Catalytic Hydrosilane Synthesis via Reduction of Alkoxysilanes with Boranes Keiya Aoyagi # Catalytic Hydrosilane Synthesis via Reduction of Alkoxysilanes with Boranes Keiya Aoyagi **Doctoral Program in Chemistry** Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Science at the University of Tsukuba | Table of Contents | |--| | Chapter 1 | | General Introduction | | Chapter 2 | | Reduction of Alkoxysilanes with Borane by Metallocene-Type Yttrium Complexes | | Chapter 3 | | Synthesis of Hydrosilanes via Lewis Base-Catalyzed Reduction of Alkoxysilane with Borane | | List of publications | | Acknowledgements | | | | | # Chapter 1 # General Introduction #### 1. Silicone Silicon is an element that is included as an earth's crustal major component at 25.8%. This is the second most abundant next to oxygen (48%), and much more than carbon (0.08%), which is the same Group 14 element as silicon. Silicon exists in nature as inorganic compounds such as silicon dioxide and silicate. For this reason, silicon has long been used as an inorganic material such as glass, ceramics and bricks. On the other hand, organosilicon materials represented by "silicone" appear in the 19th century, and are nowadays widely used in various fields. Figure 1-1 exhibits a structure of a silicone main chain, which has siloxane bonds with organic substituents on the silicon atoms. Figure 1-1. Structure of silicone Silicones can vary their forms (oil, rubber, and resin) depending on their high-dimensional structure. Silicone has various features such as light resistance, flame retardancy, gas permeability. In addition, by introducing various functional groups, it is possible to produce various high-performance materials with enhanced functions. For example, the introduction of fluoroalkyl groups and polyether groups enhance the chemical resistance and water-solubility, respectively. As a result, silicones are utilized in a wide range of fields such as food, cosmetics, electronic materials, automobiles, pharmaceutical materials, etc. #### 2. Organosilicon compound Herein, synthesis of organosilicon compounds as important precursors of silicones, which don't exist in nature, is summarize form the historical point of view. In 1823, Berzelius reported the synthesis of SiCl₄ by the reaction of silicon metal with Cl₂.¹ It is to be noted that he demonstrated the first isolation of silicon metal by reducing SiF₄ with potassium. ¹ As a result, synthesis of organosilicon compounds was performed using SiCl₄ as a raw material in the early days of organosilicon chemistry. ### 2-1. Synthetic method using organometallic reagents In 1863, the first organosilicon compound SiEt₄ was synthesized by Friedel and Crafts.² They found that organosilicon compounds could be prepared by heating SiCl₄ with ZnEt₂ in sealed tubes at 160 °C (Scheme 1-1(a)). In 1872, Ladenberg reported the synthesis of PhSiCl₃ by heating HgPh₂ and SiCl₄ at 300 °C in a sealed tube (Scheme 1-1(b)).³ These methods using organozinc- and organomercury reagents are rarely used in recent years because of their low reaction efficiency and toxicity of the reagents. In 1885, Polis reported the synthesis of organosilicon compounds by Wurtz-Fitting reaction using sodium (Scheme 1-1(c)).⁴ In 1904, Kipping and coworkers established the synthetic methods of organosilicon compounds using the Grignard reagent (Scheme 1-1(d)).⁵ Since then, reactions using organolithium⁶ or organoaluminum⁷ have also been reported. Since Grignard reagents can be easily prepared and applied to the synthesis of organosilicon compounds with various substituents, the method is now recognized as one of the most important synthetic methods in the organosilicon chemistry. (a) Friedel, Crafts (1863) $$SiCl_4 + 2 ZnEt_2 \xrightarrow{160 \, ^{\circ}C} SiEt_4 + 2 ZnCl_2$$ (b) Ladenburg (1872) $$SiCl_4 + HgPh_2 \xrightarrow{300 \, ^{\circ}C} PhSiCl_3 + PhHgCl$$ (c) Polis (1885) $$SiCl_4 + 8 Na + 4 RCl \longrightarrow SiR_4 + 8 NaCl$$ (d) Kipping (1904-) $$SiCl_4 + n RMgX \longrightarrow R_nSiCl_{4-n} + n MgXCl$$ Scheme 1-1. Synthetic method of organosilicon compound using organometallic reagents #### 2-2. Direct process⁸ As a mass-production method of organosilicon compounds, "direct process" is conducted in the silicon industry. In this section, historical background of the direct method is outlined. Silicones were first synthesized by Kipping in the 1900's by hydrolysis of dialkyldichlorosilanes synthesized using Grignard reagents. The gummy compound was recognized as the silicon analogue of the ketone because the concept of polymers had not been established at that time, and named "silicone". Later, it was revealed that "silicone" exhibits a polymer structure whose main chain is composed of siloxane bonds (Scheme 1-2). SiCl₄ $$\xrightarrow{2 \text{ RMgX}}$$ R₂SiCl₂ $\xrightarrow{H_2O}$ \xrightarrow{R} \xrightarrow{Si} R $$= \begin{bmatrix} R \\ Si-O \\ R \end{bmatrix}$$ Silicone Scheme 1-2. Synthesis of silicone by hydrolysis of chlorosilane In 1930s, there was an increasing demand for the development of a polymer material with high heat resistance in the electrical industry. In this context, the American glass company, Corning Glass Works, attempted to produce flexible heat-resistant materials which exhibit the properties of both plastics and glasses. Then, Hyde and Delong focused on silicon as one of the constituent elements of glass, and succeeded in developing a silicone resin with high thermal stability by synthesizing various organosilicon compounds using Grignard reagent. Based on this research, Corning Glass Works and Dow Chemical set up Dow Corning Corporation to manufacture silicones, and began industrial production of silicones in 1944. In the same period, General Electric Co. also focused on silicones. Until that time, organosilicon compounds were mainly produced by the reaction of chlorosilanes with Grignard reagents. However, in the synthesis of organosilicon compounds using the Grignard reagent, there are some drawbacks: 1) low yield of dialkyldichlorosilanes, an important raw material of silicones, 2) multi-step-reaction including preparation of Grignard reagents, and adding the reagent to chlorosilane, 3) Formation of magnesium salts as by-products. Based on these backgrounds, a new process for producing organosilicon compounds was developed by Rochow and Gilliam in 1941, and commercial production have been started in 1947. The method is so-called "direct process", which are utilized in the silicon industry until now. In the direct process, metal silicon obtained by carbon reduction of silicon dioxide in an electric arc furnace is used as a raw material. The metal silicon react with methyl chloride in the presence of a copper catalyst at 250 - 500 °C to obtain a complex mixture including Me₂SiCl₂ (Scheme 1-3). The chlorosilanes having phenyl group are synthesized in the similar method. 12 Trichlorosilane is similarly produced by treating metal silicon with blowing hydrogen chloride at 300 °C (Scheme 1-3). 13 Scheme 1-3. Direct process The resulting mixture is separated by fractional distillation, and less demanding fractions are reconverted to useful chlorosilanes through a process of redistribution reaction (Scheme 1-4). Such exchange reactions were developed by Sauer and Barry and Barry in the 1940s and 1950s, and it was reported that the reactions proceed efficiently by using AlCl₃ and NaAlCl₄ as catalysts. As a result of the finding of this Al-catalyzed disproportionation reaction, the utility of the direct method become extremely enhanced as a mass-production of methyl- or phenyl substituted chlorosilanes, which are required in large quantities in silicone production. Scheme 1-4. Redistribution of chlorosilane #### 3. Hydrosilane As described above, organosilicon compounds are extremely useful compounds. Besides the two organosilicon synthetic methods shown in sections 2-1 and 2-2, other synthetic procedures of organosilicon compounds using hydrosilanes are known. For the production of organosilicon compounds, hydrosilanes, in addition to chlorosilane, are also extremely important raw materials. This section describes the usefulness of hydrosilanes. # 3-1. Hydrosilylation¹⁵ Hydrosilylation is an important reaction widely used in the silicon industry. ¹⁶ Hydrosilylation reactions undergo addition of hydrosilanes to olefins and alkynes (Scheme 1-5). Many studies have been conducted since the reaction was initially reported by Sommer's group ¹⁷ and Barry ¹⁸ in the 1940s. $$R_3Si-H + = Cat. R_3Si H$$ Scheme 1-5. Hydrosilylation Various catalysts compounds such as peroxides, amines and phosphines are known as catalysts of hydrosilylation, but metal catalysts, in particular platinum catalysts including Speier's catalyst¹⁹ and Karstedt's catalyst²⁰ are normally used since they exhibit high activity and high reaction selectivity (Figure 1-2). In recent years, instead of platinum catalysts, various metal catalysts, which are composed of abundant and non-precious metals, have also been reported to date.²¹ Figure 1-2. Typical platinum catalyst An advantage of the hydrosilylation is that it is possible to synthesize an organosilicon compound having a functional group on an organic group, which is difficult to be introduced by an approach using an organometallic reagent. For this reason, it is an indispensable reaction in producing raw materials of silicone having various functions and silane coupling agents. Also, since hydrosilylation is an addition reaction, the atomic efficiency of the reaction is high, and by-products of the same amount as the substrate are not formed, and the reaction proceeds even with a small amount of catalyst, so it is also used for the curing reaction of silicones. In this reaction, silicone oil can be converted to
rubber or resin by reactions between silicones having vinyl groups and silicones having Si–H bonds (Scheme 1-6). Scheme 1-6. Curing reaction of silicone by hydrosilylation #### 3-2. Application of hydrosilane to organic synthesis #### 3-2-1. Reduction of organic compounds using hydrosilane Hydrosilanes are widely used in organic synthesis besides hydrosilylation. Among them, hydrosilanes are normally safer and easier-handling reducing agent than metal hydrides such as LiAlH₄, with the exception of some hydrosilanes such as silane gas. Hydrosilanes are used in various reduction reactions such as reduction of carbonyl compound, dehalogenation reaction, and deoxygenation reaction of phosphine,²² because silicon forms a strong bond with electronegative elements such as nitrogen, oxygen and halogen (Figure 1-3).²³ Figure 1-3. Reduction of organic compounds using hydrosilane ### 3-2-2. Silylation of organic halides with hydrosilanes In recent years, new Si–C bond formation reactions using hydrosilanes have been reported. One of them is a silylation of an organic halide using a hydrosilane. Among these reactions, the silylation of allyl chloride with HSiCl₃ is well known as a synthetic method of allylsilanes (Scheme 1-7).²⁴ On the other hand, in the reactions of organic halide with hydrosilane, hydrosilanes mainly act as reducing agents to form a C–H bond, and only a small amount of arylsilane is generated as a by-product.²⁵ $$HSiCl_3 + CI \xrightarrow{\text{CuCI (5 mol\%)}} SiCl_3$$ $$(1.1 equiv.)$$ $$Et_2O$$ Scheme 1-6. Synthesis of allylsilane using hydrosilane. The selective synthesis of arylsilanes was first reported by the reaction of aryl iodide with HSi(OEt)₃ in the presence of a palladium catalyst by Masuda's group (Scheme 1-8).²⁶ Scheme 1-8. Silylation of aryl iodides with hydrosilanes Subsequently, various reactions have been reported, such as reactions using a rhodium catalyst having higher functional group tolerance²⁷ and reactions using aryl bromide as a substrate²⁸. The silylation of aryl halide can easily synthesize arylsilanes having a functional group. For this reason, it is utilized also for the synthesis of arylating agents in Hiyama coupling²⁹ and for the synthesis of precursors of functional mesoporous silica³⁰. ## 3-2-3. Direct silvlation of C-H bonds³¹ Direct silylation of the C–H bond differs from silylation of organic halide, which enables us to reduce reaction steps since it is not necessary to introduce a halogen. Also, ideally, since the by-product is only hydrogen gas, it is an excellent reaction process with high atomic efficiency, and research has been actively conducted in recent years. The direct silylation of benzene reported by Curtls's group in 1982 is an important reaction as the first example of direct silylation of C–H bond, although its yield is very low and impractical. (Scheme 1 -8).³² Scheme 1-8. First example of direct silvlation of C-H bond. After that, many reactions have been reported from various groups. However, since activation of inert C–H bonds is generally difficult, there are some problems such as severe reaction conditions, low regioselectivity and narrow substrate scope. Among them, heteroaromatic C–H bond silylation was reported by Falck's group in 2008.³³ In this reaction, 2-position selective silylation reaction of electron-rich heterocycles such as indole, furan and thiophene has been reported using Ir catalyst and norbornene as hydrogen acceptor (Scheme 1-9). $$R^{2}$$ $$R^{2}$$ $$R^{1}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{1}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{1}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{1}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{1}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{3}$$ $$R^{2}$$ $$R^{2}$$ $$R^{3}$$ $$R^{3$$ Scheme 1-9. Direct silylation of C–H bonds in heteroaromatic compounds. Regarding the silylation of the aryl group, Hartwig *et al.* succeeded in constructing a practical reaction using a Rh catalyst and cyclohexene as a hydrogen acceptor in 2014.³⁴ The reaction proceeds only 1 mol% catalyst loading to achieve good yield and high regioselectivity (Scheme 1-10). In addition, Hartwig's group has also succeeded in developing highly functional group-tolerant reactions using Ir catalysts, and has succeeded in significantly expanding the substrate scope coverage.³⁵ Furthermore, in this reaction, silylation of pyridine and quinolines, which are relatively electron-deficient heterocycles and cannot be adopted in the previously reported Flack's reactions, is possible. $$R + HSiMe(OSiMe_3)_2 \xrightarrow{\text{ERh}(OH)(coe)_2]_2 \text{ (1 mol\%)}} \text{Ligand (10 mol\%)}$$ $$\frac{\text{cyclohexene (2 equiv.)}}{\text{THF, 80 °C}} R + \text{Ligand} = \text{MeO} \xrightarrow{\text{PAr}_2} \text{Ar} = \text{HBu} \xrightarrow{\text{OMe}} \text{OMe}$$ Scheme 1-10. Silylation of aryl C-H bonds In recent years, Friedel-Crafts C–H silylation of electron rich aromatic compound using Ru complex³⁶, B(C₆F₅) $_3$ ³⁷ and [H(OEt₂)₂] [BAr^{F₄}]³⁸, and C–H silylation via a radical mechanism of heteroaromatic compound using K*t*OBu³⁹ have also been reported. Thus, the direct silylation of C–H bonds has achieved rapid growth in recent years, and it is a reaction that can be expected for future developments. #### 3-2-4. Other applications In addition to above reactions, hydrosilanes are widely used in the synthesis of silicon compounds other than organosilicon compounds. ⁴⁰ As mentioned above, in the reduction of carbonyl compounds and imines, a Si–N bond and a Si–O bond are formed. It is also known that the Si–N⁴¹ bond and Si–O⁴² bond can be also formed by dehydrogenation coupling reactions. Besides, it is also possible to form Si–Si bond⁴³, Si–P bond⁴⁴, and Si–S bond⁴⁵. $$R_3Si-H$$ + H-X \longrightarrow R_3Si-X $X = NR_2$, OR, SiR'₃, etc... Scheme 1-11. Dehydrogenative coupling #### 4. Synthesis of hydrosilane As mentioned above, hydrosilanes are useful compounds which can be used as precursors of various organosilicon compounds and as reducing agents in organic synthesis. Some hydrosilanes, such as HSiCl₃ and MeSiHCl₂, are synthesized in large quantities as products of the direct process. Many other hydrosilanes are synthesized by reducing chlorosilanes and alkoxysilanes with LiAlH₄⁴⁶ or ⁱBu₂AlH⁴⁷, but these reducing agents are self-igniting and involve dangers in handling and storage. In addition, these reagents have low functional group tolerance. In the reduction of chlorosilane, a reaction using relatively mild reducing agents such as NaBH₄⁴⁸ or HSn(nBu)₃⁴⁹ is also known. Furthermore, in the reduction of the more reactive halosilane, a reaction using hydrogen gas as a reducing agent has also been reported (Scheme 1-12). ⁵⁰ (a) LiAlH₄ / $${}^{\prime}$$ Bu₂AlH $$R_3Si-X + LiAlH_4 / {}^{\prime}$$ Bu₂AlH $$X = OR, \text{ halogen}$$ (b) NaBH₄ $$R_3Si-Cl + NaBH_4 \longrightarrow R_3Si-H$$ (c) R'₃SnH $$R_3Si-Cl + R'_3SnH \xrightarrow{Lewis Base} R_3Si-H$$ (d) H₂ $$R_3Si-X + H_2 \xrightarrow{Sase} R_3Si-H$$ 1: $X = OTf, I$ 2: $X = OTf, I$ 3: $X = OTf$ 3: $X = OTf$ 4 atm $$R_3Si-H \xrightarrow{Ar = 4-\text{dimethylaminophenyl}} R_3Si-H$$ $$R_3Si-H \xrightarrow{Ar = 4-\text{dimethylaminophenyl}} R_3Si-H$$ Scheme 1-12. Synthetic method of hydrosilane On the other hand, the reaction using a mild reducing agent of alkoxysilane is very limited. This is because the Si–O bond is very strong (Si–O: 110 kcal / mol)⁵¹ and the alkoxy group is poor leaving group. In recent years, a method of directly synthesizing tetraalkoxysilane by the reaction of silicon dioxide with alcohol has been developed (Scheme 1-13).⁵² Since this reaction can be performed under mild reaction conditions to efficiently produce alkoxysilanes, alkoxysilanes are attracting attention as the next generation of raw materials for synthesizing hydrosilanes and organosilicon compounds at lower cost and lower energy. Scheme 1-13. Alkoxysilane synthesis via a reaction of silica with alcohol #### 5. Overview In this study, we developed two new synthetic methods aiming at development of alkoxysilane reduction reaction under mild conditions. In Chapter 2, the reduction of alkoxysilane with HBpin was carried out using a metallocene-type yttrium complex. In Chapter 3, the borane reduction of alkoxysilane was carried out using Lewis base catalyst. By applying this reaction, a reduction of alkoxysilane was also performed by generating BH₃ from NaBH₄ which is inexpensive and easy to handle reductant #### References - 1. J. J. Berzelius, Ann. Phys. Chem., 1824, 1, 169. - 2. C. Friedel and J. M. Crafts, Ann. Chem., 1863 127, 31. - 3. A. Ladenburg, Liebigs Ann. Chem., 1872, 164, 300. - 4. A. Polis, Ber. Disch. Chem. Ges., 1885, 18, 1540. - 5. F. S. Kipping, Proc. Chem. Soc., 1904, 20, 15. - 6. H. Giliman, R. N. Clark, J. Am. Chem. Soc., 1946, 68, 1675. - 7. (a) W. Noll, GP888852, **1950**; (b) W. Noll, GP908019, **1950**. - 8. (a) W. Noll, *Chemistry and Technology of Silicones*, Elsevier, **1968**; (b) D. Seyferth, *Organometallics*, **2001**, 20, 4978. - 9. J. F. Hyde and R. C. Delong, J. Am. Chem. Soc., **1941**, 63, 1194. - 10. H. Moissan, Bull. Soc. Chim. Fr., 1985, 13, 972. - 11. E. G. Rochow and W. F. Gilliam, J. Am. Chem. Soc., 1941, 63, 798. - 12. (a) E. G. Rochow, *J. Am. Chem. Soc.*, **1945**, *67*, 968; (b) E. G. Rochow and W. F. Gilliam, *J. Am. Chem. Soc.*, **1945**, *67*, 1772. - 13. H. Buff and F. Wöhler, Ann, 1857, 104, 94. - (a) R. O. Sauer, J. Am. Chem. Soc., 1948, 70, 3590; (b) R. O. Sauer, J. Am. Chem. Soc., 1948, 70, 4258, (c) R. O. Sauer, US2647136, 1953, (d) A. J. Barry and J. W. Gilkey, U2647912, 1953;
(e) H. R. McEntee, US2786861, 1955; (f) R. O. Sauer, US2730540, 1956. - (a) B. Marciniec, J. Gulinski, W. Urbaniac and Z. Z. Kornetka, Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, UK, 1992; (b) B. Marciniec, Hydrosilation: A Comprehensive Review on Recent Advances, Springer, Berlin, 2009; (c) D. Troegel and J. Stohrer, Coord. Chem. Rev., 2011, 255, 1440; (d) Y. Nakajima and S. Shimada, RSC Adv., 2015, 5, 20603. - 16. L. N. Lewis, J. Stein, Y. Gao, R.E. Colborn and G. Hutchins, *Platinum Metals Rev.*, 1997, 42, 66. - 17. L. H. Sommer, E. W. Pietrusza, and F. C. Whitmore, J. Am. Chem. Soc., 1946, 68, 2282. - 18. (a) A. J. Barry, US2510853, 1946; (b) A. J. Barry, US2626267, 1948. - 19. J. L. Speier, J. Am. Chem. Soc., 1957, 79, 974. - 20. B. D. Karstedt, US3775452, 1973. - 21. X. Du and Z. Huang, ACS Catal., 2017, 7, 1227. - 22. (a) Y. Nagai, *Org. Prep. Proced. Int.*, **1980**, *12*, 13; (b) G. L. Larson and J. L. Fry, *Ionic and Organometallics-Catalyzed Organosilane Reductions*, Wiley, Hoboken, **2008**. - 23. R. Walsh, Acc. Chem. Res., 1981, 14, 246. - 24. N. Furuya, T. Sukawa, J. Organomet. Chem., 1975, 96, C1. - 25. (a) R. Boukherroub, C. Chatgilialoglu and G. Manuel, *Organometallics*, 1996, 15, 1508; (b) A. Kunai, T. Sakurai, E. Toyoda, M. Ishikawa and Y. Yamamoto, *Organometallics*, 1994, 13, 3233; (c) M. A. Esteruelas, J. Herrero, F. M. Lopez, M. Martin and L. A. Oro, *Organometallics*, 1999, 18, 1110. - 26. M. Murata, K. Suzuki, S, Watanabe and Y. Masuda, J. Org. Chem., 1997, 62, 8569. - 27. (a) M. Murai, M. Ishikura, M. Nagata, S. Watanabe and Y. Masuda, *Org. Lett.*, **2002**, *4*, 1843; (b) M. Murai, H. Yamasaki, T. Ueta, M. Nagata, M. Ishikura, S. Watanabe and Y. Masuda, *Tetrahedron*, **2007**, *63*, 4087. - 28. A. S. Manoso and P. DeShong, J. Org. Chem., 2001, 66, 7499. - 29. (a) S. E. Denmark, J. M. Kallemeyn, *Org. Lett.*, **2003**, *5*, 3483; (b) M. Murai, H. Yamasaki, K. Uogoshi, Watanabe and Y. Masuda, *Synthesis*, **2007**, 1387; (c) M. Murai, H. Ohara, H. Yamasaki, S. Watanabe and Y. Masuda, *Synthesis*, **2007**, 2944 - (a) Y. Maegawa, Y. Goto, S. Inagaki, T. Shimada, *Tetrahedron. Lett.*, 2006, 47, 6957, (b) T. P. Nguyen, P. Hesemann, P. Gavean, J. J. E.Moreau, *J. Mater. Chem.*, 2009, 19, 4164. - 31. (a) C. Cheng and J. F. Hartwig, *Chem. Rev.*, **2015**, *115*, 8946; (b) X. Shang and Z.-Q. Liu, *Org. Biomol. Chem.*, **2016**, *14*, 7829. - 32. W. A. Gustavson, P. S. Epstein, M. D. Curtls, Organometallics, 1982, 1, 884. - 33. B. Lu and J. R. Falck, Angew. Chem. Int. Ed., 2008, 47, 7508. - 34. (a) C. Cheng and J. F. Hartwig, Science, **2014** *343*, 853; (b) C. Cheng and J. F. Hartwig, *J. Am. Chem. Soc.*, **2014**, *136*, 12064. - 35. C. Cheng and J. F. Hartwig, J. Am. Chem. Soc., 2015, 137, 592. - 36. H. F. T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki and K. Tsutsumi, *J. Am. Chem. Soc.*, **2011**, *133*, 3312. - 37. Y. Ma, B. Wang, L. Zhang and Z. Hou, J. Am. Chem. Soc., 2016, 138, 3663. - 38. Q.-A. Chen, H. F. T. Klare and M. Oestreich, J. Am. Chem. Soc., 2016, 138, 7868. - 39. A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz and R. H. Grubbs, Nature, 2015, 518, 80. - 40. (a) O. Riant, N. Mostefaï and J. Courmarcel, *Synthesis*, **2004**, 2943; (b) S.Díez-González and S. P. Nolan, *Acc. Chem. Res.*, **2008**, *41*, 349; (c) K. Kuciński and G. Hreczycho, *ChemCatChem.*, **2017**, *9*, 1868. - (a) L. H. Sommer and J. D. Citron, *J. Org. Chem.*, 1967, 32, 2470; (b) J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern and A. D. Sadow, *J. Am. Chem. Soc.*, 2011, 133, 16782; (c) T. Tsuchimoto, Y. Iketani and M. Sekine, *Chem. Eur. J.*, 2012, 18, 9500; (d) L. Greb, S. Tamke and J. Paradies, *Chem. Commun.*, 2014, 50, 2318; (e) S. Anga, Y. Sarazin, J.-F. Carpentier and T. K. Panda, *ChemCatChem*, 2016, 8, 1373. - (a) R. J. P. Corriu and J. J. E. Moreau, *J. Organomet. Chem.*, 1976, 120, 337; (b) S. N. Blackburn, R. N. Haszeldine, R. V. Parish and J. H. Setchfield, *J. Organomet. Chem.*, 1980, 192, 329; (c) E. Lukevics, M. Dzintara, *J. Organomet. Chem.*, 1985, 295, 265; (d) T. C. Bedard and J. Y. Corey, *J. Organomet. Chem.*, 1992, 428, 315; (e) B. T. Gregg and A. R. Cutler, *Organometallics*, 1994, 13, 1039; (f) U. Schubert and C. Lorenz, *Inorg. Chem.*, 1997, 36, 1258; (g) J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, *J. Org. Chem.*, 1999, 64, 4887; (h) J. Ohshita, R. Taketsugu, Y. Nakahara and A. Kunai; *J. Organomet. Chem.*, 2004, - 689, 3258; (i) S. Rubinsztajn, J. A. Cella, *Macromolecules*, **2005**, *38*, 1061; (j) M. Jeon, J. Han and J. Park, *ACS Catal.*, **2012**, 2, 1539. - (a) T. D. Tilley, Acc. Chem. Res., 1993, 26, 22; (b) H. Yamashita and M. Tanaka, Bull. Chem. Soc. Jpn., 1995, 68, 403; (c) F. Gauvin, J. F. Harrod and H. G. Woo, Adv. Organomet. Chem., 1998, 42, 363; (d) J. Y. Corey, Adv. Organomet. Chem., 2004, 51, 1. - (a) R. Shu, L. Hao, J. F. Harrod, H.-G. Woo and E. Samuel, *J. Am. Chem. Soc.*, 1998, 120, 12988; b) A. J. Roering, S. N. MacMillan, J. M. Tanski and R. Waterman, *Inorg. Chem.*, 2007, 46, 6855; c) L. Wu, S. S. Chitnis, H. Jiao, V. T. Annibale and I. Manners, *J. Am. Chem. Soc.*, 2017, 139, 1678. - 45. (a) I. Ojima, M. Nihonyanagi and Y, Nagai, *J. Organomet. Chem.*, **1973**, *50*, C26; (b) D. J. Harrison, D. R. Edwards, R. McDonald and L. Rosenberg, *Dalton Trans.*, **2008**, 3401; (c) K. Fukumoto, M. Kasa, T. Oya, M. Itazaki and H. Nakazawa, *Organometallics*, **2011**, *30*, 3461. - 46. (a) A. E. Finholt, A. C. Bond Jr, K. E.Wilzbach, H. I. Schlesinger, *J. Am. Chem. Soc.* 1947, 69, 2692; (b) H. Westemark, *Acta. Chem. Scand.* 1954, 8, 1830. - 47. L. H. Sommer, J. McLick, C. M. Golino, J. Am. Chem. Soc. 1972, 94, 669. - 48. (a) H. Jenkner, *Chemiker Ztg.-Chem. Apparatus* **1961**, *85*, 264; (b) N. P. Sluchevkaya, V. M. Soldatov and V. D. Sheludyakov, *J. Gen. Chem. USSR*, **1988**, *58*, 1649; (c) M. Ito, M. Itazaki, T. Abe and H. Nakazawa, *Chem. Lett.*, **2016**, *45*, 1434. - (a) J. J. D'Errico and K. G. Sharp, *Inorg. Chem.*, 1989, 28, 2177; (b) J. J. D'Errico and K. G. Sharp, *Inorg. Chem.*, 1989, 28, 2886; (c) U. Herzog, G. Roewer and U. Pätzold, *J. Organomet. Chem.*, 1995, 494, 143; (d) U. Pätzold, G. Roewer and U. Herzog, *J. Organomet. Chem.*, 1996, 508, 147; (e) U. Herzog and G. Roewer, *J. Organomet. Chem.*, 1997, 527, 117; (f) U. Herzog and G. Roewer, *J. Organomet. Chem.*, 1997, 544, 217. - (a) D. Tsushima, M. Igarashi, K. Sato and S. Shimada, S. Chem. Lett., 2017, 46, 1532; (b) T. Beppu, K. Sakamoto, Y. Nakajima, K. Matsumoto, K. Sato and S. Shimada, J. Organomet. Chem., 2018, 869, 75; (c) A. Glüer, J. I. Schweizer, U. S. Karaca, C. Würtele, M. Diefenbach, M. C. Holthausen and S. Schneider, Inorg. Chem., 2018, 57, 13822. - 51. R. T. Sanderson, Polar Covalence, 1983. - 52. (a) N. Fukaya, S. J. Choi, T. Horikoshi, H. Kumai, M. Hasegawa, H. Yasuda, K. Sato, J.-C. Choi, *Chem. Lett.*2016, 45, 828; (b) N. Fukaya, S. J. Choi, T. Horikoshi, S. Kataoka, A. Endo, H. Kumai, M. Hasegawa, K. Sato, J.-C. Choi, *New J. Chem.* 2017, 41, 2224. # Chapter 2 # Reduction of Alkoxysilanes with Borane catalyzed # by Metallocene-Type Yttrium Catalysts #### **Abstract** The catalytic reduction of alkoxysilanes with the borane HBpin (pin = pinacolato) was achieved using a metallocene-type yttrium complex as a catalyst precursor. Mechanistic study supported the pivotal role of the rigid metallocene structure of the catalyst, which bears two bulky η^5 -C₅Me₄SiMe₃ ligands, in suppressing the coordination of the side product MeOBpin that is generated during the reaction. ## Introduction This chapter describes the reduction of alkoxysilanes with borane using yttrium catalyst. As mentioned in Chapter 1, it is important to develop efficient synthetic route to achieve reduction of alkoxysilanes. However, the study is challenging because the achievement of this reaction requires the stable Si–O bond (110 kcal / mol)¹ cleavage of alkoxysilanes. It is widely known that alkoxysilanes can be reduced using LiAlH₄.² In addition to this, reactions using an early transition metal- or a rare earth metal hydrides are reported so far (Scheme 2-1).^{3,4} a) $$Cp_2ZrH_2$$ $$Zr \stackrel{H}{\to} + Me_3Si - OR \stackrel{C_6D_6}{\to C} \stackrel{R}{\to} Ph, C_6F_5$$ b) Cp_2ZrHCI $$Zr \stackrel{H}{\to} + Me_3Si \stackrel{O}{\to} THF \qquad Zr \stackrel{O}{\to} CI \qquad + Me_3Si - H$$ c) Cp^R_2CeH $$IBu \qquad IBu I$$ Scheme 2-1. Stoichiometric reduction of alkoxysilanes For example, a stoichiometric reduction of alkoxysilane using Cp_2ZrH_2 , Cp_2ZrHCl , Cp^R_2CeH ($Cp^R=1,2,4$ -tristert-butylcyclopentadienyl) has been reported.³ In the reaction using Cp_2ZrH_2 , the complex reacted with Me₃SiOR $(R = Ph, C_6F_5)$ at 60 ° C in benzene- d_6 to form Me₃SiH, Cp₂Zr(OR)₂ and insoluble unidentified product (Scheme 2-1(a)). ^{3a} In the reaction using Cp₂ZrHCl, the complex reacted with Me₃SiOC(Me)₂CH=CH₂ at room temperature in THF to give Cp₂Zr(Cl)OC(Me)₂CH₂CH₂Zr(Cl)Cp₂ in 85-90% yield (Scheme 2-1(b)). ^{3b} It is considered that Me₃SiH is produced in similar yield in this reaction. Cp^R₂CeH (Cp^R = 1,2,4-tris-*tert*-butylcyclopentadienyl) react with excess Me₃SiOMe in C₆D₁₂ at room temperature to give Cp^R₂CeH, Cp^R₂CeOMe, quantitatively. ^{3c} The reaction strongly support the concomitant formation of Me₃SiH (Scheme 2-1(c)). Catalytic reduction of alkoxysilane can be achieved by transition complexes, such as Cp_2TiCl_2 , Cp_2ZrCl_2 , and $(Ph_3P)_2NiCl_2$.⁴ In the presence of 5 mol% of these catalysis, the reaction of EtPh(1-Np)SiOMe (1-Np: 1-naphthyl) with excess amount of EtMgBr in Et_2O at 20 °C give EtPh(1-Np)SiH in 100% (Cp_2TiCl_2), 60% (Cp_2ZrCl_2) and 85% (($Ph_3P)_2NiCl_2$) yield, respectively. In the reaction, Grignard reagents are used as reductants, which forms reactive hydride species via transmetallation and β -hydrogen elimination of the in-situ prepared alkyl complex (Scheme 2-2).⁴ The
reaction of alkoxysilanes with this hydride species give the corresponding alkoxy complex and hydrosilanes. The resulting alkoxy complex further reacts with Grignard reagent to reproduce the alkyl complex. Although these reactions can convert alkoxysilanes to hydrosilanes with good efficiency, the limited substrate scope and formation of stoichiometric metal wastes are troublesome issues. $$R_{3}Si-OR' + R \xrightarrow{MgX} \xrightarrow{(5 \text{ mol}\%)} R_{3}Si-H + R \xrightarrow{H} + MgXOR'$$ $$Catalyst: Ti Cl Zr Cl Ph_{3}P Cl$$ $$Catalyst: Ti Cl Zr Cl Ph_{3}P Cl$$ $$Cl Cl PPh_{3}$$ $$[M]-X - MgXOR' + R \xrightarrow{H} MgX$$ $$X = Cl, OR' + R \xrightarrow{H} R$$ $$R_{3}Si-OR' - R_{3}Si-H - R$$ Scheme 2-2. Catalytic reduction of alkoxysilanes Motivated by these drawbacks, in this research, we aimed at development of new synthetic method, which accomplish the reduction of alkoxysilane with a mild reducing agent. As catalysts, a metallocene-type early transition metal- or rare earth hydride complexes were selected. The early transition metal or rare earth hydride complex can reduce the alkoxysilane because their corresponding hydride species exhibit high nucleophilicity and thus are highly reactive for nucleophilic substitution reactions of alkoxysilanes. However, there is another problem in this system, a high oxophilicity of the metals. Thus, it is difficult to regenerate reactive hydride species from the stable alkoxy intermediates. In this context, we focused on borane as a reductant. Boranes exhibit high oxophilicity, and thus can form stable alkoxides (the bond energy B–O: 125 kcal/mol is higher than of Si–O: 110 kcal / mol). Therefore, it is expected that borane as a mild reductant efficiently react with metal alkoxides to reproduce the active hydride complex, so that the reduction of the alkoxysilane proceeds catalytically (Scheme 2-3). Indeed, such the reactions have been already reported in the reduction of carbonyl compounds catalyzed by rare earth metal complexes.5 Scheme 2-3. Working hypothesis #### Results and discussion First, we evaluated alkoxysilane reduction with various borane reductant using Me₂PhSiOMe as a model substrate. In the presence of 10 mol% of Cp*₂Y(CH₂SiMe₃)(thf) (Cp* = η^5 -C₃Me₅)⁶, Me₂PhSiOMe reacted with HBpin at 80 °C to produce Me₂PhSiH in 29% yield (Table 2-1, entry 1). On the other hand, when using less bulky borane reductant 4,4,6-trimethyl-1,3,2-dioxaborinane (HBtmd) or catechol borane (HBcat), Me₂PhSiH was obtained in a lower yield (Table 2-1, entries 2, 3). When using BH₃·thf or BH₃·SMe₂ as Lewis base adducts, hydrosilane was not formed either (Table 2-1, entries 4, 5). The reaction was then performed using HBpin as a reductant. In the reaction using HBpin in which hydrosilane was obtained in the highest yield, the yield was improved to 48% by raising the reaction temperature to 100 °C (Table 2-1, entry 6). Subsequently, the catalyst screening was conducted based on this reaction condition. Cp'₂YH(thf) (1) (Cp' = η^5 -C₅Me₄SiMe₃)⁷ also catalyzed the reaction under identical conditions, albeit that Me₂PhSiH was obtained in a slightly higher yield (57%) (Table 2-1, entry 7). The reaction catalyzed by Cp₂Y(CH₂SiMe₃)(thf) (Cp = η^5 -C₅H₅)⁸, which contains less bulky Cp ligands, resulted in the formation of minor amounts of Me₂PhSiH (4%) (Table 2-1, entry 8). Similar observations were made for the reaction using less bulky half-metallocene-type yttrium complex Cp'Y(CH₂SiMe₃)₂(thf)⁹, which afforded Me₂PhSiH in 7% yield (Table 2-1, entry 9). Y(CH₂SiMe₃)₃(thf)₂¹⁰, which do not contain Cp ligands, did not catalyze the reaction, not even in the presence of B(C₆F₅)₃ as a cocatalyst¹¹ (Table 2-1, entries 10, 11). On the other hand, the catalytic reduction of alkoxysilane did not proceed even when a metallocene type titanium and zirconium complex was used as a catalyst (Table 2-1, entries 12, 13). Table 2-1. Reduction of Me₂PhSiOMe with various borane reductant catalyzed by group 3 and 4 metal complexes.^a | entry | catalyst | HBR ₂ | temp. (°C) | Me ₂ PhSiH
yield (%) ^b | |-------|--|--------------------|------------|---| | 1 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | HBpin | 80 | 29 | | 2 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | HBtmd | 80 | 15% | | 3 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | HBcat | 80 | 5% | | 4 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | $BH_3 \cdot thf$ | 80 | $\mathrm{N.D.}^c$ | | 5 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | $BH_3 \cdot SMe_2$ | 80 | $\mathrm{N.D.}^c$ | | 6 | $Cp*_2Y(CH_2SiMe_3)(thf)$ | HBpin | 100 | 48 | | 7 | Cp' ₂ YH(thf) (1) | HBpin | 100 | 57 | | 8 | $Cp_2Y(CH_2SiMe_3)(thf)$ | HBpin | 100 | 4 | | 9 | $Cp'_2Y(CH_2SiMe_3)_2(thf)$ | HBpin | 100 | 7 | | 10 | $Y(CH_2SiMe_3)_3(thf)_2$ | HBpin | 100 | $\mathrm{N.D.}^c$ | | 11 | $Y(CH_2SiMe_3)_3(thf)_2 / B(C_6F_5)_3$ | HBpin | 100 | $N.D.^c$ | | 12 | Cp* ₂ TiMe | HBpin | 100 | $N.D.^c$ | | 13 | Cp* ₂ ZrMe ₂ | HBpin | 100 | 2% | ^aReaction conditions: alkoxysilane (50 μmol), HBR₂ (50 μmol), and catalyst (5 μmol) in C_6D_6 (0.5 mL) for 24 h. ^bDetermined by ¹H NMR spectroscopy using mesitylene as an internal standard. ^cNot detected. Using the best catalyst 1, we subsequently examined the reduction of various alkoxysilanes. Me₂(*n*Oct)SiOMe reacted with HBpin in the presence of 10 mol % of 1 to give Me₂(*n*Oct)SiH in 49% yield (Table 2-2, entry 1). Bulkier Et₃SiOMe also underwent the reduction under identical reaction conditions to give Et₃SiH, albeit in a lower yield (22%) (Table 2-2, entry 2). The yield further decreased to 11% in the reaction of Me₂PhSiOEt with the bulkier ethoxy group (Table 2-2, entry 3). Likewise, the reaction of Me₂PhSiO*i*Pr did not proceed (Table 2-2, entry 4). The reductions of dialkoxysilanes, MePhSi(OMe)₂ and Ph₂Si(OMe)₂, were similarly carried out to furnish the fully hydrogenated products in moderate yields, accompanied by the slight formation of partial hydrogenated products (Table 2-2, entries 5, 6). The reduction of PhSi(OMe)₃ resulted in the formation of the mixture of the hydrogenated product, i.e., PhSiH₃ (12%), PhSiH₂(OMe) (2%), PhSiH(OMe)₂ (6%) (Table 2-2, entry 7). Table 2-2. Reduction of various alkoxy silanes with HBpin Catalyzed by 1.^a $$\begin{array}{c} & \text{Cp'}_2\text{YH(thf) (1)} \\ \text{R}_{4\text{-n}}\text{Si(OMe)}_n \ ^+ \ n \ \text{HBpin} & \underline{ \begin{array}{c} (10 \ \text{mol}\%) \\ \text{C}_6\text{D}_6 \\ 100 \ ^\circ\text{C}, 24 \ h \\ - \ \text{MeOBpin} \end{array} } \end{array} \\ \begin{array}{c} \text{R}_{4\text{-n}}\text{SiH}_n \\ \end{array}$$ | entry | alkoxy silane | conv. (%) ^b | Hydrosilane | |-------|--------------------------------------|------------------------|---------------------------------------| | | | | yield (%) ^b | | 1 | Me ₂ (nOct)SiOMe | 49 | Me ₂ (nOct)SiH (49) | | 2 | Et ₃ SiOMe | 28 | Et ₃ SiH (22) | | 3 | Me ₂ PhSiOEt | 12 | Me ₂ PhSiH (11%) | | 4 | Me ₂ PhSiO <i>i</i> Pr | $N.R.^c$ | _ | | 5 | MePhSi(OMe) ₂ | 77 | MePhSiH ₂ (59) | | 3 | | | MePhSiH(OMe) (8) | | 6 | Ph ₂ Si(OMe) ₂ | 62 | Ph ₂ SiH ₂ (40) | | 6 | | | Ph ₂ SiH(OMe) (4) | | | PhSi(OMe) ₃ | 53 | PhSiH ₃ (12) | | 7 | | | PhSiH ₂ (OMe) (2) | | | | | $PhSiH(OMe)_2$ (6) | ^aReaction conditions: alkoxysilane (50 μmol), HBpin (entries 1-4: In order to shed light on the underlying reaction mechanism, the following experiments were carried out. Initially, we monitored the reduction of Me₂PhSiOMe catalyzed by **1** at 100 °C using a ¹H NMR spectroscopy. After 24 h, the yield of Me₂PhSiH had gradually increased to 56%. After 72 h, the yield reached 63%, and this value did not increase any further upon prolonging the reaction time. During the reaction, the formation of Cp'₂Y(μ-OMe)₂Bpin (**2**) (24%) and Cp'H (15%) was detected (Figure 2-1). ⁵⁰ μ mol; entries 5,6: 100 μ mol, entry 7: 150 μ mol) and 1 (5 μ mol, ¹⁰ mol%) in C₆D₆ (0.5 mL) at 100 °C for 24 h. ^bDetermined by ¹H NMR spectroscopy using mesitylene as an internal standard. ^cNo Reaction. Figure 2-1. Monitoring of the catalytic reaction progress by ¹H NMR spectroscopy. Complex 2 was synthesized independently by the following reaction scheme. The reaction of 1 with Me₂PhSiOMe resulted in the quantitative formation of methoxy complex Cp'₂Y(OMe)(thf) (3), accompanied by the formation of Me₂PhSiH (Scheme 2-4). Reaction of 3 with 1 equiv. of HBpin afforded a mixture that contained HBpin adduct 4 (84%) and 2 (9%) (Scheme. 2-5, step 1). This mixture was fully converted into 2 upon treatment with one more equivalent of Me₂PhSiOMe, and the formation of Me₂PhSiH (78%) was also detected (Scheme 2-5, step 2). Complexes 2–4 exhibit one SiMe₃ and two CpMe signals in the ¹H and/or ¹³C NMR spectra. In their ¹¹B NMR spectra, 2 and 4 exhibit one signal at 6.1 ppm and –1.0 ppm, respectively. Scheme 2-4. Reaction of complex 1 with Me₂PhSiOMe. Scheme 2-5. Reaction of complex 3 with HBpin and Me₂PhSiOMe The solid-state structures of **2**–**4** were determined by single crystal X-ray diffraction analysis (Figure 2-2, Table 2-3). Their core structures around the Y center are comparable to those of previously reported analogous yttrium complexes. The Y-OMe bond in **3** (2.073(2) Å) is somewhat shorter than those in **2** (2.266(3)/2.284(3) Å) and **4** (2.264(2) Å), which is probably due to the bridging coordination mode. Reflective of these values, the Cp'-bite-angle [CEN-Y-CEN (CEN = Cp'-ring centroid)] of **2** (139.36(7)) and **4** (139.57(5)) is slightly larger than that of **3** (136.35(4)). Complexes **2** and **4** are also revealed to exhibit similar bond angles and bond lengths around the Y atom to catalytically active **1**. Figure 2-2. Molecular structures of **2-4** with probability ellipsoids. Hydrogen atoms are omitted for clarity. (CEN = ring centroid) Table 2-3. Selected bond distances (Å) and angles (deg) for 2-4 | | 2 | 3 | 4 | |-------------|------------|------------|-----------| | Y-CEN1 | 2.375(2) | 2.427(1) | 2.354(2) | | Y-CEN2 |
2.382(2) | 2.412(1) | 2.367(2) | | Y-O1 | 2.266(3) | 2.073(2) | 2.264(2) | | Y-O2 | 2.284(3) | 2.3821(17) | _ | | B-O1 | 1.512(6) | _ | 1.509(4) | | B-O2 | 1.518(6) | _ | _ | | | | | | | CEN1-Y-CEN2 | 139.36(7) | 136.35(4) | 139.57(5) | | CEN1-Y-O1 | 108.31(11) | 108.61(7) | 109.77(7) | | CEN1-Y-O2 | 106.51(10) | 105.00(5) | - | | CEN2-Y-O1 | 106.67(10) | 104.43(6) | 108.33(7) | | CEN2-Y-O2 | 108.72(11) | 104.90(5) | - | | O1-Y-O2 | 59.50(12) | 86.16(7) | _ | | Y-O1-B | 102.4(2) | _ | 97.36(17) | | Y-O2-B | 101.4(3) | _ | _ | | O1-B-O2 | 96.4(3) | _ | _ | We also confirmed that 2 exhibits similar catalytic activity as 1, i.e., the reduction of Me₂PhSiOMe proceeded in the presence of 2 (10 mol %) at 100 °C to form Me₂PhSiH in 42% yield. This result suggests the inclusion of 2 as the intermediate in the catalytic cycle. Based on these experimental results, we would like to propose a possible reaction pathway (Scheme 2-6). Complex 1 could successively react with alkoxysilane and HBpin to form 4 via 3. Complex 4 could then engage in a nucleophilic reaction with alkoxysilane to give 2 as well as the corresponding hydrosilane. A subsequent reaction of 2 with HBpin would lead to the regeneration of 4. The observed formation of free Cp'H detected during the catalytic reaction is likely due to the reactions of 1–4 with HBpin, which could be one potential deactivation process for the catalyst. The formation of MeOBpin could also lead to the deactivation of the highly oxophilic active species. Indeed, the catalytic activity of 1 decreased extremely in the presence of MeOBpin (1 equiv). Considering the suppressed catalytic activity of [Cp₂Y(CH₂SiMe₃)(thf)], [Cp'Y(CH₂SiMe₃)₂(thf)], and [Y(CH₂SiMe₃)₃(thf)₂], which contain less sterically hindered reaction space, this effect is likely mitigated in the case of 1 on account of the rigid metallocene structure that is a result of the bulky Cp' ligands. $$Cp' + H + R_3SiOMe - R_3SiH + Cp' + OMe + Cp' Cp'$$ Scheme 2-6. Possible reaction pathway. ## Conclusion In summary, we have developed the first example of a catalytic reduction of alkoxysilanes using the mild reductant HBpin. The utility of yttrium-based catalyst 1 has been demonstrated experimentally, and we have shown that the coordination of alkoxyboranes suppresses the catalytic activity of 1. #### **Experimental section** #### General considerations All manipulations were performed under a nitrogen atmosphere using Schlenk techniques or a glove box. Benzene was purified by a solvent purification system (MBraun SPS-800). C_6D_6 was dried over sodium benzophenone ketyl and distilled. $Cp*_2Y(CH_2SiMe_3)(thf)^6$, $Cp*_2YH(thf)$ (1)⁷, $Cp_2Y(CH_2SiMe_3)(thf)^8$, $Cp*_2Y(CH_2SiMe_3)_2(thf)_4^9$, $Y(CH_2SiMe_3)_3(thf)_2^{10}$, $Cp*_2TiMe^{14}$ and $Cp*_2ZrMe_2^{15}$ were prepared according to the literature procedures. All other reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. 1H , ^{11}B , $^{13}C\{^1H\}$, and $^{29}Si\{^1H\}$ NMR spectra (1H , 600 MHz; ^{11}B , 193 MHz; 13C, 151 MHz; ^{29}Si , 119 MHz) were recorded using a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signals for 1H and ^{13}C , and to boron trifluoride diethyl ether complex (0.0 ppm) for ^{11}B and to trimethyl(phenyl)silane (–4.7 ppm) for ^{29}Si . Elemental analyses were carried out on a Yanaco CHN CORDER MT-6. #### Catalytic reduction of alkoxysilane with hydroborane A typical procedure (entry 1 in Table 2-1) is as follows. A J-Young NMR tube was charged with a C₆D₆ solution (0.5 mL) of Cp*₂Y(CH₂SiMe₃)(thf) (2.6 mg, 5.0 μmol), Me₂PhSiOMe (8.4 mg, 50 μmol) and mesitylene (6.0 mg, 50 μmol) as an internal standard. HBpin (6.4 mg, 50 μmol) was added at room temperature, and then the solution was heated at 80 °C for 24 hours. ¹H NMR was measured to determine NMR yield of Me₂PhSiH (15 μmol, 29%). #### Compound characterization data The products in Table 2-1-2-3, Me₂PhSiH¹⁶, Et₃SiH¹⁶, MePhSiH₂¹⁷, MePhSiH(OMe)¹⁸, Ph₂SiH₂¹⁹, PhSiH₂(OMe)²⁰ and Cp'H²¹ were identified by comparing their ¹H NMR data with those previously reported. Me₂(*n*Oct)SiH²², Ph₂SiH(OMe)²³ and PhSiH(OMe)₂²⁴ were identified by comparing their ¹H NMR data with those synthesized by reported procedure. PhSiH₃ and MeOBpin were identified by comparing their ¹H NMR data with it purchased from commercial suppliers. Me2(nOct)SiH ¹H NMR (C₆D₆, RT, ppm): δ 0.06 (d, 6H, ${}^{3}J_{HH} = 3.6$ Hz, Si Me_2), 0.57 (m 2H, SiC H_2 (CH₂)₆CH₃), 0.92 (t, 3H, ${}^{3}J_{HH} = 7.0$ Hz, SiCH₂(CH₂)₆CH₃), 1.22-1.42 (m, 12H, SiCH₂(CH₂)₆CH₃)), 4.15 (sep, 1H, ${}^{3}J_{HH} = 3.6$ Hz, SiH). Et₃SiH ¹H NMR (C₆D₆, RT, ppm): δ 0.53 (dq, 6H, ³ J_{HH} = 3.2 Hz, ³ J_{HH} = 7.9 Hz, SiC H_2 CH₃), 0.96 (t, 9H, ³ J_{HH} = 7.9 Hz, SiC H_2 C H_3), 3.88 (sep, 1H, ³ J_{HH} = 3.2 Hz, SiH). $MePhSiH_2$ ¹H NMR (C₆D₆, RT, ppm): δ 0.18 (t, 3H, ${}^{3}J_{HH} = 4.3$ Hz, SiMe), 4.49 (q, 2H, ${}^{3}J_{HH} = 4.3$ Hz, Si H_2), 7.11-7.19 (m, 3H, m, p-CH), 7.45 (m, 2H, o-CH). MePhSiH(OMe) ¹H NMR (C₆D₆, RT, ppm): δ 0.32 (t, 3H, ³ J_{HH} = 2.9 Hz, SiMe), 3.30 (s, 3H, OMe), 5.18 (q, 1H, ³ J_{HH} = 2.9 Hz, SiH), 7.20 (m, 3H, m, p-CH), 7.56 (m, 2H, o-CH). Ph_2SiH_2 ¹H NMR (C₆D₆, RT, ppm): δ 5.08 (s, 2H, Si*H*), 7.09-7.19 (m, 6H, *m*, *p*-C*H*), 7.51 (m, 4H, *o*-C*H*). Ph₂SiH(OMe) ¹H NMR (C_6D_6 , RT, ppm): δ 3.40 (s, 3H, OMe), 5.61 (s, 1H, SiH), 7.09-7.19 (m, 6H, m, p-CH), 7.65 (m, 4H, o-CH). PhSiH₃ ¹H NMR (C_6D_6 , RT, ppm): δ 4.23 (s, H, SiH), 7.07 (m, 2H, m, p-CH), 7.11 (m, 1H, p-CH), 7.39 (m, 2H, o-CH). $PhSiH_2(OMe)$ ¹H NMR (C₆D₆, RT, ppm): δ 3.27 (s, 3H, OMe), 5.14 (s, 1H, SiH), 7.55 (m, 2H, o-CH). PhSiH(OMe)₂ ¹H NMR (C_6D_6 , RT, ppm): δ 3.41 (s, 6H, OMe), 5.12 (s, 1H, SiH), 7.17-7.20 (m, 3H, m, p-CH), 7.70 (m, 2H, o-CH). **MeOBpin** ¹H NMR (C₆D₆, RT, ppm): δ 1.04 (s, 12H, Bpin), 3.51 (s, 3H, OMe). Cp'H ¹H NMR (C_6D_6 , RT, ppm): δ –0.02 (s, 9H, Si Me_3), 1.82 (s, 6H, CpMe), 1.92 (s, 6H, CpMe), 2.68 (s, 1H, Cp *H). Monitoring of the catalytic reaction progress A J-Young NMR tube was charged with a C_6D_6 solution (0.5 mL) of 1 (2.7 mg, 5.0 μ mol), Me₂PhSiOMe (8.4 mg, 50 μ mol) and mesitylene (6.0 mg, 50 μ mol) as an internal standard. HBpin (6.4 mg, 50 μ mol) was added at room temperature, and then the solution was heated. The reaction was followed by ¹H NMR. ¹H NMR was measured to determine NMR yield of Me₂PhSiH, MeOBpin, complex 4 (120 h: 1.2 μ mol, 24% / 1) and Cp'H (120 h: 0.75 μ mol, 15% / 1). Synthesis of $Cp'_2Y\{\mu\text{-}(OMe)_2\}Bpin(2)$ To a benzene (1 mL) solution of **1** (50 mg, 91 μmol) was added Me₂PhSiOMe (30 mg, 182 μmol) and HBpin (12 mg, 91 μmol). The solution was stirred for 24 hours at room temperature. After removal of the solvent under vacuum, the residue was extracted with pentane (5 mL) and filtered through a syringe filter. The filtrate was concentrated under vacuum to ca. 0.5 mL, and stored at –35 °C to give **2** as a colourless crystal (37 mg, 56 μmol, 62%). ¹H NMR (C₆D₆, RT, ppm): δ 0.36 (s, 18H, Si*Me*₃), 1.34 (s, 12H, B*pin*), 1.94 (s, 12H, C*pMe*), 2.36 (s, 12H, C*pMe*), 3.31 (s, 6H, O*Me*) ¹³C NMR (C_6D_6 , RT, ppm): δ 2.82 (s, Si Me_3), 11.5 (s, CpMe), 14.7 (s, CpMe), 28.1 (s, C Me_2), 50.6 (s, OMe) 78.8 (s, C Me_2), 115.3 (d, $^1J_{C-Y} = 3.0 \text{ Hz}$, $C_5Me_4SiMe_3$), 124.4 (s, $C_5Me_4SiMe_3$), 130.2 (s, $C_5Me_4SiMe_3$) ²⁹Si NMR (C₆D₆, RT, ppm): -10.7 (s, SiMe₃) ¹¹B NMR (C₆D₆, RT, ppm): 6.1 (s, *B*pin) Anal. Calcd for C₃₂H₆₀BO₄Si₂Y: C, 57.73; H, 9.24. Found: C, 57.95; H, 9.51. ¹H NMR: ¹³C NMR: ## ²⁹Si NMR: # ¹¹B NMR: Synthesis of Cp'₂Y(OMe)(thf) (3) To a benzene (1 mL) solution of **1** (50 mg, 91 μmol) was added Me₂PhSiOMe (30 mg, 182 μmol). The solution was stirred for 24 hours at room temperature. After removal of the solvent under vacuum, the residue was extracted with pentane (5 mL) and filtered with a syringe filter. The filtrate was concentrated under vacuum to ca. 0.5 mL, and stored at –35 °C to give **3** as a colourless crystal (48 mg, 83 μmol, 76%). ¹H NMR (C₆D₆, RT, ppm): δ 0.44 (s, 18H, Si Me_3), 1.30 (s, 4H, thf- β -H), 1.95 (s, 12H, CpMe), 2.25 (s, 12H, CpMe), 3.56 (brs, 4H, thf- α -H), 3.99 (s, 3H, OMe). ¹³C NMR (C₆D₆, RT, ppm): δ 2.78 (s, Si Me_3), 11.7 (s, CpMe), 14.7 (s, CpMe), 25.6 (brs, THF- β -C H_2), 55.5 (d, ${}^1J_{\text{C-Y}} = 4.5$ Hz, OMe), 71.2 (s, thf- α -C H_2), 113.2 (d, ${}^1J_{\text{C-Y}} = 2.4$ Hz, $C_5\text{Me}_4\text{SiMe}_3$), 121.3 (d, ${}^1J_{\text{C-Y}} = 0.7$ Hz, $C_5\text{Me}_4\text{SiMe}_3$), 126.4 (s, $C_5\text{Me}_4\text{SiMe}_3$). ²⁹Si NMR (C₆D₆, RT, ppm): δ –11.0 (s, Si*Me*₃). Anal. Calcd for C₂₉H₅₃BO₂Si₂Y: C, 60.18; H, 9.23. Found: C, 60.48; H, 9.38. ## ¹H NMR: ## ¹³C NMR: ## ²⁹Si NMR: ## Synthesis of Cp'₂Y(μ -H)(μ -OMe)Bpin (4) To a benzene (1 mL) solution of **3** (40 mg, 69 μmol) was added HBpin (8.8 mg, 69 μmol). The solution was stirred for 24 hours at room temperature. After removal of the solvent under vacuum, the residue was extracted with pentane (5 mL) and filtered through a syringe filter. The filtrate was concentrated under vacuum to ca. 0.5 mL. Complex **4** was contaminated with **2** and isolation of **4** was not successful, but slight amount of single crystals were obtained by recrystallization from cold pentane solution (–35 °C). ¹H NMR (C₆D₆, RT, ppm): δ 0.33 (s, 18H, Si*Me*₃), 1.25 (brs, 12H, B*pin*), 1.92 (brs, 12H, Cp*Me*), 2.31 (brs, 12H, Cp*Me*), 3.52 (s, 3H, O*Me*). The BH signal is obscured. ²⁹Si NMR (C_6D_6 , RT, ppm): $\delta - 10.9$ (s, $SiMe_3$). ¹¹B NMR (C_6D_6 , RT, ppm): $\delta - 1.0$ (s, Bpin). Reaction of Cp'2YH(thf) (1) with Me2PhSiOMe A J-Young NMR tube was charged with a C₆D₆ solution (0.5 mL) of 1 (2.7 mg, 5.0 μmol), Me₂PhSiOMe (1.2 mg, 7.5 μmol) and mesitylene (2.4
mg, 20 μmol) as an internal standard at room temperature. After 1 hour, ¹H NMR was measured to determine NMR yields of 3 (5.0 μmol, 99%) and Me₂PhSiH (5.0 μmol, 99%). Unreacted Me₂PhSiOMe was fully recovered (2.5 μmol, 50%). Reaction of Cp'₂Y(OMe)(thf) (3) with HBpin and Me₂PhSiOMe A J-Young NMR tube was charged with a C_6D_6 solution (0.5 mL) of **3** (10.0 mg, 17 μ mol) and HBpin (2.1 mg, 17 μ mol) and mesitylene (2.1 mg, 17 μ mol) as an internal standard at room temperature. After 1 hour, ¹H NMR was measured to determine NMR yield of **4** (14 μ mol, 84%) and **2** (1.5 μ mol, 9%). Then, Me₂PhSiOMe (3.5 mg, 21 μ mol) was added to the reaction mixture. After 24 hours, ¹H NMR was measured to determine NMR yields of complex **2** (16 μ mol, 91%) and Me₂PhSiH (13 μ mol, 78%). Unreacted Me₂PhSiOMe was fully recovered (7.4 μ mol, 43%). Catalytic reduction of Me₂PhSiOMe by 2 A J-Young NMR tube was charged with a C₆D₆ solution (0.5 mL) of **2** (3.3 mg, 5.0 μmol), Me₂PhSiOMe (8.4 mg, 50 μmol) and mesitylene (6.0 mg, 50 μmol) as an internal standard. After the addition of HBpin (6.4 mg, 50 μmol) at room temperature, the solution was kept at 100 °C for 24 hours. ¹H NMR was measured to determine the NMR yield of Me₂PhSiH (21 μmol, 42%). Unreacted Me₂PhSiOMe was fully recovered (29 μmol, 57%). Catalytic reduction of Me₂PhSiOMe by 1 in the presence of MeOBpin A J-Young NMR tube was charged with a C_6D_6 solution (0.5 mL) of 1 (2.7 mg, 5.0 μ mol), Me₂PhSiOMe (8.4 mg, 50 μ mol) and mesitylene (6.0 mg, 50 μ mol) as an internal standard. After the addition of HBpin (6.4 mg, 50 μ mol) and MeOBpin (7.9 mg, 50 μmol) at room temperature, the solution was kept at 100 °C for 24 hours. ¹H NMR was measured to determine the NMR yield of Me₂PhSiH (3.0 μmol, 6%). Unreacted Me₂PhSiOMe was fully recovered (47 μmol, 94%). ## Single crystal X-ray diffraction studies. The single crystal X-ray diffraction measurements of complex **2-4** was performed under a cold nitrogen stream on a Rigaku XtaLAB P200 diffractometer with a Pilatus 200K detector using multi-layer mirrore monochromated Mo Kα radiation. The determination of crystal systems and unit cell parameters and data processing were performed with the CrystalClear program package. The data sets were corrected for Lorentz and polarization effects and absorption. The structure was solved by direct methods using SIR92 program, ²⁵ and refined by full-matrix least squares calculations on F2 for all reflections (SHELXL-97)²⁶. The CheckCif examination of **4** exhibits Alert A. this is because of not recongnizing the Cp'-ring-carbon coordination with the Y atom. Table S2-1. Crystal data and details of the crystal structure determination for complex 2-4. | complex | 2 | 3 | 4 | |---|-------------------------|------------------------|-------------------------| | formula | $C_{32}H_{60}BO_4Si_2Y$ | $C_{29}H_{53}O_2Si_2Y$ | $C_{31}H_{58}BO_3Si_2Y$ | | fw | 664.71 | 578.81 | 634.68 | | T (K) | 93(2) | 93(2) | 93(2) | | cryst system | triclinic | monoclinic | triclinic | | space group | P-1 (#2) | $P2_{1}/c$ (#14) | P-1 (#2) | | a (Å) | 10.286(4) | 18.920(4) | 10.283(3) | | b (Å) | 10.637(4) | 10.800(2) | 10.634(4) | | c (Å) | 16.711(7) | 15.637(5) | 16.893(5) | | α (deg) | 85.83(4) | | 87.33(2) | | β (deg) | 81.84(3) | 103.687(5) | 77.94(2) | | $\gamma(\deg)$ | 78.75(3) | | 78.369(19) | | $V(Å^3)$ | 1773.2(12) | 3104.5(11) | 1769.4(10) | | Z | 2 | 4 | 2 | | $D_{ m calcd}$ (g/cm ³) | 1.245 | 1.238 | 1.191 | | μ (Mo K $_{\alpha}$) (cm $^{-1}$) | 17.460 | 19.803 | 17.447 | | $2\theta_{\text{max}}$ (deg) | 55.0 | 55.0 | 55.0 | | no. of meads reflns | total: 16801 | total: 31824 | total: 22472 | | | unique: 7613 | unique: 7084 | unique: 7950 | | no. of observation | 7613 | 7084 | 7950 | | no. of variables | 381 | 322 | 362 | | $R1^a$ | 0.0641 | 0.0421 | 0.0511 | | wR2 ^b | 0.1590 | 0.0894 | 0.1277 | | GOF^c | 1.024 | 1.096 | 1.027 | #### Reference - 1. R. T. Sanderson, Polar Covalence, 1983. - (a) A. E. Finholt, A. C. Bond Jr, K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc., 1947, 69, 2692, (b) H. Westemark, Acta. Chem. Scand., 1954, 8, 1830. - 3. (a) E. Uhlig, B. Bürglen, C. Krüger and P. Betz, *J. Organomet. Chem.* **1990**, *382*, 77; (b) P. Perrotin, I. El-Zoghbi, P. O. Oguadinma and F. Schaper, *Organometallics* **2009**, *28*, 4912; (c) E. L. Werkema, A. Yahia, L. Maron, O. Eisenstein and R. A. Andersen, *Organometallics* **2010**, *29*, 5103. - (a) R. J. P. Corriu and B. Meunier, *J. Organomet. Chem.* 1973, 60, 31; (b) R. J. P. Corriu and B. Meunier, *J. Organomet. Chem.* 1974, 65, 187; (c) E. Colomer, R. J. P. Corriu and B. Meunier, *J. Organomet. Chem.* 1974, 71, 197; (d) R. J. P. Corriu and B. Meunier, *J. Organomet. Chem.* 1975, 93, 81. - 5. V. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr and T. J. Marks, ACS Catal., 2017, 7, 1244. - 6. C. Xue, Y. Luo, H. Teng, Y. Ma, M. Nishiura and Z. Hou, ACS Catal., 2018, 8, 5017. - 7. T. Takenaka and Z. Hou, Organometallics, 2009, 28, 5196. - 8. M. V. Butovskii, O. L. Tok, F. R. Wagner and R. Kampe, Angew. Chem. Int. Ed., 2008, 47, 6469. - 9. L.C. Hultzsch T. P. Spaniol and J. Okuda, Angew. Chem. Int. Ed., 1999, 38, 227. - 10. F. Estler, G. Eickerling, E. Herdtweck and R. Anwander, Oraganometallics, 2003, 22, 1212 - 11. B. R. Elvidge, S. Arndt, P. M. Zeimentz, T. P. Spaniol, J. Okuda, Inorg. Chem., 2005, 44, 6777. - (a) B.-J. Deelman, M. Booij, A. Meetsma, J. H. Teuben, H. Kooijman, A. L. Spek, Organometallics, 1995, 14, 2306. (b) X. Li, J. Hong, R. Liu, L. Weng, X. Zhou, Organometallics, 2010, 29, 4606. - 13. Reduction of Me₂PhSiOMe with HBpin catalyzed by 1 (10 mol%) in the presence of MeOBpin (1 equiv.) resulted in the formation of Me₂PhSiH in 6%. - 14. G. A. Luinstra, L. C. Ten Cate, J. J. Heeres, J. W. Pattiasina, A. Meetsma and J. H. Teuaben, Organimetallics, - **1991**, 10, 3227. - 15. J.M. Manriquez, D. R. McAlister, R. D, Sanner and J. E. Bercaw, J. Am. Chem. Soc., 1978, 100, 2716. - 16. D. Schmidt, T. Zell, T. Schaub and U. Radius, *Dalton Trans.*, **2014**, *43*, 1081. - 17. R. B. Said, K. Hussein, J.-C. Barthelat, I. Atheaux, S. Sabo-Etienne, M. Grellier, B. Donnadieu and B. Chaudret, *Dalton trans.*, **2003**, *21*, 4139. - 18. S. Xu, Y. Magoon, R. R. Regina, B. M. Schmidt, A. Ellern and A. D. Sadow, Organometallics, 2015, 34, 3508. - 19. K. A. Erickson, M. P. Cibuzar, N. T. Mucha and R. Waterman, Dalton trans., 2018, 47, 2138. - 20. M. C. Neary, P. J. Quinlivan and G. Parkin, Inorg. Chem., 2018, 57, 374. - 21. C. J. Windorff and W. J. Evans, Organometallics, 2014, 33, 3786. - 22. S. Hanada, Y. Motoyama and H. Nagashima, Eur. J. Org. Chem., 2008, 4097. - 23. L. Horner and J. Mathias, J. Organomet. Chem., 1985, 282, 155. - 24. J. Ohshita, R. Taketsugu, Y. Nakahara and A. Kunai, J. Organomet. Chem., 2004, 689, 3258. - 25. A. Altomare, G. Cascarano and C. Giacovazzo, J. Appl. Cryst. 1993, 27, 435. - 26. G. M. Sheldrick, Acta Cryst. 2008, A64, 112. # Chapter 3 # Synthesis of Hydrosilanes via Lewis Base-Catalyzed # Reduction of Alkoxysilane with Borane #### Abstract Hydrosilanes were synthesized by reduction of alkoxy silanes with BH₃ in the presence of hexamethylphosphoric triamide (HMPA) as a Lewis-base catalyst. The reaction was also achieved using an inexpensive and easily handled hydride source NaBH₄, which reacted with EtBr as a sacrificial reagent to form BH₃ in situ. #### Introduction In the reaction using yttrium catalyst in Chapter 2, the catalytic reduction of alkoxysilane with borane was achieved. The reaction cannot utilize simple boranes such as BH₃·thf and BH₃·SMe₂, and require a relatively expensive HBpin. In addition, the reaction is easily suppressed by the in-situ formed byproduct MeOBpin. In this study, we set up to develop a new catalytic system that can efficiently convert alkoxysilanes to hydrosilanes using the more general reducing agent BH₃·thf. We thus focused on Lewis base catalysts that are not expected to be deactivated by the oxygen atom-coordination. It is known that onece silicon compounds are activated via coordination of Lewis base, they act as efficient nucleophiles. Various organic reactions including Hosomi-Sakurai allylations and Hiyama coupling reactions utilized this intrinsic properties of silicon compounds. Similarly, in the borane reduction of alkoxysilane, it is expected that the Si–O bond(s) in alkoxysilanes is activated via adduct formation with Lewis base (Scheme 3-1). Scheme 3-1. Working hypothesis Also, in this research, reduction of alkoxysilane using NaBH₄, which is inexpensive and easy-to-handle, was also examined. It is known that BH₃ can be also generated by adding additives to NaBH₄. $H_2SO_4^{3a}$ and BX_3 (X = F, $Cl)^{3b}$, I_2^{3c} and haloalkanes^{3d} have been reported as additives to generate BH₃ from BH₄⁻ (Scheme 3-2). In this research, by using EtBr as an additive, formal reduction of alkoxysilane with NaBH₄ was achieved. Ph-C $$\equiv$$ N + n Bu₄NBH₄ $\stackrel{1)}{\longrightarrow}$ additive $\stackrel{H}{\longrightarrow}$ H $\stackrel{H}{\longrightarrow}$ NH₂ additive: BF₃ N.D. H₂SO₄ 25% EtBr 95% Scheme 3-2. Reduction of nitrile with BH₃ generated from BH₄⁻ ## Results and discussion First, we evaluated alkoxy silane reduction with BH₃·thf using Me₂(*n*Oct)SiOMe (**1a**) as a model substrate. The reaction of **1a** with 1 equiv. of BH₃·thf was performed at room temperature for 24 h, resulting in the slight formation of the corresponding hydrosilane Me₂(*n*Oct)SiH (**2a**) (Table 3-1, entry 1). The reaction was then performed in the presence of various Lewis bases. We expected that the Lewis base would nucleophilically interact with the Si atom to weaken the strong Si–O bond. Organic amines, pyridine and NEt₃, did not improve the reaction yield (Table 3-1, entries 2 and 3). CsF, dimethylsulfoxide (DMSO), Me₃NO, *N*,*N*'-dimethylpropyleneurea (DMPU),
and tetramethylurea, which exhibit higher affinity towards the silicon atom via F- or O-atom coordination, slightly improved the reaction yield (Table 3-1, entries 4–8). Although the use of (MeO)₃PO afforded **2a** only in 6% yield (Table 3-1, entry 9), the reaction catalyzed by Ph₃PO as a stronger Lewis base resulted in the formation of **2a** in 72% yield (Table 3-1, entry 10). Further improvement was achieved by using HMPA to give **2a** in 91% yield (Table 3-1, entry 11). In the reaction, the formation of B(OMe)₃ (δ 18.8 ppm) and HB(OMe)₂ (δ 28.0 ppm, d, ¹*J*_{BH} = 162 Hz) was confirmed by ¹¹B NMR spectroscopy. Reduction of Et₃SiOMe, Me₂PhSiOMe, MePh₂SiOMe similarly proceeded in the presence of HMPA (5 mol%) to furnish the corresponding hydrosilanes in good yields (Table 3-1, entries 12–14). Table 3-1. Screening of Lewis bases for the reduction of Me₂(nOct)SiOMe (1a) with BH₃·thf^a. R R-Si-OMe + BH₃·thf R (1 equiv) $$(5 \text{ mol}\%)$$ R-Si-H RT, 24 h R | Entry | Lewis Base | Alkoxysilane conv. (%) ^b | Hydrosilane yield (%) ^b | |-------|-----------------------|-------------------------------------|------------------------------------| | 1 | _ | $Me_2(nOct)SiOMe(1a)(3)$ | 2a (2) | | 2 | Pyridine | $Me_2(nOct)SiOMe(1a)(3)$ | 2a (3) | | 3 | NEt ₃ | $Me_2(nOct)SiOMe(1a)(3)$ | 2a (2) | | 4 | CsF | $Me_2(nOct)SiOMe(1a)(9)$ | 2a (4) | | 5 | DMSO | $Me_2(nOct)SiOMe(1a)(11)$ | 2a (5) | | 6 | Me ₃ NO | $Me_2(nOct)SiOMe(1a)(8)$ | 2a (8) | | 7 | DMPU | $Me_2(nOct)SiOMe(1a)(8)$ | 2a (8) | | 8 | Tetramethylurea | $Me_2(nOct)SiOMe(1a)(9)$ | 2a (8) | | 9 | (MeO) ₃ PO | $Me_2(nOct)SiOMe(1a)(7)$ | 2a (6) | | 10 | Ph ₃ PO | $Me_2(nOct)SiOMe(1a)(73)$ | 2a (72) | | 11 | HMPA | $Me_2(nOct)SiOMe(1a)(91)$ | 2a (91) | | 12 | HMPA | Et ₃ SiOMe (1b) (80) | 2a (75) | | 13 | HMPA | $Me_2PhSiOMe(1c)(91)$ | 2a (88) | | 14 | HMPA | $MePh_2SiOMe(1d)(75)$ | 2a (75) | ^aReaction conditions: alkoxysilane (0.20 mmol), 1M BH₃·thf solution (0.20 mmol) and Lewis base (0.010 mmol) in THF (0.5 mL) at RT for 24 h. ^b Determined by ¹H NMR using mesitylene as an internal standard. Motivated by the discovery of a good catalyst, HMPA, for the reduction of alkoxy silane with BH₃·thf, we next focused on the reaction of alkyl halides with borohydride.^{3d, 4} In this reaction, alkyl halides underwent hydride reduction accompanied by the formation of BH₃. By applying this reaction to our borane-reduction of alkoxy silanes, we expected to achieve a formal reduction of alkoxy silanes with NaBH₄. Thus, the HMPA-catalyzed reduction of **1a** (0.20 mmol) with NaBH₄ was performed in THF (0.5 mL) in the presence of EtBr (1 equiv.), which has a low boiling point and can be easily removed via evaporation. The reaction resulted in the slight formation of **2a** (13%) (Table 3-2, entry 1). On the other hand, reducing the amount of the solvent to 0.05 mL increased the yield to 80% (Table 3-2, entry 2). Whereas, complete removal of the solvent slightly decreased the reaction yield (Table 3-2, entry 3). Then, the effect of the solvent was further analyzed. The reactions were carried out in 1,2-dichloroethane (DCE) or C_6D_6 (0.05 mL), resulting in the formation of **2a** in moderate yields, 50% and 27%, respectively (Table 3-2, entries 5 and 7). To our surprise, adding nOct₄NBr (5 mol%) as a phase transfer catalyst, which could facilitate the reaction of EtBr with NaBH₄ as a sparingly soluble substrate, to the reaction in C₆D₆ produced the highest yield (93%) of **2a** (Table 3-2, entry 8) among the examined solvents (Table 3-2, entries 4 and 6). The use of nBu₄NBr with shorter alkyl chains decreased the yield of **2a** (34%) (Table 3-2, entry 9). Thus, this reaction is considered to require a phase transfer catalyst having long-chain alkyl with high solubility in nonpolar solvents. It was confirmed that the reaction did not proceed without HMPA or EtBr (Table 3-2, entries 10 and 11). This result indicated that both HMPA and EtBr are necessary for this reaction. Table 3-2. Optimization of reaction conditions in the reduction of Me₂(nOct)SiOMe (1a) with NaBH₄^a. | entry | co-catalyst | solvent (mL) | 1a conv. (%) ^b | 2a yield (%) ^b | |-----------------|-----------------------|--|----------------------------------|----------------------------------| | 1 | _ | THF (0.5) | 17 | 16 | | 2 | _ | THF (0.05) | 74 | 70 | | 3 | _ | _ | 67 | 67 | | 4 | nOct ₄ NBr | THF (0.05) | 56 | 56 | | 5 | _ | C ₂ H ₄ Cl ₂ (0.05) | 51 | 50 | | 6 | nOct ₄ NBr | C ₂ H ₄ Cl ₂ (0.05) | 92 | 89 | | 7 | _ | $C_6D_6(0.05)$ | 31 | 27 | | 8 | nOct ₄ NBr | $C_6D_6(0.05)$ | 93 | 93 (93) ^c | | 9 | nBu ₄ NBr | $C_6D_6(0.05)$ | 35 | 34 | | 10^d | nOct ₄ NBr | $C_6D_6(0.05)$ | N.R. ^e | _ | | 11 ^f | nOct ₄ NBr | $C_6D_6(0.05)$ | < 1 | < 1 | ^aReaction conditions: Me₂(*n*Oct)SiOMe (0.20 mmol), NaBH₄ (0.20 mmol), EtBr (0.20 mmol), HMPA (0.010 mmol) and co-catalyst (0.010 mmol) in solvent at RT for 24 h. ^bDetermined by ¹H NMR using mesitylene as an internal standard. ^cIsolated yield of **2a** in a larger scale reaction. Reaction conditions: Me₂(*n*Oct)SiOMe (2.0 mmol), NaBH₄ (2.0 mmol), EtBr (2.0 mmol), HMPA (0.10 mmol) and *n*Oct₄NBr (0.10 mmol) in C₆H₆ (0.5 mL) at RT for 24 h. ^dWithout EtBr. ^eNo reaction. ^fWithout HMPA. We subsequently examined the reduction of various alkoxy silanes with NaBH₄ using the catalyst combination of HMPA and *n*Oct₄NBr (Table 3-3). Reaction of Et₃SiOMe (**1b**) with 1 equiv. of NaBH₄ furnished the corresponding hydrosilane Et₃SiH (**2b**) in good yield (96%) in the presence of HMPA (5 mol%), *n*Oct₄NBr (5 mol%) and 1 equiv. EtBr (Table 3-3, entry 1). Likewise, the reduction of Me₂PhSiOMe (**1c**) and MePh₂SiOMe (**1d**) produced the corresponding hydrosilanes, Me₂PhSiH (**2c**) and MePh₂SiH (**2d**) in 90% and 92% yields, respectively (Table 3-3, entries 2 and 7). It is to be noted that the reactions achieved to furnish the corresponding hydrosilanes with higher yields compared to the BH₃-reduction reactions shown in Table 3-1, entries 12–14. The reduction of Ph₃SiOMe (**1e**) was catalyzed by increased amount of HMPA (20 mol%) to form Ph₃SiH (**2e**) in 94% yield (Table 3-3, entry 8). Reduction of Me₂(C₆F₅)SiOEt (**1f-Et**) resulted in the formation of Me₂(C₆F₅)SiH (**2f**) in moderate yield (69%), even when using 20 mol% of HMPA (Table 3-3, entry 9). Thus, the electron-withdrawing groups on the Si atom likely retard the reaction. Reductions of bulky Me₂(*t*Bu)SiOMe (**1g**) and *i*Pr₃SiOMe (**1h**) proceeded using higher amounts of HMPA (1 equiv.), NaBH₄ (2 equiv.) and EtBr (2 equiv.), resulting in the formation of Me₂(*t*Bu)SiH (**2g**) (64%) and *i*Pr₃SiH (**2h**) (32%) (Table 3-3, entries 10 and 11). The reaction yield was also dependent on the size of the alkoxy groups. Me₂PhSiOEt (**1c-Et**) was reduced similarly to Me₂PhSiOMe (**1c**), forming Me₂PhSiH (**2c**) in 86% yield (Table 3-2, entry 3). The use of 20 mol% HMPA promoted the reduction of Me₂PhSiO/Pr (**1c-iPr**) to furnish the corresponding hydrosilane in 78% yield (Table 3-3, entry 4), whereas reduction of bulkier Me₂PhSiO/Bu (**1c-fBu**) did not proceed under the same reaction conditions (Table 3-3, entry 5). Reduction of Me₂PhSiOPh (**1c-Ph**) resulted in a 22% yield of Me₂PhSiH (**2c**), even when using 20 mol% of HMPA. The result suggested that a less electron-donating phenoxy group negatively affected the reaction (vide infra). Table 3-3. Substrate scope in reduction of monoalkoxy silane catalyzed be HMPA. ^a | Entry | alkoxy silanes | HMPA (mol%) | Alkoxysilane | Hydrosilane | |-----------------|--|-------------|------------------------|----------------------------------| | | | | conv. (%) ^b | yield (%) ^b | | 1 | $Et_3SiOMe(1b)$ | 5 | 96 | 2b : 96 | | 2 | Me ₂ PhSiOMe (1c) | 5 | 91 | 2c : 90 | | 3 | Me ₂ PhSiOEt (1c-Et) | 5 | 86 | 2c : 86 | | 4 | Me ₂ PhSiO <i>i</i> Pr (1c-<i>i</i>Pr) | 20 | 80 | 2c : 78 | | 5 | Me ₂ PhSiOtBu (1c-tBu) | 20 | $N.R.^d$ | 2c: – | | 6 | Me ₂ PhSiOPh (1c-Ph) | 20 | 23 | 2c : 22 | | 7 | MePh ₂ SiOMe (1d) | 5 | 92 | 2d : 92 | | 8 | Ph ₃ SiOMe (1e) | 20 | 94 | 2e : 94 (91) ^f | | 9 | Me ₂ (C ₆ F ₅)SiOEt (1f-Et) | 20 | 95 | 2f : 69 | | 10^g | $Me_2(tBu)SiOMe(1g)$ | 100 | 85 | 2g : 64 | | 11 ^g | <i>i</i> Pr ₃ SiOMe (1h) | 100 | 58 | 2h : 32 | ^aReaction conditions: R₃SiOR' (0.20 mmol), NaBH₄ (0.20 mmol), EtBr (0.20 mmol), HMPA (entries 1–3: 0.010 mmol; entries 4–9: 0.040 mol; entries 10 and 11: 0.20 mmol) and *n*Oct₄NBr (0.010 mmol) in C₆D₆ (0.05mL) at RT for 24 h. ^bDetermined by 1H NMR using mesitylene as an internal standard. ^cIsolated yield in a larger scale reaction. Reaction conditions: R₃SiOR' (2.0mmol), NaBH₄ (2.0mmol), EtBr (2.0 mmol), HMPA (0.10 mmol) and *n*Oct₄NBr (0.10 mmol) in C₆H₆ (0.5 mL) at RT for 24 h. ^dNo reaction. ^cCH₂Cl₂ (0.05 mL) was used instead of C₆D₆ due to the low solubility of **1e**. f Isolated yield in a larger scale reaction. Reaction conditions: **1e** (2.0 mmol), NaBH₄ (2.0 mmol), EtBr (2.0 mmol), HMPA (0.40 mol) and *n*Oct₄NBr (0.10 mmol) in CH₂Cl₂ (0.5 mL) at RT for 24 h. ^gNaBH₄ (0.4 mmol) and EtBr (0.4 mmol) were used. Reduction of dialkoxy silanes was also achieved by treatment with 2 equiv. of NaBH₄ and EtBr. The reactions of MeCySi(OMe)₂ (**1i**) (Cy = cyclohexyl) or MePhSi(OMe)₂ (**1j**) with NaBH₄ (2 equiv.) proceeded in the presence HMPA (5 mol%), nOct₄NBr (5 mol%), and EtBr (2 equiv.) to form the corresponding hydrosilanes in good yields, MeCySiH₂ (**3i**) (76%) and MePhSiH₂ (**3j**) (71%), respectively (Table 3-4, entries 1 and 2). Bulkier Ph₂SiH₂ (**3k**) and Cyp₂SiH₂ (**3l**) (Cyp = cyclopentyl) were also obtained in good yields using increased amounts of HMPA, 20 mol% and 100 mol%, respectively (Table 3-4,
entries 3 and 4). In these reactions, slight amounts of monohydrosilanes were also formed. Reduction of Cl(CH₂)₃MeSi(OMe)₂ (**1m**) and F₃C(CH₂)₂MeSi(OMe)₂ (**1n**) also proceeded to form the corresponding dihydrosilanes in good yields (Table 3-4, entries 5 and 6). Table 3-4. Substrate scope in reduction of dialkoxy silane catalyzed be HMPA. ^a | | R ²
R ^{1.} Si-OMe
OMe
1 | + NaBH ₄
(2 equiv) | HMPA (x mol%) nOct ₄ NBr (5 mol%) EtBr (2 equiv) C ₆ D ₆ RT, 24 h | R ²
R ¹ ·Si-H +
H
3 | R ²
R ¹ ·Si-H
OMe
2 | |-------|---|----------------------------------|---|---|---| | Entry | R, R'(1) | | HMPA (mol%) | Alkoxysilane | Hydrosilane | | спиу | K, K (1) | | TIMFA (IIIO170) | conv. $(\%)^b$ | yield $(\%)^b$ | | | | | | | 2:. 7((72)) | | Entry | R, R'(1) | HMPA (mol%) | 7 tikox y sitatic | Trydrositatic | |-------|-------------------------|-------------|-------------------|----------------------------------| | | | | conv. $(\%)^b$ | yield $(\%)^b$ | | 1 | Me, Cy (1i) | 5 | 81 | 3i : 76 (73) ^c | | | | | | 3i : 5 | | 2 | Me, Ph (1j) | 5 | 75 | 3j : 71 (66) ^c | | | | | | 2j : 5 | | 3 | Ph, Ph (1k) | 20 | 73 | 3k : 72 (72) ^c | | | | | | 2k : 3 | | 4 | Cyp, Cyp (11) | 100 | 86 | 21 : 77 (72) ^c | | | | | | 21 : 5 | | 5 | Me, $Cl(CH_2)_3$ (1m) | 5 | 78 | 3m : 70 | | 6 | Me, $F_3C(CH_2)_2$ (1n) | 20 | 78 | 3n : 64 | | | | | | | ^aReaction conditions: R₂Si(OMe)₂ (0.20 mmol), NaBH₄ (0.40 mmol), EtBr (0.40 mmol), HMPA (entries 1, 2 and 5: 0.010 mmol; entries 3 and 6: 0.040 mol; entry 4: 0.20 mmol) and nOct₄NBr (0.010 mmol) in C₆D₆ (0.05 mL) at RT for 24 h. ^bDetermined by 1H NMR using mesitylene as an internal standard. ^cIsolated yield in a larger scale reaction. Reaction conditions: R₂Si(OMe)₂ (2.0 mmol), NaBH₄ (4.0 mmol), EtBr (4.0 mmol), HMPA (entries 1 and 2: 0.10 mmol; entry 3: 0.40 mmol, entry 4: 2.0 mmol) and nOct₄NBr (0.10 mmol) in C₆H₆ (0.5 mL) at RT for 24 h. Reduction of trialkoxy silanes was catalyzed by 20 mol% of HMPA to furnish various trihydrosilanes (Scheme 3-3). Trimethoxysilanes with a linear or cyclic alkyl group resulted in the formation of trihydrosilanes in moderate yields. Similarly to the reactions of dialkoxy silanes, the reaction of aryl-substituted PhSi(OMe)₃ (1r) was somewhat reluctant towards reduction to form PhSiH₃ (4r) in 49% yield. OMe R-Si-OMe + NaBH₄ $$\xrightarrow{NOCt_4NBr} (5 \text{ mol\%})$$ $\xrightarrow{EtBr} (3 \text{ equiv})$ $\xrightarrow{C_6D_6}$ \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{A} \xrightarrow{C} \xrightarrow{A} Scheme 3-3. Substrate Scope in reduction of trialkoxy silane catalyzed by HMPA. ^aNMR yield. ^bIsolated yield. To demonstrate the utility of this method, gram-scale synthesis of 3k from $Ph_2Si(OMe)_2$ (1k) (10 mmol) was performed. Analytically pure $3\mathbf{k}$ was obtained via a simple purification procedure comprising successive filtration and evaporation of the resulting reaction mixture (Scheme 3-4(a)). The reaction was also utilized in the synthesis of deuterated hydrosilanes. Thus, the reduction of $nC_{12}H_{25}Si(OMe)_3$ ($1\mathbf{p}$) with NaBD₄ furnished $nC_{12}H_{25}SiD_3$ ($4\mathbf{p}$ - \mathbf{d}_3) in 70% yield (98 atom% D) (Scheme 3-4(b)). Scheme 3-4. (a) Gram Scale synthesis. (b) Deuterio labelled hydrosilane synthesis. The mechanism of the reaction is proposed as follows. In order to see whether HMPA as the Lewis base interacts with alkoxysilane, the reaction of alkoxysilanes with HMPA was performed and followed by NMR. When HMPA and Me₂PhSiOMe (**1e**) or Si(OMe)₄ were mixed in 1:1 or in 1:10 molar ratio, respectively, in C₆D₆, no change in the spectrum was observed in the ¹H, ²⁹Si{¹H}, ³¹P{¹H} NMR spectra. Next, the reaction of HMPA with BH₃·thf (1 equiv) was followed. In the ¹H and ³¹P{¹H} NMR spectra, new signal sets **A** and **B** appeared in addition to the free HMPA in C₆D₆; i.e., **A** (¹H NMR: 2.29 ppm (d, ³ J_{PH} = 9.6 Hz), ³¹P{¹H} NMR: 32.2 ppm) and **B** (¹H NMR: 2.40 ppm (d, ³ J_{PH} = 9.6 Hz), ³¹P{¹H} NMR: 31.0 ppm). The ratio of the integral intensities of the ¹H signal assignable to A, B and HMPA is 53%: 39%: 8%. These results strongly indicated the formation of two new compounds that have interaction of HMPA and BH₃ (Scheme 3-5). $$\begin{array}{c} \text{NMe}_2 \\ \text{Me}_2 \text{N} - \overset{\text{I}}{P} - \text{NMe}_2 \\ \overset{\text{I}}{O} \end{array} \xrightarrow{\begin{array}{c} \text{BH}_3 \cdot \text{thf} \\ \text{(1 equiv.)} \\ \text{C_6D_6, RT} \end{array}} \xrightarrow{\begin{array}{c} \text{NMe}_2 \\ \text{Me}_2 \text{N} - \overset{\text{I}}{P} - \text{NMe}_2 \end{array}} + \begin{array}{c} \text{A} \end{array} + \begin{array}{c} \text{B} \\ \text{A} \end{array} + \begin{array}{c} \text{B} \\ \text{B} \end{array}$$ Scheme 3-5. Reaction HMPA with BH₃·thf Subsequently, when ¹¹B NMR was measured, one signal was newly observed at $\delta - 6.5$ ppm (q, ¹ $J_{BH} = 105$ Hz) in addition to the signals of BH₃·thf (δ 0.3 ppm, q, ¹ $J_{BH} = 106$ Hz) and B₂H₆ (δ 18.3 ppm, brs). Since the signal at δ – 6.5 ppm shows a similar coupling pattern to BH₃·thf, one out of **A** and **B** attributed to borane-HMPA complex BH₃·HMPA. Overall, the interaction of borane and HMPA was evidenced. Based on the above results, the mechanism of this reaction was considered to be the two reaction pathways shown in Scheme 3-6. Although the interaction of HMPA with alkoxysilane was not directly observed, I suggested one mechanism, in which is assisted via the coordination of HMPA to alkoxysilane (Scheme 3-6 (a)). (b) $$\begin{array}{c} NMe_2 \\ NM$$ Scheme 3-6. Possible reaction pathway The other is the reaction pathway in which borane is activated by the formation of borane complex BH₃·HMPA. It is likely that the nucleophilicity of the H atom become enhanced after the adduct formation, so that the reaction proceeds smoothly via a six-membered ring transition state (Scheme 3-6 (b)). The similar reaction pathway is considered in the borane reduction of carbonyl compounds using a phosphine oxide catalyst (Scheme 3-7).⁵ Ph $$\stackrel{\text{Me}}{=}$$ Ph $\stackrel{\text{Ph}}{=}$ Ph $\stackrel{\text{HN-P-Ph}}{=}$ OH $\stackrel{\text{O}}{=}$ 75% yield 27% ee (S) $\stackrel{\text{Me}}{=}$ Ph $\stackrel{\text{He}}{=}$ $\stackrel{\text{Ne}}{=}$ $\stackrel{$ Scheme 3-7. Borane reduction of carbonyl compounds using phosphine oxide catalyst In both reactions, coordination of the B or P atom to the alkoxy group on the Si atom plays an important role. This is consistent with the observation that the reaction is retarded when using substrates having a low nucleophilic alkoxy group such as *t*BuO group or PhO groups. #### Conclusion In conclusion, we demonstrated the effective synthesis of hydrosilanes *via* reduction of alkoxy silanes with borane. By using EtBr as a sacrificial reagent, the reactions can also be achieved with easily handled NaBH₄ as a hydride source. Mechanistic studies including theoretical studies, are now underway in our group and will be reported in due course. ## **Experimental section** General considerations All manipulations were performed under a nitrogen atmosphere using Schlenk techniques or a glove box. Hexane, C₆H₆, toluene, THF and CH₂Cl₂ were purified by a solvent purification system (MBraun SPS-800 or Glass Contour Ultimate Solvent System). C₆D₆ was dried over sodium benzophenone ketyl and distilled. Me₂PhSiO*i*Pr (1c-*i*Pr)⁵, Me₂PhSiOPh (1c-Ph)⁶, MePh₂SiOMe (1d)⁵, Me₂(*t*Bu)SiOMe (1g)⁷ and *i*Pr₃SiOMe (1h)⁸ were prepared according to the literature procedures. NaBH₄ granular (99.99% trace metals basis) was purchased from Sigma-Aldrich Co. LLC. and used without purification. All other reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. ¹H, ¹³C{¹H}, ¹¹B{¹H} and ²⁹Si{¹H} NMR spectra (¹H, 600 MHz; ¹¹B, 193 MHz; ¹³C, 151 MHz; ²⁹Si, 119 MHz) were recorded using a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signals for ¹H and ¹³C, and to boron trifluoride diethyl ether complex (0.0 ppm) for ¹¹B and to trimethyl(phenyl)silane (-4.7 ppm) for ²⁹Si. Synthesis of Me₂PhSiOtBu (1-tBu) To a hexane solution (10 mL) of *t*BuOH (0.87 g, 12 mmol), was added Me₂PhSiCl (2.0 g, 12 mmol) and NEt₃ (1.2 g, 12 mmol). The reaction mixture was stirred at room temperature for 24 h. The solution was filtered, and the resulting solid was washed with hexane (20 mL). The filtrate and washings were combined. Fractional distillation was performed to give Me₂PhSiO*t*Bu (1-*t*Bu) (0.79 g, 3.8 mmol, 32%). Catalytic reduction of alkoxysilane with BH3·thf A typical procedure (Table 1, entry 11) is as follows. A vial was charged with a THF solution (0.3 mL) of Me₂(*n*Oct)SiOMe (**1a**) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and mesitylene (6.0 mg, 0.050 mmol) as an internal standard. To the solution was added 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol) at room temperature, and then the solution was stirred for 24 h. The reaction mixture was analyzed by ¹H NMR to determine the conversion of **1a** (0.18 mmol, 91%) and the NMR yield of Me₂(*n*Oct)SiH (**2a**) (0.18 mmol, 91%). Catalytic reduction of alkoxysilane with NaBH₄ Determination of NMR yield Typical procedure 1 (Table 2, entry 8) is as follows. A micro tube (diameter: φ 8, length: 50 mm, volume: 1 mL) was charged with a C₆D₆ suspension (0.05 mL) of NaBH₄ (7.6 mg, 0.20 mmol), which is pre-grinded in a motar, nOct₄NBr (5.6 mg, 0.010 mmol), Me₂(nOct)SiOMe (1a) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and
mesitylene (6.0 mg, 0.050 mmol) as an internal standard. After EtBr (22 mg, 0.20 mmol) was added, the solution was stirred at room temperature for 24 h (a magnetic stirrer bar: φ 1.5 × 8 mm, rotating speed: 1,500 rpm). The resulting solution was analyzed by ¹H NMR to determine the conversion of 1a (0.19 mmol, 93%) and the NMR yield of Me₂(nOct)SiH (2a) (0.19 mmol, 93%). #### Determination of isolated yield Typical procedure 2 (Table 2, entry 8) is as follows. A 3 mL conical vial was charged with a C₆H₆ suspension (0.5 mL) of NaBH₄ (76 mg, 2.0 mmol), which is pre-grinded in a motar, (*n*Oct)₄NBr (56 mg, 0.10 mmol), Me₂(*n*Oct)SiOMe (**1a**) (410 mg, 2.0 mmol) and HMPA (18 mg, 0.10 mmol). EtBr (220 mg, 2.0 mmol) was added at room temperature, and then the solution was stirred at room temperature for 24 h (a magnetic stirrer bar: φ1.5 × 8 mm, rotating speed: 1,500 rpm). The solution was diluted with hexane (20 mL) and filtered through a silica gel pad (eluent: hexane (100 mL)). The volatiles were removed in vacuo to give Me₂(*n*Oct)SiH (**2a**) as a colourless liquid (319 mg, 1.9 mmol, 93%). #### Gram scale synthesis of Ph₂SiH₂ (2k) A 10 mL pear shaped flask was charged with a C_6H_6 suspension (2.5 mL) of NaBH₄ (0.76 g, 20 mmol), which is pre-grinded in a mortar, nOct₄NBr (280 mg, 0.50 mmol), Ph₂Si(OMe)₂ (**1k**) (2.4 g, 10 mmol) and HMPA (360 mg, 2.0 mmol) and sealed with a septum equipped with a needle. EtBr (2.2 g, 20 mmol) was added at room temperature, and then the solution was stirred at room temperature for 24 h (a magnetic stirrer bar of φ 3 × 10 mm, 1,500 rpm. The solution was diluted with hexane (20 mL) and filtered through a silica gel pad (eluent: hexane (100 mL)). The volatiles were removed in vacuo to give Ph₂SiH₂ (**2k**) as a colorless liquid (1.3 g, 7.3 mmol, 73%). #### Compound characterization data The products in Table 1 and Table 2, Me₂(*n*Oct)SiH (**2a**)⁹, Et₃SiH (**2b**)⁹, Me₂PhSiH (**2c**)⁹, Me₂(C₆F₅)SiH (**2f**)¹⁰, MeCySiH₂ (**3i**)¹¹, MePhSiH(OMe) (**2j**)⁹, MePhSiH₂ (**3j**)⁹, Ph₂SiH(OMe) (**2k**)⁹, Ph₂SiH₂ (**3k**)⁹, Me{Cl(CH₂)₃}SiH₂ (**3m**)¹², Me{CF₃(CH₂)₂}SiH₂ (**3n**)¹³, *n*C₁₂H₂₅SiH₃ (**4p**)¹⁴, CySiH₃ (**4q**)¹⁵, and PhSiH₃ (**4r**)⁹ were identified by comparing their ¹H NMR data with those previously reported. MeCySiH(OMe) (**2i**) and Cyp₂SiH(OMe) (**2l**) were identified by comparing their ¹H NMR data with those alternatively synthesized by following the reported procedure.¹⁵ MePh₂SiH (**2d**), Ph₃SiH (**2e**), Me₂(*t*Bu)SiH (**2g**), *i*Pr₃SiH (**2h**) and *n*HexSiH₃ (**2o**) were identified by comparing their ¹H NMR data with commercial sources. dimethyl(octyl)silane (2a) #### Reduction with BH3 thf The general procedure was followed with Me₂(*n*Oct)SiOMe (**1a**) (41 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1a** (0.18 mmol, 91%) and the NMR yield of Me₂(*n*Oct)SiH (**2a**) (0.18 mmol, 91%). *Reduction with NaBH*₄ The general procedure 2 was followed with NaBH₄ (76 mg, 2.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), Me₂(nOct)SiOMe (1a) (410 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (220 mg, 2.0 mmol). The residue was filtered with a silica gel pad (eluent: hexane (100 mL)) to provide 2a as a colorless liquid in 93% (319 mg, 1.9 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.06 (d, 6H, ${}^{3}J_{HH}$ = 3.6 Hz, Si Me_2), 0.57 (m 2H, SiC H_2 (CH₂)₆CH₃), 0.92 (t, 3H, ${}^{3}J_{HH}$ = 7.0 Hz, SiCH₂(CH₂)₆CH₃), 1.22-1.42 (m, 12H, SiCH₂(CH₂)₆CH₃)), 4.15 (sep, 1H, ${}^{3}J_{HH}$ = 3.6 Hz, SiH). ¹³C NMR (C₆D₆, RT, ppm): δ –4.3 (s, Si*Me*), 14.3 (s, Si*Oct*), 14.4 (s, Si*Oct*), 23.1 (s, Si*Oct*), 24.8 (s, Si*Oct*), 29.7 (s, Si*Oct*), 32.3 (s, Si*Oct*), 33.6 (s, Si*Oct*). ²⁹Si NMR (C₆D₆, RT, ppm): δ –12.8 (s). triethylsilane (2b) Reduction with BH3-thf The general procedure was followed with Et₃SiOMe (**1b**) (23 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1b** (0.16 mmol, 80%) and the NMR yield of Et₃SiH (**2b**) (0.15 mmol, 75%). Reduction with NaBH₄ The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.20 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), Et₃SiOMe (**1b**) (23 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (22 mg, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1b** (0.20 mmol, 96%) and the NMR yield of Et₃SiH (**2b**) (0.20 mmol, 96%). ¹H NMR (C₆D₆, RT, ppm): δ 0.53 (dq, 6H, ${}^{3}J_{HH} = 3.2$ Hz, ${}^{3}J_{HH} = 7.9$ Hz, SiCH₂CH₃), 0.96 (t, 9H, ${}^{3}J_{HH} = 7.9$ Hz, SiCH₂CH₃), 3.88 (sep, 1H, ${}^{3}J_{HH} = 3.2$ Hz, Si<u>H</u>). dimethyl(phenyl)silane (2c) Reduction with BH3 thf The general procedure was followed with Me₂PhSiOMe (**1c**) (33 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1c** (0.18 mmol, 91%) and the NMR yield of Me₂PhSiH (**2c**) (0.18 mmol, 88%). #### Reduction with NaBH₄ The general procedure 2 was followed with NaBH₄ (76 mg, 2.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), Me₂PhSiOMe (**1c**) (330 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (220 mg, 2.0 mmol). The residue was filtered with a silica gel pad (eluent: pentane (100 mL)) to provide **2c** as a colorless liquid in 83% (226 mg, 0.17 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.21 (d, 6H, ${}^{3}J_{HH}$ = 3.8 Hz, Si Me_2), 4.63 (sept, 1H, ${}^{3}J_{HH}$ = 3.8 Hz, SiH), 7.19 (m, 3H, m, p-CH), 7.47 (m, 2H, o-CH). ¹³C NMR (C₆D₆, RT, ppm): δ –3.8 (s, SiMe), 128.3 (s, SiPh), 129.5 (s, SiPh), 134.3 (s, SiPh), 137.4 (s, SiPh). ²⁹Si NMR (C₆D₆, RT, ppm): δ –16.7 (s). #### methyldiphenylsilane (2d) #### Reduction with BH₃·thf The general procedure was followed with MePh₂SiOMe (**1d**) (46 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and 1 M BH₃·thf THF solution (0.20 mL, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1d** (0.15 mmol, 78%) and the NMR yield of MePh₂SiH (**2d**) (0.15 mmol, 78%). #### Reduction with NaBH₄ The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.2 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), MePh₂SiOMe (**1d**) (46 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (22 mg, 0.2 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1d** (0.18 mmol, 92%) and the NMR yield of MePh₂SiH (**2d**) (0.18 mmol, 92%). ¹H NMR (C₆D₆, RT, ppm): δ 0.46 (d, 3H, ${}^{3}J_{HH} = 3.8$ Hz, SiMe), 5.14 (q, 2H, ${}^{3}J_{HH} = 3.8$ Hz, Si H_2), 7.12-7.20 (m, 3H, m, p-CH), 7.50 (m, 2H, o-CH). ¹³C NMR (C₆D₆, RT, ppm): δ –5.0 (s, SiMe), 128.3 (s, SiPh), 129.6 (s, SiPh), 135.2 (s, SiPh), 135.5 (s, SiPh). ²⁹Si NMR (C₆D₆, RT, ppm): δ –17.1 (s). ## triphenylsilane (2e) The general procedure 2 was followed with CH₂Cl₂ (0.5 mL), NaBH₄ (76 mg, 2.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), Ph₃SiOMe (1e) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (220 mg, 2.0 mmol). The residue was filtered with a silica gel pad (eluent: toluene (100 mL)) to provide the title compound 2e as a white solid in 91% (474 mg, 1.8 mmol). ¹H NMR (C_6D_6 , RT, ppm): δ 5.71 (s, 1H, Si*H*), 7.09-7.19 (m, 9H, *m*, *p*-C*H*), 7.59 (m, 6H, *o*-C*H*). ¹³C NMR (C_6D_6 , RT, ppm): δ 128.4 (s, SiPh), 130.0 (s, SiPh), 133.7 (s, SiPh), 136.2 (s, SiPh). 29 Si NMR (C₆D₆, RT, ppm): δ −17.5 (s). dimethyl(pentafluorophenyl)silane (2f) The general procedure 1 was followed with NaBH₄ (7.6 mg, 0.20 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), Me₂(C₆F₅)SiOEt (**1f-Et**) (54 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (22 mg, 0.20 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1f-Et** (0.19 mmol, 95%) and the NMR yield of Me₂(C₆F₅)SiH (**2f**) (0.14 mmol, 69%). ¹H NMR (C₆D₆, RT, ppm): δ 0.15 (dt, 6H, ³ J_{HH} = 3.9 Hz, ⁵ J_{CF} = 0.8 Hz, Si Me_2), 4.57 (sep, 1H, ³ J_{HH} = 3.9 Hz, SiH). tert-butyldimethylsilane (2g) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $n\text{Oct}_4\text{NBr}$ (5.6 mg, 0.010 mmol), Me₂(tBu)SiOMe (1g) (29 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of 1g (0.17 mmol, 85%) and the NMR yield of Me₂(tBu)SiH (2g) (0.13 mmol, 64%). ¹H NMR (C₆D₆, RT, ppm): δ –0.02 (d, 6H, ³ J_{HH} = 3.7 Hz, Si Me_2), 0.90 (s, 9H, SitBu), 3.87 (sep, 1H, ³ J_{HH} = 3.7 Hz, SitH). ## triisopropylsilane (2h) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), *n*Oct₄NBr (5.6 mg, 0.010 mmol), *i*Pr₃SiOMe (**1h**) (38 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1h** (0.12 mmol, 58%) and the NMR yield of *i*Pr₃SiH (**2h**) (0.064 mmol, 32%). ¹H NMR (C₆D₆, RT, ppm): δ 0.95-1.05 (m, 3H, ³ J_{HH} = 3.7 Hz, SiCH(CH₃)₂), 1.07 (d, 18H, ³ J_{HH} = 6.5 Hz, SiCH(CH₃)₂), 3.59 (q, 1H, ³ J_{HH} = 2.2 Hz, SiH). cyclohexyl(methoxy)methylsilane (2i) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $n\text{Oct}_4\text{NBr}$ (5.6 mg, 0.010 mmol), MeCySi(OMe)₂ (**1i**) (38 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1i** (0.16 mmol, 81%) and the NMR yield of MeCySiH(OMe) (**2i**) (0.010 mmol, 5%) and MeCySiH₂ (**3i**) (0.15 mmol, 76%). ¹H NMR (C₆D₆, RT, ppm): δ 0.10 (d, 3H, ${}^{3}J_{HH} = 2.9$ Hz, SiMe), 0.76 (m, 1H, SiCH(CH₂)₅), 1.14-1.30 (m, 6H, SiCH(CH₂)₅), 1.62-1.82 (m, 6H, SiCH(CH₂)₅), 3.33 (s, 3H, OMe) 4.61 (qd, 1H, ${}^{3}J_{HH} = 3.0$, 2.9 Hz, SiH). cyclohexyl(methy)lsilane (3i) The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56
mg, 0.10 mmol), MeCySi(OMe)₂ (**1i**) (380 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **3i** as a colorless liquid in 73% (187 mg, 1.5 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.00 (t, 3H, ${}^{3}J_{HH} = 4.2$ Hz, SiMe), 0.69 (m, 1H, SiCH(CH₂)₅), 1.07-1.24 (m, 6H, SiCH(CH₂)₅), 1.57-1.73 (m, 6H, SiCH(CH₂)₅), 3.82 (qd, 2H, ${}^{3}J_{HH} = 2.9$, 4.2 Hz, SiH). ¹³C NMR (C_6D_6 , RT, ppm): δ 14.2 (s, SiMe), 22.0 (s, SiCy), 27.0 (s, SiCy), 27.9 (s, SiCy), 29.1 (s, SiCy). ²⁹Si NMR (C₆D₆, RT, ppm): δ –27.1 (s). methoxy(methyl)phenylsilane (2j) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), MePhSi(OMe)₂ (**1j**) (36 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1j** (0.15 mmol, 75%) and the NMR yield of MePhSiH(OMe) (**2j**) (0.010 mmol, 5%) and MePhSiH₂ (**3j**) (0.14 mmol, 71%). ¹H NMR (C₆D₆, RT, ppm): δ 0.32 (t, 3H, ³ J_{HH} = 2.9 Hz, SiMe)), 3.30 (s, 3H, OMe), 5.18 (q, 1H, ³ J_{HH} = 2.9 Hz, SiH), 7.20 (m, 3H, m, p-CH), 7.56 (m, 2H, o-CH). ## methyl(phenyl)silane (3j) The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), MePhSi(OMe)₂ (**1j**) (360 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **3j** as a colorless liquid in 66% (161 mg, 1.3 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.18 (t, 3H, ${}^{3}J_{HH}$ = 4.3 Hz, SiMe), 4.49 (q, 2H, ${}^{3}J_{HH}$ = 4.3 Hz, Si H_2), 7.11-7.19 (m, 3H, m, p-CH), 7.45 (m, 2H, o-CH). ¹³C NMR (C₆D₆, RT, ppm): δ –7.7 (s, Si*Me*), 128.3 (s, Si*Ph*), 129.8 (s, Si*Ph*), 133.4 (s, Si*Ph*), 135.1 (s, Si*Ph*). ²⁹Si NMR (C₆D₆, RT, ppm): δ –35.5 (s). ## methoxydiphenylsilane (2k) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), Ph₂Si(OMe)₂ (**1k**) (49 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1k** (0.15 mmol, 73%) and the NMR yield of Ph₂SiH(OMe) (**2k**) (0.0060 mmol, 3%) and Ph₂SiH₂ (**3k**) (0.14 mmol, 72%). ¹H NMR (C₆D₆, RT, ppm): δ 3.40 (s, 3H, OMe), 5.61 (s, 1H, SiH), 7.09-7.19 (m, 6H, m, p-CH), 7.65 (m, 4H, o-CH). diphenylsilane (3k) The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), Ph₂Si(OMe)₂ (**1k**) (490 mg, 2.0 mmol), HMPA (18 mg, 0.10 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to **3k** as a colorless liquid in 72% (265 mg, 1.4 mmol). ¹H NMR (C_6D_6 , RT, ppm): δ 5.08 (s, 2H, Si*H*), 7.09-7.19 (m, 6H, *m*, *p*-C*H*), 7.51 (m, 4H, *o*-C*H*). ¹³C NMR (C₆D₆, RT, ppm): δ 128.4 (s, Si*Ph*), 130.1 (s, Si*Ph*), 131.7 (s, Si*Ph*), 136.0 (s, Si*Ph*). ²⁹Si NMR (C₆D₆, RT, ppm): δ –33.2 (s). dicyclopentyl(methoxy)silane (21) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), Cyp₂Si(OMe)₂ (**11**) (38 mg, 0.20 mmol), HMPA (36 mg, 0.20 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **11** (0.17 mmol, 86%) and the NMR yield of Cyp₂SiH(OMe) (**21**) (0.010 mmol, 5%) and Cyp₂SiH₂ (**31**) (0.15 mmol, 77%). ¹H NMR (C₆D₆, RT, ppm): δ 1.04 (m, 1H, SiCH(CH₂)₄), 1.36 (m, 2H, SiCH(CH₂)₄), 1.46 (m, 2H, SiCH(CH₂)₄), 1.58 (m, 2H, SiCH(CH₂)₄), 1.80 (m, 2H, SiCH(CH₂)₄), 3.43 (s, 3H, OM_e), 4.57 (t, 2H, 3J _{HH} = 2.3 Hz, SiH). ## dicyclopentylsilane (31) The general procedure 2 was followed with NaBH₄ (152 mg, 4.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), Cyp₂Si(OMe)₂ (11) (460 mg, 2.0 mmol), HMPA (360 mg, 2.0 mmol) and EtBr (440 mg, 4.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide 31 as a colorless liquid in 72% (242 mg, 1.4 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.99 (m, 1H, SiCH(CH₂)₄), 1.36 (m, 2H, SiCH(CH₂)₄), 1.46 (m, 2H, SiCH(CH₂)₄), 1.58 (m, 2H, SiCH(CH₂)₄), 1.80 (m, 2H, SiCH(CH₂)₄), 3.92 (t, 2H, $^3J_{HH}$ = 3.2 Hz, SiH₂). ¹³C NMR (C_6D_6 , RT, ppm): δ 20.8 (s, Si*Cyp*), 27.2 (s, Si*Cyp*), 30.4 (s, Si*Cyp*). 29 Si NMR (C₆D₆, RT, ppm): δ −16.7 (s). #### 3-chloropropylmethylsilane (3m) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), Me{Cl(CH₂)₃}Si(OMe)₂ (**1m**) (37 mg, 0.20 mmol), HMPA (1.8 mg, 0.010 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1m** (0.16 mmol, 78%) and the NMR yield of Me{Cl(CH₂)₃}SiH₂ (**3m**) (0.14 mmol, 70%). ¹H NMR (C₆D₆, RT, ppm): δ –0.11 (t, 3H, ³ J_{HH} = 4.2 Hz, SiMe), 0.40 (m, 2H, SiC H_2 CH₂CH₂Cl), 1.46 (m, 2H, SiCH₂CH₂CH₂Cl), 3.05 (t, 2H, ³ J_{HH} = 6.8 Hz, SiCH₂CH₂CH₂Cl), 3.77 (sept, 2H, ³ J_{HH} = 4.2 Hz, Si H_2). ### 3,3,3-trifluoropropylmethylsilane (3n) The general procedure 1 was followed with NaBH₄ (15.2 mg, 0.40 mmol), $n\text{Oct}_4\text{NBr}$ (5.6 mg, 0.010 mmol), Me{F₃C(CH₂)₂}Si(OMe)₂ (**1n**) (37 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (44 mg, 0.40 mmol). The resulting solution was analyzed by ¹H NMR to determine the conversion of **1n** (0.16 mmol, 78%) and the NMR yield of Me{F₃C(CH₂)₂}SiH₂ (**3n**) (0.13 mmol, 64%). ¹H NMR (C₆D₆, RT, ppm): δ –0.21 (t, 3H, ³ J_{HH} = 4.1 Hz, SiMe), 0.52 (m, 2H, SiC H_2 CH₂CF₃), 1.66 (m, 2H, SiCH₂CH₂CF₃), 3.63 (sept, 2H, ³ J_{HH} = 4.1 Hz, Si H_2). hexylsilane (40) The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), nHexSi(OMe)₃ (**1o**) (23 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of nHexSiH₃ (**4o**) (0.13 mmol, 67%). ¹H NMR (C₆D₆, RT, ppm): δ 0.51-0.56 (m, 2H, SiC H_2 (CH₂)₄CH₃), 0.86 (t, 3H, $^3J_{HH}$ = 7.2 Hz, SiCH₂(CH₂)₄C H_3), 1.12-1.35 (m, 8H, SiCH₂(C H_2)₄CH₃), 3.61 (t, 3H, $^3J_{HH}$ = 3.9 Hz, Si H_3). dodecylsilane (4p) The general procedure 2 was followed with NaBH₄ (228 mg, 6.0 mmol), $nOct_4NBr$ (56 mg, 0.10 mmol), $nC_{12}H_{25}Si(OMe)_3$ (**1p**) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (650 mg, 6.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **4p** as a colorless liquid in 76% (305 mg, 1.5 mmol). ¹H NMR (C₆D₆, RT, ppm): δ 0.55 (m, 2H, SiC H_2 (CH₂)₁₀CH₃), 0.92 (t, 3H, $^3J_{HH}$ = 7.1 Hz, SiCH₂(CH₂)₁₀CH₃), 1.18-1.38 (m, 20H, SiCH₂(CH₂)₁₀CH₃). ¹³C NMR (C₆D₆, RT, ppm): δ 6.1 (s, Si C_{12} H₂₅), 14.3 (s, Si C_{12} H₂₅), 23.1 (s, Si C_{12} H₂₅), 26.7 (s, Si C_{12} H₂₅), 29.6 (s, Si C_{12} H₂₅), 29.8 (s, Si C_{12} H₂₅), 29.9 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 32.3 (s, Si C_{12} H₂₅), 32.9 (s, Si C_{12} H₂₅). ²⁹Si NMR (C₆D₆, RT, ppm): δ –59.4 (s). dodecylsilane-d₃ (4p-d₃) The general procedure 2 was followed with NaBD₄ (99 atom% D, 250 mg, 6.0 mmol), nOct₄NBr (56 mg, 0.10 mmol), nC₁₂H₂₅Si(OMe)₃ (**1p**) (580 mg, 2.0 mmol), HMPA (72 mg, 0.40 mmol) and EtBr (650 mg, 6.0 mmol). The residue was filtered with a silica gel pad (eluent: cold pentane (100 mL)) to provide **4p-d₃** as a colorless liquid in 70% (286 mg, 1.4 mmol, 98 atom% D). ¹H NMR (C₆D₆, RT, ppm): δ 0.54 (t, 2H, ³ J_{HH} = 7.9 Hz, SiC H_2 (CH₂)₁₀CH₃), 0.92 (t, 3H, ³ J_{HH} = 7.5 Hz, SiCH₂(CH₂)₁₀CH₃), 1.18-1.38 (m, 20H, SiCH₂(C H_2)₁₀CH₃). ¹³C NMR (C₆D₆, RT, ppm): δ 5.9 (s, Si C_{12} H₂₅), 14.3 (s, Si C_{12} H₂₅), 23.1 (s, Si C_{12} H₂₅), 26.6 (s, Si C_{12} H₂₅), 29.6 (s, Si C_{12} H₂₅), 29.8 (s, Si C_{12} H₂₅), 30.0 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 30.1 (s, Si C_{12} H₂₅), 30.3 (s, Si C_{12} H₂₅), 30.5 (s, Si C_{12} H₂₅), 30.5 (s, Si C_{12} H₂₅), 30.6 (s, Si C_{12} H₂₅), 30.7 (s, Si C_{12} H₂₅), 30.8 (s, Si C_{12} H₂₅), 30.9 (s, Si C_{12} H₂₅), 30.1 $C_$ $SiC_{12}H_{25}$), 32.8 (s, $SiC_{12}H_{25}$). ²⁹Si NMR (C₆D₆, RT, ppm): δ –60.2 (sept, ${}^{1}J_{SiD}$ = 29.3 Hz). cyclohexylsilane (4q) The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), CySi(OMe)₃ (**1q**) (23 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of CySiH₃ (**4q**) (0.13 mmol, 67%). ¹H NMR (C₆D₆, RT, ppm): δ 0.75 (m, 1H, SiCH(CH₂)₅), 1.05-1.18 (m, 5H, ax-CH), 1.50-1.66 (m, 5H, eq-CH), 3.58 (d, 3H, $^3J_{\rm HH}$ = 3.1 Hz, Si H_3). phenylsilane (4r) The general procedure 1 was followed with NaBH₄ (22.8 mg, 0.60 mmol), nOct₄NBr (5.6 mg, 0.010 mmol), PhSi(OMe)₃ (**1r**) (22 mg, 0.20 mmol), HMPA (7.2 mg, 0.040 mmol) and EtBr (65 mg, 6.0 mmol). The resulting solution was analyzed by ¹H NMR to determine the NMR yield of PhSiH₃ (**4r**) (0.10 mmol, 49%). ¹H NMR (C_6D_6 , RT, ppm): δ 4.23 (s, 3H, Si*H*), 7.07 (m, 2H, *m*, *p*-C*H*), 7.11 (m, 1H, *p*-C*H*), 7.39 (m, 2H, *o*-C*H*). #### Reference - (a) S. N. Tandura. M. G. Voronkov, N. V. Alekseev, *Top. Curr. Chem.*, 1986, 131, 99; (b) C. Chuit, R. J. P. Corriu, C. Reye and J. C. Young. *Chem. Rev.*, 1993, 93, 1371. - (a) J. Boyer, R. J. P. Corriu and C. Perz, tetrahedron, 1981, 37, 2165; (b) M. Kira, M. Kobayashi and H. Sakurai, Tetrahedron Lett., 1987, 28, 4081; (c) S. Kobayashi and K. Nishio, Tetrahedron Lett., 1993, 34, 3453; (d) S. E. Denmark, S. B. D. Winter, X. Su and K.-T. Wong, J. Am. Chem. Soc., 1996, 118, 7404; (e) X. Liu, B. Oin, X. Zhou, B. He and X. Feng, J. Am. Chem. Soc., 2005, 127, 12224; (f) R. B. Lettan II and K. A. Scheidt, Org. Lett., 2005, 7, 3227; (g) Y. Hatanaka and T. Hiyama, J. Org. Chem., 1988, 53, 918.
- (a) H. G. Weiss and I. Shapiro, *J. Am, Chem. Soc.*, 1959, 81, 6167; (b) H. I. Schelesinger, H. C. Brown, H. R. Hoekstra and and L. R. Rapp, *J. Am. Chem. Soc.*, 1953, 75, 199; (c) G. F. Freeguard and L. H. Long, *Chem. Ind.*, 1965, 471.; (d) A. Brändström, U. Junggren and B. Lamm, *Tetrahedron Lett.*, 1972, 13, 3173. - (a) R. O. Hutshins, D. Kandasamy, F. Dux III, C. A. Maryanoff, D. Rotstein, G. Goldsmith, W. Burgoyne, F. Cistone, J. Dalessandro and J. Puglis, J. Org. Chem., 1978, 43, 2259; (b) F. Rolla, J. Org. Chem., 1981, 46, 3909. - 5. L. Horner and J. Mathias, J. Organomet. Chem., 1985, 282, 155. - 6. P. F. Hudrlik and D. K. Minus, J. Organomet. Chem., 1996, 521, 157. - 7. W. J. Leigh, R. Boukherroub and C. Kerst, J. Am. Chem. Soc., 1998, 120, 9504. - 8. R. Savela, W. Zawartka and R. Leino, Organometallics, 2012, 31, 3199. - 9. K. Aoyagi, K. Matsumoto, S. Shimada, K. Sato and Y. Nakajima, Organometallics, 2019, 38, 210. - 10. A. J. Oliver and W. A. G. Graham, J. Organomet. Chem., 1969, 19, 17. - 11. K. G. Penman, W. Kitchin and W. Adcock, J. Org. Chem., 1989, 54, 5390. - 12. A. W. P. Jarvie and R. J. Rowley, J. Organomet. Chem., 1973, 57, 261. - 13. A. Benouargha, D. Boulahia, B. Boutevin, G. Caporiccio, F. Guida-Pietrasanta and A. Ratsimihety, Phosphourus Sulfur Silicon Relat. Elem., 1996, 113, 79. - 14. L. Rosenberg and D. N. Kobus, J. Organomet. Chem., 2003, 685, 107. - 15. J. Ohshita, R. Taketsugu, Y. Nakahara and A. Kunai, J. Organomet. Chem., 2004, 689, 3258. ## List of publications ## Chapter 2 Catalytic Reduction of Alkoxysilanes with Borane using a Metallocene-Type Yttrium Complex J <u>Keiya Aoyagi</u>, Kazuhiro Matsumoto, Shigeru Shimada, Kazuhiko Sato and Yumiko Nakajima, *Organometallics*, 2019, 38, 210. ## Chapter 3 2) 「Synthesis of Hydrosilanes via Lewis-Base-Catalysed Reduction of Alkoxysilane with NaBH₄」 <u>Keiya Aoyagi</u>, Yu Ohmori, Koya Inomata, Kazuhiro Matsumoto, Shigeru Shimada, Kazuhiko Sato and Yumiko Nakajima, *Chem. Commun.*, **2019**, *55*, 5859. Acknowledgements The studies described in this dissertation was conducted under the direction of Associate Professor Yumiko Nakajima at Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba and Silicon Chemistry team, Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology. The author deeply grateful to Associate Professor Yumiko Nakajima for her continuous guidance and support. The author deeply appreciates Prof. Akira Sekiguchi, Dr. Shigeru Shimada, Dr. Kazuhiro Matsumoto, Dr. Shinji Tanaka and Yuki Naganawa for their discussion and suggestion. Above all, the author would like to offer his special thanks to Dr. Kazuhiro Matsumoto who give him many valuable advices. The author is very grateful to Dr. Teruo Beppu for teaching experimental methods of organic synthesis, Dr. Yu Omori for discovering the usefulness of Lewis base catalyst in borane reduction, and Dr. Koya Inomata for helping with this study. The author would like to thank Dr. Kojima, Dr. Ishizuka and Dr. Kotani for guidance and discussion in seminor. The author is also grateful to the other laboratory members for their many cooperation. Finally, the author deeply grateful to his parents Mr. Noriyuki Aoyagi and Ms. Yuki Aoyagi for their assistance and encouragement. July 2019 Keiya Aoyagi 76