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ABSTRACT 

Rechargeable lithium-ion batteries (LIBs) have high power density with long cycling 

life and robust structural stability. Consequently, lithium-ion batteries have obtained 

increasing widespread applications in our daily lives. As the energy storage devices, 

they are indispensable in the fields of portable devices, such as cellphone and laptop. 

The state-of-the-art positive electrodes, however, fail to meet our increasing demand 

for high capacity. For instance, typical layered cathodes LiTMO2 (TM = transition 

metals) are restricted to the relatively low energy density (less than 200 mAh g-1). These 

cathodes will not be able to meet the increasing requirements. Therefore, a lot of efforts 

have been made in improving the electrochemical performance of the current materials 

and searching for better electrode materials with high capacity and good cyclic ability. 

Herein, Li-rich layered materials attract widespread attention as the potential candidates, 

aiming to solve the capacity issues of the cathodes because of their beyond-capacity 

performance and property of cathodic and anionic redox mechanism. Being one 

embodiment, Li2MnO3 delivers a high standard of capacity (more than 400 mAh g-1) in 

initial cycles, providing more possibility for large-capacity cathodes.  

Insertion-extraction of Li-ions accounts for the charge-discharge processes for most 

conventional cathodes of Li-ion accompanied by the redox process of cationic transition 

metal. However, the mechanism based on cationic redox process is unable to explain 

the anomalous capacities exhibited by Li-rich materials because they can deliver excess 

capacity beyond the theoretical capacity based on cationic redox process. To explain 

this phenomenon, oxygen activation, then, has been proposed. Nevertheless, an in-

depth understanding of the evolution of crystal and explicit oxygen behavior exhibited 

by Li-rich layered oxides is insufficient. Herein, to probe the relationship between 

structural evolution and detailed pathway of oxygen activation of Li-rich cathodes, a 

typical layered Li-rich material Li1.2Ni0.2Mn0.6O2 is investigated by various in situ 

technologies, as one representation. The reversible phenomenon of O−−O− (peroxo 

oxygen dimers) bonds forming mostly along the c-axis is directly visualized. 
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Additionally, the formation of the peroxo O−−O− bond is calculated via density 

functional theory, and the results coincide well with that of in situ Raman and X-ray 

diffraction (XRD). These findings enrich the understandings about oxygen activation 

in layered Li-rich oxides and pave a way to design high capacity positive electrodes 

with more reversible oxygen activations for lithium-ion batteries. 

We know that layered Li-rich oxide cathodes are of prime importance for the 

development of high-energy lithium-ion batteries. The oxides, however, always suffer 

from detrimental phase transition, resulting in irreversible capacity fade and voltage 

fade. Li-rich cation-disordered rock-salt oxides are of firm structure and stable voltage 

output. Unfortunately, they usually exhibit sluggish kinetics and inferior cycling 

stability. Herein, a new rock-salt Li-rich oxide Li2Ni1/3Ru2/3O3 with Fd-3m space group, 

where partial cation-ordering arrangement exists in cationic sites, is reported. Results 

demonstrate that Li2Ni1/3Ru2/3O3 delivers a large capacity, outstanding rate capability 

as well as good cycling performance with negligible voltage decay, which is superior 

compared with common Li-rich layered oxides and cations disordered oxides with 

space group Fm-3m. Oxygen activation is also confirmed by first principle calculations. 

Moreover, the cathode owns good kinetics with more 0-TM percolation networks. In 

situ Raman results confirm the reversible oxygen activation as O2−/O− evolution during 

cycles in this type cathode for the first time.  

Our findings highlight new evidence for the reversible anionic redox process in Li-

rich cathode materials and provide a deep understanding of intercalation chemistry and 

new insights into the design of high-performance Li-rich layered oxides. Moreover, we 

enrich the field of view for Li-rich based cathodes and pave a new way to design the 

stable high rate performance materials with rock-salt structure for the next generation 

of Li-ion batteries. 
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Chapter 1. General introduction 

1.1 Urgent demand for energy storage and applications of Li-ion 

batteries 

Our varied life cannot exist without energy. Original energy requires a complicated 

process for energy conversion, energy storage and energy transfer until we can use in 

our home. Nature contains some inexhaustible resources which we can exploit from, 

such as solar energy converted from the sun, wind energy converted from the wind. [1-

2] Then we should consider how to store the energy after converting. Thus, a storage 

device is indispensable to our home applications. Whenever we want to apply, the 

energy storage device will supply, as shown in Figure 1.1. 

 

Figure 1. 1 Energy exploited from nature for home applications. Pictures are from 

www.google.com/imghp?hl=zh-cn. 

Li-ion batteries are used widely in our electronic applications, as one kind of popular 

energy storage device, such as smartphone, portable computer, camera. These 

applications are common-used devices and have a wide variety in our daily lives, 

consisting an essential part for daily activities.[3] In addition, there are many other 

applications utilizing Li-ion batteries, telecommunications, electrical vehicles, railways, 

Li-ion Battery

Home ApplicationsEnergy Storage Device

Wind Turbine

Solar Energy
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space applications, etc., as shown in Figure 1.2, which will be simplify introduced in 

the following part.[4] 

  

Figure 1. 2 Applications of Li-ion batteries
 [4]

 

As described above, solar and wind energy are well-known for energy conversion 

from nature, as renewable energy systems. However, the systems can only produce the 

energy without storage or accumulation of energy. That means we can utilize the energy 

from solar and wind for a short time. It, therefore, requires a stable and efficient device 

for storing the energy. A battery is needed. Compared with other battery technologies, 

Li-ion batteries own the properties of a highly efficient of quick charging process, a 

large energy density for long time use, a lighter weight for portable devices. With these 

reasons, Li-ion batteries are widely accepted in the field of energy storage combing a 

large scale of devices. 

With the excessive consumption of petroleum, electrical vehicles are becoming a 

better alternative for the typical automobile as modern transportation.[5] Recent years, 
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many battery technologies are proposed for electric vehicles. Considering the properties 

of the electrical vehicles, which related to speed and distance, we need to adopt a new 

battery system. As it turned out, Li-ion battery are the batter choice. Recently, more and 

more automobile brands launched their electrical vehicles. Tesla is one representative 

employing LiNi0.8Co0.15Al0.05O2 (NCA) as cathode for Li-ion battery, having a powerful 

influence in the world. [6-7] And in China, BYD also has designed excellent electrical 

vehicles utilizing LiFePO4 as cathode for Li-ion battery.[8] 

Except for the vehicles, the subway is another essential public transport. As for 

subway and extended railways systems, they have a giant network of transportation 

crossing the cities and operations.[9] As a result, they require a large of energy storage 

and they may back up the data at any time. Meanwhile, the systems also need auxiliary 

power for any eventuality. Li-ion batteries own large power density and safety, which 

is the optimized option for energy storage and backup for this equipment with large 

networks and operations. 

Similar to subways and railways with a vast supply system, telecommunications also 

possess enormous networks. With mobile phones being used on a large scale over the 

past decades, telecommunications gain remarkable growth. Almost everyone owns a 

mobile phone and the phone should work at any time we want. Thus, telecom 

companies should supply power at any time for a whole year with their equipment and 

systems, ensuring our normal requirement. So, it is important for them to possess a 

high-power storage device for support. Similarly, as mentioned characteristics of Li-

ion batteries, telecommunications turn to lithium battery technology.[10] 

Some applications should be operating in extreme conditions, like a harsh 

temperature environment. For instance, the transportation system in the area of equator 

and North Poles, the mining activities should be supplied steadily by stable and safe 

energy back up. Li-ion batteries are highly recommended for these applications because 

they are reliable and safe, and they are not restricted to operated temperature, which 

means they can be suitable even in extreme conditions. 
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For defense and military systems, they require a high level of accuracy and security 

more, such as radars and detection devices, etc.[11] Li-ion batteries are highly preferred 

for their safety, stability, high performance, long cycling life, etc., resulting in they are 

a suitable choice for a powerful energy back up. 

We summarize some applications which require a satisfying battery technology. Then, 

we can conclude that the battery technologies should possess the properties of safety, 

stability, high rates performance and power density, long cycling life, etc., to match 

complicated situations. Thus, Lithium-ion batteries have a very prospective and they 

are the optimized option. 

1.2 Li-ion batteries for large energy storage 

1.2.1 Comparison of Li-ion batteries with other batteries 

Besides Li-ion batteries, there are other rechargeable battery technologies: lead-acid 

battery, nickel-cadmium (Ni-Cd) battery, and nickel-metal hydride (NiMH) battery. 

Lead-acid battery was invented by Gaston Planté et al. and then commercialized for 

practical use in 1859.[12] The battery is the earliest application of battery technology, 

which is common in an electric bicycle. The battery produces less pollution with low 

cost and well recyclability. However, the capacity is unsatisfactory which means the 

battery should have large weight and large volume if we want more capacity. It is 

inconvenient and has security implications. Moreover, the battery is not suitable for 

rapid charge and discharge with the undesirable cycling life. Ni-Cd battery is another 

battery technology without low cost. Unfortunately, the battery is environmentally 

unfriendly because of Cd. Also, the battery has low capacity and unfavorable cycling 

life of 500 times. Moreover, the battery has a memory effect, which means the battery 

in not suitable for varied charge/discharge models.[13] NiMH battery is the next 

generation of Ni-Cd battery, with improved  30% capacity storage compared with Ni-

Cd battery.[14] The battery has a longer cycling life of 1000 times and no memory effect. 

However, for this battery, the price is high, and the electrochemical performance is 

worse than Li-ion batteries. Lithium-ion batteries possess distinct advantages such as 
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long cycling life (over 2000 times for LiFePO4), lightweight, rapid charge and discharge, 

no memory effect, high energy density, etc. [15] Thus, Li-ion battery is the best battery 

technology among these battery technologies. 

1.2.2 Typical working mechanism of Li-ion batteries 

It is better to understand the working mechanism of Li-ion batteries before 

optimizing the performance. The typical working mechanism is based on the 

insertion/extraction of lithium ions. As displayed in Figure 1.3a, a cell mainly consists 

of four parts: cathode, anode, separator and electrolyte. For cathodes, we are familiar 

with the commercialized LiCoO2, NCA, LiMn2O4, LiFePO4 and ternary cathodes. All 

of the cathodes are based on lithium intercalation/extraction mechanism. And here 

LiCoO2 is the cathode in Figure 1.3a. For anodes, graphite and Li4Ti5O12 are well-

known based on lithium intercalation/extraction mechanism during cycling.[16] In 

addition, there are two more mechanisms. The one is conversion mechanism, such as 

the anode of Si, Ge, Sn.[17-20] The other is the alloying mechanism, such as MX (M = 

Fe, Co, Cu, etc., X = S, O, F, etc.).[21] And here graphite is the anode in Figure 1.3a. 

For separator, the most famous productor is Celgard. Glassfiber also can be used as the 

separator. The separator isolates the cathode and anode. Meanwhile, it allows lithium-

ions to transfer from one side to another side. For electrolyte, lithium ions swim in the 

electrolyte from one side to another. We choice the electrolyte with high ionic 

conductivity but without electronic conductivity. The typical electrolytes are based on 

carbonates. There also have other types of electrolytes for other lithium-ion batteries. 

The processes of LIBs during charging/discharge are discussed as below: 

(1) during charging, Li-ions are extracted from LiCO2 and then insert into graphite 

accompanied by electrons through external circuit, with the equations: 

Cathode: LiCoO2 → xLi+ + xe- + Li1-xCoO2 (1.1) 

Anode: xLi+ + xe- + C6 → LixC6 (1.2) 

(2) during discharging, Li-ions are extracted from graphite and then insert into LiCoO2 
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accompanied by electrons through external circuit, with the equations: 

Anode: LixC6 → xLi+ + xe- + C6 (1.3) 

Cathode: xLi+ + xe- + Li1-xCoO2 → LiCoO2 (1.4) 

 

Figure 1. 3 a) Typical working mechanism of Li-ion battery. b) Charge-discharge curves of LiCoO2 

(cathode), graphite (anode) and the corresponding full cell.[22] 

The reactions are reversible during charging and discharging with reversible 

migration of Li-ions and redox process, thus we also call lithium-ion batteries as 

rocking chair batteries. 

The charge and discharge profiles of LiCoO2, graphite and corresponding full cell 

are shown in Figure 1.3b. Here we focus on the curve of the full cell, which can be 

obtained by subtracting the curve of the anode from the curve of the cathode. Output 

energy (Wh kg-1) of the full cell is calculated by: 

Output Energy (Wh kg-1) = Cell voltage (V)  Capacity (mAh g-1) (1.5) 

Here the cell voltage is also obtained by subtracting the voltage of anode from the 

voltage of cathode. 

a

b
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1.3 Strategies for improving the energy density of Li-ion batteries 

The capacity of anodes is always multiplied several times as large as the cathodes. 

For instance, the reversible specific capacity of commercial graphite (anode) is  360 

mAh g-1 while the value of commercial LiCoO2 (cathode) is  140 mAh g-1. Thus, the 

cathodes are very important for the full cell. 

It is easy to imagine the strategies for improving the energy density of lithium-ion 

batteries according to equation 1.5: increasing the cell voltage and/or increasing the 

capacity. Considering that the cell voltage is obtained by subtracting the voltage of 

anode from the voltage of cathode, we can only concern to improve the voltage of the 

cathode and consider the anode as constant (the cathode is the research focus in this 

dissertation). As for the capacity, we know that the capacity has a relationship with the 

content of extracted lithium ions, which means the more extracted lithium ions, the 

more capacity the cathode delivers. Considering both voltage and capacity, Li-rich 

cathodes are highly preferred because they have high potential and more extracted 

lithium ions, making more specific capacity and higher energy density. 

1.4 Li-rich cathodes for Li-ion battery with high energy density 

1.4.1 Comparison of Li-rich cathodes and other common cathodes 

To intuitive understand the difference between Li-rich cathodes and other typical 

cathodes, Figure 1.4a and 1.4b exhibit the difference of specific capacity and energy 

density between them, respectively. The distinct difference in Figure 1.4a comes from 

capacity. Li-rich layered oxides show more than 300 mAh g-1 which is obviously larger 

than others. The capacity can be comparable with the that of graphite (anode). The 

voltages of them are similar. 

The energy density is derived by integrating the areas of the shade, and the results 

are shown in Figure 1.4b.[23] The cell LiFePO4/graphite can be used as the battery of 

electric vehicles such as BYD. Likewise, the cell NCA/graphite is well-known as the 

battery of Tesla electrical vehicles, provided by Panasonic Corporation. And the cell 



University of Tsukuba                                                Doctoral Thesis 

 

8 
 

LiCoO2/graphite is widely employed for mobile phone, portable computer, camera and 

other consumer electronics. However, the energy densities of these commercial 

batteries are far less than the battery of Li-rich oxides/graphite. Thus, Li-rich oxides are 

a suitable choice for designing high power density Li-ion battery system. And then we 

should know the characteristics of Li-rich oxides. 

 

Figure 1. 4 a) Comparison of discharge curves between Li-rich cathodes with some state-of-the-art 

cathodes. [24] b) Comparison of energy density for full cells based on Li-rich cathodes and some state-of-

the-art cathodes with graphite anode. Copyright © 2017, American Chemical Society 

1.4.2 The difference between typical layered and Li-rich cathodes 

Firstly, a typical layered cathode LiNi0.5Mn0.5O2 and layered Li-rich cathode 

Li1.2Ni0.2Mn0.6O2 are compared. The difference comes from charge-discharge curves, 

as displayed in Figure 1.5. For LiNi0.5Mn0.5O2, the valences of Ni and Mn are +2 and 

+4, respectively. During the charging process, lithium ions are extracted from 

LiNi0.5Mn0.5O2, with the oxidation process of Ni from +2 to +4. The content of Ni in 

LiNi0.5Mn0.5O2 is 0.5. There is just one electron transport after oxidizing the whole Ni2+ 

to Ni4+. In the meantime, there is just one lithium ions extracted from LiNi0.5Mn0.5O2. 

And here Mn is inactive because the oxidation process of Ni antedates Mn, after the 

oxidation process of Ni, there is no more lithium ions can be extracted. For 

Li1.2Ni0.2Mn0.6O2, the valences of Ni and Mn are also +2 and +4, respectively. Lithium 

ions are extracted from Li1.2Ni0.2Mn0.6O2 with the oxidation process of Ni from +2 to 

LiNi1/3Co1/3Mn1/3O2/ Graphite

LiFePO4/Graphite

LiCoO2/Graphite

LiNi0.8Co0.15Al0.05O2/Graphite

Li-rich oxides/Graphite

a b
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+4 during the charging process. The content of Ni in Li1.2Ni0.2Mn0.6O2 is 0.2. That 

means there is only 0.4 electron transport after oxidizing the whole Ni2+ to Ni4+. In the 

meantime, there is just 0.4 lithium ions extracted from Li1.2Ni0.2Mn0.6O2 with a 

corresponding chemical formula of Li0.8Ni0.2Mn0.6O2. Then lithium ions continue to be 

extracted from Li0.8Ni0.2Mn0.6O2. Note that Ni4+ is in its highest valence and cannot be 

oxidized further. Mn4+ also cannot be oxidized further in the octahedral site. And then 

it must be the oxygen to participate in the oxidation process. 

 

Figure 1. 5 a) Charge-discharge curves of typical layered cathode LiNi0.5Mn0.5O2.[25] b) Charge-discharge 

curves of layered Li-rich cathode Li1.2Ni0.2Mn0.6O2. Copyright © 2004, The Chemical Society of Japan. 

The first charging curve is separated by the green dot line for two parts, as shown in 

Figure 1.5b. The shape of the first part before the line is similar to the layered 

LiNi0.5Mn0.5O2, named as LiTMO2 part. During this part, the oxidation process is based 

on typical transition metal oxidation. Then there appears one long plateau in the second 

part, named as oxygen activation part. During this part, oxygen participates the charge 

compensation based on anionic redox process. And this long plateau is the characteristic 

of layered Li-rich cathodes, which is strikingly different from typical layered cathodes 

such as LiNi0.5Mn0.5O2. The capacity based on the oxidation of transition metal is  130 

Li1.2Ni0.2Mn0.6O2

LiNi0.5Mn0.5O2

Li1.2Ni0.2Mn0.6O2

+2 +4 

Li0.8Ni0.2Mn0.6O2

+4 +4 

Li0.1Ni0.2Mn0.6O2

+4 +4 

Charge to ~4.5V

Oxidation of Ni

Charge to 4.7V

Oxidation of oxygen

LiNi0.5Mn0.5O2

+2 +4 

Charge

Oxidation of Ni

LixNi0.5Mn0.5O2

+4 +4 

(b)

Capacity based
on Ni2+/4+

Oxygen redoxLiTMO2 part

Plateau: Characteristic
of Li-rich cathodes

(for comparison)

Oxygen activation
LiTMO2 part

a
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mAh g-1 (extracted 0.4 Li+) while the capacity based on the oxidation of oxygen is  

220 mAh g-1 (extracted 0.7 Li+). The proportion of capacity based on oxygen oxidation 

is  63%, which is considerable. 

 

Figure 1. 6 Crystalline structure of a) typical layered cathodes and b) Li-rich layered cathodes. The 

diagrams are drawn by VESTA software.[26] 

Both the two oxides in Figure 1.5 are layered structure. The electrochemical 

performance, however, is distinctly different. To understand the difference, the 

structural difference between them should be cleared. Figure 1.6 shows the crystalline 

structure of typical layered cathodes and Li-rich layered cathodes. There are more 

lithium ions (green) of Li-rich layered cathodes than typical layered cathodes. For 

typical layered cathodes, their chemical formula can be written as LiTMO2. The content 

of lithium is one. For layered Li-rich cathodes, the chemical formula can be written as 

Li[LiyTM1-y]O2. The content of lithium is 1+y which is larger than one in typical layered 

cathodes. And this is why we call “rich”. 

Oxygen, transition metals and lithium arrange layer by layer in sequence for typical 

layered cathodes, as shown in Figure 1.6a. For layered Li-rich oxides, the additional 

lithium ions occupy the TM layers ideally, as displayed in Figure 1.6b. The structure 

of layered Li-rich cathode is similar to layered structure, with difference just  

replacing some transition metals in TM layers of typical layered cathodes by lithium 

ions. 

Typical layered cathodes Li-rich layered cathodes

O

Li

Li+TM
O

TM

Li



University of Tsukuba                                                Doctoral Thesis 

 

11 
 

The capacity of cathode/anodes has a direct relationship with the number of 

transferred electrons in one process. And the theoretical capacity of one electrode is 

obtained as follows:  

(1) Relationship between Charge (Q, in coulombs) and mAh 

Q = It (1.6) 

Where Q, I, t are charge, current and time with the unit of coulombs (C), amperes (A), 

and seconds (s), respectively.  

then, 1C = 1As = (1000mA)(
1

3600
h) =

1

3.6
mAh (1.7) 

(2) Relationship between theoretical capacity (C, in mAh g-1) and transferred electrons 

(n, in mole) 

Here we need Faraday constant (F  96485 Cmol-1), which represents the charge (C) 

based on one mole (NA) electrons. When there is n mole transferred electrons during 

charge-discharge process,  

Ctheoretical =
nF

3.6M
=
26801×n

M
 (1.8) 

Where M is the molecular weight (in g mol-1) of the active material used in the electrode. 

And transferred electrons are equal to the extracted lithium ions. Li-rich cathodes 

contain more extracted lithium ions. From equation 1.8, it could conclude that n is 

larger in Li-rich cathodes than in typical layered cathodes. Thus Li-rich cathodes will 

deliver larger capacity. 

The typical layered cathodes have a similar layered structure with Li-rich layered 

cathodes. What the influence after replacing some transition metals by lithium ions 

besides the charge-discharge profiles? Also, they display similarity on XRD patterns, 

as displayed in Figure 1.7. LiCoO2 and Li2MnO3 here as examples represent the typical 

layered cathode and layered Li-rich cathode, respectively. Li2MnO3 is equivalent to 

Li[Li1/3Mn2/3]O2, which means 1/3 lithium occupies and 2/3 transition metal occupies 

TM layers according to Figure 1.6. Actually, Li and Mn arrange as a series 

of …LiMnMn…in the TM layers, resulting in a honeycomb structure as shown in 
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Figure 1.7b. As for LiCoO2, only Co occupies TM layers, as shown in Figure 1.6a. 

Their XRD patterns are calculated by VESTA [26] software with a range of 2 from 10o 

to 40o. there are only four peaks at this range in LiCoO2 with no peaks between 20o and 

35o. However, there are five more peaks between 20o and 35o in Li2MnO3 (marked by 

the green rectangle) in addition to the same four peaks in LiCoO2. The additional peaks 

are known as superlattice peaks resulting from an additional superlattice cell caused by 

the ordered [LiMn2] arrays. And these additional peaks are the characteristic of Li-rich 

cathodes, which can be distinguished from the typical layered cathodes. 

 

Figure 1. 7 Calculated XRD patterns of a) typical layered cathode LiCoO2 and b) Li-rich layered cathode 

Li2MnO3. 

1.4.3 Mechanism of oxygen activation in Li-rich cathodes 

After discussing the difference of charge-discharge profile and XRD pattern caused 

by additional lithium substitution, it is also unclear why oxygen in Li-rich cathodes can 

be activated while cannot in the typical layered cathode. First-principles calculations 
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are helpful to reveal oxygen activation in Li-rich cathodes. As shown in Figure 1.8, the 

structural configuration around oxygen and corresponding schematic band structure of 

typical layered cathode (such as LiCoO2) and layered Li-rich cathode (such as Li2MnO3) 

are compared. For typical layered cathodes, on the sides of oxygen layer, there are TM 

and lithium layer, respectively, as shown in the red dotted rectangle (TM layer) and 

purple dotted rectangle (Li layer) in Figure 1.8a. Thus, the environments around 

oxygen are the same, consisting of three Li-O-TM configurations. And for this type 

stoichiometric layered LiTMO2 oxide, the energy band of transition metal is higher than 

that of oxygen. An obvious gap separates TM bands and oxygen bands, which means it 

is difficult for oxygen to participate in the oxidation process (poor electron donors) 

when all the transition metals are oxidized. 

 

Figure 1. 8 Structural configurations around oxygen and corresponding schematic band structure. a) For 

typical layered cathodes and b) for Li-rich layered cathodes. [27] Copyright © 2016, Springer Nature. 

For Li-rich cathodes, the lithium layer is the same as stoichiometric layered LiTMO2 

oxide. TM layer, however, is different because some lithium also occupies this layer, as 

shown in the red dotted rectangle (Li+TM layer) and purple dotted rectangle (Li layer) 

in Figure 1.8b. For a typical example of Li-rich oxide Li2MnO3, the environments 

around oxygen are different, consisting of both Li-O-Li and Li-O-TM configurations. 

The difference is caused by the additional lithium at TM layers and then influences the 

energy band of oxygen. For this Li-rich layered Li2MnO3 oxide, the energy band of 

TM layer

Li layer

Li+TM layer

Li layer

For typical layered cathodes For Li-rich layered cathodesa b
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transition metal is mixed with one band of oxygen. The increased oxygen band results 

from the special Li-O-Li configuration. And for this cause, it will be possible for oxygen 

to participate in the oxidation process (potential electron donors) because the energy of 

oxygen is similar to the transition metals. 

Here should be a brief summary of the influence after Li substitution in Li-rich oxides. 

There are mainly four points. The first, charge-discharge profile is changed in Li-rich 

oxides compared with stoichiometric layered oxides, represented by a long plateau at 

high potential, which is a symbol of oxygen activation. The second, it is a little bit 

different from the structure because there are both lithium and transition metal in the 

TM layers in Li-rich oxides while only transition metal occupies TM layers in 

stoichiometric layered oxides, although both types oxides own layered structure. The 

third, XRD pattern shows additional peaks in Li-rich oxides, named as superlattice 

peaks, resulting from the ordered arrangements of [LiMn2] arrays in TM layers. 

However, there are no superlattice peaks in stoichiometric layered oxides. The fourth, 

the energy of oxygen in Li-rich oxides is raised due to Li-O-Li configuration, making 

the oxygen more easily oxidized. While in stoichiometric layered oxides, the oxygen 

cannot be oxidized based on three same Li-O-TM configurations. And this is the reason 

why oxygen can be activated and then the oxides deliver more capacity. 

1.4.4 The problems and challenge in Li-rich cathodes 

1.4.4.1 Lack of direct observation of oxygen behavior 

As shown in Figure 1.9a, we have already known oxygen activation appears at high 

potential with a long plateau till the end of the charging process. And oxygen gas is 

always released from the lattice, evidenced by gas evolution test from Figure 1.9b, 

which can be found at the end of charge process in some works. [29-31] Also, the oxygen 

in the lattice can be the source forming CO2 and Li2CO3 besides O2.
 [29] There are 

diverse ways for oxygen from O2− to other types of oxygen, as shown below: 

O2− → O− → O2
− → O2 ↑  (1.9) 
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O2− → O− → O2
− → Li2CO3  (1.10) 

O2− → O− → O2
− → CO2 ↑  (1.11) 

O2− → O− → O2
2−  (1.12) 

 

Figure 1. 9 a) Typical charge-discharge profiles of Li-rich oxide Li1.2Ni0.2Mn0.6O2 for the first two cycles. 

b) Gas evolution of Li1.2Ni0.2Mn0.6O2 by operando differential electrochemical spectrometry (DEMS) for 

the first cycle. [28] Copyright © 2018, Springer Nature. 

The formed O2
−  can attack the electrolyte and then generate to Li2CO3. These 

pathways are the possibilities for the evolution of lattice oxygen in Li-rich oxides. 

However, we don’t ensure which is the main pathway. Confirmation of its pathway is 

important because oxygen activation is very significant for designing large capacity Li-

ion battery systems. And we can pertinently bring forward corresponding methods to 

stabilize the oxygen activation.  

Many researchers have reported the evidence of oxygen activation in Li-rich 

cathodes by utilizing technologies of DEMS, X-ray photoelectron spectroscopy (XPS), 

and other synchrotron radiation devices. [32-33] However, they only confirm the oxygen 

activation and the detailed pathways of oxygen are still unknown. Thus, the first 

challenge for developing Li-rich oxides is lacking direct observation of oxygen 

behavior. 

1.4.4.2 Severe capacity fade and voltage fade 

The first challenge is about the mechanism, the second is about electrochemical 
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performance. For Li-rich oxides, there are additional lithium ions in TM layers, 

resulting in the oxygen activation and large capacity. For the same reason, however, the 

additional lithium ions will be extracted from TM layers. Then, the problems appear. 

The stability of the structure is weakened because the small number of transition metals 

cannot maintain the stability of the whole structure after additional lithium-ion 

extracted from TM layers. Meanwhile, a crystal defect is caused by the absence of a 

lithium ion. Then transition metals near the crystal defect migrate easily from their sites 

to Li layers through the defect. The migration is irreversible because transition metal is 

stable when occupies the octahedral site in Li layers. The fixed TMs hinders the 

migration of lithium ions, resulting in the capacity decay. The inevitable oxygen loss 

after charging in layered Li-rich oxides results in a phase transition, accounting for the 

capacity decay and voltage decay further, as shown in Figure 1.10. 

 

Figure 1. 10 Typical cycling performance of Li-rich oxide with a) severe capacity fade 

(Li(Li0.2Mn0.6Ni0.1Co0.1)O2) and b) voltage fade ( Li(Li0.17Ni0.29Mn0.58)O2). [34-35] Copyright 2019 

Copyright Clearance Center. 

1.5 Motivation and targets of this dissertation 

1.5.1 Motivation of this dissertation 

Energy storage devices are very important for storing energy from nature. There are 

many battery technologies as the rule of energy storage device. Among these battery 
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technologies, lithium-ion battery is the best choice because it possesses enormous 

advantages such as long cycling life, lightweight, friendly to the environment, rapid 

charge and discharge, high energy density, etc. While other battery technologies have 

disadvantages more or less. 

Cathodes are the key points of the full cell. Most of the cathodes base on 

intercalation/extraction mechanism during cycling. The capacity delivered by the 

cathode has a direct relationship with the number of extracted lithium ions (transferred 

electrons). Li-rich cathodes contain more lithium ions than other types of cathodes. It 

could conclude that Li-rich cathodes will deliver higher capacity compared with other 

cathodes according to equation 1.8. Meanwhile, the special structure of Li-rich oxide 

makes the energy oxygen increased due to Li-O-Li configuration. Then the oxygen with 

higher energy is more easily oxidized. And this is the reason why oxygen can be 

activated and then more capacity is delivered in Li-rich oxides. Thus, Li-rich oxides are 

the focus of this dissertation. 

However, the mechanism of the detailed pathways of oxygen activation is still 

unknown. And after most lithium ions extracted from TM layers, the stability of the 

structure is weakened. Then irreversible migration of transition metals appears, leading 

to the capacity fade and voltage fade. So, to solve or alleviate the problems or 

challenges in layered Li-rich oxide is our motivation for this dissertation. 

1.5.2 Targets of this dissertation 

The targets of this dissertation on layered Li-rich oxides are as follows: 

The first target is to obtain direct observation about the detailed pathways of oxygen 

activation. Raman spectroscopy has been employed due to the sensitivity to covalent 

bonds. And many researchers applied Raman spectra to detect oxygen behavior. 

However, they failed to obtain the signals because the signal of covalent oxygen bonds 

is too weak to detect. In this work, surface-enhanced Raman spectroscopy (SERS) is 

employed by gold nanoparticles (NPs) to improve the signal. To obtain more details of 

oxygen activation, in-situ test companied with charge-discharge profiles are utilized. 
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And the in-situ Raman cell in our research is shown in Figure 1.11.  

 

Figure 1. 11 In-situ Raman cell utilized in this dissertation 

 

Figure 1. 12 Schematic of layered Li-rich oxides and cubic rock-salt Li-rich oxides. The diagrams are 

drawn by VESTA software. 

The second target is to alleviate the capacity fade and voltage fade in layered Li-rich 

oxides. Phase transition is very common in a layered structure, especially for layered 

Li-rich oxides. Structural stability is the key factor to maintain capacity stability and 

voltage stability. Cubic rock-salt oxides always own stable structure with firm oxygen 

network. This guides us the direction and gives us inspiration. It may be feasible to 

design the cubic rock-salt Li-rich oxides with a stable structure to alleviate the capacity 

fade and voltage fade. The schematic comparison of the layered structure and cubic 

rock-salt structure is shown in Figure 1.12. 

Layered structure Cubic rock-salt structure

(unstable) (stable)
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1.5.3 Outline of this dissertation 

This dissertation contains five chapters illustrated as following: 

Chapter 1 is a general instruction for the whole dissertation. In this chapter, the 

background of the urgent demand for high energy storage is discussed. Some battery 

technologies are compared, indicating that Li-ion battery is the best choice. Then, 

layered Li-rich oxides are introduced compared with typical layered oxides. Moreover, 

we also exhibit their problems. Finally, we present our motivation and provide our 

method of how to deal with the problems in layered Li-rich oxides. 

Chapter 2 is the experimental section of Chapter 3 and Chapter 4. In this chapter, the 

synthesized method, testing condition, main operation steps and highlights of this 

dissertation are introduced. 

Chapter 3 is the work about the direct observation of oxygen behavior. In this chapter, 

various in situ technologies such as XRD and Raman spectroscopy are employed for a 

typical Li-rich material Li1.2Ni0.2Mn0.6O2 to investigate the structural evolution and 

oxygen behavior. The reversible phenomenon of O−−O− (peroxo oxygen dimers) bonds 

forming mostly along the c-axis is directly visualized. Moreover, density functional 

theory was employed to calculate the peroxo bond. Results are consistent well with our 

experimental observation. 

Chapter 4 is the work about improving the capacity stability and voltage stability of 

Li-rich oxides by designing a cubic rock-salt structure. In this chapter, a new rock-salt 

Li-rich oxide Li2Ni1/3Ru2/3O3 is reported. The oxide has advantages of high capacity 

with stable cycling stability and neglectable voltage fade. Of course, oxygen behavior 

was observed in this oxide during cycling for the first time, as a type of peroxo O−−O− 

bonds, which is similar to the typical layered Li-rich oxides. Moreover, first principle 

calculations were employed to confirm the oxygen behavior and high kinetics in this 

oxide. 

Chapter 5 is the general conclusions and perspective for future research in this field. 
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Chapter 2. Experimental section 

2.1 Experimental section of Chapter 3 

2.1.1 Synthesis of Li1.2Ni0.2Mn0.6O2  

We choose the typical layered Li1.2Ni0.2Mn0.6O2 as our target material because the 

oxide has the common characteristics of layered Li-rich oxides. At first, the precursor 

NixMnyOH (x:y=1:3) was synthesized by using the co-precipitation method which is 

very common for synthesizing this material. Reagents include LiOH·H2O (AR, 

Sinopharm Chemical Reagent Co., Ltd.), NH4OH (AR, Nanjing Chemical Reagent Co., 

Ltd.), NiSO46H2O (AR, Enox), MnSO4H2O (AR, Xilong Chemical Industry Co., Ltd.), 

and sodium hydroxide (AR, Nanjing Chemical Reagent Co., Ltd.). All the chemicals 

are not purified further. Briefly, a base solution was prepared by adding 500 mL 1 M 

NH3 (aq) into a vessel. After heating the base solution to 60 oC, the deoxidized aqueous 

solution of metal sulfates (the ratio of Ni and Mn was controlled by 1:3) were slowly 

dropped into the base solution controlled by peristaltic pumps, with a stable pH value 

of  9.8 maintained by NaOH (aq). The whole processes were in a protective gas of N2. 

After filtering and washing adequately, a black precursor was obtained and then dried 

in a drying oven at 80 oC for 10 h. 

To synthesize the target Li1.2Ni0.2Mn0.6O2, the as-prepared precursor NixMnyOH (x:y 

= 1:3) was grinded with LiOH·H2O (3 wt% excess) powders thoroughly by hands for 

half an hour. The target oxide was obtained by calcining the mixtures at 750 oC for 12 

h in air. 

2.1.2 Characterizations 

Powder XRD (Ultima III, Rigaku Corporation) was employed to confirm the 

structure of Li1.2Ni0.2Mn0.6O2 with radiation from Cu Kα (λ = 1.5406 Å). The data was 

collected between diffraction angles (2θ) from 10 o to 80 o at a scan rate of 2 o per min. 
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General Structure Analysis System (GSAS) + EXPGUI suite is utilized for Rietveld 

refinements.  

For in-situ XRD test, a home-made cell was employed which will be introduced in 

the following part. The cell was also connected to an electrochemical workstation to 

the corresponding charge/discharge profiles. During test, the current density of 

charge/discharge was controlled to 10 mA g-1. The data of every XRD pattern was 

collected between diffraction angles (2θ) from 12 o to 50 o with a test time of one hour 

and an interval of 5 min till the end of the charge/discharge test for the first two cycles. 

GSAS + EXPGUI suite is employed for Rietveld refinements for all the in-situ XRD 

patterns. 

The morphologies of the materials were characterized by SEM (scanning electron 

microscopy) (JSM-7000F). For SEM samples, a grain of the precursor was dropped 

into 1 mL ethanol in a glass bottle with a volume of 2 mL. Then the solution was treated 

with an ultrasonic processing. After  10 min, the solution was dropped onto an Al film 

by a dropper and dried in an oven at 60 oC. Then the sample was prepared by attaching 

the Al film (with a trace of material) on a conductive adhesive. The sample of 

Li1.2Ni0.2Mn0.6O2 was treated the same as the precursor. The conductive adhesive was 

placed onto a SEM sample holder and then the holder was shifted to the SEM sample 

loading chamber.  

XPS was characterized by a Thermo Fisher Scientific Model Kα spectrometer 

equipped with Al Kα radiation (1486.6 eV). Before XPS test, the sample was 

transferred into an Ar glove box and sealed in an airtight container to avoid the exposure 

with the humidity. Exposure of the sample in air is inevitable when transferring the 

sample. We assumed that the characteristics of the oxide would not be influenced within 

such a short exposure time.  

2.1.3 Electrochemical tests 

2032 coin-type cells were employed for electrochemical measurements. The 

electrodes consisted of active material, acetylene black, and polytetrafluoroethene 
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(PTFE, 12 wt.%) binder with a weight ratio of 85:10:5. The electrodes were dried at 80 

oC overnight after pressed onto an Al mesh. And then the electrodes were transferred 

into the glovebox and assembled into the coin cells. 1 M (1 mol L-1) LiClO4 in 

propylene carbonate (PC) was prepared as the electrolyte. LAND 2001A Battery 

Testing Systems (Wuhan LAND electronics Co., Ltd, P.R. China) were employed for 

galvanostatic testing. The current density was different according to the test conditions. 

The potential window was set between 2.0 V  4.8 V. The open circuit potential (OCP) 

was  3.0 V. 

2.1.4 Device for in-situ XRD tests 

 

Figure 2. 1 Schematic of device for in-situ XRD test companied with charge/discharge test 

Li-ions migrate from the cathode during cycling, inducing the structural evolution. 

XRD test is sensitive to the crystal structure, giving us important information about 

phase transition. To obtain more details of the phase transition, in-situ XRD test was 

employed. The schematic of the device for in-situ XRD test is shown in Figure 2.1. 

The cell is tested for in-situ XRD and charge/discharge performance simultaneous. The 

in-situ cell is homemade, with a window sealed by Be metal. The window allows X-ray 

to through into the cathode and Be metal has a good permeability for X-ray. Meanwhile, 

the in-situ cell is connected to one electrochemical workstation for charge/discharge 
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test. Thus, we can obtain the results of a series of XRD patterns and charge/discharge 

curves at the same time. To test more precise XRD patterns, each pattern was test about 

one hour. And details of testing conditions can be seen in section 2.1.2.  

2.1.5 Device for in-situ Raman tests 

 

Figure 2. 2 Schematic of device for in-situ Raman test companied with charge/discharge test 

Oxygen behaviors can be detected by Raman spectroscopy because of its sensitivity 

to covalent bonds. To detect a more accurate data, in-situ method is employed. The 

schematic of the device for in-situ Raman test is shown in Figure 2.2. The cell is tested 

for in-situ Raman and charge/discharge performance simultaneous. The in-situ cell is 

homemade, with a window sealed by quartz. The window allows the laser to through 

into the cathode, then the information of the cathode is obtained, and the in-situ Raman 

spectra of the materials are obtained by using JASCO microscope spectrometer (NRS-

1000DT). The modified in-situ Raman cell used in this study is designed by us and 

made by one corporation (Hohsen Corp., Osaka, Japan) for the Li-ion battery. Briefly, 

a thin quartz window allows the Raman laser go through, fixing on the top of the cell. 

Meanwhile, the in-situ cell is connected at one charge/discharge machine for 
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galvanostatic test. Thus, we can obtain the results of a series of Raman patterns and 

charge/discharge curves at the same time. 

2.1.6 Experiment for Raman test 

In this work, Surface-enhanced Raman spectroscopy (SERS) is employed by gold 

nanoparticles (NPs) because the covalent bonds of oxygen are too weak to detect. In 

order to collect shell-isolated nanoparticle-enhanced Raman (SHINER) signal, NPs 

approximately 40 nm in diameter with a SiO2 coating shell (  5 nm) were synthesized. 

Au@SiO2 NPs were washed and ultrasonic treated uniformly before dropped onto the 

working electrodes. Then the electrodes were dried at oven before assembly. During 

assembling in the glove box, the working electrode was firstly put at the bottom of in-

situ cell. Then a glass fiber was used as the separator, with a hole (diameter of 2mm) in 

the middle, covering on the working electrode. The limited electrolyte of  60 μL was 

dropped on the separator. In the end, a lithium foil was put on the top of the separator, 

with a same hole in the center as displayed in separator. The hole allows the laser reach 

working electrode and obtain the Raman singal. The cell remains at rest overnight to 

reach a stationary state. The OCP of the cell was  3 V before subsequent tests. 

A JASCO microscope spectrometer (NRS-1000DT) was employed to record Raman 

spectra. The laser was focused on working electrode with 632.8 nm wavelength. A 50 

× lens was chosen (Olympus America Inc.). The power of laser was controlled with a 

 10% of the maximum 30 mW laser intensity to keep a stable Raman signal and no 

damage on the working electrode. The collection time of one spectrum was  10 min 

with two accumulations. To obtain a reproducible and credible result, we checked at 

least three places of working electrode. The spectral resolution was ca. 1.0 cm−1. 

The Raman signal and electrochemical curves were tested at the same time. A 

machine (Potentiostat/Galvanostat PGSTAT30, Autolab Co. Ltd., Netherlands) was 

controlled for galvanostatic model, companied by a software (General Purpose 

Electrochemical Software, GPES) for collecting electrochemical data. The current was 

controlled at a density of 5 mA g-1., with a potential window of 2 V 4.8 V.  
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2.1.7 Highlights of Chapter 3 

As mentioned in chapter 1, oxygen behavior accounts for the high capacity beyond 

the traditional calculated capacity based on redox process of transition metal in Li-rich 

oxides. Oxygen loss as a type of O2 can be detected in charging process. Thus, we can 

conclude that oxygen changes to O2 after oxidized process. However, we don’t know 

more about oxygen behavior because there are many pathways from O2- to O2 (with the 

possible intermediate states such as types of O2
2- and O2

-). It’s important to know the 

substantial oxygen behavior as it can help us stabilize the oxygen behavior and improve 

the electrochemical performance. Raman spectroscopy is a powerful tool to investigate 

covalent bonds. Herein it can detect the states of oxygen during charging. However, the 

Raman signals of covalent O-O bonds are usually too weak to obtain, which is the 

reason why other researches can obtain anything. In this work, we employed in-situ 

surface-enhanced Raman spectra to rise the signal remarkably and obtain more details 

of oxygen behavior. As a result, oxygen behavior was directly confirmed as a type of 

peroxo O-O bond, indicating that the valence of oxygen is changed from -2 to -1. More 

importantly, the evolution of O2- to O-1 is reversible not only for the first cycle, but also 

for the subsequent cycles. The findings help us to understand deeply on the oxygen 

behavior in Li-rich oxides. 

2.2 Experimental section of Chapter 4 

2.2.1 Synthesis of Li2Ni1/3Ru2/3O3 

It is better to synthesize the cathode based on Ni and Mn so that it can be easily 

compared with Li1.2Ni0.2Mn0.6O2 in Chapter 3. At first, I tried to synthesize cubic rock-

salt Li-rich cathode (Li[LixNiyM1-x-y]O2) based on Mn (M = Mn). However, layered 

structure always be obtained rather than the cubic rock-salt structure. Then, other 3d 

transition metals such as Cr and V were attamped, with a different component, ratios of 

elements and sintering temperature. However, I still failed. 4d transition metals (Ru, Nb 

et al.) were then considered. After repeated failure, Li2Ni1/3Ru2/3O3 heaves in sight, with 
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Fd-3m space group, having the partial cation-ordering arrangement. 

Li2Ni1/3Ru2/3O3 powder was synthesized by solid-state reactions with Li2CO3 (Wako), 

NiO (Wako) and RuO2 (Wako). All the chemicals are not purified further. The starting 

materials were weighed and mixed at a ratio of Li:Ni:Ru=6.121:2 and grinded for half 

an hour with hands. Then the mixed powder was pelleted and calcined at 750 oC in air 

for 15 h, subsequently followed by calcined at 950 oC for 20 h in air. 

2.2.2 Characterizations 

Powder XRD (Ultima III, Rigaku Corporation) was employed to confirm the 

structure of LNRO with radiation from Cu Kα (λ = 1.5406 Å). The data was collected 

between diffraction angles (2θ) from 10 o to 80 o with an increment of 0.02 o at a scan 

rate of one second per data. The working voltage was 40 kV and working current was 

40 mA. General Structure GSAS + EXPGUI suite is employed for Rietveld refinements.  

For in-situ XRD test, a home-made cell was employed which will be introduced in 

the following part. The cell was also connected to an electrochemical workstation to 

the corresponding charge/discharge profiles. During test, the current density of 

charge/discharge was controlled to 10 mA g-1. The data of every XRD pattern was 

collected between 2θ from 15 o to 65 o with a test time of 40 min and an interval of 5 

min till the end of the charge/discharge test. 

The morphologies of the oxide were confirmed by SEM (JSM-7000F). For SEM 

samples, a grain of the LNRO was dropped into 1 mL ethanol in a glass bottle with a 

volume of 2 mL. Then the solution was treated with an ultrasonic processing. After  

10 min, the solution was dropped onto an Al film by a dropper and dried in an oven at 

60 oC. Then the sample was prepared by attaching the Al film (with a trace of material) 

on a conductive adhesive. The conductive adhesive was placed onto a SEM sample 

holder and then the holder was shifted to the SEM sample loading chamber.  

XPS was characterized by a Thermo Fisher Scientific Model Kα spectrometer 

equipped with Al Kα radiation (1486.6 eV). Before XPS test, the sample was 

transferred into an Ar glove box and sealed in an airtight container to avoid the exposure 
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with the humidity. Exposure of the sample in air is inevitable when transferring the 

sample. We assumed that the characteristics of the oxide would not be influenced within 

such a short exposure time. 

In situ GC-MS (gas chromatography mass spectrometry) measurements were carried 

out using a homemade cell linked to one machine from Perkin-Elmer (Clarus 680 and 

SQ 8S). The machine is very sensitive to the gas (CO2 and O2) generated during cycling. 

And we can collect evolution of gas while charging the cell. 

2.2.3 Electrochemical tests 

2032 coin-type cells were used for electrochemical measurements. LNRO electrode 

consisted of active material, acetylene black, and PTFE (12 wt.%) binder with a weight 

ratio of 85:10:5. After pressing the electrodes onto an Al mesh, they should be dried at 

80 oC overnight. And then the electrodes were transferred into the glovebox and 

assembled into the coin cells. The electrolyte used in this study is 1 M LiPF6 in EC/DEC 

(ethylene carbonate/diethyl carbonate). And a glass fiber film was employed as 

separator. The electrochemical performances were performed by employing a Hokuto 

Denko HJ1001SD8 battery tester with galvanostatic model. The potential window was 

set between 2.0 V  4.2 V. The current density was different according to the test 

conditions. The OCP was  3.0 V. 

2.2.4 Device for in-situ XRD tests 

The schematic of the device for in-situ XRD test is similar to that which is shown in 

Figure 2.1. The cell is tested for in-situ XRD and charge/discharge performance 

simultaneous. The coin cell with a window was employed for in-situ test. A Kapton film 

was annealed with a thermoplastic for sealing the coin cell. Meanwhile, the in-situ cell 

is connected to one electrochemical workstation for charge/discharge test. Thus, we can 

obtain the results of a series of XRD patterns and charge/discharge curves at the same 

time. To test more precise XRD patterns, each pattern was test about 40 min. And details 

of testing conditions can be seen in section 2.2.2. 
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2.2.5 Device for in-situ Raman tests 

The schematic of devices for in-situ Raman test is shown in Figure 2.3. The cell is 

tested for in-situ Raman, charge/discharge performance and gas evolution simultaneous. 

The in-situ cell is homemade, with a window sealed by quartz. The window allows laser 

to through into the cathode, then the information of the cathode is obtained, and the in-

situ Raman spectra of the materials are obtained by using JASCO microscope 

spectrometer (NRS-1000DT). Briefly, a thin quartz window allows the Raman laser go 

through, fixing on the top of the cell. Meanwhile, the in-situ cell is connected at one 

charge/discharge machine for galvanostatic test. And also, the homemade cell was 

linked to one machine (Perkin-Elmer, Clarus 680 and SQ 8S) for gas collection. Thus, 

we can obtain the results of a series of Raman patterns companied with 

charge/discharge curves and gas evolution at the same time. 

 

Figure 2. 3 Schematic of device for in-situ Raman test companied with charge/discharge test and 

gas evolution. 

+ -

Raman Spectra

Charge/discharge 
Curves

Excitation
laser

Quartz
Window

In-situ Raman cell

Detector

Cycler

Mass spectra
GAS

(Gas evolution)



University of Tsukuba                                                Doctoral Thesis 

 

29 
 

2.2.6 Experiment for Raman test 

In this work, surface-enhanced Raman spectroscopy (SERS) is still employed by 

gold nanoparticles (NPs) because the covalent bonds of oxygen are too weak to detect. 

Details can be found in section 2.1.6. 

2.2.7 Highlights of Chapter 4 

As mentioned in chapter 1, typical layered Li-rich oxides often suffer from the phase 

transition caused by oxygen loss, leading to a serious capacity fade and voltage fade, 

which hinders the development of Li-rich oxides. Thus, structural stability is the key 

point to stabilize the oxygen behavior and electrochemical performance of Li-rich 

oxides. As is known, cubic rock-salt structure is more stable than layered structure. It 

is reasonable to apply the stable cubic rock-salt structure with Li-rich environment to 

improve the oxygen behavior. And as a result, the electrochemical performance is 

improved, which is our purpose in chapter 4. After lots of trials, a cubic rock-salt Li-

rich oxide was successfully synthesized. As a result, the oxide has an obvious 

improvement on capacity stability and voltage stability. More importantly, oxygen 

behavior is stable and well reversible in this cubic rock-salt structure oxide as a type of 

peroxo O-O bonds. The oxide expands our sight to design high energy Li-ion battery 

systems.   
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Chapter 3. Direct visualization of peroxo O-O bond as the 

oxygen behavior in typical layered Li-rich cathode 

Li1.2Ni0.2Mn0.6O2 

3.1 Introduction 

The applications of LIBs are very common in our daily lives, such as mobile phone 

and electric vehicles.[36-40] With our increasing demand of large energy density, the 

common LIBs are can’t match our requirements.[41-44] Generally, the mechanism of 

most popular positive electrodes is based on an insertion-extraction process of Li-ion, 

accompanied by the redox processes of transition metal, such as LiCoO2, LiFePO4, and 

LiMn2O4. Their capacity, however, are still limited to no more than 200 mA h g-1, 

hindering the development of LIBs.[45] To make a balance between supply and demand, 

the capacity issue should be concerned. Therefore, many researches are focus on 

searching for a better material which owns high capacity, long cycling life and stable 

structure.[46] 

Recently, Li1.2Ni0.166Co0.067Mn0.567O2 was reported as one typical lithium-rich 

layered oxides, with higher capacities of more than 250 mA h g-1.[47] The Li-rich 

materials are well known for their excess capacity beyond the theoretical capacity based 

on cationic redox process, which have attracted many researcher’s attention. There are 

series of famous compound combing traditional LiNi0.5Mn0.5O2 and typical Li-rich 

oxide Li2MnO3, written as (1-x)LiNi0.5Mn0.5O2∙xLi2MnO3, with an equivalent formula 

Li[Li(1-2x)/3NixMn(2-x)/3O2] after normalization.[48-50] For these Li-rich oxides, the typical 

explanation based on cationic redox process is defective. To account for the abnormal 

phenomenon, a new mechanism based on oxygen activation, therefore, has been 

proposed. Luo et al. pointed out that localized electron holes are formed on oxygen ions 

with the configuration surrounding by Mn4+ and Li+ in Li1.2[Ni0.13Co0.13Mn0.54]O2.
[29] 

Seo et al. depicted that oxygens are easily oxidized due to the Li-O-Li configuration.[27] 

Sathiya et al. observed the reversible peroxo-like species formed in Li2Ru1-ySnyO3.
[51] 
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The researchers provided their observation of oxygen behavior. However, they have no 

direct especially in-situ evidence to explain the detail pathway of oxygen. McCalla et 

al. visualized the O-O dimers via neutron powder diffraction and transmission electron 

microscope (TEM) by using Li2IrO3 as a model compound and determined the possible 

limits on the value of n for peroxo-like O2
n− dimers (the lower bound n = 3 and the 

upper n = 3.3), leading to a further understanding of anionic redox process.[52] 

Nevertheless, there are also lacking in an in-depth understanding of oxygen evolution 

and the relationship between the structural and excess capacity in Li-rich layered oxides. 

Herein, a typical layered Li-rich oxide Li1.2Ni0.2Mn0.6O2 is our target oxide in this 

chapter. The relationship between charge and discharge curves and structural evolution 

of this oxide was investigated by in-situ XRD. More importantly, the oxygen activation 

process was evidenced by in-situ Raman spectroscopy. Results show that the inverse 

shift of (003) peak during charging has a relationship with oxygen activation, which is 

confirmed as a type of peroxo O-O bond. What’s more, the peroxo O-O bond not only 

appears in the first cycle, but also clearly emerges in subsequent cycles. Moreover, the 

peroxo O-O bonds are speculated formed along c-axis because the inverse evolution of 

c-axis accompany with the emergence of oxygen activation. Additionally, the density 

functional theory (DFT) was employed to confirm the possibility of oxygen activation 

and structural evolution in this case. DFT results are consistent well with our 

experimental data. Our findings propose a direct evidence of pathway of oxygen 

evolution, as a type of reversible process of O2-/O-. It helps us to understand the oxygen 

behavior in Li-rich oxide deeply and provide a guideline for designing the next 

generation of cathode materials with both cationic and anionic reversible redox process 

which can deliver substantially high energy density. 

3.2 Electrochemical performance of Li1.2Ni0.2Mn0.6O2 

3.2.1 Morphology and structure of Li1.2Ni0.2Mn0.6O2 

The compound of Li1.2Ni0.2Mn0.6O2 was firstly characterized by SEM companied by 

its precursor materials, as shown in Figure 3.1. SEM images in Figure 3.1c reveal that 
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spheroidal particles with a diameter of around 8 µm are secondary particles formed 

from primary nanocrystals. [53] The morphology of the particles is inherited from their 

hydroxide precursors, which can be traced from the same sphere-shape precursors in 

Figure 3.1a and 3.1b. 

To identify the structure of Li1.2Ni0.2Mn0.6O2, powder XRD was performed, as shown 

in Figure 3.2a. The cathode is derived from Li2MnO3 by using Ni2+ to replace partial 

Li+ and Mn4+ in TM layers. The XRD pattern coincides well with a monoclinic 

Li2MnO3-like structure with space group C2/m, except some small peaks at  21o. [54]  

 

Figure 3. 1 SEM images of precursor in different magnification. a) × 1.0 k and b) × 10.0 k. c) SEM 

images of final Li1.2Ni0.2Mn0.6O2. The inset shows zoom in image of the particle in red dotted line. 

Rietveld refinements of the XRD pattern obtained by GSAS + EXPGUI suite [55-56] 

successfully give reasonably low χ2 (2.72) value based on Li2MnO3 model. The 

calculated XRD patterns have a good match with experimental data. The detailed 

refinement results of lattice parameters are shown in Table 3.1. Moreover, there are 

some additional peaks at  21o, which are the symbol of Li-rich materials, named as 

superlattice peaks. Speaking simply, the additional peaks caused by the ordered 

arrangement between Li and TM, as mentioned in Chapter 1. In the structure of layered 
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Li-rich materials, the excess lithium ions occupy the position of transition metals in TM 

layers, as displayed in Figure 3.2b, resulting in the additional peaks in XRD pattern. 

 

Figure 3. 2 a) XRD pattern of Li1.2Ni0.2Mn0.6O2 with Rietveld refinement. b) The diagram of the crystal 

Li1.2Ni0.2Mn0.6O2. 

Table 3. 1 Crystallographic parameters obtained from the Rietveld refinement for the Li2MnO3 (C2/m) 

phase of Li1.2Ni0.2Mn0.6O2. 
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Li2MO3 (C2/m)  Rwp=0.023  Rp=0.017

a = 4.959 Å,  b = 8.284 Å c = 5.037 Å β = 109.07o

Atom site x y z Occ.theo Occ.refined

Mn 4g 0 0.165 0 0.9 0.9

Ni 4g 0 0.165 0 0.1 0.0948

Li 4g 0 0.165 0 0 0.0052

Ni 2c 0 0 0.5 0 0.0020

Li 2c 0 0 0.5 1 0.9980

Ni 4h 0 0.66 0.5 0 0.0036

Li 4h 0 0.66 0.5 1 0.9964

Li 2b 0 0.5 0 0.6 0.5988

Ni 2b 0 0.5 0 0.4 0.4012

O 4i 0.178 0 0.208 1 1

O 8j 0.253 0.320 0.231 1 1
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3.2.2 Electrochemical performance of Li1.2Ni0.2Mn0.6O2 

The electrochemical tests of as-prepared cathode were performed galvanostatically 

within the potential window (vs Li/Li+) of 2.0 V ~ 4.7 V with the current density of 5 

mA g-1. Figure 3.3a shows the charge-discharge profiles during the first two cycles. 

The corresponding dQ/dV curves of the first two cycles are also drawn, which can be 

seen in Figure 3.4.  

 

Figure 3. 3 a) Typical charge-discharge profiles for the first two cycles between 2.0 and 4.7 V at 5 mA 

g-1. b) The cycling performance with coulombic efficiency at 5 mA g-1(first two cycles) and 25 mA g-

1(subsequent cycles). 

During the first charging process, the peaks in dQ/dV curve located at ~ 3.75 V and 

4.2 V are ascribed to the separate oxidation of nickel (from Ni2+ to Ni3+ and from Ni3+ 

to Ni4+), corresponding to a slope profile in charging curve. A sharp peak appears at ~ 

4.5 V, indicating the oxygen activation and corresponding to a plateau in the charging 

curve. It is reasonable to assume that there have two different processes in initial 

charging, evidencing by the different slope and plateau curves. The oxide delivers a 

specific capacity of 350 mA h g-1, corresponding to more than 1.1 extracted Li+ per 

formula according to equation 1.8. Note that the capacity based on oxidization process 

of Ni2+ to Ni4+ is calculated to ~ 130 mA h g-1 (corresponding to 0.4 extracted Li+) 

which is far less than 350.[50, 57-58] Similarly, the capacity of first discharging is ~ 287 

mA h g-1, corresponding to more than 0.9 reinserted Li+ per formula, leading to about 

0.2 Li+ loss. 
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Figure 3. 4 dQ/dV curves for initial two cycles of Li1.2Ni0.2Mn0.6O2 at 5 mA g-1. The black dotted 

line represents the first cycle and the red dotted line represents the second cycle 

Figure 3.3b exhibits cycling performance and coulombic efficiency of this oxide. 

The capacity retention after 50 cycles is 90.90% at a current density of 25 mA g-1 with 

limited capacity decay. As we mentioned above, the total capacity is far more than that 

based on Ni-induced redox process. And Mn4+ is in its highest valence in the octahedral 

site and cannot be oxidized further.[45] Herein, to figure out this contradiction, we 

should firstly understand the relationship between the excess capacity and the evolution 

of the structure. 

3.3 Phase transition in Li1.2Ni0.2Mn0.6O2 during cycling 

To unveil the lithiation-delithiation mechanism in Li1.2Ni0.2Mn0.6O2 during cycling 

processes, in-situ XRD patterns for the first two cycles were performed, as displayed in 

Figure 3.5. The XRD pattern of cathode material assembled in the in-situ cell before 

the test is also shown in Figure 3.6. Most of strong the peaks are belonged to Be and 

BeO marked by *. However, we only concern the peaks of Li1.2Ni0.2Mn0.6O2. According 

to Bragg’s Law depicted in Figure 3.7, an equation is shown as equation 3.1, 

2dsin = n (3.1) 
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where d is the interplanar spacing,  the scattering angle, n an integer number and  the 

wavelength. Then we conclude that d has a direct relationship with  when  is constant.  

d = n/2sin (3.2) 

 

Figure 3. 5 The in-situ XRD patterns of the evolution for the peaks (003) and (104), combined with 

corresponding electrochemical testing result during the first two cycles for the material 

Li1.2Ni0.2Mn0.6O2. The black line represents the charge process and the red line represents the 

discharge process. 

 

Figure 3. 6 XRD pattern of Li1.2Ni0.2Mn0.6O2 in the in-situ mold. Peaks marked by * belong to 

Be/BeO. 

1st cycle 

2nd cycle 
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Note that (003) peak directly reflects the evolution of c lattice parameter of the layered 

oxide. Therefore, it can be used for further understanding of the phase transformation 

mechanism in the system. 

 

Figure 3. 7 Diagram of Bragg reflection 

 

Figure 3. 8 Color-coded images of the peak (003) and (104), refined c-lattice, and a-lattice 

parameters during initial two cycles. The range of intensity distribution plots with reference color 

bar is from 3000 to 5000. 

As it can be seen, the evolution of peaks in Figure 3.7 has a reversible shift during 

the first two cycles, such as (003) and (104), indicating the reversible electrochemical 

processer. Figure 3.8 shows a clearer evolution of XRD patterns companied with 

charge-discharge curves and refined a and c lattice parameters for the first two cycles. 

d





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As seen clearly, (003) peak shifts to the left continuously during the charging process 

before 4.5 V (the slope part). The peak then gradually shifts back to the high angle when 

the charging potential is larger than 4.5 V (the plateau part). The key charging potential 

here is 4.5 V. The results indicate that c lattice value increases at first until the voltage 

reaches to 4.5 V according to the equation 3.2, followed by a sequential decrease. The 

evolution of peak shift is inverse during discharging process, which has also been 

clearly shown in Figure 3.8. More importantly, the evolution is repeatable even in 

subsequent cycles. 

 

Figure 3. 9 The charging and discharging curves of the first two cycles and changes of the Rietveld 

refined unit cell volume for Li1.2Ni0.2Mn0.6O2. The black and red colors represent charging and 

discharging process respectively. 

For the reason of structural similarity between Li2MnO3 and LiNi0.5Mn0.5O2, a 

hexagonal unit cell was employed to fit in-situ XRD patterns.[59] The corresponding 

fitted a and c lattice parameters for the structure are exhibited in Figure 3.8, for the 

first two cycles, together with corresponding unit cell volume changing shown in 

Figure 3.9. The fitted a-lattice parameter decreases at the beginning of charging until 

the end of charging. While c-lattice parameter increases first and then decreases at high 

potential during charging, as shown in Figure 3.8. The change of c-lattice parameter 



University of Tsukuba                                                Doctoral Thesis 

 

39 
 

coincides well with the evolution of (003) peak. In the beginning, a-parameter 

decreases may be caused by the reduced ionic radii in TM layers.[45] The electrostatic 

repulsion between oxygen slabs increases while Li-ions extract from Li layered sites, 

accounting for an extended c-axis of the unit cell, corresponding to the shift of (003) to 

lower angles.[60] When charging to  4.5 V, the plateau appears, indicating a different 

electrochemical process emerges, which can be also revealed by the smooth change of 

c-parameter and a-parameter. It is a reasonable speculate that Li-ions begin to extract 

from TM slabs at this region, leading to an inverse shift of (003) peak. The variation is 

consistent with the previous work. [61] During discharging process, (003) and (104) peak 

show a reversed evolution, indicating some opposite processes happens compared with 

charging. Note that the evolution of the peaks is reversible in the second cycle, 

compared to the first cycle, indicating an analogous Li-extracted/inserted mechanism, 

which is consistent well with the discussion above. The phenomenon at high potential 

is very interesting, both for the oxygen activation plateau at the first charge curve and 

evolution of (003) peak in in-situ XRD patterns. So, we focus our attention on this high 

potential. 

3.4 Oxygen behavior in Li1.2Ni0.2Mn0.6O2  

3.4.1 Raman spectra of Li1.2Ni0.2Mn0.6O2 during cycling 

Surface-enhanced Raman spectra was employed in this test.[62, 63] The higher capacity 

in Li-rich oxides is reasonably ascribed to the oxygen-related anionic electrochemical 

process.[29, 64-65] Thus, in-situ Raman was utilized as a powerful tool to investigate the 

oxygen redox behaviors,[62, 66] the results are shown in Figure 3.10, with 

charge/discharge curves for the first two cycles. Moreover, wider Raman shift region 

is also shown in Figure 3.11. In this figure, there is one good reference peak (Li2CO3) 

for basically entire measurements. The peak of Li2CO3 appears at ~ 1080 cm-1 during 

the charging process and then exists the whole measurements without Raman shift, 

which can be a good reference peak.[62, 67] In addition to the overlapping stretching 

modes in MO6 octahedron (below 700 cm-1),[68] the variation trend of several novel 
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peaks become noteworthy during cycling. When charging to  4.5 V, one sharp peak 

emerges, locating at 953 cm-1, which is due to the adsorption of the anion in perchlorate 

salt (ClO4
- symmetric stretching).[66] The related peak has a relationship with potential, 

because its intensity quickly reaches maximum value due to the saturation of adsorption 

and disappears in discharging process. 

 

Figure 3. 10 Capacity dependent in situ Raman spectra recorded during initial two galvanostatic 

cycles (5 mA g-1). The novel peroxo-species peak has been highlighted, and corresponding capacity 

dependence of peak area (purple hollow), peak position (orange hollow) and color-coded image are 

summarized, respectively. The range of intensity distribution plots with reference color bar is from 

0 to 0.03. The related voltage profiles are shown for clarity. 

Besides, the unique adsorption feature can be further proved by the potential-

dependent dropping trend during discharging. The change of unique adsorbed ClO4
- 

peak is a function of potential. There is no relationship between O−−O− peak and 

adsorbed ClO4
- peak, which can be confirmed by an aging test. As shown in Figure 

3.12, we stopped the procedure and let the cell free at the end of charging process. The 

variation of Raman intensity of O−−O− peak and ClO4
- peak are obvious in Figure 3.12a 

and more distinct in Figure 3.12b. The intensity of ClO4
- peak decreases dramatically 

as a function of aging time, resulting from the essential reason-decrease of the potential. 
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The intensity of O−−O− peak, however, basically remain unchanged with aging time. 

 

Figure 3. 11 In situ Raman spectra (SERS-signal) recorded during initial two galvanostatic cycles with 

extended Raman shift range, which includes Li2CO3-related peak (~1080 cm-1) as comparison. Note that, 

the formation of carbonate species would be rationally ascribed to the parasitic reaction between 

electrolyte and other active oxygen-related species (superoxide anion radical and/or oxygen), which 

release from the lattice (Li1.2Ni0.2Mn0.6O2) upon charging (irreversible oxygen loss). This parasitic 

accumulation of Li2CO3 is also well coincide with previous reports.[67, 69] 

 

Figure 3. 12 Aging time test of O−−O− peak and ClO4
- peak after charging. a) Changes of Raman intensity 

with aging time and b) relative Raman intensity with aging time. 
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Figure 3. 13 Raman peaks of standard materials of a) LiClO4, Li2O2, Na2O2, H2O2, and charged state 

electrode and b) PC, electrolyte of 1M LiClO4 in PC and electrolyte of 1M LiPF6 in PC. 

More importantly, a new peak at ~ 850 cm-1 emerges when charging to  4.5 V and 

increases at this region in Figure 3.10. The peak gradually disappears with the 

subsequent discharge process. From Figure 3.13, we can know that this peak locates at 

the typical peroxo O−−O− stretch region (700-900 cm-1) in peroxo-species.[29, 66] The 

potential of O−−O− peroxo bond appearance (for Li1.2Ni0.2Mn0.6O2 is  4.5 V) would be 

different in other systems arising from different thermodynamic conditions, which 

means the environment (such as neighboured atoms, space group) surrounding oxygen 

atoms.[31, 70-73] The reversible variation trend of the peroxo O−−O− bond can also be 

observed on specific high voltage plateau during the 2nd cycle. The average 

concentration of peroxo O−−O− bond can be represented by relative peak area which is 

also shown in Figure 3.10. Before the charging plateau of  4.5 V, there are no peroxo 

O−−O− bond and relative peak area appears, after which the bond appears and then 

increases gradually to the maximum corresponding to the end of charging as a function 

of time. In discharge process, the area decreases to zero subsequently and exhibits a 

reversible evolution during the 2nd cycle. Moreover, the formation of the newly-

proposed peroxo O−−O− bond can be resulted from the extracted-Li from Li/TM layer 

according to the obtained XRD results (Figure 3.8). During charging at 4.5 V plateau, 

peroxo O−−O− stretch appears and shifts to higher wavenumber, indicating the decrease 
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of peroxo O−−O− bond length in peroxo-species.[61] As a reference of peroxo O−−O− 

bond length (1.28 Å in Li2O2 where peroxo O−−O− bond located at 790 cm-1 and 1.48 

Å in H2O2 where peroxo O−−O− bond located at 878 cm-1), the bond length range in 

Li1.2Ni0.2Mn0.6O2 can be empirically considered as 1.28 Å ~ 1.48 Å.[74-75] Moreover, the 

peroxo O−−O− bond tends to be formed along the c-axis (not in ab plane), combining 

with the decreasing trend of c-axis length during  4.5 V plateau (Figure 3.8), which is 

also consistent well with the mechanism proposed by related DFT simulations.[76] In 

this case, the causality among Li extraction/insertion, the variation of c-axis and the 

formation/decomposition of peroxo O−−O− bond can be rationally unified together. 

Consequently, the operando observation and assignment of real peroxo O−−O− bond in 

typical layered Li-rich oxide provides new and direct evidence for the reversible anionic 

redox chemistry and detail pathway of oxygen behavior for understanding Li-rich 

cathode materials, which is essentially different from the peroxo-like (O2)
n--based 

redox process proposed by previous ex-situ XPS analysis.[51, 64, 77] 

The phenomenon of adsorbed ClO4
- peak coupled with peroxide species in Figure 

3.10, however, made a confusion because it seems ClO4
- may be an additional source 

for O−−O− dimers. We have confirmed that the adsorbed ClO4
- peak is potential-

dependent and has no relationship with O−−O− bonding. Furthermore, we did a similar 

experiment in LiPF6 (1M in PC) and a similar phenomenon appears in Figure 3.14. A 

new peak (O−−O−) at ~ 850 cm-1 emerges and increases during the 4.5 V-related 

charging plateau, and gradually disappears with the subsequent discharge process, 

similar to the phenomenon in LiClO4-salt electrolyte. Another similar phenomenon is 

that a new peak at ~ 1080 cm-1 emerges and increases during the charging process and 

without decrease even in discharging process, which can be assigned to Li2CO3. 

Moreover, the adsorbed PF6
- peak appears until the end of charging process, which is 

also potential-dependent. 

There is one more question: what is the result if we don’t employ SERS? The Raman 

spectroscopy data without nanoparticles is also shown in Figure 3.15. No peaks can be 

seen in the peroxo O−−O− stretch region the whole charging and discharging process if 
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without nanoparticles. We know that SERS is always employed by covering silver or 

gold on the surface of target. The laser will excite surface plasmons of silver and gold, 

then the electric fields surrounding the metal increase significantly. Given that Raman 

intensities are proportional to the electric field, there is a considerable increase in the 

obtained signal. [78-79] And this may be the reason why there is no Raman signal of 

oxygen bonds in other’s paper. 

 

Figure 3. 14 a) Typical charge-discharge profiles between 2.0 and 4.7 V with electrolyte of 1M LiPF6 in 

PC at 10 mA g-1 and b) in situ Raman spectra recorded during initial galvanostatic cycle. 

 

 

Figure 3. 15 a) Typical charge-discharge profiles between 2.0 and 4.7 V with electrolyte of 1M LiClO4 

in PC at 10 mA g-1 and b) in situ Raman spectra without nanoparticles recorded during initial 

galvanostatic cycle. 

600 700 800 900 1000 1100

Li
2
CO

3

D-4

D-3

D-2

D-1

C-5

C-4

C-3

C-2

C-1

OCP

R
a
m

a
n

 I
n

te
n

s
it

y
 (

a
.u

.)

Raman Shift (cm-1)

Peroxo

O-O stretch

Adsorbed

PF
6

0 50 100 150 200 250 300 350

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D-4

D-3
D-2

D-1

C-5
C-4C-3

C-2

C-1

OCP

1M LiPF
6
-PC

P
o

te
n

ti
a
l 
(V

 v
s
. 
L

i/
L

i+
)

Specific Capacity (mAh g
-1
)

a b

0 50 100 150 200 250 300 350

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D1

C2

C1

P
o

te
n

ti
a

l 
(V

 v
s

. 
L

i/
L

i+
)

Specific capacity (mAh g
-1
)

OCP

600 700 800 900 1000

D1

C2

C1

OCP

R
a
m

a
n

 I
n

te
n

s
it

y
 (

a
.u

.)

Raman Shift (cm-1)

Peroxo O-O 

stretch region

a b



University of Tsukuba                                                Doctoral Thesis 

 

45 
 

3.4.2 XPS analysis of Li1.2Ni0.2Mn0.6O2  

 

Figure 3. 16 Oxygen 1s XPS spectra of the charged Li1.2Ni0.2Mn0.6O2 electrode at 4.7 V, which were 

collected in the surface, after Ar+ etching 300 s and 600 s. The grey, blue, green, and pink areas represent 

the lattice oxygen (O2-), lattice oxygen (O2
2-), surface deposited species and electrolyte oxidation, 

respectivily. The brown area may be caused by the oxygen deficiencies. 

XPS is another powerful tool to analyze oxygen behavior. Moreover, to understand 

the formation of O−−O− dimers in the bulk or in the surface, depth analysis was 

employed etching experiment. Result reveals that the peroxo O−−O− bond exists both 
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in the surface and in the bulk (Figure 3.16). XPS spectra were obtained from the surface 

of the charged electrode at 4.7 V and that after different times of Ar+-sputtering. Before 

etching by argon sputtering, peaks were observed at ~ 529.5 eV, 530.5 eV, 531.5 eV, 

and 532.8 eV which are assigned to lattice oxygen (O2-), lattice oxygen (O2
2-), surface 

deposited species and electrolyte oxidation, respectively. The peaks and their positions 

are consistent well with Tarascon and co-authors’ works.[31, 51-52, 64] After argon 

sputtering, the peak assigned to electrolyte oxidation disappears. The spectrum after 

etching 300 s is as same as that after etching 600 s, meaning the internal structure was 

obtained after sputtering 300 s. Obviously, the peak located at 530.5 eV (bule area) can 

be clearly seen after sputtering, which is assigned to peroxy oxygen dimers (the brown 

area may be caused by the oxygen deficiencies[80-81]). Herein, the peroxo oxygen dimers 

exist both in surface and in internal. Note that, the composition of the electrode may 

change after sputtering, however, the result can be reliable after some concessions we 

made in etching time and pattern quality.[82] 

3.5 DFT calculations for Li1.2Ni0.2Mn0.6O2 

3.5.1 DFT calculation model 

Lithium honeycomb ordering is common in many lithium-excess compounds, 

corresponding to the additional superlattice peaks in XRD pattern. However, the 

honeycomb structure is short-range order because of the non-uniform distribution of 

the cations (Li, Ni, Mn) in transition metal layers.[57] It means that there exist mixed 

ordering types such as honeycomb-type and straight-type in transition metal layers.[57, 

83] Here, we present the detailed reasons why we chose the straight-type model for first 

principle calculation, after considering the several configurations in transition-metal 

layers. 
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Figure 3. 17 Honeycomb ordering of Li atoms in the transition metal layer of lithium-excess 

Li1.22Ni0.22Mn0.56O2 compound. The white, purple, green and red spheres represent Li, Mn, Ni and O 

atoms, respectively. 

In our calculations, the honeycomb type ordering of excess lithium atoms was studied. 

Considering the balance between computing workloads and the accuracy of the 

calculation model, a lithium honeycomb type ordering structure with the composition 

of Li1.22Ni0.22Mn0.56O2 is built, as shown in Figure 3.17. Although the composition of 

Li1.22Ni0.22Mn0.56O2 is slightly different from our experimental Li1.2Ni0.2Mn0.6O2, it can 

well represent the local honeycomb ordering of lithium atoms in Li1.2Ni0.2Mn0.6O2. 

Thus, we investigated the peroxo bond formation in the fully delithiated 

Li1.22Ni0.22Mn0.56O2 compound, whose honeycomb ordered Li atom in transition metal 

layer are fully extracted to represent the charging final structure. The corresponding 

energy barrier of the peroxo bond formation in it is depicted in Figure 3.18. It can be 

seen that forming a peroxo bond with the O−−O− bond length less than 1.46 Å (a typical 

value of peroxo bond)[84] in this lithium honeycomb type structure is endothermic, more 

than 1 eV ~ 96 KJ mol-1, and needs to overcome a very large energy barrier of 1.44 eV. 

Such high energy barriers of peroxo bond formation also can be found in Li2MnO3 

compounds, 0.6 - 1 eV.[84] Generally, the thermal vibration energy of an atom is KT, ~ 

0.026 eV at 300 K, which is far less than the energy barrier for the peroxo bond 
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formation, so the possibility of forming peroxo bonds in the lithium-excess compounds 

with the local lithium honeycomb type structure in Li1.2Ni0.2Mn0.6O2 during the 

charging and discharging process at room environment is extremely low. 

 

Figure 3. 18 Energy barrier (eV) of the peroxy bond formation in fully delithiated Li1.22Ni0.22Mn0.56O2 

compound with honeycomb orderings of Li atoms at the end of charging (Insets are the local structures 

for peroxo bond formation, including initial structure, transition state structure and final structure). 

We calculated the relative energy of some other Li1.2Ni0.2Mn0.6O2 structures with 

different lithium atom orderings in the transition metal layer, as shown in Figure 3.19. 

Refer to the case 1 with dispersive lithium atom orderings, the relative energy of case 

5 structure with local lithium straight-type tripolymers is 35.45 meV atom-1, slightly 

more than the room temperature atom thermal vibration energy ~26 meV atom-1, but 

far less than the high temperature atom thermal vibration energy ~101.67 meV atom-1 

at the synthesizing temperature of 900 oC. Therefore, the lithium straight-type 

tripolymers in some local areas of our experimental case are highly possible, and they 

are also observed in some other lithium-excess compounds, such as 

Li1.15Ni0.47Sb0.38O2.
[83]  
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Figure 3. 19 The relative energy (in meV/atom, and referred to case 1) of Li1.2Ni0.2Mn0.6O2 compounds 

with different lithium atom orderings in the transition metal layer. 

In addition, we have investigated the peroxo bond formation in these 

Li1.2Ni0.2Mn0.6O2 structures in Figure 3.19. Similarly, forming peroxy bonds in these 

structures are difficult with larger energy barriers compared to straight-type tripolymer 

structure. While the local lithium straight-type tripolymers model (Figure 3.20) is 

beneficial for the formation of peroxy bonds without energy barrier, which is a 

spontaneous exothermic process. Therefore, the local lithium straight-type tripolymers 

model in DFT calculations can explain the formation and evolution of peroxy bonds 

during the charging and discharging process of our experiment. 

All calculations were carried out by using the projector augmented wave (PAW) 

method[85] in the framework of DFT[86], as implemented in the Vienna ab-initio 

Simulation Package (VASP). The generalized gradient approximation (GGA)[87] and 

Perdew–Burke–Ernzerhof (PBE) exchange functional[86] was used. The periodic 

boundary condition approach was used. The plane-wave energy cutoff was set to 450 

eV. The Monkhorst–Pack method[88] with 1×4×1 k-points mesh was employed for the 



University of Tsukuba                                                Doctoral Thesis 

 

50 
 

Brillouin zone sampling of the structural relaxations of Li1.2-xNi0.2Mn0.6O2. The 

convergence criterions of the energy and force were 10−4 eV/atom and 0.05 eV Å−1, 

respectively. 

 

Figure 3. 20 The optimized crystal structure of Li1.2Ni0.2Mn0.6O2. The green, silver, purple and red 

spheres represent Li, Ni, Mn and O atoms, respectively. 

3.5.2 Results of DFT calculations for Li1.2Ni0.2Mn0.6O2 

There are many forms of oxygen behavior, including the typical irreversible oxygen 

loss in the Li-rich materials, such as the formation of O2, O2
-. [29-30, 67] Our observation 

of a reversible oxygen behavior with the generation of O2
2- dimers is different. 

Moreover, the oxygen activation is sustainable in the subsequent cycle. Furthermore, 

the first-principle calculations for the Li1.2-xNi0.2Mn0.6O2 systems have been performed 

to better understand the formation of the peroxo O−−O− bond during cycling. The excess 

lithium ordering in the transition metal layer of Li1.2Ni0.2Mn0.6O2 is very complicated, 

which mixed with other different types of local ordering.[89-91] However, the 

Li1.2Ni0.2Mn0.6O2 with honeycomb ordering of excess lithium atoms experiences an 

energy barrier of 1.4 eV for the formation of peroxo bonds, compared to 0.6-1 eV of 

Li2MnO3,
[84] which is not realistic to occur during the room temperature cycling (see 

Figure 3.17 - Figure 3.19 for detailed discussions). Here, we are especially interested 
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in Li1.2Ni0.2Mn0.6O2 with local straight-type tripolymers (Figure 3.20), where the 

formation of peroxo bonds experiences no energy barrier during charging. 

 

Figure 3. 21 Charge density distributions (yellow isosurfaces = 0.2 e Å−3) of the Li1.2-xNi0.2Mn0.6O2 

systems (x = 0.6, 0.7, 0.8, 0.9, 1.0 and 1.1) with peroxo O-O bonds (in black dotting circles) during the 

charging and discharging processes. 

Thus, the Li1.2Ni0.2Mn0.6O2 crystal structure was built using a 5×2×1 supercell of the 

R3̅m LiMnO2 with local straight type. Partial Mn atoms are replaced by Ni and Li atoms 

(Figure 3.20). Firstly, the Li1.2Ni0.2Mn0.6O2 crystal structure was relaxed, and the 

optimized lattice parameters of Li1.2Ni0.2Mn0.6O2 unit cell are a = 14.49 Å, b = 5.81 Å 

and c = 14.26 Å, respectively, which coincides well with our XRD refinement results. 

Then, the crystal structures and atomic positions of the different charge states of Li1.2-

xNi0.2Mn0.6O2 systems (x = 0.6, 0.7, 0.8, 0.9, 1.0 and 1.1) were relaxed. The 

corresponding charge density distributions were also shown in Figure 3.21. Lithium 



University of Tsukuba                                                Doctoral Thesis 

 

52 
 

atoms in lithium layers are preferentially divorced from the Li1.2-xNi0.2Mn0.6O2 cathode 

during the initial charging process (x from 0 to 0.6), without any observation of peroxo 

O-O bond. When charging to high potential of  4.5 V (i.e., x = 0.7), some excess 

lithium atoms in the TM-layers begin to extract from the structure, and two adjacent O 

atoms of the MnO6 octahedron near the excess lithium vacancies get closer to each 

other.  

Table 3. 2 The peroxo O-O bond length (in Å) of the Li1.2-xNi0.2Mn0.6O2 systems (x = 0.6, 0.7, 0.8, 0.9, 

1.0 and 1.1) during the charging and discharging processes 

 

Moreover, remarkable electrons between these two closer O atoms can be observed 

(yellow isosurfaces in black dotting circles), demonstrating the formation of O−−O− 

covalent bond. The corresponding bond length is calculated to be 1.343 Å (Table 3.2), 

which is much shorter than 2.6 Å of interatomic distance between adjacent O atoms in 

MnO6 octahedrons, and even shorter than 1.49 Å of the peroxo O−−O− bond length in 

Li-rich Li2MnO3 system[84]. The Bader charge represents charges transfer of one atom, 

which is shown in Figure 3.22. The O atomic charges of the special O−−O− bond in 

Li0.5Ni0.2Mn0.6O2 cathode are larger than those in Li0.6Ni0.2Mn0.6O2 and other O atoms 

far from the excess lithium vacancies. All these evidence indicate the formation of the 

peroxo O−−O− bond between x = 0.6 and 0.7, corresponding to the specific capacity 

between 190 and 220 mA h g-1, which is consistent with the in-situ Raman spectra data. 

O-O bond1 O-O bond2 O-O bond3

Li0.6Ni0.2Mn0.6O2 \ \ \

Li0.5Ni0.2Mn0.6O2 1.343 \ \

Li0.4Ni0.2Mn0.6O2 1.315 1.415 \

Li0.3Ni0.2Mn0.6O2 1.314 1.348 1.350

Li0.2Ni0.2Mn0.6O2 1.306 1.308 1.341

Li0.1Ni0.2Mn0.6O2 1.305 1.307 1.310
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During the final charging period (x = 0.8 to 1.1), more and more peroxo O−−O− bonds 

form with smaller bond lengths and more positive O atomic charges, which is also 

consistent with the variation trend of Raman shift and relative peak area of O−−O− 

bonds in our in-situ Raman spectra data. 

 

Figure 3. 22 Atomic Bader charge (e) of the peroxo O-O bonds of the Li1.2-xNi0.2Mn0.6O2 systems (x = 

0.6, 0.7, 0.8, 0.9, 1.0 and 1.1) during the charging and discharging processes 
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3.6 Summary and conclusions 

 

Figure 3. 23 Schematic representation of the density of states (DOS) of Li1.2Ni0.2Mn0.6O2 during charge 

process. 

Here we can summarize some discussions as follows:  

Firstly, during charging process before 4.5 V, Li-ions extract from Li-layers 

accompanied by the oxidization process of Ni2+/4+, corresponding to ~ 130 mA h g-1. 

And then, oxygen activation occurs till the end of the charging because both Ni and Mn 

are in their highest valence in the octahedral site.[92] Oxygen activation becomes the 

main resource for charge compensation at the plateau of ~ 4.5 V. There are 1.2 Li+ per 

formula in Li1.2Ni0.2Mn0.6O2 and there will be 1.1 Li+ extracted from the structure, 

indicating that Li+ can be extracted from both Li-layers and TM-layers. The different 

two processes represent the smooth shift of c-lattice parameter to lower value firstly 

and then to higher value at charging process. The participation of Ni2+ and oxygen 

involvement during the charging process are shown Figure 3.23. The redox of Ni and 

oxygen behavior also account for the charge compensation during discharging process. 

The changes of c-lattice parameter show a cooperation effect including the reinsertion 

of Li+ into the structure, the reduction of Ni, and the reversible anionic (O-/O2-) redox 

process. Moreover, combining the changes of peroxo O−−O− bond length in Raman 

results with the variation tendency of c-axis length in XRD results, the formation of 
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peroxo O−−O− bond is speculated along the c-axis, which is also confirmed by the DFT 

calculations. 

Corresponding conclusions are shown here: 

A typical layered L-rich oxide Li1.2Ni0.2Mn0.6O2 was systematically studied. We 

directly visualize the structural evolution and oxygen activation which as a form of 

peroxo O−−O− bond. Oxygen activation has the responsible of high capacity in Li-rich 

oxides. The accompanied extracted Li-ions have a relationship with c axis and the 

reversible anionic redox process, which are consistent well with the DFT calculations. 

Moreover, both cationic and anionic redox processes are reversible even in subsequent 

cycles. The findings provide new direct evidence for the reversible oxygen activation 

process in layered Li-rich oxides and pave a new way to understand the intercalation 

chemistry and design Li-rich layered oxides with high performance. 
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Chapter 4. A new type Li-rich rock-salt oxide 

Li2Ni1/3Ru2/3O3 with reversible oxygen activation 

4.1 Introduction 

LIBs have been applied successfully in our daily lives.[93] They are very common in 

the fields of portable devices as the energy storage devices. However, the state-of-the-

art positive electrodes, fail to meet our increasing demand for high capacity.[39, 94] For 

instance, typical layered oxides LiTMO2 are restricted to relatively low energy 

density.[95] Layered Li-rich oxides have high capacity and property of cathodic and 

anionic redox mechanism, as introduced in Chapter 3, herein, focusing widespread 

attention aiming to solve the capacity issues.[27, 29, 51, 96] Li2MnO3, one representative, 

delivers a high standard of capacity (more than 400 mAh g-1) in initial cycles, giving 

our more possibility for designing large-capacity cathodes.[97] Although Li-rich 

cathodes own large specific capacity, they suffer from serious capacity and voltage 

decay, restricting the further development of these materials.[98-99] Therefore, 

xLi2MnO3(1-x)LiNi0.5Mn0.5O2, as the series of derivate Li-rich material cathodes, are 

the promising substitutes with equivalent capacity and improved stability, drawing 

extensive attention of the researchers.[100-106] However, the derivate cathodes also suffer 

from the common failure of phase transition during cycling, as displayed in common 

layered oxides, degrading the electrochemical performance.[107] The proposed phase 

transition mechanisms in typical layered Li-rich materials are shown in Figure 4.1. We 

have identified that oxygen participates in the charge compensation with the reversible 

reaction of O2-/O- in Chapter 3. In this Chapter, we concern the stability of capacity 

and voltage of Li-rich materials. 

Recently, the cation-disordered rock-salt materials are found to be the promising 

cathodes with stable NaCl type structure, a space group of Fm-3m, stable network and 

high capacity. In general, LiTMO2 always show electrochemically inactive with rock-

salt structure because of the low diffusion dynamics for 0-TM diffusion in 

stoichiometry LiTMO2.
[108] A percolation mechanism reported by Ceder et al. makes a 
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major breakthrough in active diffusion channels for cation-disordered materials. The 

authors pointed out that it is essential to generate diffusion pathways (0-TM channel in 

“o-t-o” mechanism) by adding excess Li ( 9%).[108] Inspiringly, a series of Li-rich 

cathodes with high capacity have mushroomed based on cation-disordered rock-salt 

structure. Yabuuchi et al. reported the Li3NbO4-based system electrodes. Chen et al. put 

the material further to investigate detailed redox chemistry in Li1.3Nb0.3Mn0.4O2.
[109-111] 

Ceder et al. reported Mn2+/4+ redox oxyfluoride based V system, Nb system 

(Li2Mn2/3Nb1/2O2F) and Ti system (Li2Mn1/2Ti1/2O2F).[112-113] The cathodes exhibit 

evident advantages of chemical and structural stability, and high capacity. However, the 

voltage stability, cycling stability and high rate performance are also inferior, although 

the cathodes possess firm structure and stable voltage output.[114] Meanwhile, the Li-

rich cation-disordered rock-salt oxides usually exhibit the sluggish kinetics. Herein, a 

new rock-salt type cathode Li2Ni1/3Ru2/3O3 (hereafter denoted as LNRO) is propounded 

aiming to promote the cycling stability and voltage stability. 

 

Figure 4. 1 Schemes of the proposed phase transition mechanisms in typical layered Li-rich material.[69] 

Copyright © 2011, American Chemical Society. 

 Results demonstrate that Li2Ni1/3Ru2/3O3 cathode delivers a large capacity, 

outstanding rate capability as well as good cycling performance with negligible voltage 

decay, which is superior compared with common cations disordered oxides with space 

group Fm-3m. Oxygen activation is also confirmed by first principle calculations. 

Moreover, the cathode owns good kinetics with more 0-TM percolation networks. 

Phase transition 

voltage fade 
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Oxygen activation still investigated by in situ Raman, as reversible O2−/O− evolution 

during cycles in this type cathode for the first time. These findings broaden the sight 

for developing a stable Li-rich oxide with high cycling performance including 

reversible oxygen activation and without voltage decay by controlling the special 

structure. The results also enrich the Li-rich material family and provide more 

possibility for the next generation of cathodes. 

4.2 Crystal structure and DFT calculations of Li2Ni1/3Ru2/3O3 

4.2.1 Morphology and structure of Li2Ni1/3Ru2/3O3 

 

Figure 4. 2 Morphology and structure of the cathode Li2Ni1/3Ru2/3O3. a) SEM images. b) The diagram of 

the crystal Li2Ni1/3Ru2/3O3. c) XRD patterns of Li2Ni1/3Ru2/3O3 and the corresponding Rietveld 

refinement. 

The material LNRO was then characterized by SEM (TOPCON DS-720 instrument) 

and powder XRD, as shown in Figure 4.2a and 4.2c. The aggregates are secondary 

particles composed by the primary nanoparticles with a diameter of ~ 200 nm. The rapid 

200 nm

morphology structure
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kinetics of LNRO is beneficial to the nanometer sized grains, which with the reduced 

diffusion distance of ions and electrons. The schematic diagram in Figure 4.2b exhibits 

the crystal structure, making a better understanding of this material. Note that the 

structure of LNRO is different from that of the cation-disordered rock-salt NaCl type 

oxides, in which all cations occupy the same 4b site, such as Li-Mn-V-O-F system and 

Li1.25Nb0.25V0.5O2 reported by Ceder et al. and Yabuuchi et al., respectively.[110, 112] In 

Li2Ni1/3Ru2/3O3, which can be also written as Li(Li1/3Ni2/9Ru4/9)O2, there is one Li 

occupies 16c site, Ni, Ru and residual Li occupy 16d site, isostructural with the ordered 

Fd-3m rock-salt LiFeO2.
[115] All the cations and anions occupy the center of the 

octahedron, coordinating eight neighbor atoms. 

Table 4. 1 Refinement results of LNRO in Figure 4.2c. 

 

Moreover, LNRO was characterized by XRD, as shown in Figure 4.2c. Results 

indicate that most diffraction peaks coincide well with a cubic structure with the space 

group of Fd-3m except some small peaks at  21o. The additional peaks are 

characteristic of Li-rich materials, similar to the typical layered Li-rich cathode. GSAS 

+ EXPGUI suite were utilized to obtain the Rietveld refinements results.[55-56] The 

calculated peaks are well overlapping with that of the experimental, with the lattice 

parameters a = b = c = 8.38 Å, α = β = γ = 90o and a rational low χ2 (3.41) value based 

on Fd-3m space group (see detailed results in Table 4.1). LiMn2O4 also belongs to Fd-

3m space group, which should be noted, presenting a similar XRD pattern with that of 

Li2MO3 (Fd-3m)  Rwp=0.10  Rp=0.07

a=b=c= 8.3767Å,  =β== 90o

Atom site x y z Occ.theo Occ.refined Uiso

Li1 16c 0 0 0 1 0.885 0.290

Ni1 16c 0 0 0 0 0.115 0.037

Li2 16d 0.5 0.5 0.5 0.333 0.448 0.019

Ni2 16d 0.5 0.5 0.5 0.222 0.105 0.160

Ru 16d 0.5 0.5 0.5 0.445 0.445 0.029

O 32e 0.2558 0.2558 0.2558 1 1 0.063
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LNRO. The differences are that Li in LiMn2O4 occupies 8a site which is the center of 

the tetrahedron, while Li occupies the center of octahedron in the rock-salt Fd-3m type 

LNRO.[116-117] 

4.2.2 Computational methodologies 

First principle density functional theory calculations are employed to better 

understand the advantages of this special Fd-3m structure and electrochemical 

characteristics of LNRO. A 6 × 6 × 2 supercell of the Fd-3m primitive cell has been 

constructed to capture both the position and potential cation disorder within LNRO 

compound. 

The atomic structure of LNRO has been constructed from the Fd3-m space group. 

To be consistent with experimental observations, the 16c sites are set to be occupied by 

Li+ or Ni2+ while 16d sites are set to be occupied by Li+, Ni2+ or Ru5+. A 6 × 6 × 2 

supercell of the Fd-3m primitive cell has been constructed to capture both the position 

and potential cation disorder within Li2Ni1/3Ru2/3O3
 compound. To estimate the 

equilibrium cation ordering of Li+/Ni2+/Ru5+, all the possible orderings within the 

supercell have been enumerated and ranked by electrostatic interactions while 20 

structures with the lowest electrostatic energy are selected. This framework has been 

adopted previously in a variety of disorder rock-salt materials with reasonable accuracy 

[27], so it should be able to offer a reasonable description of cation ordering in Li-Ni-

Ru-O system as well. 

For the identified low energy structure, first principle DFT calculations are then 

performed for structural optimization. The Perdew-Burke-Ernzerhof (PBE) functional 

and projector augmented-wave (PAW)[118] method are adopted using the Vienna ab 

initio simulation package (VASP). Meanwhile, a Hubbard like U of 6.0 eV [119-120] has 

been applied for Ni to capture the localization effect of d orbitals. In each calculation, 

an energy cutoff of 700 eV was adopted while higher cutoff will have and energy 

difference of less than 0.01 eV. When performing the structure optimizations, the 

system is regarded as converged when the force per atom is less than 0.01 eV/Å. After 
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structural optimization, the cation ordering with the lowest energy is used to analyze 

the potential redox mechanism. 

4.2.3 DFT results of Li2Ni1/3Ru2/3O3 

 

Figure 4. 3 Atomic configurations and local ordering of Li2Ni1/3Ru2/3. a) Demonstration of cation 

ordering; The identified local ordering of O-M (M = Li,Ru,Ni) bonds: b) Li5Ru; c) Li4RuNi; d) Li3Ru2Ni. 

e): Demonstration of 0-TM channel identified. 

Representatives of the cation ordering are demonstrated in Figure 4.3. It has been 

pointed out that that the energy of oxygen can be raised due to Li-O-Li configuration 

and then the oxygen can be easily oxidized, as reported in previous research.[27, 29, 109] 

Several local ordering configurations are identified and three of them are demonstrated 

in Figure 4.3b - 4.3d, with the analysis of the local ordering in the simulation cells 

obtained by DFT calculations. It has been found out that the Li-O-Li will not only be 

formed within Li rich local environment (Li5Ru in Figure 4.3b) from all three types of 

local ordering, but can also be observed in transition metal rich environments (Li4RuNi 

in Figure 4.3c and Li3Ru2Ni in Figure 4.3d). As is proposed in the previous report, the 

formation of Li-O-Li configuration will contribute to the oxygen activation by 

generating new Li-O-Li states that are much easier to be oxidized (structure of 0-TM 

(a)

Li5Ru
(b)

Li4RuNi
(c)

Li3Ru2Ni

(d)

0-TM channel

(e)
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channel in Figure 4.3e). The fact that there are many Li-O-Li configurations in the low 

energy structure obtained already reveals the tendency of easier oxygen activation. 

 

Figure 4. 4 a) Electronic structure of Li2Ni1/3Ru2/3O3 using orbital projected density of states (PDOS). b) 

Schematic demonstration of energy distributions from different orbitals. 

Moreover, it can also be observed that below Fermi level, there has been a large 

density of O 2p states, which also overlaps strongly with the 3d-Ni2+ states, as shown 

in the projected density of states (PDOS) in Figure 4.4a. A schematic band alignment 

has been visualized in Figure 4.4b, which will give a better idea of the energy level 

distribution. The phenomenon described above indicates the fact that large amounts of 

oxygen states will be activated in LNRO, just as the typical layered Li-rich oxides. 

During charging process, oxygen activation will compete with oxidation process of 

transition metal. Meanwhile, the observation of 0-TM channel in such composition also 

reveals the fact that Li percolation will be also facilitated due to the Li-Ni-Ru cation 

disorder. For the typical disordered rock-salt materials, all the cations are regarded as 

randomly distributed so all sites are occupied with equal probability by different cations. 

The nearly full occupied 16c sites in LNRO indicates the short-range ordering of Li in 

a certain region of the lattice. This special configuration will contribute to form the 

percolation network with more connected 0-TM channels, resulting in a better kinetic 

behavior than the typical disorder rock-salt structure. 

3d-Ni2+

2d-O2-

3d-Ni2+

2d-O2-

a b
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4.3 Phase transition in Li2Ni1/3Ru2/3O3 during cycling 

4.3.1 Charge-discharge curve of Li2Ni1/3Ru2/3O3 

The electrode was tested at the galvanostatic model with a current density of 10 mA 

g-1. The typical first charge-discharge cycle was exhibited in Figure 4.5. Note that the 

valence of Ru here is +5 and it cannot be oxidized further.[32] According to equation 

1.8, the theoretical capacity of Li2Ni1/3Ru2/3O3 can be calculated as  120 mAh g-1 based 

on the cationic redox process of Ni2+/Ni4+, corresponding to 0.67 extracted-Li+ from the 

crystal, which has marked by the green area. The theoretical capacity is apparently 

lower than the total charge capacity, which is  312 mAh g-1, corresponding to  1.8 

extracted-Li+ from the crystal. The oxide demonstrates a considerable capacity and the 

capacity is reasonable caused by the oxygen activation, which is similar to the typical 

layered Li-rich oxides and will be discussed detailed later. The first discharge capacity 

is 260 mAh g-1, indicating a better coulombic efficiency than layered Li-rich oxides.  

 

Figure 4. 5 Typical charge-discharge profile of Li2Ni1/3Ru2/3O3 between 2.0 and 4.3 V with the current 

density of 10 mA g-1. 
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4.3.2 Structural evolution of Li2Ni1/3Ru2/3O3 during cycling 

 

Figure 4. 6 In-situ XRD patterns of Li2Ni1/3Ru2/3O3 during the first charge discharge process, 

accompanied by the color-coded images. 

 

Figure 4. 7 The comparison of XRD patterns between thermoplastic and Li2Ni1/3Ru2/3O3 in in-situ cell. 
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As shown in Chapter 3, in-situ XRD is a powerful tool to investigate the structural 

evolution of electrode during cycling. Here, in-situ XRD was employed for LNRO, 

with the clearer color-coded images as displayed in Figure 4.6. A coin cell has been 

specially adapted for in-situ test, with a window sealed with a Kapton film by annealing 

with a thermoplastic. The symbols # and  in Figure 4.6 represent the peaks of 

aluminum and thermoplastic, respectively. In contrast, the separate XRD pattern of 

thermoplastic is also shown in Figure 4.7. 

All the peaks shift slightly from their original positions and exist the whole process 

in Figure 4.6, demonstrating good structural stability. Most peaks shift to a higher 2θ 

angle during the charge process and return to the original angle during the discharge 

process. The electrode holds a stable rock-salt structure with the space group of Fd-3m, 

guaranteeing a stable migration of Li-ions and electrochemical performance. Noting 

that there appears one small peak near (111) peak. As is well known, the spinel Fd-3m 

material exhibits a similar XRD pattern with this rock-salt LNRO. 

4.3.3 XPS analysis of Li2Ni1/3Ru2/3O3 during cycling 

 

Figure 4. 8 The XPS results of Ni2p, Ru3d and O1s for the samples of pristine, charge to 4.3 V and 

discharge to 2 V, respectively. 
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XPS results show more findings and details, as displayed in Figure 4.8. Ni spectrum 

shows a pair of peaks for the pristine LNRO, which can be assigned to Ni2+ and satellite 

peak.[121-122] The peaks located at 529.3 eV and 282.5 eV belongs to lattice O2- and Ru5+, 

respectively.[123] Ni2+ peak shifted to a higher binding energy at  4.3 V charging 

potential, which is assigned to Ni4+. Due to the occupation of Li or Ni at tetrahedron 

site (due to “o-t-o” diffusion mechanism), there appears a new small peak at 851 eV.[122] 

Moreover, the interstitial site also exists in Ni spectrum accompanied by Ni4+ reduced 

to Ni2+ after the electrode discharging to 2 V. The results of Ni 2p indicate that there are 

atoms occupy the tetrahedron center (8a site) during cycling, accounting for the 

appearance of a new peak near (111), which can be assigned to (111)spinel. This peak 

then, can be obtained the whole process, consistent well with the XRD patterns and 

irreversible interstitial atoms revealed by XPS data. Ru peak exhibits an unusual shift 

to a lower binding energy, which is well consistent with the phenomenon observed by 

Tarascon et al. in Ru-based Li-rich materials, attributing to the strong electronic 

redistributions along with the Ru-O bonds during charging.[51, 77] In O 1s spectrum, 

there is a special peak located at 530.3 eV, which is a symbol of oxygen activation, 

consistent well with DFT calculations and the high capacity in the initial cycles. More 

importantly, Ru5+ peak returns to its original position without any reduced process 

during discharging process. And the oxidized O was simultaneously reduced to O2-, 

indicating a reversible process between charge and discharge. XPS results confirm the 

companied peak near (111) in XRD and the charge compensation mechanism. From 

these data, however, we only know that oxygen participates the redox process, while 

the detailed form is still unknown.  

4.4 Oxygen behavior in Li2Ni1/3Ru2/3O3 

It is well known that the oxygen activation is responsible for the higher capacity in 

Li-rich system.[29, 65] We showed the reversible O2-/O- redox process in typical Li-rich 

layered cathode Li1.2Ni0.2Mn0.6O2 in Chapter 3.[106] However, the detailed pathway of 

oxygen in Li-rich rock-salt oxides remains unknown. Herein, to confirm the oxygen 
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behavior in LNRO, in-situ Raman has been employed because it is sensitive to oxygen 

behaviors. [62, 124]  

 

Figure 4. 9 The results of in situ Raman spectra for the initial two galvanostatic cycles (20 mA g-1) 

corresponding to the capacity-potential curves and the in-situ GC-MS results of gas evolution rates 

for CO2 and O2. The novel peroxo-species and superoxo-species peaks have been highlighted, and 

corresponding peak intensity (green and purple hollow circles) and peroxo peak position are 

amplified, respectively. 

Raman results are exhibited in Figure 4.9 accompanied with electrochemical 

charge/discharge curves for the first two cycles at the current density of 20 mA g-1. 

Some peaks change remarkably during cycling. In addition to other peaks we can’t 

concern, the regions from 800 cm-1 to 900 cm-1 was our focus, which represent peroxo 

stretch as discussed in Chapter 3. The peak around 1100 cm-1 is assigned to superoxo 

stretch. For peroxo stretch, a peak located at 827 cm-1 is clear when charging to  4.0 

V potential, which is known as O2
2- (peroxo O−−O− bond). The peak turns to a higher 

wavenumber till the end of charge process, indicating gradual shortening of the peroxo 

O−−O− bond length. Then, the peak turns back to its original position. The length range 

of the peroxo O−−O− bond, just as indicated in Chapter 3, can be empirically regarded 

as 1.28 Å ~ 1.48 Å. [74-75] Around 860 cm-1 there is one small peak in the whole 

charge/discharge process, which can be assigned as electrolyte. Note that the peak of 
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O2
2- reemerges at a same potential during the second charging process, and then fades 

away during the discharging process, which is similar to the first cycle, indicating a 

good reversibility of oxygen activation process. The results are consistent well with the 

large capacity in Figure 4.5 and the XPS analysis. For superoxo stretch (O2
-) located at 

1104 cm-1, the peak appears synchronously with the peroxo O-O bond during the first 

cycle. However, this peak disappears in the subsequent cycles, indicating that the 

superoxo stretch may be ascribed from some unstable oxygen atoms. The comparison 

of peroxo stretch and superoxo stretch is also enlarged in Figure 4.9. Furthermore, the 

gases of O2 and CO2 produced during cycling are recorded by an accurate in-situ GC-

MS measurement, as displayed in Figure 4.9. The evolution of O2 gas is same as that of 

superoxo (O2
-) in Raman spectra, which reaches its maximum at the end of charge. There 

also exists evolution of CO2 gas, similar to O2 and superoxo (O2
-), indicating that CO2 gas 

is produced by the decomposition of the electrolyte which may be attacked by O2
-. There is 

almost no evolution of CO2 and O2 during the subsequent cycles, which is consistent with 

the trend of O2
-, further demonstrating the gases are activated by O2

-. Note that the signal of 

peroxo O2
2- is still robust, indicating that O2

2- is the main form of oxygen behavior during 

cycling. Consequently, in-situ Raman results provide solid evidence of the reversible 

oxygen activation process in Li-rich rock-salt LNRO, with the form of O2
2-, which is 

similar to the typical layered Li-rich oxides. 

4.5 Electrochemical performance of Li2Ni1/3Ru2/3O3 

4.5.1 Charge-discharge curves of Li2Ni1/3Ru2/3O3 at different densities 

From here, we concern the electrochemical performance exhibited by this Li-rich 

rock-salt cathode LNRO. Figure 4.10a shows the first two cycles of LNRO at low 

current density. The second profile shows a similar curve shape with the first cycle, 

indicating consistency of the redox process in LNRO, which is different from the 

typical layered Li-rich layered materials. There is one plateau at the high potential in 

the first cycle while the plateau changes to a slope in subsequent cycles in typical 

layered Li-rich materials. Figure 4.10b presents the electrochemical curves at different 
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current densities. The capacities at 20, 50, 100, 200, 500 mA g-1 are 227, 179, 150, 115, 

and 84 mAh g-1, respectively. Figure 4.10c exhibits the corresponding cycling 

performance. The capacity decreases when the current increases, then recovers to a high 

level when the current density return to 20 mA g-1, demonstrating LNRO a robust ability 

of capacity recovery.  

 

Figure 4. 10 Electrochemical performances of Li2Ni1/3Ru2/3O3 as the positive electrodes. a) Typical 

initial two charge-discharge profiles between 2.0 and 4.3 V with the current density of 10 mA g-1. 

b) Rates performance of the electrode with the current density of 20, 50, 100, 200 and 500 mA g-1, 

respectively. c) Cycling performance of the electrode at the different current density. 

4.5.2 Improvements of Li2Ni1/3Ru2/3O3 on suppressing capacity fade and 

voltage fade  

As displayed in the introduction part (Chapter 4.1), layered Li-rich materials always 

suffer from phase transition during charging process, leading to severe capacity fade 
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structural stability and characteristic of oxygen redox. Naturally, we want to know 

whether LNRO suffers from similar problems.  

 

Figure 4. 11 Electrochemical performances of Li2Ni1/3Ru2/3O3 as the positive electrodes. a) Rates 

performance of the electrode at different current densities. b) Cycling performance of the electrode at a 

high current density of 200 mA g-1. c) Cycling performance of typical layered Li-rich cathode for 

comparison, with serious capacity decay. [35] Copyright 2019 Copyright Clearance Center. 

Figure 4.11a exhibits rates performance for every 5 cycles at the current densities of 

20, 50, 100, 200 and 500 mA g-1, corresponding to Figure 4.10c. Then, the current 

density recovers to 50 mA g-1 until the end of 120 cycles. The capacity holds well at 

this current density, with an excellent capacity retention of  97 %. Moreover, cycling 

performance of LNRO are also shown in Figure 4.11b at 200 mA g-1 (the current 

density of the first two cycles is 10 mA g-1 for activation process). The material 

maintains excellent capacity retention of  91 % after 200 cycles, with an initial and 

last capacity of 130.8 and 119.6 mAh g-1 at 200 mA g-1, respectively. In contrast, 

layered Li-rich cathode Li(Li0.2Mn0.6Ni0.1Co0.1)O2 shows inferior capacity retention, 

with a value of  68 % only after 100 cycles, as shown in Figure 4.11c. The severe 

capacity fade exhibits a tremendous difference compared with LNRO, indicating a good 

capability of suppressing capacity decay in LNRO. And the purpose of improving 

capacity stability is achieved! 
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of 200 mA g-1 for the first 200 cycles, as shown in Figure 4.12a. The trend of voltage 

decay is unnoticeable with the overlapping profiles, revealing the outstanding stability 

of LNRO at high current density. In contrast, layered Li-rich cathode shows a serious 

voltage decay, as shown in Figure 4.12b. And the purpose of improving voltage 

stability is achieved! 

 

Figure 4. 12 a) The charge/discharge profiles of Li2Ni1/3Ru2/3O3 with normalized capacity for the first 

200 cycles at the current density of 200 mA g-1. b) Normalized capacity of typical layered Li-rich cathode 

for comparison, with serious voltage decay. [34] Copyright 2019 Copyright Clearance Center. 

 

Figure 4. 13 The comparison of XRD patterns for the pristine Li2Ni1/3Ru2/3O3 and cycled electrode after 

50 cycles. 
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Furthermore, the XRD patterns of the pristine and the electrode after 50 cycles are 

displayed in Figure 4.13 for comparison. All peaks of the cycled electrode are indexed 

to the cubic Fd-3m space group, coinciding well with the pristine oxide, further 

demonstrating LNRO a structural stability. 

4.5.3 GITT test of Li2Ni1/3Ru2/3O3 

Galvanostatic intermittent titration technique (GITT) was utilized to analyze the 

kinetics of LNRO during cycles and reveal the reason of excellent cycling stability 

presented by LNRO. The diffusion coefficient (DLi) can be determined by inducing 

Fick’s second law of diffusion based on some reasonable assumptions, as shown in 

equation 4.1 after simplifying: 

𝐷Li =
4

πτ
(
nmVm

S
)
2

(
∆Es

∆Et
)
2

  (4.1) 

Where Vm is the molar volume of the LNRO, nm is the mole number of the reactive 

electrode, S is the area of electrode, τ is the limited time period, ΔEt and ΔEs are the 

total change and the change in the steady state potential during the current flux by 

subtracting the IR drop, respectively.[125] The parameters were labeled in Figure 4.15 

for both charge and discharge process. 

 

Figure 4. 14 GITT results of Li2Ni1/3Ru2/3O3 for the first cycle with the variation of quasi-equilibrium 

potentials and the calculated Li+ diffusion coefficient. 
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Figure 4. 15 a) The potential profile for a single titration at 3.84 V during charge process with labelling 

the different parameters. b) The potential profile for a single titration at 3.83 V during discharge process 

with labelling the different parameters. 

The cell was charged/discharged at the potential window of 2-4.3 V with a current 

density of 10 mA g-1. For the GITT test, the cell was performed with current flux for 1 

hour and then rest for 5 h to obtain a quasi-equilibrium potential. The process was 

repeated until after the first cycle. As shown in Figure 4.14, the red line represents the 

derived potential curve, and the blue line represents the corresponding quasi-

equilibrium potential curve. Meanwhile, the calculated DLi is also represented by the 

purple circle, according to the equation 4.1. DLi ranges from 10-13 to 10-11 cm2 s-1 vary 

with the potential. The values are much larger than the reported cation-disordered Fm-

3m rock-salt oxides and typical layered Li-rich oxides.[121, 126-128] The kinetics of Fd-3m 

rock-salt LNRO is in close proximity to Fd-3m spinel LiMn2O4, indicating that LNRO 

has the capability of high rate electrochemical performance.[129] A dramatic advantage 

of LNRO is high DLi, which ensures its prospective high rate performance. 

4.6 Conclusions 

In summary, a rock-salt type oxide Li2Ni1/3Ru2/3O3 with a space group of Fd-3m is 

successfully synthesized. Both cathodic and anionic redox processes are observed in 

this oxide, resulting in a more than 300 mAh g-1 at the current density of 10 mA g-1. In-

situ Raman spectra confirms the oxygen activation in this rock-salt Li-rich oxide for 
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the first time, as a form of O2-/O- redox process. Moreover, the oxide exhibits an 

excellent rate performance with a high capacity retention of  97 % and  91% after 

100 cycles at 50 mA g-1 and 200 cycles at 200 mA g-1, respectively. Due to a better 

kinetic process and structural stability, the oxide displays not only a high capacity but 

also a better rate performance with negligible voltage decay compared with cations-

disordered rock-salt Li-rich oxides and layered Li-rich oxides. Furthermore, DFT 

results demonstrate that LNRO possesses the short-range ordering of Li in a certain 

region, leading to a better kinetic behavior. The findings extend the sight of Li-excess 

based oxides and pave a new way to design the stable high cycling performance 

materials with high capacity and neglectable voltage decay for the next generation of 

Li-ion batteries. 
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Chapter 5. General conclusions and perspectives 

5.1 General conclusions 

In this dissertation, we have systematically introduced Li-rich oxides as the high-

power density cathodes for Li-ion battery. Layered Li-rich oxides have two main 

problems: the one is about the unclear mechanism of oxygen activation, the other is 

severe capacity fade and voltage fade. For the first problem, we employ in-situ Raman 

spectroscopy to directly visualize detailed pathways of oxygen activation because it is 

a powerful tool to detect oxygen behaviors. However, the signal of covalent oxygen 

bonds is too weak to detect. Thus, surface-enhanced Raman spectroscopy is applied to 

increase the signal. For the second problem, we design a cubic rock-salt Li-rich oxide 

with a stable structure to alleviate the capacity fade and voltage fade because structural 

stability is important to maintain the capacity stability and voltage stability and cubic 

rock-salt oxides always own stable structure with firm oxygen network. The main 

conclusions are shown as follows: 

In Chapter 3, the purpose of the direct observation of oxygen behavior is 

implemented. Oxygen participates the redox process for charge compensation in 

layered Li-rich cathodes, as a type of peroxo bonds. And the peroxo bonds reversibly 

appear during subsequent cycles, although the shape of charge-discharge curve for the 

first cycle is different from subsequent cycles. (Chapter 3.4). The peroxo bonds tend 

to form along c axis, which is confirmed by DFT calculations. (Chapter 3.4 and 3.5) 

The DFT calculations are well consistent with in-situ Raman and in-situ XRD results. 

(Chapter 3.5) 

In Chapter 4, the purpose of alleviating the capacity decay and voltage decay is 

achieved. Cubic rock-salt Li-rich oxide Li2Ni1/3Ru2/3O3 possesses stable lattice 

networks with high structural stability. Both cathodic and anionic redox processes 

participate the charge compensation in Li2Ni1/3Ru2/3O3, as well as the typical layered 

Li-rich oxides. (Chapter 4.3 and 4.4) The oxygen behavior is confirmed as O2-/O- redox 

process by employing surface-enhanced Raman spectroscopy. (Chapter 4.4) And this 
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pathway of oxygen behavior is reported in cubic rock-salt Li-rich oxides for the first 

time. the material maintains an excellent rate performance with a high capacity 

retention of  97% and  91% after 100 cycles at 50 mA g-1 and 200 cycles at 200 mA 

g-1, respectively. Meanwhile, the voltage decay is negligible in Li2Ni1/3Ru2/3O3. 

(Chapter 4.5) The special structure helps to open more 0-TM percolation networks, 

leading to better kinetic behavior. (Chapter 4.2 and 4.5) 

In general, the proposed mechanism of the detailed pathway of oxygen behavior 

gives a better understanding of Li-rich oxides. And of course, there exist other types of 

oxygen behavior, resulting in irreversible oxygen loss such as forming O2 and/or 

Li2CO3. We need to stabilize the reversible peroxo bonds and inhibit other types of 

oxygen. Structural design is an effective method to improve the reversibility of oxygen 

such as cubic rock-salt Li-rich oxide Li2Ni1/3Ru2/3O3, stemming from its robust 

structural stability. And in this research, we just provide one access to improve the 

electrochemical performance of Li-rich oxides. Our proposes are put forth in the hope 

that they would attract more proposes. And we hope the results will contribute to the 

development of Li-ion battery technology for towards high power density, long cycling 

life and low cost for large scale storage systems. 

5.2 Perspectives 

Oxygen activation in Li-rich oxides greatly increases the capacity. The energy of O 

2p state is raised due to the special Li-O-Li configuration, making a possibility for 

oxygen to participate oxidation process. And the concept can be adopted in sodium-ion 

batteries because of the similarity between Li and Na. There are two configurations 

when replacing Li by Na, namely Na-O-Na and Na-O-Li configuration, as shown in 

Figure 5.1a and 5.1b. Furthermore, Na2/3[Mg0.28Mn0.72]O2 also has a similar feature 

with Li-rich oxides, exhibiting an excess capacity based on oxygen redox, which 

indicates excess alkali-metal is not necessary to active oxygen redox, as shown in 

Figure 5.1c. Thus, the oxygen activation possesses a great scope to develop high power 
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density battery technologies, which would reach far beyond Li-ion battery, Na-ion 

battery, etc. 

 

 

Figure 5. 1 Oxygen activation in sodium-ion batteries due to a) Na-O-Na configuration, [123] b) Na-O-Li 

configuration, [130] and c) Na-O-Mg configuration. [131] Copyright © 2017 Elsevier Inc. Copyright © 2018, 

Springer Nature. 
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