝑖}, {𝑿2𝐷𝑖} 

Step 3 Recalculated 

parameters 

and vectors 

{𝑘𝑖}, {𝜏𝑖} 

{𝑻𝑖}, {𝑵𝑖}, {𝑩𝑖} 
{𝑘2𝐷𝑖}, 

{𝑻2𝐷𝑖}, {𝑵2𝐷𝑖} 

{𝑘𝑖}, {𝜏𝑖}, {𝑘2𝐷𝑖} 

{𝑻𝑖}, {𝑵𝑖}, {𝑩𝑖}, 

{𝑻2𝐷𝑖}, {𝑵2𝐷𝑖} 

Step 4 Derived 

parameters 
{𝑘2𝐷𝑖} 

{𝑘𝑖} {𝛼𝑖} 

Step 5 Reconstructed 

curve 
{𝑿2𝐷𝑖} 

{𝑿𝑖} - 

Step 6 Recalculated 

parameters 

and vectors 

{𝑘2𝐷𝑖}, 

{𝑻2𝐷𝑖}, {𝑵2𝐷𝑖} 

{𝑘𝑖}, {𝜏𝑖} 

{𝑻𝑖}, {𝑵𝑖}, {𝑩𝑖} 

- 

Step 7 Rulings 

calculated 
{𝛽𝐿𝑖}, {𝛽𝑅𝑖}, 

{𝒓𝐿𝑖}, {𝒓𝑅𝑖} 

{𝛽𝐿𝑖}, {𝛽𝑅𝑖}, 

{𝒓𝐿𝑖}, {𝒓𝑅𝑖} 

{𝛽𝐿𝑖}, {𝛽𝑅𝑖}, 

{𝒓𝐿𝑖}, {𝒓𝑅𝑖} 

 

After all curves and rulings are derived, the developable surface is constructed as two 

quad strips adjacent to the curved crease.  The quads in the strips share the rulings as 

their two edges, and the crease curve and the boundary of the paper being the other two.  

As shown in Figure 6-4(a), if the end of the crease curve lies outside of the paper, making 

the curve to cross the paper edge, the part of the curve outside the paper is cut off.  This 

is implemented by placing a new vertex on the intersection of the curve and the paper 

edge and placing a new quad or a triangle on its sides.  If the end of the curve is located 

in the paper, as shown in Figure 6-4(b), the curve end is extended to the edge of the paper 

as a straight line, and flat polygons with no rulings are placed on its sides. 
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(a)      (b) 

Figure 6-4 Polygon strip on the end of crease curve.  (a) End of crease curve placed 

outside the paper.  New vertex is shown in red.  (b) End of crease curve placed inside 

of the paper.  Extended crease is shown in red dotted line.  In both figures, newly added 

triangles (or quads in some cases) are shown in blue. 

 

6.2. Designing the curved folding 

 

In this section, the procedure of designing the curved folded paper is explained in terms 

of user manipulation. 

 

6.2.1. The GUI system 

 

As shown in Figure 6-5, the prototype of the GUI system has four panes, (a) the 3D 

polygon model of curved folded paper, (b) Crease and rulings mapped on 2D space, (c) the 

graphs of the parameters along the curve, and (d) the control panel through which the 

user can manipulate the shape of the paper.  The visualization of the 3D model is 

realized by OpenGL.  The panes and the widgets are implemented using fltk 1.3.0 

library and support mouse input on the 3D and 2D panes, key input, and the inputs 

through the widgets on the control panel.  Through the mouse input, the user can 

change the view angle and the pose and the position of the object in 3D space.  In the 

2D pane, the user can change the curve position, curve orientation, or paper size.  The 

manipulation by the mouse input is summarized in Table 6-2.  Through the control 

panel and the key input, the user sets and adjusts the parameters on the control points 

on the crease curve.  The radio buttons under the CONTROL MODE corresponds to the 

cases A, B, and C described in Subsection 6.1.2.  By choosing the mode, the radio 

buttons under the PARAMETER are activated or deactivated based on whether it is the 

input parameter or the derived parameter in that mode.  The user can choose one of the 

activated radio buttons to specify which parameter to be modified, and then choose the 

control point whose parameter is going to be changed by the scroll bar CONTROL POINT 

INDEX.  The control point chosen is highlighted in the 3D and the 2D panes, with the 

same color as the parameter graphs, green for 3D curvature, purple for 2D curvature, 

blue for torsion, and red for folding angle.  The value of the parameter is now changed 

and adjusted through a scroll bar PARAMETER VALUE or key inputs, while checking 

the shapes of the curved crease, rulings, and the paper shape in 2D and 3D and the shape 

of the parameter graphs.  The control panel also supports other operations such as 

showing or hiding of the visual information, folding and unfolding of the crease 
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(Subsection 6.2.3), activation and deactivation of the rectification process (Chapter 7), 

and other operations described in the following chapters. 

 

 
(a)    (b)   (c)  (d) 

Figure 6-5 Prototype of GUI system.  (a) 3D polygon.  (b) 2D mapped crease and rulings.  

(c) Graphs of parameters.  (d) Control panel. 

 

Table 6-2 The operation by mouse input. 

 

Pane Operation Effect 

3D Shift + Left mouse button Viewpoint rotation 

Ctrl + Left mouse button Viewpoint translation 

Alt + Left mouse button Viewpoint scaling 

Shift + Right mouse button Object rotation 

Ctrl + Right mouse button Object translation 

2D Left mouse button + drag Crease rotation 

Right mouse button + drag Crease translation 

Left mouse button + drag 

on paper edge 

Paper size modification 

 

6.2.2. The design process of the shape of curved folding 

 

The procedure of designing the curved folding is shown in Figure 6-6.  The parameters 

adjusted by the user are the curvature {𝑘𝑖} and the torsion {𝜏𝑖} of the 3D curve, the 

curvature of the 2D curve {𝑘2𝐷𝑖}, and the folding angle {𝛼𝑖}.  The mode, the parameter, 

and the control point are specified by the input through the control panel, as described 

in Subsection 6.2.1.  As the user changes the parameter value on a control point, the 

ruling directions and the shape of the surface are updated instantly, so that the user can 

adjust the parameters according to the feedback.  After checking the 2D and 3D shapes, 

the user can go back to any step of choosing the mode, the parameter, or the control point.  

It may be necessary to adjust different parameters on different control points alternately 

to create the desired shape that is developable, has no rulings crossing, and no self-
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collisions.  After obtaining the desired shape, the user can check the folding motion, 

explained in Subsection 6.2.3, and go back to the previous steps if needed.  

 

 

Figure 6-6 The iteration of user input. 

 

6.2.3. Simulation of a folding motion 

 

The folding and unfolding motion of the curved folded paper is simulated, as shown in 

Figure 6-7, by changing the overall folding angle {𝛼𝑖} and the torsion {𝜏𝑖}.  To unfold 

the paper shape, the system interpolates the parameters linearly from the designed 

value to zero, the flat state, while 2D curvature {𝑘2𝐷𝑖}  is fixed.  The rest of the 

parameters are re-calculated, and polygon shapes are updated in the same method as in 

Section 6.1.  To fold the paper, the system linearly changes the folding angle {𝛼𝑖} from 

the designed value to nearly 𝜋 2⁄ , with the 2D curvature being fixed, and other 

parameters and polygon shapes are updated.  Note that the folding angle of a curved 

crease cannot reach 𝜋 2⁄ , the completely folded state.  In both folding and unfolding, 

the crossing of the rulings may occur at some point of the motion, as a result of the ruling 

transition. 

 

 

 

Figure 6-7 Folding motion.  Top: 3D polygon model.  Bottom: 2D configuration. 
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6.2.4. Design of curved folding from ruling directions 

 

In the methods described in the previous subsections, the parameters of the crease curve, 

or the 2D and 3D curvature, the torsion, and the folding angle are the inputs, and the 

ruling angles were the derived parameters.  Conversely, using the same equations, the 

parameters of the crease curve may be derived from the ruling angles.  By this method, 

the user can specify the directions of the rulings to design the paper shape. 

    By integrating equations (6.7) and (6.8) and deforming the formula with 

𝑘(𝑠) sin 𝛼(𝑠) = 𝑘2𝐷(𝑠) tan 𝛼(𝑠), following equations are derived, 

 𝛼(𝑠)′ tan𝛼(𝑠)⁄ =
1

2
 𝑘2𝐷(𝑠)(−cot𝛽𝐿(𝑠) + cot𝛽𝑅(𝑠)), (6.14) 

 𝜏(𝑠) tan𝛼(𝑠)⁄ =
1

2
 𝑘2𝐷(𝑠)(cot𝛽𝐿(𝑠) − cot𝛽𝑅(𝑠)). (6.15) 

The equations take the 2D curvature and the ruling angles as input and derive the 

differentiation of the folding angle and the torsion.  Then the 3D curvature is also 

derived by equation (2.7).  This means that the user can change the ruling directions on 

the fixed 2D crease curve to control the 3D paper shape defined by the 3D crease curve 

and the folding angle.  The procedure is listed below. 

Step 1. The user inputs the ruling angles on the control points through the GUI.  The 

ruling angles on all vertices {𝛽𝐿𝑖}, {𝛽𝑅𝑖} are derived by spline interpolation. 

Step 2. 𝑑𝛼𝑖 tan 𝛼𝑖⁄ , 𝜏𝑖 tan 𝛼𝑖⁄ , which are the discrete versions of 𝛼(𝑠)′ tan 𝛼(𝑠)⁄ , 

𝜏(𝑠) tan 𝛼(𝑠)⁄ , are calculated for all vertices using equations (6.14), (6.15).  

Step 3. The folding angle 𝛼𝑚 on the vertex 𝑿𝑚 is set.  𝑿𝑚 may be any vertex on the 

crease curve.  In our implementation, it is set as the vertex in the middle point 

of the crease curve, or 𝑚 = |𝑿𝑖|. 

Step 4. For all other vertices, the folding angle 𝛼𝑖  and the torsion 𝜏𝑖  is calculated 

sequentially, from 𝑿𝑚 to the two ends of the crease curve, using the folding angle 

on the previous vertex 𝛼𝑖−1 and the pre-calculated 𝑑𝛼𝑖 tan 𝛼𝑖⁄  and 𝜏𝑖 tan 𝛼𝑖⁄ . 

 𝛼𝑖 = 𝛼𝑖−1 + 𝑑𝛼𝑖−1𝑑𝑥,  (6.16) 

 𝜏𝑖 = {𝜏𝑖 tan𝛼𝑖⁄ } tan𝛼𝑖 ,  (6.17) 

 𝑑𝛼𝑖 = {𝑑𝛼𝑖 tan𝛼𝑖⁄ } tan𝛼𝑖 .  (6.18) 

 

6.3. Results and discussions 

 

As an evaluation of the method and the system, the 3D shape of the curved folding 

designed by the system was evaluated by its developability and by visual comparison 

with the real paper.  The following subsections describe the method of evaluation, which 

is also used in the following chapters.  The applicability or the pros and cons of this 

basic method is also discussed. 
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6.3.1. Evaluation of the developability 

 

Developability of the 3D polygon model, representing the curved folded paper, is 

evaluated by (a) the sum of the corner angles adjacent to a vertex and (b) the flatness of 

the quads.  If the polygon model is completely developable, then (a) should be 2𝜋 for 

all vertices.  So, we evaluate the error at a vertex 𝑿𝑖 as 

𝐸𝑟𝑟𝑜𝑟𝑖 = 2π − {∠(𝑻𝑖 , 𝒓𝐿𝑖) + ∠(𝑻𝑖 , 𝒓𝑅𝑖) + ∠(−𝑻𝑖−1, 𝒓𝐿𝑖) + ∠(−𝑻𝑖−1, 𝒓𝑅𝑖) },   (6.19) 

with ∠(𝒗𝑖 , 𝒗𝑗)  indicating the angle between vectors 𝒗𝑖  and 𝒗𝑗 .  The right term 

represents the sum of corner angles around the vertex 𝑿𝑖, as shown in Figure 6-8(a).  

We set the tolerance of the angle error to be 0.05 degrees, or 8.7 × 10−4 radians, which 

corresponds to 1.6mm of displacement in the direction of the normal vector for the paper 

size with a radius of 100mm.  The flatness of a quad is calculated as the distance 

between one vertex of the quad and the plane passing through the other three vertices, 

as shown in Figure 6-8(b).  This value should be zero for perfectly flat quads and is 

formulated as 

 {

𝐷𝑖𝑠𝑡𝑖 = 𝒏𝑖 ∙ (𝒀𝑖+1 − 𝑿𝑖)

𝒏𝑖 = 𝑻𝑖 × 𝒓𝑖 |𝑻𝑖 × 𝒓𝑖|⁄

𝒀𝑖 = 𝑿𝑖 + 𝑙𝒓𝑖𝒓𝑖

,  (6.20) 

where 𝒀𝑖 is the 3D position of the vertex on the end of the ruling expanding from 𝑿𝑖 

and on the paper boundary, with 𝑙𝒓𝑖  indicating the length of the ruling.  𝒏𝑖  is the 

normal vector of the plane passing through the vertices 𝑿𝑖, 𝑿𝑖+1, and 𝒀𝑖.  We set the 

tolerance of the displacement to be 0.1mm for the paper size of 200mm× 200mm, used 

in Chapters 6, 7, and 8. 

 

   

(a)      (b) 

Figure 6-8 Indices for evaluation of developability.  (a) Sum of corner angles.  (b) 

Flatness of quads. 

 

Figure 6-9 shows the 2D crease curves and the rulings in different resolutions of 

discretization, which are 20, 40, 60, 80, and 100 vertices on the crease.  For (a), all 

vertices on the curve except for the ones on the edge of the paper is used for the 

evaluation.  For (b), all quads placed between two rulings are used.  Table 6-3 and 

Figure 6-10 shows the average and the maximum of (a).  Table 6-4 and Figure 6-11 

shows the average and the maximum of (b).  As the result for (a), the error was below 
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the tolerance for all vertices in resolution 60 and higher, and for the average in resolution 

40.  For (b), the displacement was below the tolerance for resolution 40 and higher.  So, 

we could assume that the model should be in the resolution of at least 40 vertices on a 

crease curve to well represent a developable surface.  Because the error becomes larger 

for the polygon model in low resolution, the error, which should be zero for a perfectly 

developable surface, should be caused by the discretization of the shape.  To discuss 

about the Gaussian curvature of the surface, by the result of (a), the Gaussian curvature 

is nearly zero on all the vertices on the crease curve.  With the result of (b) that all quads 

adjacent to the curve are flat, the Gaussian curvature is also nearly zero on all points of 

the quads. 

 

 

(a)    (b)    (c)    (d)  (e) 

Figure 6-9 2D crease curve and ruling in different resolutions of discretization.  The 

number of vertices on the crease are (a) 20, (b) 40, (c) 60, (d) 80, (e) 100. 

 

Table 6-3 Evaluation of developability by sum of corner angles adjacent to a vertex. 

 

resolution 20 40 60 80 100 

average [radian] 7.9 × 10−4 1.6 × 10−4 5.5 × 10−5 2.5 × 10−5 1.3 × 10−5 

maximum [radian] 4.8 × 10−3 1.4 × 10−3 4.2 × 10−4 1.8 × 10−4 8.8 × 10−5 

 

 

 

Figure 6-10 Graph of Table 6-3. 

 

Table 6-4 Evaluation of developability by flatness of quads. 

 

resolution 20 40 60 80 100 

average [mm] 0.157034 0.020015 0.005966 0.002573 0.001314 

maximum [mm] 0.655575 0.081198 0.025226 0.011502 0.006272 
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Figure 6-11 Graph of Table 6-4. 

 

6.3.2. Comparison with real paper 

 

The results of the visual comparison are shown in Figure 6-12.  The papers in the photos 

were printed as the 2D crease pattern data generated by our system.  It is folded and 

aligned manually to be in similar shape with the 3D model.  Comparing the photos and 

the 3D polygon model, the model seems to be well representing the real paper. 

 

 

 

Figure 6-12 The visual comparison.  Top row: photos of real paper.  Middle row: 3D 

polygon model.  Bottom row: 2D crease pattern with rulings. 
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6.3.3. Applicability of the method 

 

One of the advantages of this method to generate a 3D polygon model of the curved 

folding is that the developability of the shape is guaranteed by the equations (2.7) - (2.9), 

though having some deformation caused by the discretization.  The transition of the 

rulings is also supported by the equations, by recalculating the geometry directly from 

the input without an iteration process.  This ensures the fast calculation of the shapes 

so the user can edit the shape interactively, with the result shown instantly.  Another 

advantage is that the G2 continuity of the crease curve is guaranteed by the smooth 

interpolation of the input parameters, as explained in Subsection 6.1.2 and Figure 6-3, 

because the curvature, the second-order derivative of the curve, is continuous along the 

crease curve.  Consequently, the Frenet-Serret frame is defined on any point of the 

reconstructed curve except for the two ends, enabling the calculation of the rulings using 

the equations in Chapter 2.  The continuity of the parameters also makes the transition 

of the ruling directions along the curve to be smooth, and the generated polygon shape 

well represents a smooth curved surface. 

    On the other hand, our method has some disadvantages such as the usability, or the 

method of editing, and the lack of constraints to keep the model in an existable shape.  

As for the usability, the method of adjusting the parameters on the curved crease is 

generally not so intuitive.  Even with the instant feedback, most users need to go 

through some trial and error to obtain the desired shape.  The direct manipulation of 

the paper surface, which our method does not support currently, would be much more 

robust and easy input method for the users.  By the lack of constraints, the parameters 

may be changed by the user to generate a 3D shape which does not exist in the real world, 

such as the rulings crossing or the self-collision of the faces.  The method ensures the 

developability only under the condition that there are no rulings crossing.  To avoid such 

cases, the visual check of the user is necessary.   These issues are left as the future work 

of this theses. 

    With the method introduced in this chapter, the user is able to design a curved folded 

paper with one curved crease, by some user manipulation and the visual check.  

Simulation of folding motion is carried out using the same algorithm.  The method 

meets our goal of visualizing the ruling transition and the shape deformation of the paper 

during the folding motion, but the target is limited to the curved folding with one curved 

crease.  After explaining how to cope with the inflection point of the crease curve in the 

next chapter, some methods to work with multiple creases are introduced in Chapter 8 

and 9. 
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Chapter 7.  

Rectification of curved crease at the 

inflection point 
 

In this chapter, we discuss the method to handle the special case where the crease curve 

has an inflection point.  This is an exceptional case of equations (2.8), (2.9), where the 

curvature of the crease curve becomes zero.  In Section 7.1, the problems and the 

measures to avoid them is introduced.  In Section 7.2, the generated shapes are 

evaluated in the same method as Chapter 6 

 

7.1. Rulings at the inflection point 

 

The mathematical framework explained in Chapter 2 assumes the 2D and 3D crease 

curve having non-zero curvature, as the curvature 𝑘(𝑠)  is in the denominator of 

equations (2.8) and (2.9).  In other words, the crease curve is not supposed to include an 

inflection point or to be a straight line in order to calculate the ruling directions.  

However, in practice, there is curved crease including an inflection point, and the users 

may want to design such a curve.  One example of such curves is shown in Figure 7-1(a), 

where a curve changes from clockwise to counterclockwise as we follow the curve in the 

direction of the tangent vector.  Since the curvature is positive in the clockwise curve, 

and negative in the counterclockwise curve, as described in Subsection 5.1.1, in between 

the two sections, the curvature is zero.  At this point, as in equations (2.8) and (2.9), any 

non-zero value of torsion 𝜏 or difference of folding angle α′ causes cot 𝛽𝐿 and cot 𝛽𝑅 to 

have infinitely large values, and 𝛽𝐿 and 𝛽𝑅 to be either 0 or π, which means that the 

ruling is parallel to the tangent vector, as shown in Figure 7-1(b),(c).  On the other hand, 

observing paper in the real world, paper folded along straight crease line is never twisted, 

which means the torsion is zero, and the folding angle is constant throughout the crease.  

This is because a sheet of paper is a developable surface which can be flattened onto a 

plane without distortion.  Non-zero torsion on the zero-curvature point means that the 

surface twists along a straight fold line, which requires the surface to stretch at the point 

far from the crease line (Figure 7-2(a)).  A straight crease line with increasing or 

decreasing folding angle also has the same property (Figure 7-2(b)).  These surfaces are 

ruled surfaces but are not developable. 

In our system, however, the user input is not restricted to meet this property.  

Because the parameters of the curved crease are controlled at the control points, a 

parameter on one point of the curve is not easy to control directly by imposing constraints 

on the user input.  Instead, to keep this restriction, we propose a rectification process 

for the torsion and the folding angle.  The rectification methods are explained in the 

following subsections.  Along with the rectification, the system also eliminates the 

rulings around the zero-curvature point, as shown in Figure 7-3, as it is not necessary to 

define rulings on a planar area, and they cannot be calculated using equations (2.8), (2.9). 
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(a)   (b)   (c) 

Figure 7-1 Curved crease having a point of zero-curvature.  (a) Crease curve.  (b) 

Rulings with non-zero torsion.  (c) Rulings with increasing folding angle. 

 

   

(a)     (b) 

Figure 7-2 Examples of ruled and non-developable surfaces.  (a) Surface twisting along 

straight fold line.  (b) Surface with increasing folding angle on straight crease line. 

 

 
 

Figure 7-3 Elimination of rulings.  Rulings are eliminated in the dotted area where the 

curvature of the crease is close to zero. 

 

7.1.1. Rectification of folding angle 

 

The rectification of the folding angle is summarized in Figure 7-4.  It shows the 3D 

polygon model, the crease and the rulings mapped to 2D space, and the graphs of the 

folding angle along the curve, before and after the rectification.  The 3D polygon models 

are constructed by the method described in Chapter 6.  They are composed of quads 

placed between the 3D rulings whose directions are derived by equations (2.8) and (2.9) 

and their lengths are set to end at the paper edge.  In case of the rulings crossing, the 

polygon model is not developable, with one point of a 2D space corresponding to more 

than one point on the 3D polygon mesh.  As shown in the graph, the rectification is 

applied to the section (i) and to the section (ii) differently.  In section (i), where the 
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curvature is smaller than a threshold, the folding angle is rectified to be constant.  In 

section (ii), which is adjacent to section (i), the graph is interpolated by Bézier spline 

curve to smoothly meet the original point of the graph on both ends.  Section (ii) range 

from the end of section (i) to one of the followings: 

(a) a local maximum or minimum of the original folding angle, 

(b) a midpoint of two inflection points, if there are more than one inflection point, 

(c) the end of the curve. 

Some examples of the above endpoints of section (ii) are illustrated in Figure 7-5, with 

section (ii) noted by the types of its range (a) – (c).  This process may be regarded as 

removing the change of the folding angle along the curved crease from section (i) and 

shifts them to section (ii).  In both sections, while the folding angle is modified as 

described, curvature remains unchanged.  If the folding angle is constant, the curvature 

may either be zero or non-zero. 

 

     

(a)     (b)   (c) 

Figure 7-4 Rectification of folding angle.  (a) 3D polygon model (top) and crease and 

rulings mapped to 2D (bottom) before the rectification.  (b) After rectification.  (c) 

Graph of folding angle before and after the rectification.  In section (i) folding angle is 

rectified to be constant.  In section (ii) it is interpolated by Bézier curve. 

 

 

 

Figure 7-5 The range of section (ii) in three types.  Top row shows curvature, red dotted 

graph shows folding angle before rectification, and blue graph shows folding angle after 

rectification. 
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7.1.2. Rectification of torsion 

 

Figure 7-6 shows the rectification of torsion.  The two graphs in Figure 7-6(c) are 

𝜏(𝑠) 𝑘(𝑠)⁄  and 𝜏(𝑠).  As given in equations (2.8) and (2.9), 𝜏(𝑠) 𝑘(𝑠)⁄  is proportional to 

cot 𝛽𝐿(𝑠) , cot 𝛽𝑅(𝑠) given constant folding angle α.  This means that if this graph is 

smooth, then the ruling direction changes gradually along the curve, which generates 

smooth curved surfaces on its sides.  In the rectification process, 𝜏 is set to zero in 

section (i), around zero-curvature point, which also sets 𝜏(𝑠) 𝑘(𝑠)⁄  to be zero.  Then, in 

section (ii), 𝜏(𝑠) 𝑘(𝑠)⁄  is interpolated by Bézier spline curve to keep the graph smooth.  

The ranges of section (i) and (ii) are set in the same method as in folding angle 

rectification but using 𝜏(𝑠) 𝑘(𝑠)⁄  instead of the folding angle to obtain the end of section 

(ii).  As in the rectification of the folding angle, curvature remains unchanged in both 

sections.  If the torsion is zero, the curvature may be zero but not necessarily.  𝜏(𝑠) is 

then normalized so that the total amount of torsion on the curve is the same before and 

after the rectification, expecting the curve end to be close to the original point before the 

rectification.  These processes change the shape of the 3D curve and the adjacent curved 

surface to make the whole surface developable, like a sheet of paper in the real world. 

 

     

(a)     (b)   (c) 

Figure 7-6 Rectification of torsion.  (a) 3D polygon model (top) and crease and rulings 

mapped to 2D (bottom) before the rectification.  (b) After rectification.  (c) Graphs of 

𝜏(𝑠) 𝑘(𝑠)⁄  (top) and graph of 𝜏(𝑠) (bottom) before and after the rectification.  In section 

(i), torsion is set to be zero.  In section (ii), it is interpolated by Bézier curve. 

 

7.1.3. GUI for the rectification 

 

Figure 7-7 shows the prototype GUI system with the widgets for the rectification on the 

control panel.  The top part contains the checkbox to choose whether to apply the 

rectification process, for the folding angle, the torsion, and the elimination of the rulings.  

The rest of the control panel carries the input widgets to change the range of sections (i) 

and (ii), and to control the shape of the Bézier curve to interpolate the parameter graph.  

The interface is for trials and should be improved for better use of the application. 
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Figure 7-7 GUI for changing rectification parameters. 

 

7.2. Results and discussions 

 

As an evaluation of the method, a 3D polygon shape of a curved folded paper, containing 

zero-curvature point and rectified by the proposed method, is tested by the same criteria 

as in Chapter 6.  The original parameters of this curved crease include non-zero torsion 

and increasing folding angles. 

 

7.2.1. Evaluation of the developability 

 

The 3D polygon models made by the crease curve in Figure 7-8 are evaluated by (a) the 

sum of the corner angles adjacent to a vertex and (b) the flatness of the quads.  The 

results are shown in Table 7-1, Table 7-2, Figure 7-9, and Figure 7-10.  For (a), the 

errors are below the tolerance of 8.7 × 10−4 radians for resolution 40 and higher.  For 

(b), the displacement is below the tolerance of 0.1mm for the average in resolution 40 

and for all data for 60 and higher.  We could conclude that the generated 3D polygon 

surface is approximately developable for resolution of around 40 and higher.  In the case 

of lowest resolution, crossing of the rulings was not resolved. 

 

 

(a)    (b)    (c)    (d)  (e) 

Figure 7-8 2D crease curve and ruling in different resolutions of discretization.  The 

number of vertices on the crease are (a) 20, (b) 40, (c) 60, (d) 80, (e) 100. 
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Table 7-1 Evaluation of developability by sum of corner angles adjacent to a vertex. 

 

resolution 20 40 60 80 100 

average [radian] 8.0 × 10−4 9.1 × 10−5 3.1 × 10−5 1.4 × 10−5 7.1 × 10−6 

maximum [radian] 2.8 × 10−3 3.1 × 10−4 6.7 × 10−5 2.7 × 10−5 1.5 × 10−5 

 

 

 

Figure 7-9 Graph of Table 7-1. 

 

Table 7-2 Evaluation of developability by flatness of quads. 

 

resolution 20 40 60 80 100 

average [mm] 0.436465 0.041724 0.010618 0.004203 0.00208 

maximum [mm] 1.979861 0.128637 0.029707 0.015156 0.009272 

 

 

 

Figure 7-10 Graph of Table 7-2. 

 

7.2.2. Comparison with real paper 

 

The results of the visual comparison are shown in Figure 7-11.  The papers in the photos 

were printed as the 2D crease pattern data generated by our system.  It is folded and 

aligned manually to be in similar shape with the 3D model. 
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Figure 7-11 The visual comparison.  Top row: photos of real paper.  Middle row: 3D 

polygon model.  Bottom row: 2D crease pattern with rulings. 

 

7.2.3. Evaluations using 3D printer object 

 

In addition to the above evaluation, the 3D polygon shape is reproduced as a solid object 

made by a 3D printer, as shown in Figure 7-12.  By placing a sheet of metal between 

the two objects and a sheet of paper on the object with nearly no gaps, we confirmed that 

the accuracy of the developability is enough for reproducing a physical model with a 

metal sheet. 

 

  

  

 

Figure 7-12 3D printed object with thin metal sheet (top) and paper (bottom). 
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Chapter 8.  

Curved folding with multiple creases 
 

In the previous chapters, we introduced a method to design a curved folding with only 

one curved crease on a piece of paper.  In this chapter, we will introduce a method to 

add some other curved creases on the curved surfaces.  We assume all curved creases 

end at the edge of the paper, with no branching, crossing or diminishing creases.  As the 

first crease is designed by the method in the previous chapters, the 3D shapes of the 

adjacent developable surfaces are determined.  Then the second curved crease is added 

on one of the two adjacent surfaces.  This generates another developable surface by 

dividing the original surfaces along the new curved crease.  The ruling directions and 

the 3D surface shape are then calculated according to the shapes of the original surface 

and the new curved crease.  The method and the process are explained in detail in 

Section 8.1.  Because the shapes of the surfaces are determined according to an adjacent 

curved crease, creases must be added one at a time, on a fixed curved surface.  To have 

the rulings and the paper shape to be in the existable state, which means the rulings are 

on the surface not crossing to each other, the shapes of the newly added creases must be 

controlled properly.  This is performed by the interactive user manipulation, with the 

prompt feedback of the 2D and 3D shapes generated by the input.  Yet the task of 

adjusting the shape of the crease curve is often difficult for the added creases.  This is 

because the user cannot edit the parameters directly like the first crease, as the curved 

surface on one side of the crease is already fixed.  A small unintended shift of a control 

point affects the parameters on the curve, causing a large shift in ruling directions 

calculated from them.  To resolve this problem and support the user input, we added 

some trial process of input restriction and optimization.  By restricting the movement 

of the control point and to optimizing their positions based on some cost functions, the 

process performed well on some occasions but still has some room for improvement.  In 

Section 8.2, we evaluated the generated 3D polygon data with multiple curved creases 

in the same method as in Chapter 6.  Through the process of creating some other 

variations, we found it is difficult to add more than one or two creases on one side of the 

original curved surface. 

 

8.1. Adding curved creases on a curved surface 

 

The curved folded paper designed by this system contains one primary curved crease and 

some additional curved creases, as shown in Figure 8-1.  The primary curved crease is 

the first crease to be placed on the paper and is designed by the method described in 

Chapter 6.  Starting with one curved crease on a piece of paper, the user adds an 

additional crease on either side of the primary crease, adjust its shape, and simulate the 

folding motion through the GUI.  In this section, the GUI and the procedure of the user 

manipulation are first described in Subsection 8.1.1.  Then the calculation method to 

derive the 3D paper shape from the additional crease is explained in Subsection 8.1.2.  

Because the task of adjusting the shape of the crease curve is difficult in some cases, 



 

64 

 

some functions to support the user input is proposed and explained in Subsection 8.1.3, 

followed by another solution of trimming the paper in Subsection 8.1.4. 

 

 

 

Figure 8-1 Curved folded paper with multiple curved creases. 

 

8.1.1. User interface and the procedure of adding a crease 

 

The procedure of adding a new crease is performed by the GUI, shown in Figure 8-2 with 

a new card tab on the control panel for adding curved creases, and follows the flowchart 

of user manipulation, shown in Figure 8-3.   

The additional crease curve is initially input by the user as a free-form curve drawn 

on the 2D space, as shown in Figure 8-4(a).  This is done in the curve drawing mode, 

activated by checking the checkbox FOLD on the control panel.  After the initial shape 

is specified by the user, the curve is added as a new crease by the button ADD CREASE.  

As an internal process, the newly added crease is approximated by the B-spline curve so 

that the shape of the curve becomes smooth (Figure 8-4(b)).  Then the shape of the new 

surface on the outer side of the additional crease is calculated and displayed (Figure 

8-4(c)).  Such internal process will be explained in detail in Subsection 8.1.2.  At this 

step, the rulings are likely to be crossing.  So, the user checks the result and adjusts the 

curve shape to resolve the crossing, if necessary (Figure 8-4(d)).  This is done by moving 

the control points of the B-spline curve in 2D space.  The user chooses one control point 

by clicking on the point shown in the 2D pane and then moves the position of the control 

point by the mouse drag.  As the control point is moved, the B-spline curve and the 

paper shape is updated promptly so that the user can check the result and move the 

control point interactively.  This manipulation, choosing a control point and moving it, 

is carried out until the shape of the additional curved crease and the paper is in the 

intended shape, with no rulings crossing.  Note that the "control points" of the 

additional crease are different from the ones of the primary curved crease, placed evenly 

on the crease curve.  The graphs of the parameters are also shown for the additional 

curved crease by specifying the corresponding crease by the scroll bar CREASE INDEX. 
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Figure 8-2 GUI for additional curved crease. 

 

 

 

Figure 8-3 Iteration of user input for additional crease. 

 

 

   

    

(a) (b) (c) (d) 

Figure 8-4 Procedure for adding a curve.  (a) Free-form curve drawn by the user.  (b) 

B-spline curve approximating the free-form curve.  (c) Additional curved crease in 

initial state.  (d) Additional curved crease after user adjustment. 



 

66 

 

 

    By this procedure, the paper with multiple creases is created.  But sometimes the 

task of adjusting the curve shape may be difficult.  Because all other elements are 

derived from the shape of the crease curve on the 2D space, including the torsion, the 

curvature, the folding angle, and the vectors in the Frenet frame, a small unintended 

shift of a control point could affect the shape and the parameters of the additional curved 

crease, causing a large shift in the ruling directions calculated from them.  To support 

the user input to adjust the curve shape effectively, the system is equipped with some 

functions of input restriction and the optimization for trial use.  Three types of input 

modes are listed below. 

(i) The user edits the control points with no system support. 

The user can move the control points on 2D space freely with no restriction.  An 

inappropriate movement could make the state worse and cause the rulings to be 

crossing each other, but this may be good enough for an experienced user. 

(ii) The user edits the control points with system support to encourage a better state. 

The user can move the control points with some restrictions on the movement by 

checking the checkbox RESTRICT. The restriction is based on the cost functions 

chosen by the radio button under COST FUNCTION.  The control points are moved 

according to the user's mouse drag only if the new position has a smaller cost than 

the previous state.  The detail of each cost function will be explained in Subsection 

8.1.3. 

(iii) The optimization process based on the cost function. 

The optimization process of an additional curved crease is executed by the button 

OPTIMIZE.  In this process, each control point of the additional crease is shifted 

by a small amount in different directions, evaluated by the cost function, and the 

position with the smallest cost is adopted.  This process is applied to all control 

points of the curve.  If there is more than one additional crease, the crease to be 

optimized is specified by the scroll bar CREASE INDEX.  The same cost function is 

used in the input mode (ii). 

 

After the design and the adjustment of the curved fold, the folding motion of the 

paper is simulated.  Figure 8-5 shows three states of a curved fold with an additional 

crease on each side of the primary curved crease, which are in different folding angles 

during the folding motion.  As in the generation of the folding motion in Chapter 6, the 

folding angle of the primary crease curve is changed linearly between zero, the flat state, 

and some value smaller than 𝜋 2⁄ , the completely folded state.  The torsion is also 

changed between the original state and the flat state.  On additional crease curves, the 

3D curves, the folding angles, and the rulings on the other side are recalculated 

depending on the shape of the surface curved by the primary crease, with no direct 

control of the parameters by the user or the system.  Given appropriate additional 

creases by the user, the folding and unfolding motion with ruling transition is simulated 

successfully in some range of folding angles.  The crossing of the rulings may occur at 

some point of the motion, as a result of the ruling transition.  In Figure 8-5(c), there are 

a gap on the additional crease on the 3D model where the crease is extended to the edge 

of the paper as a straight line.  It is assumed to be caused by the difference in the 
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number of the rulings on the left and right sides of the additional crease.  Because the 

rulings are derived from to the curvatures and the torsions calculated by equations (6.1) 

to (6.5) using consecutive three vertices, on the surface on the outer side, some rulings 

near the curve ends must be omitted.  This causes a small difference in the orientations 

of the flat faces made by the extended straight line on the left and right sides, making a 

gap between the surfaces.  The solution to this problem is to place the crease curve so 

that the ends of all crease curves are located outside the paper boundary.  In the 

manipulation, the user may put more than one additional curve on either side of the 

primary curve but needs to make sure that there is no intersection of crease curves with 

the support of the system. 

 

   

   

(a)      (b)   (c) 

Figure 8-5 Simulation of folding motion.  Folding angle of the primary curve is (a) 7 to 

26 degrees, (b) 11 to 40 degrees, (c) 38 to 57 degrees. 

 

8.1.2. Calculation of additional crease 

 

Now, we will explain the internal process using the denotation {∗𝑅𝑗𝒊}, indicating the 

elements of the j-th additional curved crease on the right side of the primary crease curve, 

for example.  After the free-form curve is input as a new crease, the curve is smoothened 

by being approximated as a B-spline curve of degree-three, with six control points and 

the knot vector {0,0,0,0,1,2,3,3,3,3}.  It is then discretized as a sequence of vertices in 2D 

space {𝐗2𝐷
𝑅𝑗
𝒊
}  by plotting the intersections of the B-spline curve and the rulings 

stemming out from the primary curved crease (Figure 8-6(a)).  By projecting the 2D 

vertices onto the 3D ruling vectors {𝒓𝑹𝒊}, a 3D space curve of the additional curved crease 

{𝐗𝑅𝑗𝒊} is obtained (Figure 8-6(b)).  The curvature {𝑘𝑅𝑗𝒊}, the torsion {τ𝑅𝑗𝒊}, the tangent 

vector {𝐓𝑅𝑗𝒊} , the normal vector {𝐍𝑅𝑗𝒊} , and the binormal vector {𝐁𝑅𝑗𝒊} are then 

calculated from the 3D curve by equations (6.1)-(6.5) (Figure 8-6(c)).  The folding angles 

{α𝑅𝑗𝒊} are calculated as the angle between the normal vectors {𝐍𝑅𝑗𝒊} and the rulings 
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{𝒓𝑳
𝑅𝑗
𝒊
} projected to the normal plane of the crease curve(Figure 8-6(d)).  The ruling 

𝒓𝑳
𝑅𝑗
𝒊
 is obtained as −𝒓𝑅𝑖 because the ruling on the left side of the additional crease 

curve is identical to the rulings on the right side of the primary crease curve in the 

opposite orientation.  At last, the ruling angles  {𝛽𝑅
𝑅𝑗
𝒊
}  on the new surface on the 

other side of the additional crease curve is calculated using equations (2.8) and (2.9) 

(Figure 8-6(e)), and the 3D ruling vectors  {𝒓𝑹
𝑅𝑗
𝒊
}   by equations (2.10) and (2.11) 

(Figure 8-6(f)).  In this step, the new rulings are likely to have crossings, which are to 

be eliminated in the next step.  If two or more additional crease curves are input, the 

creases are processed one by one starting from the curve closest to the primary crease. 

 

    

(a)      (b)    (c) 

    

(d)      (e)    (f) 

Figure 8-6 Process of calculating additional curved crease and the paper shape.  (a) 2D 

curved crease {𝐗2𝐷
𝑅𝑗
𝒊
}.  (b) 3D curved crease {𝐗𝑅𝑗𝒊}.  (c) Frenet-frame of additional 

curved crease.  (d) Folding angle of additional curved crease.  (e) Ruling angle {𝛽𝑅
𝑅𝑗
𝒊
} 

of 2D curved crease.  (f)  Ruling vector {𝒓𝑹
𝑅𝑗
𝒊
} of the 3D curved crease. 

 

8.1.3. Cost functions for input restriction and optimization 

 

For the input mode (ii) and (iii) in Subsection 8.1.1, the input restriction and the 

optimization are implemented based on the cost functions.  Our system provides three 

types of cost functions listed below, designed empirically for trial. 

 

(a) The total area of the rulings crossing. 

It is obvious that the rulings crossing in the 2D crease pattern do not make a good 3D 

polygon model.  To improve such an undesirable state, we set the cost function to 

include the total area on the 2D crease pattern where the projection to the 3D space is 
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non-injective due to the ruling crossing.  With 𝑠𝑖 and 𝑒𝑖 indicating the indices of 

starting vertex and the ending vertex of the curved crease respectively, 

𝐶𝑜𝑠𝑡𝐴 = ∑ {𝐴𝑟𝑒𝑎 𝑜𝑓 △ 𝑰𝑖,𝑖+1𝒀𝑖𝒀𝑖+1}

𝑖<𝑒𝑖−1

𝑖=𝑠𝑖

,          (7.1) 

where 𝑰𝑖,𝑖+1 is the intersecting point of two rulings of vertices 𝑿𝑖 and 𝑿𝑖+1, and 𝒀𝑖 

and 𝒀𝑖+1 are the ends of the rulings for 𝑿𝑖 and 𝑿𝑖+1.  One area between the rulings 

crossing is shown in Figure 8-7. 

 

(b) The difference between torsions. 

Because the equation (7.1) is zero for the curved crease with no rulings crossing, we 

need some other factors to control the curve shape after the crossing of the rulings are 

resolved.  One idea is that two curved creases placed side by side should have similar 

3D shapes of the curve.  The cost function is composed of the difference of torsion 

between the primary crease curve and the additional crease curve,  

𝐶𝑜𝑠𝑡𝜏 = 
1

𝑒𝑖 − 𝑠𝑖
∑|𝜏𝑖 − τ

𝑅𝑗
𝑖|

𝑖<𝑒𝑖

𝑖=𝑠𝑖

.          (7.2) 

(c) The difference between the left and right ruling angles. 

Another characteristic preferable for the curved crease is some type of stability.  One 

simple index to measure this is the difference of ruling angles on the left and right side 

of the crease, 

𝐶𝑜𝑠𝑡𝛽 = 
1

𝑒𝑖 − 𝑠𝑖
∑|β𝐿

𝑅𝑗
𝑖
− β𝑅

𝑅𝑗
𝑖
|

𝑖<𝑒𝑖

𝑖=𝑠𝑖

.          (7.3) 

From equations (2.8) and (2.9), the ruling angles are the same for constant folding 

angle and differ if it is increasing or decreasing along the curved crease. 

 

The user can select the cost function through the GUI anytime during the adjustment 

process.  The user may want to change the cost function alternately as well as the 

editing mode.  In that case, the current lowest cost is managed and updated separately 

for each cost function. 

 

 
Figure 8-7 Non-injective area caused by rulings crossing. 
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8.1.4. Trimming the paper 

 

In our GUI system, the user can trim the paper by a free-form curve input by the mouse 

drag, as shown in Figure 8-8.  It is the same procedure as adding a new curved crease 

on a curved surface, except choosing the checkbox TRIM instead of FOLD in the initial 

step.  This operation can eliminate the undesirable areas of the paper, such as crossings 

of the rulings. 

 

 

(a)      (b) 

Figure 8-8 Trimming the paper.  (a) Free-form curve input by the user.  (b) The paper 

trimmed on the user input curve. 

 

8.2. Result and discussion 

 

A 3D polygon model generated using this prototype GUI system, shown in Figure 8-5, is 

tested by the evaluation method described in Chapter 6.  The polygon model contains 

three curved creases: one primary crease, one additional crease on the left side of the 

primary crease, and another additional crease on the right side. 

 

8.2.1. Evaluation of the developability 

 

For the two additional creases, the indices for the developability, which are (a) the sum 

of the corner angles adjacent to a vertex and (b) the flatness of the quads, are 

summarized in Table 8-1 and Table 8-2.  For (a), the error was below the tolerance of 

0.05 degrees.  For (b), the displacement was below the tolerance of 0.1mm in most of the 

cases, but for some quads on the outside of the additional crease, the displacement was 

above the tolerance. 

 

Table 8-1 Evaluation of developability by the sum of corner angles adjacent to a vertex. 

 

Folding angle (a) 7 to 26 degrees (b) 11 to 40 degrees (c) 38 to 57 degrees 

crease Left Right Left Right Left Right 

average 

[degrees] 

0.000163 0.000140 0.000440 0.000389 0.000387 0.000419 

maximum 

[degrees] 

0.000401 0.000516 0.00120 0.00115 0.00132 0.00178 
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Table 8-2 Evaluation of developability by the flatness of quads. 

 

Folding angle (a) 7 to 26 degrees (b) 11 to 40 degrees (c) 38 to 57 degrees 

quads inside outside inside outside inside outside 

average [mm] 0.00056 0.0255 0.00074 0.0080 0.00098 0.025 

maximum [mm] 0.0033 0.87 0.0022 0.040 0.019 0.71 

 

8.2.2. Comparison with real paper 

 

For the comparison with the real paper, two samples of crease patterns are printed and 

folded.  The shapes of the real paper are adjusted to be in similar shape with the 3D 

polygon model with a piece of wire on the back of the paper to fix the 3D shape of the 

primary curved crease.  The results are shown in Figure 8-9.  Their appearance seems 

acceptable although there seems to be some distortion near the straight segment of the 

additional crease in Figure 8-9(j) and (l), which the 3D polygon models contain some gaps.  

There are also differences such as the viewpoint, not strictly controlled.  

 

    

(a)         (b) 

    

(c)     (d)   (e)     (f)     (g) 

 

     
(h)     (i)   (j)     (k)     (l) 

Figure 8-9 Visual comparison with real paper.  (a), (b): Crease patterns printed.  (c)-(e): 

3D polygon models of crease pattern (a), in different folding angles, generated by our 

GUI system.  (f), (g): 3D polygon models of crease pattern (b).  (h)-(j): Photos of real 

paper folded by crease pattern (a), corresponding to the 3D model (c)-(e).  (k), (l): Photos 

of real paper folded by crease pattern (b), corresponding to the 3D model (f), (g). 
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8.2.3. Other examples 

 

Other examples designed by the system are shown in Figure 8-10, with its folded shape 

generated as a result of the folding simulation.  This time, the faces adjacent to the ends 

of the curved creases extended as straight lines are omitted.  For the samples in the top 

to the third row, the result seems to be acceptable.  But for the last sample, the rulings 

start to cross each other on the newly generated curved surface quickly after the folding 

starts. 

 

 

 

Figure 8-10 Other examples of 3D polygon model and the crease pattern with multiple 

curved creases.  Left: Designed shape.  Right: Folded state. 
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Chapter 9.  

Curved folding with rotational symmetry 
 

This chapter proposes a method to generate the folding motion of the rotationally 

symmetric curved folding with user manipulation.  Rotationally symmetric curved 

folding is a type of origami that has curved creases placed in rotational symmetry, and 

the folded sheet of paper forms a three-dimensional shape, as shown in Figure 9-1.  

Various paper artworks of this type have been created by many artists and hobbyists, 

and software to design the 3D shape and the crease pattern has been developed 

[Mitani_09].  Although the crease patterns and their final folded 3D shapes are well 

known, their folding motions, or the paper shapes in between the flat unfolded state and 

the final folded state, are still not clear.  Our system generates and visualizes the 

folding motion of some pre-defined models, with some user manipulation and the 

keyframe interpolation.  The methods are explained in Section 9.1, and the result is 

shown in Section 9.2, with the discussion about folding a paper with a crease pattern, 

including some straight creases in Subsection 9.2.4. 

 

  

(a)         (b) 

Figure 9-1 Example of rotationally symmetric curved folding from Flicker [Mitani].  (a) 

Sphere in cylinder type.  (b) Sphere in disk type. 

 

9.1. Method 

 

In this section, we will explain the whole process by taking as an example the origami-

sphere in disc type with six segments, which is a typical example of the rotationally 

symmetric curved folding designed by Mitani.  The 3D model and the crease pattern 

designed by his software ori-revo [Mitani_09] is shown in Figure 9-2, and the photo of 

origami-sphere with eight segments is in Figure 9-1(b).  It is composed of two types of 

creases: the curved creases in a valley-fold, or concave fold, that maintain the sphere 

shape with the adjacent curved surfaces, and the straight radial creases in a mountain-

fold, or convex fold, that pull out the extra parts of the paper not on the sphere.  The 

following subsections describe the method to generate the shape and the motion of the 

paper, followed by the explanations of the GUI system. 
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(a)     (b) 

Figure 9-2 Origami-sphere in disk type with six segments.  (a) 3D model.  (b) Crease 

pattern.  Both are designed by ori-revo [Mitani_09]. 

 

9.1.1. Overall process 

 

As a base of our method, we model the origami-sphere as a group of segments divided by 

the radial line creases, placed in rotational symmetry, as shown in Figure 9-3.  Each 

segment contains only one curved crease.  By editing one segment, the rest of the paper 

is cloned in accordance with the symmetric property of the crease pattern.  

Consequently, the curved folding with several creases is modeled based on the method 

proposed in Chapter 6. 

 

   

(a)      (b) 

Figure 9-3 One segment of origami-sphere rendered with texture and rulings.  (a) 3D 

model.  (b) 2D crease pattern.  Modeled by our GUI system. 

 

As in the system described in the previous chapters, the system has a 3D model and a 

crease pattern.  During the folding motion, the shape of the 3D model and the rulings 

in the 2D space changes continuously, while the crease pattern stays unchanged.  

Figure 9-4 shows the illustration of the folding motion generation.  The top row 

describes the initial step with no user modification.  Given the flat state and the final 

folded state to be the beginning and the end of the folding motion, two frames are set to 

be the initial keyframes.  In the flat state, all creases have zero folding angles, i.e., the 
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3D model identical to the crease pattern.  The final folded state is the complete form of 

the curved folding where, in this example, straight crease lines are folded completely, 

and the curved surfaces bent by the curved creases make a sphere.  Initially, the 

intermediate frames are generated by linearly interpolating the two keyframes, as 

described in Subsection 9.1.3 (Figure 9-4 top row).  As this generally causes large gaps 

between the segments, the user picks one frame, corrects it to make the gap smaller, and 

adds it as a new keyframe.  The rest of the non-key frames are then re-interpolated 

(Figure 9-4 bottom row).  This process is carried out until the user is satisfied with the 

output, where the segments are placed adjacently in all frames with no large gaps or 

self-collision.  In this work, we assume that the paper shape is rotationally symmetric 

at all stages of the folding motion, though in the real world it may temporarily be 

asymmetric. 

 

 

 

Figure 9-4 Process of folding motion generation.  Frame 0 is the final folded state.  

Frame 20 is the flat state.  One of the frames in the intermediate state is picked up, 

modified by the user, and set as a new keyframe.  Other frames are interpolated from 

the adjacent keyframes. 

 

9.1.2. Crease pattern generation 

 

In the process of generating the folding motion, the crease pattern is set as the predefined 

data that may be designed by some other tools or methods.  The whole crease pattern is 

composed of six identical segments placed side by side in rotational symmetry.  As 

shown in Figure 9-5, the crease pattern of one segment consists of one curved crease in 

the center and two boundary creases on its sides, which are the boundaries between the 

adjacent segments.  Theoretically, a segment may contain multiple curved creases that 

are not on the boundary, but our system supports only one crease for usability. 

As in Chapter 6 and Figure 6-3, the curved crease is derived from 2D curvatures on 

the control points, sampled at equal intervals on the curve.  They are interpolated 

throughout the curve, and the shape of the 2D crease curve is reconstructed from them. 
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The placements of two boundary creases are determined by the division number N 

of the rotationally symmetric design, which is equal to the number of the segments 

(Figure 9-6).  Their shapes are defined by a constant value of 2D curvature 𝑘2𝐷 (Figure 

9-7).   Whereas the origami-sphere has the boundary curves in a straight line shape, 

our system allows them to have a curved shape but defines them by only one value to 

make the implementation simple.  The two congruent boundary creases are placed with 

a rotation of 2𝜋 𝑁⁄  so that, in the flat state, the segments are placed with no gap.  

Figure 9-3 and Figure 9-4 show an example with N = 6 and 𝑘2𝐷 = 0.0, which means the 

boundary creases are the straight lines. 

 

 

Figure 9-5 Crease pattern of one segment. 

 

   

(a)    (b)       (c) 

Figure 9-6 Placement of boundary crease.  (a) N = 5  (b) N = 6  (c) N = 7 

 

   
(a)    (b)       (c) 

Figure 9-7 Shape of boundary crease.  (a) 𝑘2𝐷 = 0.0  (b) 𝑘2𝐷 = 0.0005  (c) 𝑘2𝐷 = 0.001 

 

9.1.3. 3D model generation and interpolation 

 

The process of 3D model generation and interactive modification is applied to the 

keyframes added by the user and to the final folded state.  For the final folded state, 

the parameters of the curved crease should be calculated on other tool or software and 

given as an input, but if necessary, they may be refined on this system.  For the 

keyframes, the 2D crease pattern is fixed, and the 3D shape of a segment is defined by 
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the torsion and the folding angle of the curved crease, following the case B in Subsection 

2.3.2.  The initial values of the torsion and the folding angle are given by interpolating 

the flat state and the final folded state.  Then the user picks one frame, modifies the 

parameters, and set it as a new keyframe.  The whole 3D model is then constructed with 

six segments placed in rotational symmetry with small gaps in between the adjacent 

boundary creases.  The process of modifying or refining the 3D model is composed of 

two steps: (i) the 3D shape refinement of a segment, and (ii) the adjustment of the 

segment pose, or the 3D orientation of the segment. 

In (i) the 3D shape refinement, the 3D shape refinement, the shape is controlled by 

the folding angle and the torsion of the curved crease.  The parameters are modified by 

the user by changing the values on the control points, placed evenly on the curved crease.  

By the method described in Chapter 6, the rulings and the 3D shape of the curved folded 

surface is derived.  An example of a modified segment shape is shown in Figure 9-8. 

 

   

(a)        (b)     (c) 

 

   

(d)        (e)     (f) 

 

Figure 9-8 3D shape refinement of a segment.  Top row: Before modification.  Bottom 

row: After modification.  (a), (d): 3D model.  (b), (e): Crease and rulings mapped to 2D.  

(c), (f): Graphs of parameters. 

 

In (ii) the pose adjustment, the segment pose is adjusted through an aligning process 

to minimize the gaps between the boundary creases, or by user adjustment through the 

mouse drag interface, as shown in Figure 9-9.  In the aligning process, segments are 

placed so that their boundary creases fit the lateral edges of an equilateral pyramid, as 

illustrated in Figure 9-10.  The shape of the equilateral pyramid (Figure 9-10(b)) is 

derived from the number of segments N and the relative 3D orientations of a pair of 

boundary creases on a segment.  That is, the base of the pyramid has the same number 

of edges as the number of the segments, and the angle between the adjacent lateral edges 

Torsion 

 

Folding angle 

Torsion 

 

Folding angle 
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of the pyramid is equal to the angles between the lines approximating the boundary 

crease in 3D space: passing through the center of the paper and its orientation calculated 

by the least square method using the sample points on the boundary crease (Figure 

9-10(a)).  In the user adjustment process, as the pose of one segment is adjusted with 

mouse drag, all other segments are also placed in rotational symmetry, or the i-th 

segment rotated 2𝜋𝑖 𝑁⁄  around the vertical axis. 

 

   

(a)         (b) 

Figure 9-9 Adjustment of segment pose.  (a) Before adjustment.  (b) After adjustment. 

 

   

(a)         (b) 

Figure 9-10 Adjustment of segment pose.  (a) Lines approximating segment boundaries.  

(b) Lateral edges of equilateral pyramid. 

 

To integrate the six segments to be one sheet of paper, (i) the target segment shape must 

have the 3D shapes of the two boundary creases to be as congruent as possible and (ii) 

the segment pose is to be adjusted to minimize the gaps, without considerable self-

collision.  (i) and (ii) are improved alternately until the user is satisfied with the result 

by a visual check.  After the keyframe is modified, other interpolated frames are 

updated by calculating the folding angles, the torsion, and the pose by the linear 

interpolation of the keyframes, followed by the same process as described above. 

 

9.1.4. GUI of the prototype system 

 

As in the GUI system in the previous chapters, the prototype GUI system for the folding 

motion generation is composed of four panes: the 3D model, the 2D crease of a segment, 

the parameters of the curved crease shown in the graphs, and the control panel, shown 

in Figure 9-11.  The graphs of the folding angles and the torsion are modified to show 

the parameters in multiple keyframes.  Their graphs are shown, with the current frame 

in thick colored lines, the keyframes in thin colored lines, and the other interpolated 

frames in thin gray lines.  For the other parameters, only the current frame is depicted.  
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On the control panel, a card tab is added which carries widgets to design the rotational 

symmetric curved folding, such as scroll bars to choose the segment number 𝑁, to choose 

the current frame to be checked and modified, and to adjust the torsions and the folding 

angles of the current frame. 

Figure 9-12 shows the flowchart of the user operation.  After the 2D and 3D creases 

of the final folded state are input, the user first defines the boundary curve by the method 

described in Subsection 9.1.2.  Then the user checks the generated shapes and modifies 

the 3D model if necessary, as described in Subsection 9.1.3.  The segment shape is 

refined by changing the torsion or the folding angle through the widgets while checking 

the generated shape visually on the screen.  The pose is aligned by choosing the button 

or adjusted by mouse drag on the 3D model.  When the 3D model in the frame is 

satisfactory by the visual check, the user registers the frame as a new keyframe and 

checks the folding motion by showing each frame specified by the scroll bar.  The user 

picks a frame and modifies it until the 3D models in all frames are satisfactory, under a 

smooth deformation in the folding and the unfolding motion.  As well as the shape of 

the 3D models, the transition of rulings and the parameters can also be observed through 

the 2D crease pattern and the graphs of the parameters. 

 

 

 

Figure 9-11 GUI of the prototype system. 

 

 
 

Figure 9-12 Flowchart of user operation. 
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9.2. Result and discussion 

 

As an evaluation of our method, the 3D models of the rotational symmetric curved folding 

with the folding motion, generated by our prototype system, were evaluated in terms of 

(i) the developability of one segment, (ii) the connectivity between the segments, and (iii) 

a visual comparison with real paper.  The examples used for the evaluation are listed 

in Table 9-1 and shown in Figure 9-13. 

 

Table 9-1 3D models used for evaluation. 

 

Model Name N6 N6_k1 N5 N8 N6_skew 

Number of segments N 6 6 5 8 6 

Curvature of 

 boundary crease 𝑘2𝐷 

0.0 0.001 0.0 0.0 0.0 

Shape sphere sphere sphere sphere skewed sphere 

 

     

(a)    (b)    (c)    (d)   (e) 

Figure 9-13 Curved folding corresponding to the 3D models in Table 9-1. (a) N6, (b) 

N6_k1, (c) N5, (d) N8, and (e) N6_skew. 

 

9.2.1. Developability of one segment 

 

The developability of a segment was evaluated in the same method as in Chapter 6, (a) 

the sum of the corner angles adjacent to a vertex and (b) the flatness of the quads.  The 

result is summarized in Table 9-2.  For (b), the units are in millimeters while the crease 

pattern of the 3D model used for the evaluation has a radius of approximately 300 mm.  

The results show that for all items, the error is below the tolerance, and the segments 

are sufficiently developable for all 3D models.  This is a result well expected from 

Chapter 6, as one segment is identical to a curved folded surface with one curved crease. 

 

Table 9-2 Developability of segment. Units are radian for (a) and mm for (b). 

 

Model Name N6 N6_k1 N5 N8 N6_skew 

(a) Average 3.5 × 10−5 1.2 × 10−5 4.2 × 10−5 4.4 × 10−5 6.2 × 10−5 

(a) Maximum 3.47 × 10−4 1.12 × 10−4 2.45 × 10−4 3.93 × 10−4 4.92 × 10−4 

(b) Average 7.19 × 10−3 5.01 × 10−3 7.1 × 10−3 8.34 × 10−3 1.09 × 10−2 

(b) Maximum 1.19 × 10−1 3.85 × 10−2 7.46 × 10−2 1.08 × 10−1 6.69 × 10−2 
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9.2.2. Connectivity between the segments 

 

The connectivity of the segments is calculated as the gap between the adjacent boundary 

creases in 3D space.  To measure the gap between two curves, we first sample the 

reference points in an equal interval on one boundary crease.  Then the distances from 

the reference points to the nearest edges on the other boundary crease are calculated.  

The average distance at all the sample points is evaluated as the gap.  Because the 

segments are always placed in rotational symmetry in this system, the gaps are the same 

for all pairs of adjacent boundary creases.  Figure 9-14 shows the gaps on each frame 

for the 3D models listed in Table 9-1, with frame 0 being the final folded state and frame 

20 the flat state.  The circles on the graph indicate the keyframes where both the shape 

and the pose of the segments are modified by the user.  The squares indicate the frames 

where only the segment pose is modified.  The rest of the points is the interpolated 

frames.  The results show that, by the user manipulation, the gaps are made to be below 

2.5 mm for most frames, with the 3D models whose radiuses of the crease patterns are 

approximately 300 mm.  We expect these gaps are small enough to be covered by a small 

deformation, such as the sliding of the creases while processing with real paper.  With 

more user effort, the gaps may be reduced. 

 

 

 

Figure 9-14 Connectivity of segments.  Circles on the graph indicate keyframes whose 

shape and pose are modified by the user.  Squares indicate the frames where only the 

pose is modified. 

 

9.2.3. Comparison with real paper 

 

As the visual comparison, the 3D models and the photos of the models are shown in 

Figure 9-15.  The behavior of the paper shape and the rulings were visualized 

successfully, with only small differences between the photos.  The 3D model shows that 

even if, for the final folded state, the angles between the crease curve and the rulings are 

designed to be nearly right angles, they become acute in the intermediate state.  This 

makes most rulings end at the edge of the paper instead of the boundary crease, making 

the boundary creases to have small curvatures while being folded. 
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(a) 

  

(b)      (c) 

  
(d)      (e) 
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Figure 9-15 Visual comparison with real paper.  (a) N6, (b) N6_k1, (c) N5, (d) N8, and 

(e) N6_skew.  For each sample, top: rendered 3D models, middle: wireframe models with 

one segment rendered with rulings, bottom: photos of real paper. 

 

 

9.2.4. Discussion 

 

By the method of modeling a rotational symmetric curved folding with some simple 

segments having one curved crease, the folding motion is modeled and visualized 

successfully, with small gaps between the segments.  This new idea expands the 

possibility of modelling various curved folded surfaces against the result of Chapter 8, 

where we found that a curved folding with several creases was difficult to manage. 

However, from the point of mathematics, this is not a correct result.  A straight 

crease is able to bend or to be in a curved shape only when it is flat or folded completely.  

In other words, the surface adjacent to a straight crease should always be a flat surface 

in the intermediate state.  On the other hand, the behavior of the real paper shows that 

the origami-sphere is actually folded, forming similar shapes with the 3D model 

generated by our method.  This is thought to be realized by a small deformation of the 

paper, such as the compressions, stretching, and the shifting of the creases.  Our model 

supports straight creases in the curved folding by (i) the shapes of the boundary crease 

becoming nearly straight as a result of the ruling transition as shown in Subsection 9.2.3, 

and (ii) by allowing a small gap on the creases located between the segments, working in 

similar manner as the small deformation of real paper.  By supporting the ruling 

transition and dividing the crease pattern into segments, the method is able to model 

the curved folding including straight creases. 

    As to the usability, we still have a lot to improve, especially on the modification of 

the 3D shape.  It relies heavily on the user’s effort to decrease the gap between segments.  

Even for an expert user, who knows how the torsion and the folding angle should be 

modified, it may take approximately 5-10 minutes.  Some optimization method should 

help, as in the method of adjusting the shape of the additional curved crease, introduced 

in Chapter 8.  The improvement in the user interface is also expected for better use. 
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Chapter 10.  

Conclusion and future work 
 

In this thesis, we have studied the methods to model and visualize the shape of the paper 

folded along the curved creases.  Towards the goal of clarifying the shape and the ruling 

configuration of the paper being folded, we developed some prototypes of GUI system 

which models a curved folded surface as a discretized polygon model, according to the 

interactive user input, and simulate its folding motion by gradually changing the folding 

angle and the torsion of the crease curve. 

 

10.1. Summary of contributions 

 

The contributions of the thesis are as follows: 

 

Interactive GUI system 

The proposed GUI system supports the user to design a curved crease in two means: (i) 

It enables interactive manipulation of the shape of the crease curve and the folding angle 

with an instant visualization of the paper shape, and (ii) the simple user input to adjust 

the parameters of the crease curve only on a small number of control points on the curve 

to keep the paper shape smooth.  To design a curved crease, the user can modify the 

parameters defining the crease curve in 2D and 3D, and the folding angle, while checking 

the resulting paper shape immediately to resolve the rulings crossing and to avoid self-

collision.  The parameters are input only on some control points on the curved crease 

and calculated throughout the curve by spline interpolation of degree-three.  Since the 

curvatures and the torsion transit continuously along the crease curve, the generated 

crease curves are guaranteed to be G2 continuous.  Consequently, the Frenet-Serret 

frame is defined on any point of the curve except for the two ends, which is required for 

the calculation of the rulings.  The continuity of the parameters contributes to the 

smooth shapes of the curved crease and surfaces, helping to avoid the corruption of the 

3D model, such as the crossing of the rulings. 

 

Simulation of the folding motion 

Using the same method of designing the paper shape, the system generates the folding 

motion of the curved crease by the simple interpolation of the folding angle and the 

torsion, with the 2D crease curve being fixed.  As the parameters change from the 

original value to zero, the paper shape is deformed to be unfolded, keeping the 

developability of the surfaces by re-calculating the ruling direction and updating the 

geometry in every time step. 

 

Handling a curved crease with an inflection point 

By observing the generated rulings and examining the mathematical principles used in 

the method, we have noticed the problem that rulings cannot be calculated on an 

inflection point, or a point with zero curvature, on the crease curve, using the equation 
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of Fuchs and Tabachnikov [Fuchs_99].  The system handles the problem by rectifying 

the torsion and the folding angle to meet the properties of a straight crease line locally.  

To be specific, the torsion of the 3D crease curve is rectified to be zero and the folding 

angle to be set constant around the zero-curvature point.  In the adjacent sections, the 

parameters are interpolated smoothly to meet the original value at their ends.  With 

the rectification, the curved folding with an inflection point in the center of the crease is 

modeled, and its folding motion simulated successfully under the same procedure. 

 

Adding creases on the curved surfaces 

To design a curved folding with more than one curved crease, we developed another 

prototype GUI system to add curved creases on a curved surface generated by the first 

curved crease.  For making a user intended paper shape, the task of adjusting the curve 

shape is quite difficult, because for the added crease, the curvatures, torsion, and the 

folding angle to calculate the rulings cannot be controlled directly by the user, as the 

curved surface on one side of the crease being fixed.  To reduce the difficulty, we 

proposed the input restriction and optimization process based on some cost functions.  

This method was useful to the paper containing only a few creases.  As the user adds 

more creases, adjusting the curve shape to resolve the rulings crossing would become 

extremely difficult. 

 

Generation of the folding motion of a rotationally symmetric curved folding 

At last, the method is applied to generate the folding motion of curved folding with 

rotational symmetry, with user input.  The paper is modeled as a group of identical 

segments with only one crease, placed in rotational symmetry, so that the curved folding 

with several creases is modeled by our previous methods.  Moreover, by dividing the 

crease pattern into segments, the method is able to model the curved folding including 

straight creases, which is mathematically impossible.  We assume it is enabled by the 

small gaps between the segments, representing the small deformation which occurs on 

the real paper, such as the compressions, stretching, and the shifting of the creases. 

 

10.2. Future work 

 

We state the future work for this thesis as follows: 

 

The intuitive and direct user interface to control the paper shape 

In the current system, the user controls the paper shape by adjusting the curvatures, 

the torsion, and the folding angle of the curved crease.  But for more intuitive 

manipulation, it is necessary to have the interface to control the paper shape directly.  

An example of such an interface may be the user moving a point on a curved surface in 

3D space.  Though this is not supported in the current framework, one possible 

approach may be the optimization process to estimate the parameters of the curved 

crease to meet the desired conditions.  Such an interface will reduce the user's task and 

will contribute to work with various types of crease patterns. 
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Propagation of deformation between two curved creases 

In adding another crease on the curved surface generated by the first crease, it was quite 

difficult to control the parameters on the added crease and the rulings on the newly 

generated developable surface because the curved surface on one side of the crease is 

fixed.  By relaxing this constraint and enabling the first crease to deform according to 

the newly added crease, easier conditions may be expected.  To propagate the 

deformation of one crease to another, the rulings and the developable surface between 

the two creases must be consistent.  As one curved crease is deformed and the rulings 

and the curved surface are updated, the other curved crease needs to be deformed to 

meet the surface between them, which affects the rulings and the surface on the other 

side of the original crease.  So, the process of crease deformation and the propagation 

should be done through some iteration to make all surfaces to be in existable states. 

 

Folding motion in more variation 

For rotational symmetric curved folding, we assumed that the paper shape is rotationally 

symmetric in every time step in the folding motion.  For representing real paper with 

more reality, it would be necessary to generate the folding motion in more variation, such 

as going through a non-symmetric shape in some time steps during the folding.  One 

possible method to realize this may be shared from the work on the direct user interface, 

listed firstly in this section.  By directly giving the target positions to the points on the 

boundary creases, the shape of each segment may be deformed respectively to share the 

boundary with the adjacent segments, allowing segments to be in different shapes. 

 

Comparison with captured data 

In Chapter 5, we introduced our initial attempt to measure the paper shape using some 

partial low-resolution scanned data.  Though this data was not sufficient for the 

measurement by itself, by combining with the 3D model developed by our method, it 

would be useful in reconstructing the actual shape of the paper being folded.  To realize 

this, the idea of the optimization process would be effective.  By identifying some points 

on the paper in the images, using color patterns for example, the parameters on the 

curved crease should be optimized to minimize the errors between the model and the 

images. 

 

Support for self-collision 

In our method, self-collision of the paper is avoided by the visual check and the 

manipulation of the user.  Because the system does not detect or avoid the collisions, 

the faces on the paper model may intersect with another face through naive 

manipulation.  The first step to this problem is the detection of the collisions and to 

show a warning to the user so that the user can move the faces to avoid the collisions.  

Then, the second step would be to deform the paper model by the system, such as faces 

being pushed and moved by another face.  This may also be realized by the direct user 

interface, listed firstly, to push the point of collision to resolve this. 

 

Finally, we will refer to the long-term goal of this thesis.  As the shapes and the behavior 

of the curved folded paper may be modeled and visualized by our system, we shall now 
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use the result in the real world, such as processing a thin sheet of material to make a 

curved folded surface by some automated system, or by a set of very simple operations.  

Such a curved folding may be applied in, for example, a flattenable structure, furniture, 

and greeting cards, to list just a few. 
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