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Abstract This paper is devoted to the study of a class of hypoelliptic Vǐsik–Ventcel’
boundary value problems for second order, uniformly elliptic differential operators.
Our boundary conditions are supposed to correspond to the diffusion phenomenon
along the boundary, the absorption and reflection phenomena at the boundary in
probability. If the absorbing boundary portion is not a trap for Markovian particles,
then we can prove two existence and uniqueness theorems of the non-homogeneous
Vǐsik–Ventcel’ boundary value problem in the framework of L2 Sobolev spaces.
Moreover, if the absorbing boundary portion is empty, then we can prove a gen-
eration theorem of analytic semigroups for the closed realization of the uniformly
elliptic differential operator associated with the hypoelliptic Vǐsik–Ventcel’ bound-
ary condition in the L2 topology. As a by-product, this paper is the first time to
prove the angular distribution of eigenvalues, the asymptotic eigenvalue distribu-
tion and the completeness of generalized eigenfunctions of the closed realization,
similar to the elliptic (non-degenerate) case.
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1 Formulation of the Vǐsik–Ventcel’ boundary value problem

Let Ω be a bounded domain of Euclidean space Rn, n ≥ 2, with smooth boundary
Γ = ∂Ω; its closure Ω = Ω∪Γ is an n-dimensional, compact smooth manifold with
boundary.
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Let A = A(x,D) be a second order, uniformly elliptic differential operator with
real coefficients on the closure Ω such that

Au =
n∑

i=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u. (1.1)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ n, and there exists
a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0 |ξ|2 for all (x, ξ) ∈ Ω ×Rn.

(2) bi ∈ C∞(Ω) for all 1 ≤ i ≤ n.
(3) c ∈ C∞(Ω) and c(x) ≤ 0 in Ω.

In this paper, we consider a boundary condition Bγ of the form

Bγu = µ(x′)
∂u

∂ν

∣∣∣∣
Γ

+Q
(
x′, Dx′

)
(u|Γ ) . (1.2)

Here:

(4) µ ∈ C∞(Γ ) and µ(x′) ≥ 0 on Γ .
(5) ∂/∂ν is the conormal derivative associated with the operator A:

∂

∂ν
=

n∑
i,j=1

aij(x′)nj
∂

∂xi
,

where n = (n1, n2, . . . , nn) is the unit inward normal to the boundary Γ .
(6) Q = Q

(
x′, Dx′

)
is a second order, differential operator with real coefficients

defined on Γ such that, in terms of local coordinate systems

x′ = (x1, x2, . . . , xn−1)

of Γ , we have the formula

Qφ =
n−1∑
i,j=1

αij(x′)
∂2φ

∂xi∂xj
+

n−1∑
i=1

βi(x′)
∂φ

∂xi
+ γ(x′)φ, (1.3)

where the coefficients satisfy the following conditions:
(a) The αij(x′) are the components of a C∞ symmetric contravariant tensor of

type (20) on Γ and satisfy the condition

n−1∑
i,j=1

αij(x′) ξi ξj ≥ 0 on the cotangent bundle T ∗(Γ ) =
⊔

x′∈Γ Tx′(Γ ),

where T ∗
x′(Γ ) is the cotangent space of Γ at x′.

(b) β
(
x′, Dx′

)
=
∑n−1

i=1 β
i(x′)∂/∂xi is a real C∞ vector field on Γ .

(c) γ = Q1 ∈ C∞(Γ ) and γ(x′) ≤ 0 on Γ .
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The boundary condition Bγ is called a Vǐsik–Ventcel’ boundary condition (see
[59], [60], [7]). The three terms of the boundary condition Bγ

n−1∑
i,j=1

αij(x′)
∂2u

∂xi∂xj
+

n−1∑
i=1

βi(x′)
∂u

∂xi
, γ(x′)u, µ(x′)

∂u

∂ν

are supposed to correspond to the diffusion phenomenon along the boundary, the
absorption phenomenon and the reflection phenomenon, respectively (see [50]).

The first purpose of this paper is to study the following non-homogeneous Vǐsik–
Ventcel’ boundary value problem: Given functions f(x) defined in Ω and ψ(x′)
defined on Γ , respectively, find a function u(x) in Ω such that{

Au = f in Ω,

Bγu = ψ on Γ .
(1.4)

We remark that the Vǐsik–Ventcel’ boundary value problem (1.4) is non-degen-
erate or coercive if and only if the differential operator Q(x′, Dx′) is elliptic on Γ ,
that is, there exists a constant α0 > 0 such that

n−1∑
i,j=1

αij(x′) ξi ξj ≥ α0|ξ′|2 on the cotangent bundle T ∗(Γ ).

The non-degenerate case is studied by Vǐsik [59, Section 8], Hörmander [21, p. 264,
problem (10.5.13)], Agranovich–Vishik [4, p. 69, formula (3.11)] and Bony–Cou-
rrège–Priouret [7, p. 436, formula (II.2.1)].

In this paper, if the boundary portion

Γ0 :=
{
x′ ∈ Γ : µ(x′) = 0

}
is not a trap for Markovian particles, then we can prove two existence and unique-
ness theorems of the non-homogeneous Vǐsik–Ventcel’ boundary value problem
(1.4) in the framework of L2 Sobolev spaces (Theorems 2.2 and 2.3).

The second purpose of this paper is to study the following homogeneous Vǐsik–
Ventcel’ boundary value problem in the framework of L2 Sobolev spaces: Given a
function f(x) defined in Ω, find a function u(x) in Ω such that{

(A− λ)u = f in Ω,

Bγu = 0 on Γ ,
(1.5)

where λ is a complex spectral parameter.
In this paper, if the boundary portion Γ0 is empty, then we can prove a gen-

eration theorem of analytic semigroups for the closed realization associated with
the Vǐsik–Ventcel’ boundary value problem (1.5) in the L2 topology (Theorem
2.4). Moreover, this paper is the first time to prove the angular distribution of
eigenvalues, the asymptotic eigenvalue distribution and the completeness of gen-
eralized eigenfunctions of the closed realization (Theorem 2.5), similar to the non-
degenerate case. These rather surprising results for a degenerate problem work,
since the degeneracy occurs only for the boundary data.

Our approach here is distinguished by the extensive use of the ideas and tech-
niques characteristic of the recent developments in the theory of pseudo-differential
operators, which will lead to a deep insight into the study of three interrelated
subjects in analysis: Semigroups, elliptic boundary value problems and Markov
processes.
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2 Statement of main results

The purpose of this section is to formulate two existence and uniqueness theo-
rems of the Vǐsik–Ventcel’ boundary value problem (1.4) in the framework of L2

Sobolev spaces (Theorems 2.2 and 2.3). As an application of Theorems 2.2 and
2.3, we state a generation theorem of analytic semigroups for the Vǐsik–Ventcel’
boundary value problem (1.5) in the L2 topology (Theorem 2.4), generalizing ear-
lier results due to Agranovich–Vishik [4] to the hypoelliptic case. Finally, we state
five spectral properties of the Vǐsik–Ventcel’ boundary value problem (1.5), similar
to the elliptic case (Theorem 2.5).

2.1 Subelliptic estimates for second order differential operators in terms of
subunit trajectories

In this subsection, following Fefferman–Phong [15] we formulate subelliptic esti-
mates for the second order, differential operator Q = Q

(
x′, Dx′

)
with real coeffi-

cients given by formula (1.3).
A tangent vector

X =
n−1∑
j=1

γj
∂

∂xj
∈ Tx′(Γ )

at x′ ∈ Γ is said to be subunit for the differential operator Q if it satisfies the
conditionn−1∑

j=1

γjηj

2

≤
n−1∑
i,j=1

αij(x′)ηiηj for all η =
∑n−1

j=1 ηjdxj ∈ T
∗
x′(Γ ).

Note that this notion is coordinate-free.
A subunit trajectory is a Lipschitz path

γ : [t1, t2] −→ Γ

such that the tangent vector

γ̇(t) =
d

dt
(γ(t))

is subunit for Q at γ(t) for almost every t. We remark that if γ̇(t) is subunit for
Q, so is −γ̇(t). This implies that subunit trajectories are not oriented.

If x′ is a point of Γ and ρ > 0, then we associate a “non-Euclidean” ball
BQ(x

′, ρ) of radius ρ about x′ by the following formula:

BQ(x
′, ρ) = the set of all points y′ ∈ Γ that can be joined to x′ by

a Lipschitz path v : [0, ρ]→ Γ , for which the tangent

vector v̇(t) is subunit for Q at v(t) for almost every t.

If Q is the Laplace–Beltrami operator ∆′ on the boundary Γ , then we find that
B∆′(x′, ρ) coincides with the usual ball of radius ρ about x′ with respect to the
Riemannian metric of Γ induced by the natural metric of Rn.

This paper is based on the following criterion for subellipticity due to Fefferman–
Phong [15, Theorem 1] (see Sections 3 and 4):
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Theorem 2.1 (Fefferman–Phong) Let Q = Q
(
x′, Dx′

)
be a second order, differen-

tial operator given by formula (1.3). Then the following three conditions are equivalent:

(i) There exist constants 0 < ε ≤ 1 and C′ > 0 such that we have, for ρ > 0 sufficiently

small,

BE(x
′, ρ) ⊂ BQ

(
x′, C′ ρε

)
for every x′ ∈ Γ . (2.1)

Here BE(x
′, ρ) is an ordinary Euclidean ball of radius ρ about x′.

(ii) There exist constants c0 > 0 and C0 > 0 such that

−Re
(
Q(x′, Dx′)φ,φ

)
L2(Γ )

≥ c0 ∥φ∥2Hε(Γ ) − C0 ∥φ∥2L2(Γ ) (2.2)

for all φ ∈ C∞(Γ ).

(iii) There exist constants c1 > 0 and C1 > 0 such that∥∥Q(x′, Dx′)φ
∥∥
L2(Γ )

+ C1 ∥φ∥2L2(Γ ) ≥ c1 ∥φ∥
2
H2ε(Γ ) for all φ ∈ C∞(Γ ).

Here (·, ·)L2(Γ ) is the inner product of the Hilbert space L2(Γ ) = H0(Γ ) and ∥ ·∥Hs(Γ )

is the norm of the Sobolev space Hs(Γ ) of order s on Γ , respectively.

2.2 Existence and uniqueness theorems for the Vǐsik–Ventcel’ boundary problem
(1.4)

(I) The first purpose of this paper is to prove the following existence and uniqueness
theorem for the Vǐsik–Ventcel’ boundary value problem (1.4) in the framework of
L2 Sobolev spaces:

Theorem 2.2 Assume that the following two conditions (H.1) and (H.2) are satisfied:

(H.1) µ(x′) ≥ 0, γ(x′) ≤ 0 and µ(x′)− γ(x′) > 0 on Γ .

(H.2) There exists an open neighborhood V of the boundary portion Γ0 = {x′ ∈ Γ :
µ(x′) = 0} such that we have, for ρ > 0 sufficiently small,

BE(x
′, ρ) ⊂ BQ

(
x′, C′ ρ1/2

)
for every x′ ∈ V . (2.3)

If the condition

c(x) ≤ 0 and c(x) ̸≡ 0 in Ω (2.4)

is satisfied, then the mapping

A = (A,Bγ) : Hs+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ ) (2.5)

is bijective for every s > −1/2. In other words, the Vǐsik–Ventcel’ boundary value

problem (1.4) has a unique solution u ∈ Hs+2(Ω) for any f ∈ Hs(Ω) and any φ ∈
Hs+1/2(Γ ). Here Hs(Ω) denotes the Sobolev space of order s in Ω.

It should be emphasized that every solution u of the Vǐsik–Ventcel’ boundary
value problem (1.4) has the elliptic gain of 2 derivatives from f . This rather sur-
prising result for a degenerate problem works, since the degeneracy occurs only
for the boundary data φ.

Remark 2.1 Some remarks are in order.
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1◦ The intuitive meaning of condition (H.1) is that either the absorption phe-
nomenon or the reflection phenomenon occurs at each point of the boundary
Γ . More precisely, condition (H.1) implies that the absorption phenomenon
may occur at each point of the boundary portion Γ0, while the reflection
phenomenon may occur at each point of the boundary portion Γ \ Γ0 ={
x′ ∈ Γ : µ(x′) > 0

}
(cf. [50]).

2◦ Condition (2.3) is just condition (2.1) with ε := 1/2, and the constant C′

depends on the open neighborhood V of Γ0.
3◦ Condition (H.2) implies that a Markovian particle goes out of the absorbing

barrier Γ0 in finite time, so that Γ0 is not a trap for Markovian particles (see
[47, Remark 5.2] and [49, Theorem 7.2.2], [54, Section 6]).

(II) Secondly, we assume that the differential operator Q
(
x′, Dx′

)
is of the

generalized Kolmogorov form (see [27])

Q
(
x′, Dx′

)
=

r∑
j=1

Xj

(
x′, Dx′

)2
+X0

(
x′, Dx′

)
+ γ(x′), (2.6)

where the Xj

(
x′, Dx′

)
are real C∞ vector fields on the boundary Γ .

Then the above-mentioned condition (H.2) may be replaced by a simple con-
dition in terms of the Lie algebra L (X1, X2, . . . , Xr) generated by the vector fields
{X1, X2, . . . , Xr} (see [23]). More precisely, we can prove the following theorem:

Theorem 2.3 Assume that the following two conditions (H.1) and (H.3) are satisfied:

(H.1) µ(x′) ≥ 0, γ(x′) ≤ 0 and µ(x′)− γ(x′) > 0 on Γ .

(H.3) The differential operator Q
(
x′, Dx′

)
is of the form (2.6), and the vector fields{

Xj for 1 ≤ j ≤ r,
[Xj , Xk] = Xj Xk −XkXj for 1 ≤ j, k ≤ r,

span all vector fields at every point of some open neighborhood V of the boundary

portion Γ0 =
{
x′ ∈ Γ : µ(x′) = 0

}
.

If condition (2.4) is satisfied, then the Vǐsik–Ventcel’ boundary value problem (1.4) has
a unique solution u ∈ Hs+2(Ω) for any f ∈ Hs(Ω) and any φ ∈ Hs+1/2(Γ ) with

s > −1/2.

Remark 2.2 Condition (H.3) implies that a Markovian particle goes out of the
absorbing barrier Γ0 in finite time (see [13, Satz C]).

We give a simple example of conditions (H.1) and (H.3) in the space R3:

Example 2.1 Let

Ω =
{
(x1, x2, x3) ∈ R3 : x21 + x22 + x23 < 1

}
be the unit ball with the boundary (unit sphere)

Γ =
{
(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1

}
.
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For a local coordinate system (spherical coordinate system)
x1 = r cos θ cosω,

x2 = r cos θ sinω,

x3 = r sin θ,

where
0 ≤ r ≤ 1, −π

2
≤ θ ≤ π

2
, 0 ≤ ω ≤ 2π,

we define the Vǐsik–Ventcel’ boundary value condition B1γ by the formula

B1γu = −θ2 ∂u
∂r

+
∂2u

∂θ2
+ θ2

∂2u

∂ω2
+

(
θ2 − π2

4

)
u

on the unit sphere Γ = {r = 1}. Here:{
∂
∂ν = − ∂

∂r ,

µ(θ, ω) = θ2, γ(θ, ω) = θ2 − π2

4 .

We remark that the set
Γ0 = {r = 1, θ = 0}

is the equator and further that the vector fields{
X = ∂

∂θ , Y = θ ∂
∂ω ,

[X,Y ] = ∂
∂ω

span all vector fields at every point of Γ .

Table 2.1 below gives a bird’s-eye view of unique solvability theorems for hy-

poelliptic boundary value problems in the framework of Sobolev spaces.

Order of Bγ Conditions on Bγ proved by

1 Subelliptic oblique [53, Theorem 2.1]
derivative case

1 Hypoelliptic [55, Theorem 1.1]
Robin case

2 (H.1), (H.2) Theorem 2.2

2 (H.1), (H.3) Theorem 2.3

Table 2.1 A bird’s-eye view of unique solvability theorems for hypoelliptic boundary value
problems

Both Theorem 2.2 and Theorem 2.3 are a generalization of Agranovich–Vishik
[4, Theorem 5.1] to the hypoelliptic case. See also Bony–Courrège–Priouret [7,
p. 484, Théorème XVIII] in the framework of Hölder spaces.
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2.3 Generation of analytic semigroups for the Vǐsik–Ventcel’ boundary value
problem (1.5)

The second purpose of this paper is to study the Vǐsik–Ventcel’ boundary value
problem (1.5) when |λ| → ∞ from the point of view of the Hille–Yosida theory
of semigroups in functional analysis ([62]). The generation theorem for analytic
semigroups is well established in the non-degenerate case in the L2 topology (see
[4], [16], [35], [57]). We generalize this generation theorem for analytic semigroups
to the hypoelliptic case (Theorem 2.4).

To do so, we associate with the homogeneous Vǐsik–Ventcel’ boundary value
problem (1.5) a densely defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

in the Hilbert space L2(Ω) as follows (see Proposition 7.1):

(1) The domain D (A) of definition is the space

D (A) =
{
u ∈ L2(Ω) : Au ∈ L2(Ω), Bγu = 0 on Γ

}
(2.7a)

=
{
u ∈ H2(Ω) : Bγu = 0 on Γ

}
. (2.7b)

(2) Au = Au for every u ∈ D (A).

It should be emphasized that the Vǐsik–Ventcel’ boundary condition Bγu can be
defined as an element of the Sobolev space H−5/2(Γ ) (see Theorem 5.1).

Then, by arguing just as in the proof of [52, Theorem 2.2] we can obtain the
following generation theorem of analytic semigroups for the closed realization A
associated with the Vǐsik–Ventcel’ boundary value problem (1.5):

Theorem 2.4 Assume that the following condition (G) is satisfied:

(G) µ(x′) > 0 and γ(x′) ≤ 0 on Γ .

Then we have the following two assertions (i) and (ii):

(i) For every 0 < ε < π/2, there exists a constant r(ε) > 0 such that the resolvent set

of the closed realization A contains the set

Σ(ε) =
{
λ = r2 eiθ : r ≥ r(ε),−π + ε ≤ θ ≤ π − ε

}
,

and further that the resolvent (A− λI)−1 satisfies the estimate∥∥∥(A− λI)−1
∥∥∥ ≤ c(ε)

|λ| for all λ ∈ Σ(ε), (2.8)

where c(ε) > 0 is a constant depending on ε.

(ii) The operator A generates a semigroup U(z) = ezA on the space L2(Ω) that is

analytic in the sector

∆ε = {z = t+ is : z ̸= 0, | arg z| < π/2− ε}

for any 0 < ε < π/2.
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Remark 2.3 Some remarks are in order.

1◦ Conditions (H.1), (H.2) and (H.3) are trivially satisfied under condition (G),
since Γ0 = ∅.

2◦ The intuitive meaning of condition (G) is that the reflection phenomenon oc-
curs at every point of the boundary Γ . In other words, a Markovian particle
goes out of the boundary Γ instantaneously.

3◦ We obtain from Theorem 2.4 that there exists a uniformly stochastically contin-
uous Feller function pt(x, dy) on the state space Ω = Ω ∪ Γ such that pt(x, dy)
is the transition function of some strong Markov process X = {xt}t≥0 whose
paths are right-continuous and have no discontinuities other than jumps (see
[50, Section 12.3]).

We give a simple example of condition (G) in the space R3:

Example 2.2 As in the same situation in Example 2.1, we define the Vǐsik–Ventcel’
boundary value condition B2γ by the formula

B2γu = −∂u
∂r

+
∂2u

∂θ2
+ exp

[
− 2

θ2

]
∂2u

∂ω2

on the unit sphere Γ = {r = 1}. Here:{
µ(θ, ω) ≡ 1, γ(θ, ω) ≡ 0,

Γ0 = ∅.

It should be noticed that the Lie algebra generated by the vector fields

X =
∂

∂θ
, Z = exp

[
− 1

θ2

]
∂

∂ω

does not contain the vector field ∂
∂ω at every point of the equator {r = 1, θ = 0}.

Table 2.2 below gives a bird’s-eye view of generation theorems for analytic
semigroups of the closed realization A:

Order of Bγ Conditions on Bγ Semigroup U(z) = ez A proved by

1 Subelliptic oblique analytic [52, Theorem 2.4]
derivative case

1 Hypoelliptic analytic [55, Theorem 1.2]
Robin case

2 (G) analytic Theorem 2.4

Table 2.2 A bird’s-eye view of generation theorems for semigroups
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Theorem 2.4 is a generalization of Agranovich–Vishik [4, Theorems 4.1 and
5.1] to the hypoelliptic case. See also Bony–Courrège–Priouret [7, p. 492, Théorème
XIX] in the framework of Hölder spaces.

2.4 Spectral analysis of the Vǐsik–Ventcel’ boundary value problem (1.5)

The third purpose of this paper is devoted to the spectral analysis of the closed
realization A associated with the Vǐsik–Ventcel’ boundary value problem (1.5). By
combining Agmon [2, Theorems 14.4 and 15.1] with Theorem 2.4, we can obtain
the following five spectral properties of A:

Theorem 2.5 Assume that condition (G) is satisfied. Then the closed realization A
enjoys the following five spectral properties:

(i) The spectrum of A is discrete and the eigenvalues λj of A have finite multiplicities.

(ii) All rays arg λ = θ different from the negative axis are rays of minimal growth
of the resolvent (A− λI)−1

. More precisely, for every −π < θ < π there exists a

constant R(θ) > 0 depending on θ such that if λ = r2 eiθ and |λ| = r2 ≥ R(θ),
then we have the resolvent estimate∥∥∥(A− λI)−1

∥∥∥ ≤ C(θ)

|λ| , (2.9)

where C(θ) > 0 is a constant depending on θ.

(iii) The negative axis is a direction of condensation of eigenvalues of A. More precisely,

for each ε > 0 there are only a finite number of eigenvalues inside the angle:

−π + ε < θ < π − ε.
(iv) Let

N(t) :=
∑

Reλj≥−t

1

be the number of eigenvalues λj such that Reλj ≥ −t, where each λj is repeated

according to its multiplicity. Then the asymptotic eigenvalue distribution formula

N(t) =
1

(2π)n

∫
Ω
|A(x)| dx · tn/2 + o(tn/2) as t→ +∞ (2.10)

holds true. Here |A(x)| denotes the volume of the subset

A(x) =

ξ ∈ Rn :
n∑

i,j=1

aij(x)ξiξj < 1

 .

(v) The generalized eigenfunctions of A are complete in the Hilbert space L2(Ω); they
are also complete in the domain D(A) in the H2(Ω)-norm.

We give a simple example of Theorem 2.5 in the space R3:

Example 2.3 As in the same situation in Example 2.1, we define the Vǐsik–Ventcel’
boundary value condition B3γ by the formula (see [27])

B3γu = −∂u
∂r

+
∂2u

∂θ2
+ θ

∂u

∂ω
+

(
θ2 − π2

4

)
u
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on the unit sphere Γ = {r = 1}. Here:

{
µ(θ, ω) ≡ 1, γ(θ, ω) = θ2 − π2

4 ,

Γ0 = ∅.

We remark that the vector fields

{
X = ∂

∂θ , W = θ ∂
∂ω ,

[X,W ] = ∂
∂ω

span all vector fields at every point of Γ .

We consider the Vǐsik–Ventcel’ eigenvalue problem

{
∆u = λu in Ω,

B3γu = 0, on Γ .

Then we have the asymptotic eigenvalue distribution formula

N(t) =
∑

Reλj≥−t

1 =
2

9π
t3/2 + o(t3/2) as t→ +∞.

Table 2.3 below gives a bird’s-eye view of asymptotic eigenvalue distributions
and eigenfunction expansions of the closed realization A.

Order of Bγ Conditions on Bγ proved by

1 Subelliptic oblique [53, Theorem 2.3]
derivative case

1 Hypoelliptic [55, Theorem 2.2]
Robin case

2 (G) Theorem 2.5

Table 2.3 A bird’s-eye view of spectral properties of A

Theorem 2.5 is the first time to prove the angular distribution of eigenvalues,
the asymptotic eigenvalue distribution (2.10) and the completeness of generalized
eigenfunctions of the closed realization A associated with the hypoelliptic Vǐsik–
Ventcel’ boundary value problem (1.5).
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2.5 Outline of the paper

The rest of this paper is organized as follows. Section 3 is devoted to a brief
review of variants of G̊arding’s inequality (Theorems 3.2 and 3.3). In Section 4 we
formulate a characterization of classical hypoelliptic pseudo-differential operators
due to Radkevič [38] and Hörmander [24] (Theorem 4.1) which plays a crucial role
in this paper. Section 5 is devoted to the study of the non-homogeneous Dirichlet
problem {

Au = f in Ω,

γ0u = u|Γ = φ on Γ
(D)

from the viewpoint of the theory of pseudo-differential operators essentially due to
Hörmander [22], [25] and Seeley [43], [44] based on Calderón [10] (Theorems 5.1,
5.2 and 5.3),

Section 6 is devoted to the formulation of the non-homogeneous Vǐsik–Ventcel’
boundary value problem (1.4). This section is the heart of the subject. In Subsec-
tion 6.1, we prove the trace theorem which plays an essential role in the definition
of the Vǐsik–Ventcel’ boundary condition Bγ (Theorem 6.1 and Corollary 6.1).
By using Corollary 6.1, we can associate with problem (1.4) a densely defined,
closed linear operator A = (A, Bγ) defined by formula (2.5). In Subsection 6.2,
we show that the Vǐsik–Ventcel’ problem (1.4) can be reduced to the study of the
pseudo-differential operator

T = µ(x′)Π +Q
(
x′, Dx′

)
on Γ (6.17)

in the framework of Sobolev spaces (Proposition 6.1 and formula (6.17)). Here
Π is called the Dirichlet-to-Neumann operator that is a first order, elliptic pseudo-
differential operator on Γ (see formula (6.18)). The virtue of this reduction is
that there is no difficulty in taking adjoints or transposes after restricting the
attention to the boundary, whereas boundary value problems in general do not
have adjoints or transposes. In Subsection 6.3, we prove that if condition (H.2) is
satisfied, then both the pseudo-differential operators T and T ∗ are hypoelliptic with
loss of one derivative on Γ (Propositions 6.3 and 6.4). Moreover, by using Peetre’s
lemma (Lemma 6.1) we prove that the index of the Vǐsik–Ventcel’ boundary value
problem (1.4) is equal to zero for s > −1/2 (Proposition 6.6 and Theorem 6.3):

indA = dimN (A)− codimR(A) = 0. (6.49)

In Section 7, by using Propositions 6.1 and 6.3 we prove a regularity theorem for
the Vǐsik–Ventcel’ boundary value problem (1.4) under condition (H.2) (Theorem
7.1). In particular, by applying Sobolev’s imbedding theorem we obtain a regularity
result for the null space of the mapping A under condition (H.2) for s > −1/2
(Corollary 7.1):

N (A) ⊂ C∞(Ω).

Moreover, we prove the closedness of A defined by formula (2.7a) and also the
regularity property (2.7b) (Proposition 7.1).

Section 8 is devoted to the proof of Theorems 2.2 and 2.3. In Subsection 8.1,
we prove Theorem 2.2. First, we prove a uniqueness theorem for the Vǐsik–Ventcel’
boundary value problem (1.4) in the framework of C2 functions under conditions
(2.4) and (H.2) (Theorem 8.1). The proof of Theorem 8.1 is based on the strong
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maximum principle and Hopf’s boundary point lemma. By combining Corollary
7.1 and Theorem 8.1, we find that if conditions (2.4), (H.1) and (H.2) are satisfied,
then the mapping A is injective for s > −1/2:

N (A) = {0} .

However, we have, by formula (6.49),

codimR(A) = dimN (A) = 0.

This proves the surjectivity of the mapping A for s > −1/2.
In this way, we can prove that if conditions (2.4), (H.1) and (H.2) are satisfied,

then the mapping A = (A, Bγ) defined by formula (2.5) is bijective for s > −1/2. In
other words, the Vǐsik–Ventcel’ boundary value problem (1.4) is uniquely solvable

in the framework of Sobolev spaces for every s > −1/2 if conditions (2.4), (H.1)
and (H.2) are satisfied (Theorem 2.2).

In Subsection 8.2, the proof of Theorem 2.3 is essentially the same as that of
Theorem 2.2 if we replace condition (H.2) by condition (H.3). In fact, Propositions
6.3, 6.4, 6.5 and 6.6 and Theorem 6.3 remain valid for the pseudo-differential oper-
ator T = µ(x′)Π +Q(x′, Dx′) when we replace formula (1.3) by formula (2.6) and
condition (H.2) by condition (H.3), respectively. Therefore, the proof of Theorem
2.3 goes through just as in Section 7 and Subsection 8.1 if conditions (2.4), (H.1)
and (H.3) are satisfied.

In Section 9, in order to prove an existence and uniqueness theorem for the
homogeneous Vǐsik–Ventcel’ boundary value problem (1.5) in the framework of
Sobolev spaces when |λ| → ∞ (Theorem 2.4), we make use of a method essentially
due to Agmon ([2], [29]), just as in Taira [52], [53]. This is a technique of treating
a spectral parameter λ as a second order, elliptic differential operator of an extra
variable y on the unit circle S, and relating the old problem to a new one with the
additional variable. Our presentation of this technique is due to Fujiwara [17] and
Taira [48]. More precisely, if we express the complex parameter λ in the form

λ = r2 eiθ for r ≥ 0 and −π < θ < π,

then we replace the uniformly elliptic differential operator

A− λ = A− r2 eiθ

defined in the original domain Ω by the second order, strongly uniform elliptic

differential operator

Λ̃(θ) = A+ eiθ
∂2

∂y2
for −π < θ < π (9.1)

defined in the product domain Ω×S. We consider instead of the original problem
(1.5) the following homogeneous Vǐsik–Ventcel’ boundary value problem in the
product domain Ω × S:

Λ̃(θ)ũ =

(
A+ eiθ

∂2

∂y2

)
ũ = f̃ in Ω × S,

Bγũ = µ(x′)
∂ũ

∂ν

∣∣∣∣
Γ×S

+Q (ũ|Γ×S) = 0 on Γ × S.
(9.2)
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We prove that the Vǐsik–Ventcel’ boundary value problem (9.2) in Ω × S has a
finite index if condition (G) is satisfied (Theorem 9.1). Theorem 9.1 is an essential
step in the proof of Theorem 2.4 and its proof will be given in Section 13, due to
its length.

In Section 10, by using the theory of pseudo-differential operators we con-
sider the Dirichlet problem for the second order, differential operator Λ̃(θ) in the
framework of Sobolev spaces on the product domain Ω × S (Theorem 10.1).

In Section 11, we reduce the homogeneous Vǐsik–Ventcel’ boundary value prob-
lem (9.2) to the study of a second order, pseudo-differential operator

T̃ (θ) = µ(x′) Π̃(θ) +Q
(
x′, Dx′

)
on Γ × S (11.3)

(Proposition 11.1 and formula (11.3)). Here Π̃(θ) is called the Dirichlet-to-Neumann

operator that is a first order, elliptic pseudo-differential operator on Γ × S (see
formula (11.4)).

The purpose of Section 12 is to prove that if condition (G) is satisfied, then
both the pseudo-differential operators T̃ (θ) and T̃ (θ)∗ are hypoelliptic with loss of
one derivative on Γ × S (Proposition 12.2 and Remark 12.1). Moreover, by using
Peetre’s lemma (Lemma 6.1) we can prove that the closed realization T̃ (θ) is a
Fredholm operator, analogous to Proposition 6.6 (Proposition 12.3).

Section 13 is devoted to the proof of Theorem 9.1. More precisely, we show
how Theorem 9.1 follows from Propositions 11.1, 12.2 and 12.3 if condition (G) is
satisfied.

Section 14 is devoted to the proof of Theorem 2.4. By using Theorem 2.2 with
φ := 0 under condition (G) we prove the index formula (Theorem 14.1)

ind (A− λ I) = 0 for all complex number λ ∈ C. (14.2)

Furthermore, by using Theorem 9.1 and the index formula (14.2) we can derive the
resolvent estimate (2.8). We remark that the resolvent estimate (2.9) is a special
case of the resolvent estimate (2.8). In this way, we can prove Theorem 2.4.

Both Section 15 and Section 16 are devoted to the proof of Theorem 2.5. Our
proof of Theorem 2.5 is based on Agmon [2, Theorems 14.4 and 15.1] which are
summarized in [55, Section 4].

In Section 15, for some large number λ0 > 0 (see condition (5.2) with A :=
A− λ0) we study the homogeneous Vǐsik–Ventcel’ boundary value problem{

(A− λ0)u = f in Ω,

Bγu = 0 on Γ
(15.1)

in the framework of Sobolev spaces if condition (G) is satisfied. However, in the
hypoelliptic case, we cannot use Green’s formula to characterize the adjoint oper-
ator A∗−λ0 I of the boundary value problem (15.1), as in Schechter [40, Theorem
4.1] and Browder [9, Theorem 5]. Therefore, we shift our attention to the Green
operator (the resolvent) (A− λ0 I)−1 and its adjoint operator (A∗ − λ0 I)−1 from
the viewpoint of the Boutet de Monvel calculus [8]. More precisely, we make use of
the Boutet de Monvel calculus in order to study the mapping properties of the
resolvent and its adjoint operator in the framework of L2 Sobolev spaces. In this
way, we can verify all the conditions of [55, Theorem 4.1] and [55, Remark 4.1] in
Sections 15 and 16 (Theorems 15.2 and 16.1).



Spectral analysis of hypoelliptic Vǐsik–Ventcel’ boundary value problems 15

In Section 15, by a homotopy argument we consider instead of the original bound-
ary value problem (15.1) the homogeneous Vǐsik–Ventcel’ boundary value problem:{

(∆− 1)u = f in Ω,

Bγu = 0 on Γ
(15.7)

under condition (G), where ∆ is the usual Laplacian

∆ =
∂2

∂x21
+ . . .+

∂2

∂x2n
.

Indeed, there is a homotopy in the class of second order, uniformly elliptic symbols
between A− λ0 and ∆− 1 such that

At := (1− t) (A− λ0) + t (∆− 1) for 0 ≤ t ≤ 1.

First, we characterize the Green operator GD for the homogeneous Dirichlet prob-
lem {

A1v = (∆− 1) v = f in Ω,

γ0v = v|Γ = 0 on Γ
(15.8)

in terms of the Boutet de Monvel calculus (Theorem 15.1). Secondly, we char-
acterize the mapping property of the Green operator (the resolvent) G of the
homogeneous Vǐsik–Ventcel’ boundary value problem (15.7) in the framework of
Sobolev spaces (Theorem 15.2). In the proof of Theorems 15.1 and 15.2, following
Rempel–Schulze [39], Schrohe [41] and [50, Appendix B] we calculate explicitly
various symbols of trace, potential and boundary operators in terms of the Boutet
de Monvel calculus if condition (G) is satisfied (see assertions (15.23) and (15.24)).

In Section 16, by using Theorem 15.2 we can characterize the adjoint operator

G∗ of the Green operator G in the framework of Sobolev spaces if condition (G)
is satisfied (formula (16.1)), and prove that the adjoint operator G∗ has the same
mapping property as G (Theorem 16.1).

Finally, Theorem 2.5 follows from an application of Agmon [2, Theorems 14.4
and 15.1] by combining part (i) of Theorem 2.4, Theorem 15.2 and Theorem 16.1,
just as in [55].

In the last Section 17, as concluding remarks, we state a brief history of the
stochastic analysis methods for Vǐsik–Ventcel’ boundary value problems.

3 Variants of G̊arding’s inequality

Let Ω be an open subset of Rn and let A = A(x,D) be a properly supported,
classical pseudo-differential operator of order m on Ω with the principal symbol
am(x, ξ) ∈ Sm

1,0(Ω×Rn). In this subsection we are concerned with inequalities from
below for A(x,D) of the form

Re (Au, u)L2(Ω) ≥ CK ∥u∥2Hs(Ω) for all u ∈ C∞
K (Ω), (3.1)

Here:

(1) s is a real number.
(2) K is a compact subset of Ω.
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(3) C∞
K (Ω) is a function space defined by the formula

C∞
K (Ω) =

{
u : u ∈ C∞(Ω), suppu ⊂ K

}
,

and (·, ·)L2(Ω) is the inner product of the Hilbert space L2(Ω).

We remark that inequality (3.1) holds true for s ≥ m/2, since we have the
inequality ∣∣∣(Au, u)L2(Ω)

∣∣∣ ≤ C′
K ∥u∥

2
Hm/2(Ω) for all u ∈ C∞

K (Ω),

with another constant C′
K > 0.

In what follows we give sufficient conditions on A(x,D) for inequality (3.1) to
hold true for s < m/2. These results play an important role in deriving a priori

estimates for (non-)elliptic boundary value problems .
(I) The next result, first proved by G̊arding for differential operators, is a

milestone in the theory of elliptic boundary value problems (see [12], [25], [28],
[58], [61]):

Theorem 3.1 (G̊arding’s inequality) Let A = A(x,D) be a properly supported,

classical pseudo-differential operator of order m on Ω having the principal symbol

am(x, ξ). Assume that there exists a constant a0 > 0 such that

Re am(x, ξ) ≥ a0 |ξ|m for all (x, ξ) ∈ T ∗(Ω) = Ω ×Rn.

Then, for every compact K ⊂ Ω and s < m/2 there exist constants cK,s > 0 and

CK,s > 0 such that

Re (Au, u)L2(Ω) ≥ cK,s ∥u∥2Hm/2(Ω) − CK,s ∥u∥2Hs(Ω) for all u ∈ C∞
K (Ω). (3.2)

The inequality (3.2) is called G̊arding’s inequality.
(II) A sharpened form of G̊arding’s inequality is given by Hörmander [22,

Theorem 1.3.3], [25, Theorem 18.1.14] and also by Melin [30, Theorem 3.1]:

Theorem 3.2 (the sharp G̊arding inequality) Let A = A(x,D) ∈ Lm(Ω) be as

in Theorem 3.1. Assume that

Re am(x, ξ) ≥ 0 for all (x, ξ) ∈ T ∗(Ω) = Ω ×Rn.

Then, for every compact K ⊂ Ω and s < (m − 1)/2, there exist constants cK,s > 0
and CK,s > 0 such that

Re (Au, u)L2(Ω) ≥ −cK,s ∥u∥2H(m−1)/2(Ω)−CK,s ∥u∥2Hs(Ω) for all u ∈ C∞
K (Ω). (3.3)

It should be emphasized that Fefferman–Phong [14] proved the following precise
inequality for m = 2 (see [14, Theorem]; [25, Corollary 18.6.11]):

Theorem 3.3 (the Fefferman–Phong inequality) Let A(x,D) be a second order,

pseudo-differential operator having the complete symbol a(x, ξ) ∈ S2
1,0(R

n ×Rn) such

that

a(x, ξ) ≥ 0 for all (x, ξ) ∈ T ∗ (Rn) = Rn ×Rn.

Then there exists a constant C > 0 such that we have, for all u ∈ C∞
0 (Rn),

Re (A(x,D)u, u)L2(Rn) ≥ −C∥u∥
2
L2(Rn). (3.4)

Here the constant C in inequality (3.4) may be chosen uniformly in the a(x, ξ) in a

bounded subset of the symbol class S2
1,0(R

n ×Rn).
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4 Hypoelliptic pseudo-differential operators

Let Ω be an open subset of Rn. A properly supported, pseudo-differential operator
P = P (x,D) on Ω is said to be hypoelliptic if it satisfies the condition

sing suppu = sing suppPu for every u ∈ D′(Ω). (4.1)

For example, elliptic operators are all hypoelliptic. It is easy to see that condition
(4.1) is equivalent to the following condition: For any open subset Ω1 of Ω, we
have the assertion

u ∈ D′(Ω), Pu ∈ C∞(Ω1) =⇒ u ∈ C∞(Ω1).

It should be noticed that this notion may be transferred to manifolds.
In this section we describe a class of hypoelliptic pseudo-differential operators

of [24] that arises in the study of elliptic boundary value problems.
Let P = P (x,D) be a properly supported, classical pseudo-differential operator

of orderm on Ω such that the complete symbol p(x, ξ) has an asymptotic expansion

p(x, ξ) ∼ pm(x, ξ) + pm−1(x, ξ) + . . . ,

where pj(x, ξ) is positively homogeneous of degree j in the variable ξ. For simplicity,
we assume that there exists a constant C > 0 such that the principal symbol
pm(x, ξ) satisfies the condition

|Im pm(x, ξ)| ≤ C Re pm(x, ξ) on T ∗(Ω) \ {0} = Ω × (Rn \ {0}). (4.2)

The following criterion for hypoellipticity is due to Radkevič [38, Theorem 7]
and Hörmander [24, Theorem 5.2] (see also [25, Theorem 22.2.6]):

Theorem 4.1 Let P = P (x,D) be a pseudo-differential operator of order m such that

pm(x, ξ) satisfies condition (4.2). Assume that, for some s0 ∈ R and for every compact

K of Ω and s′ < s0 +m− 1 there exists a constant CK,s0,s′ > 0 such that

∥u∥Hs0+m−1(Ω) ≤ CK,s0,s′

(
∥Pu∥Hs0 (Ω) + ∥u∥Hs′ (Ω)

)
for all u ∈ C∞

K (Ω). (4.3)

Then it follows that P is hypoelliptic with loss of one derivative in Ω. More pre-

cisely, we have, for every s ∈ R,

u ∈ D′(Ω), Pu ∈ Hs
loc(Ω) =⇒ u ∈ Hs+m−1

loc (Ω). (4.4)

Here the localized Sobolev space Hs
loc(Ω) is defined as follows:

Hs
loc(Ω) = the space of distributions u ∈ D′(Ω) such that

φu ∈ Hs(Rn) for all φ ∈ C∞
0 (Ω).

We equip Hs
loc(Ω) with the topology defined by the seminorms

u 7−→ ∥φu∥Hs(Rn)

as φ ranges over C∞
0 (Ω). It is easy to see that Hs

loc(Ω) is a Fréchet space.
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5 The Dirichlet problem

This section is devoted to the classical Dirichlet problem from the viewpoint of
the theory of pseudo-differential operators due to Hörmander [22], [25] and Seeley
[43], [44] based on Calderón [10] (see also [12], [28], [58]).

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω = Γ . Without
loss of generality, we may assume the following (see [32]):

(a) The domain Ω is a relatively compact open subset of an n-dimensional, compact
smooth manifold M without boundary.

(b) In a neighborhood W of Γ in M a normal coordinate t is chosen so that the
points of W are represented as (x′, t), x′ ∈ Γ , −1 < t < 1; t > 0 in Ω, t < 0 in
M \Ω and t = 0 only on Γ .

(c) The manifold M is equipped with a strictly positive density µ which, on W , is
the product of a strictly positive density ω on Γ and the Lebesgue measure dt
on (−1, 1). This manifold M = Ω̂ is called the double of Ω.

Let A = A(x,D) be a second order, uniformly elliptic differential operator with
real coefficients on the double M = Ω̂ of Ω such that

Au =
n∑

i=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u.

Here:

(1) The aij(x) are the components of a C∞ symmetric contravariant tensor of type
(20) on M and there exists a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0 |ξ|2 for all (x, ξ) ∈ T ∗(M),

where T ∗(M) is the cotangent bundle of M .
(2) bi ∈ C∞(M) for all 1 ≤ i ≤ n.
(3) c ∈ C∞(M).

Following Seeley [43], [44], we let

N0(A) :=
{
u ∈ C∞(M) : suppu ⊂ Ω, Au = 0 in Ω

}
. (5.1)

It is known (see [43, Theorem 7]) that N0(A) is finite-dimensional. We find from
formula (5.1) that

N0(A) ⊂ N (A) ,

since the operator A is defined by formula (2.7) and the boundary condition Bγ

is defined by formula (1.2).
We remark that all the sufficiently large eigenvalues of the Dirichlet problem

for the differential operator A and its formal adjoint A∗ lie in the parabolic type
region, as discussed in [2, pp. 274–277] and [31, Chapter 3]. Hence, by considering
A− λ0 and A∗ − λ0 for some large number λ0 > 0 we may assume that

N0(A) = N0(A
∗) = {0} . (5.2)

Then we have the following theorem for surface potentials of A (see [43, Theo-
rems 5 and 6] and [44, pp. 274–275]):
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Theorem 5.1 (Seeley) Assume that condition (5.2) is satisfied. If s ∈ R, we define

the null space for the operator A by the formula

N (A, s) :=
{
u ∈ Hs(Ω) : Au = 0 in Ω

}
. (5.3)

Then we can construct a continuous map P of Hs−1/2(Γ ) onto N (A, s). Moreover,

the spaces N (A, s) and Hs−1/2(Γ ) are isomorphic in such a way that

N (A, s)
γ0−→ Hs−1/2(Γ ), (5.4a)

N (A, s)←−
P

Hs−1/2(Γ ), (5.4b)

where γ0 is the trace map defined by the formula

γ0u = u|Γ .

The operator P is called the Poisson kernel for the operator A.

Especially, for every given function φ ∈ Hs−1/2(Γ ) the function w = Pφ ∈
Hs(Ω) is a unique solution of the Dirichlet problem{

Aw = 0 in Ω,

γ0w = φ on Γ .
(5.5)

Furthermore, we have the following theorem for volume potentials of A (see [44,
pp. 276–277]):

Theorem 5.2 (Seeley) Assume that condition (5.2) is satisfied. Then there exists an

elliptic, pseudo-differential operator C of order −2 on M such that

A (CEf)|Ω = f in Ω, for every f ∈ Hs(Ω) with s ∈ R. (5.6)

Here the operator

E : Hs(Ω) −→ Hs(M)

is Seeley’s extension operator for s ∈ R (see [42], [1, Theorems 5.21 and 5.22]).

By using Theorems 5.1 and 5.2, we can prove the following existence and unique-

ness theorem for the non-homogeneous Dirichlet problem:

Theorem 5.3 Assume that condition (5.2) is satisfied. If s > −3/2, then the non-

homogeneous Dirichlet problem {
Au = f in Ω,

γ0u = φ on Γ
(D)

has a unique solution u in the space Hs+2(Ω) for any f ∈ Hs(Ω) and any φ ∈
Hs+3/2(Γ ).

Proof Indeed, it suffices to note that the unique solution u of the Dirichlet problem
(D) is given by the following formula:

u = (CEf)|Ω + P (φ− (CEf)|Γ ) in Ω. (5.7)

Here:

(a) C : Hs(M)→ Hs+2(M) is the right inverse to A (see formula (5.6)).
(b) P : Hs+3/2(Γ )→ Hs+2(Ω) is the Poisson kernel for A (see the Dirichlet problem

(5.5)).

The proof of Theorem 5.3 is complete.
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6 The non-homogeneous Vǐsik–Ventcel’ boundary value problem (1.4)

The purpose of this section is to study the non-homogeneous Vǐsik-Ventcel’ bound-
ary value problem (1.4) for second order, uniformly elliptic differential operators
A in the framework of Sobolev spaces. This section is the heart of the subject.

6.1 Definition of the Vǐsik–Ventcel’ boundary condition (1.2)

First, we introduce a maximal domain HA(Ω) for the differential operator A in the
Hilbert space L2(Ω) as follows:

HA(Ω) :=
{
u ∈ L2(Ω) : Au ∈ L2(Ω)

}
. (6.1)

We equip the space HA(Ω) with the graph norm

∥u∥HA(Ω) :=
(
∥u∥2L2(Ω) + ∥Au∥

2
L2(Ω)

)1/2
. (6.2)

The maximal domain HA(Ω) is a Hilbert space.
Then we can prove the following trace theorem which plays an essential role in

the study of the Vǐsik–Ventcel’ boundary condition Bγ given by formula (1.2):

Theorem 6.1 Assume that condition (5.2) is satisfied. For every u ∈ HA(Ω), we can

define the Vǐsik–Ventcel’ boundary condition Bγu as an element of the Sobolev space

H−5/2(Γ ). Moreover, the Vǐsik–Ventcel’ boundary operator

Bγ : HA(Ω) −→ H−5/2(Γ )

is continuous. Namely, there exists a constant C > 0 such that

∥Bγu∥H−5/2(Γ ) ≤ C ∥u∥HA(Ω) for all u ∈ HA(Ω). (6.3)

Proof The proof is divided into three steps.
Step 1: For a given function u ∈ HA(Ω) with Au = f ∈ L2(Ω), we consider the

homogeneous Dirichlet problem{
Av = f in Ω,

γ0v = 0 on Γ .
(6.4)

By applying Theorem 5.3, we find from formula (5.7) with φ := 0 that the Dirichlet
problem (6.4) has a unique solution v ∈ Hs+2(Ω) for every f ∈ Hs(Ω) with
s > −3/2.

Therefore, we can define a continuous operator

GD : Hs(Ω) −→ Hs+2(Ω) for s > −3/2

by the formula

v := GDf = (CEf)|Ω − P (γ0 (CEf)) ∈ Hs+2(Ω) for f ∈ Hs(Ω). (6.5)

The operator GD is called the Green operator for the Dirichlet problem (6.4).
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However, it follows from an application of the trace theorem ([1, Remarks 7.45],
[12, p. 98, Section 4]) that the trace map

γ = (γ0, γ1) : H
2(Ω) −→ H3/2(Γ )⊕H1/2(Γ )

is continuous, where γ0v = v|Γ ,
γ1v =

∂v
∂ν

∣∣∣
Γ
.

Since γ0 (GD(Au)) = 0 on Γ for u ∈ HA(Ω), we have, by formula (6.5) with
f := Au and s := 0,

Bγv = Bγ (GD(Au)) = µ(x′)
∂

∂ν
(GD(Au))

∣∣∣∣
Γ

+Q
(
x′, Dx′

)
((GD(Au)) |Γ )

= µ(x′)γ1 (GD(Au)) +Q
(
x′, Dx′

)
(γ0 (GD(Au)))

= µ(x′)γ1 (GD(Au)) ∈ H1/2(Γ ) for every u ∈ HA(Ω).

This proves that

∥Bγv∥H1/2(Γ ) = ∥Bγ (GD(Au))∥H1/2(Γ ) (6.6)

=
∥∥µ(x′)γ1 (GD(Au))

∥∥
H1/2(Γ )

≤ C1 ∥GD(Au)∥H2(Ω)

≤ C2 ∥Au∥L2(Ω) for every u ∈ HA(Ω).

Here and in the following the letter Cj denotes a generic positive constant.
Step 2: On the other hand, if we let

w := u− v = u− GD(Au) ∈ L2(Ω) for u ∈ HA(Ω),

then it follows that the function w satisfies the homogeneous equation

Aw = Au−Av = Au−Au = 0 in Ω.

By applying Seeley [43, Theorems 5 and 6] to the function w, we obtain that the
trace maps {

γ0 : N (A, 0) −→ H−1/2(Γ ),

γ1 : N (A, 0) −→ H−3/2(Γ )

are both continuous on the null space for A (see formula (5.3) with s := 0)

N (A, 0) =
{
w ∈ L2(Ω) : Aw = 0 in Ω

}
.

Hence, we have the inequalities

∥γ0w∥H−1/2(Γ ) ≤ C3 ∥w∥L2(Ω) , (6.7a)

∥γ1w∥H−3/2(Γ ) ≤ C4 ∥w∥L2(Ω) . (6.7b)

Therefore, we have the assertion

Bγw = µ(x′)γ1w +Q
(
x′, Dx′

)
(γ0w) ∈ H−5/2(Γ ),
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and we have, by inequalities (6.7a) and (6.7b),

∥Bγw∥H−5/2(Γ ) ≤
∥∥µ(x′)γ1w∥∥H−5/2(Γ )

+
∥∥Q (x′, Dx′

)
(γ0w)

∥∥
H−5/2(Γ )

(6.8)

≤ C5

(∥∥µ(x′)γ1w∥∥H−3/2(Γ )
+ ∥γ0w∥H−1/2(Γ )

)
≤ C6 ∥w∥L2(Ω) = C6 ∥u− v∥L2(Ω)

≤ C6

(
∥u∥L2(Ω) + ∥v∥L2(Ω)

)
= C6

(
∥u∥L2(Ω) + ∥GD(Au)∥L2(Ω)

)
≤ C7

(
∥u∥L2(Ω) + ∥GD(Au)∥H2(Ω)

)
≤ C8

(
∥u∥L2(Ω) + ∥Au∥L2(Ω)

)
.

Step 3: In this way, we can express uniquely every function u ∈ HA(Ω) in the
form

u = v + w (6.9)

where

v = GD(Au) ∈ H2(Ω), (6.10a)

w = u− v ∈ N (A, 0). (6.10b)

Therefore, by using the decompositions (6.9) and (6.10) we can define the Vǐsik–
Ventcel’ boundary condition Bγu by the formula

Bγu := Bγv +Bγw ∈ H−5/2(Γ ) for u ∈ HA(Ω).

Then we have, by inequalities (6.6) and (6.8) and formula (6.2),

∥Bγu∥H−5/2(Γ ) ≤ ∥Bγv∥H−5/2(Γ ) + ∥Bγw∥H−5/2(Γ ) (6.11)

≤ C9 ∥Bγv∥H1/2(Γ ) + ∥Bγw∥H−5/2(Γ )

≤ C2 C9 ∥Au∥L2(Ω) + C8

(
∥u∥L2(Ω) + ∥Au∥L2(Ω)

)
≤ C ∥u∥HA(Ω) for all u ∈ HA(Ω).

This proves the desired inequality (6.3), with

C = max
{
C2 C9,

√
2C8

}
.

The proof of Theorem 6.1 is complete.

Similarly, we can prove the following corollary:

Corollary 6.1 Assume that condition (5.2) is satisfied. For every u ∈ Hs+2(Ω) with

s > −1/2, we can define the Vǐsik–Ventcel’ boundary condition Bγu as an element of

the Sobolev space Hs−1/2(Γ ). Moreover, the Vǐsik–Ventcel’ boundary operator

Bγ : Hs+2(Ω) −→ Hs−1/2(Γ ) (6.12)

is continuous for s > −1/2.
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Proof As in Step 3 of the proof of Theorem 6.1, we can decompose the function
u ∈ Hs+2(Ω) in the form

u = v + w ∈ Hs+2(Ω), (6.13)

where

v = GD(Au) ∈ Hs+2(Ω), (6.14a)

w = u− v ∈ N (A, s+ 2). (6.14b)

Hence, it follows from formulas (6.13) and (6.14) and the trace theorem ([1, Re-
marks 7.45], [12, p. 98, Section 4]) that

Bγu = Bγv +Bγw

= µ(x′)γ1v +Q
(
x′, Dx′

)
(γ0v) + µ(x′)γ1w +Q

(
x′, Dx′

)
(γ0w)

= µ(x′)γ1v + µ(x′)γ1w +Q
(
x′, Dx′

)
(γ0w) ∈ Hs−1/2(Γ ),

since we have the assertions{
γ0v = 0, γ1v ∈ Hs+1/2(Γ ),

γ0w ∈ Hs+3/2(Γ ), γ1w ∈ Hs+1/2(Γ ).

Therefore, the continuity (6.12) of Bγ can be proved just as in the proof of
inequality (6.11).

The proof of Corollary 6.1 is complete.

Now we can formulate the non-homogeneous Vǐsik–Ventcel’ boundary value
problem in the framework of Sobolev spaces as follows: Given functions f ∈ Hs(Ω)
and ψ ∈ Hs+1/2(Γ ) with s > −1/2, find a function u ∈ Hs+2(Ω) such that{

Au = f in Ω,

Bγu = ψ on Γ .
(1.4)

Remark 6.1 In this paper, we consider the Vǐsik–Ventcel’ boundary value problem
(1.4) under the condition that the boundary data φ has one more regularity

s+
1

2
=

(
s− 1

2

)
+ 1,

compared with the Sobolev regularity stated in Corollary 6.1.

6.2 A special reduction to the boundary

For given functions f ∈ Hs(Ω) and φ ∈ Hs+1/2(Γ ) with s > −1/2, we assume
that a function u ∈ Hs+2(Ω) is a solution of the non-homogeneous Vǐsik-Ventcel’
boundary value problem (1.4). Then, by using formulas (6.13) and (6.14) we can re-
duce the study of the boundary value problem (1.4) to that of a pseudo-differential
equation on the boundary Γ , just as in the classical Fredholm integral equation in
potential theory.

In fact, we can prove the following proposition (see [49, Theorem 8.3.3]):
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Proposition 6.1 Assume that condition (5.2) is satisfied. For given functions f ∈
Hs(Ω) and ψ ∈ Hs+1/2(Γ ) with s > −1/2, there exists a solution u ∈ Hs+2(Ω) of

the non-homogeneous Vǐsik-Ventcel’ problem (1.4) if and only if there exists a solution

φ ∈ Hs+3/2(Γ ) of the equation

Bγ (Pφ) = ψ − µ(x′)γ1 (GDf) = ψ − µ(x′)
∂

∂ν
(GDf)

∣∣∣∣
Γ

on Γ . (6.15)

Moreover, the solutions u and φ are related as follows:

u = GDf + Pφ ∈ Hs+2(Ω), (6.16a)

φ = u|Γ ∈ H
s+3/2(Γ ). (6.16b)

Proof Indeed, it suffices to note that

ψ = Bγu = Bγ (GDf + Pφ)

= Bγ (Pφ) + µ(x′)γ1 (GDf) +Q
(
x′, Dx′

)
(γ0 (GDf))

= Bγ (Pφ) + µ(x′)γ1 (GDf) ∈ Hs+1/2(Γ ),

since γ0 (GDf) = 0 on Γ .
The proof of Proposition 6.1 is complete.

If we introduce a boundary operator T by the formula

T : C∞(Γ ) −→ C∞(Γ )

φ 7−→ Bγ (Pφ) ,

then we have the formula

T = BγP = µ(x′)γ1P +Q
(
x′, Dx′

)
(γ0P) = µ(x′)Π +Q

(
x′, Dx′

)
, (6.17)

since γ0P = I (formulas (5.4)). Here Π = γ1P is called the Dirichlet-to-Neumann

operator defined as follows:

Πφ = γ1 (Pφ) =
∂

∂ν
(Pφ)

∣∣∣∣
Γ

for all φ ∈ C∞(Γ ). (6.18)

It is well known (see [12], [22], [25], [28], [43], [58]) that the Dirichlet-to-Neumann
operator Π is a classical, elliptic pseudo-differential operator of first order on the
boundary Γ .

More precisely, if A is the usual Laplacian ∆, then we can write down the
complete symbol p(x′, ξ′) of Π as follows (see [18], [50, Section 10.7]):

p(x′, ξ′) := p1(x
′, ξ′) + p0(x

′, ξ′) +
√
−1 q0(x′, ξ′) + terms of order ≤ −1 (6.19)

= −|ξ′| − 1

2

(
ωx′(ξ̂′, ξ̂′)

|ξ′|2 − (n− 1)M(x′)

)

+
√
−1 1

2
div δ(ξ′)(x

′) + terms of order ≤ −1.

Here:
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(a) p1(x
′, ξ′) = −

∣∣ξ′∣∣, where |ξ′| is the length of ξ′ with respect to the Riemannian
metric of Γ induced by the natural metric of Rn.

(b) M(x′) is the mean curvature of the boundary Γ at x′.
(c) ωx′(ξ̂′, ξ̂′) is the second fundamental form of Γ at x′, while ξ̂′ ∈ Tx′(Γ ) is the

tangent vector corresponding to the cotangent vector ξ′ ∈ T ∗
x′(Γ ) by the duality

between Tx′(Γ ) and T ∗
x′(Γ ) with respect to the Riemannian metric (gij(x

′)) of
Γ .

(d) q0(x
′, ξ′) = 1

2 div δ(ξ′) where div δ(ξ′) is the divergence of a real smooth vector
field δ(ξ′) on Γ defined (in local coordinates) by the formula

δ(ξ′) =
n−1∑
j=1

∂|ξ′|
∂ξj

∂

∂xj
for ξ′ ̸= 0.

Summing up, we have the following proposition:

Proposition 6.2 The complete symbol t(x′, ξ′) of the pseudo-differential operator T =
µ(x′)Π +Q

(
x′, Dx′

)
is given by the formula

t(x′, ξ′) := t2(x
′, ξ′) + t1(x

′, ξ′) + terms of order ≤ 0 (6.20)

= −
[ n−1∑
j,k=1

αjk(x′)ξjξk

]
+

[
µ(x′) p1(x

′, ξ′) +
√
−1
(
µ(x′) q1(x

′, ξ′) +
n−1∑
k=1

βk(x′)ξk
)]

+ terms of order ≤ 0.

Here:

n−1∑
i,j=1

αij(x′) ξi ξj ≥ 0 on T ∗(Γ ). (6.21a)

p1(x
′, ξ′) < 0 on T ∗(Γ ) \ {0}. (6.21b)

By using Propositions 6.1 and 6.2, we can reduce the Vǐsik–Ventcel’ boundary
value problem (1.4) to the study of the pseudo-differential equation (see equation
(6.15))

Tφ = µ(x′)Πφ+Q
(
x′, Dx′

)
φ = ψ − µ(x′)

∂

∂ν
(GDf)

∣∣∣∣
Γ

on Γ . (6.22)

This equation may be considered as a modern version of the classical Fredholm

integral equation in terms of pseudo-differential operators. We shall formulate this
fact more precisely in terms of functional analysis.

Now let X and Y be Banach spaces over the same scalar field. We recall that
a densely defined, closed linear operator T from X into Y with domain D(T ) is
called a Fredholm operator if it satisfies the following three conditions (see [20]):

(i) The null space N (T ) = {x ∈ D(T ) : Tx = 0} has finite dimension, that is,
dimN (T ) <∞.

(ii) The range R(T ) = {Tx : x ∈ D(T )} is closed in Y .
(iii) The range R(T ) has finite codimension, that is, codimR(T ) = dimY/R(T ) <

∞.
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Then the index of T is defined by the formula

indT = dimN (T )− codimR(T ).

We give a very useful criterion for conditions (i) and (ii) made for Fredholm
operators due to Peetre (see [36, Lemma 3], [51, Theorem 2.42]):

Lemma 6.1 (Peetre) Let X, Y , Z be Banach spaces such that X ↪→ Z with compact
injection, and let T : X → Y be a closed linear operator with dense domain D(T ).
Then the following two conditions are equivalent:

(i) The null space N (T ) of T has finite dimension and the range R(T ) of T is closed

in Y .

(ii) There is a constant C > 0 such that the a priori estimate

∥x∥X ≤ C (∥Tx∥Y + ∥x∥Z)

holds true for all x ∈ D(T ).

First, by using Corollary 6.1 we can associate with problem (1.4) a densely
defined, closed linear operator

A = (A, Bγ) : Hs+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ )

for s > −1/2 as follows.

(a) The domain D(A) of definition of A is the space

D(A) =
{
u ∈ Hs+2(Ω) : Bγu ∈ Hs+1/2(Γ )

}
. (6.23)

(b) Au = (Au, Bγu) for every u ∈ D(A).

Indeed, since A : Hs+2(Ω) → Hs(Ω) and Bγ : Hs+2(Ω) → Hs−1/2(Γ ) are both
continuous, it follows that A is a closed operator (see the proof of Step (1) of
Proposition 7.1). Furthermore, the operator A is densely defined, since the do-
main D(A) contains a dense subspace C∞(Ω) of Hs+2(Ω). The situation can be
visualized in Table 6.1 below (see Remark 6.1).

Hs+2(Ω)
(A,Bγ)−−−−−→ Hs(Ω)⊕Hs−1/2(Γ )x x

D(A) A−−−−−→ Hs(Ω)⊕Hs+1/2(Γ )x x
C∞(Ω) −−−−−→

(A,Bγ)
C∞(Ω)⊕ C∞(Γ )

Table 6.1 The mapping property of the operator A
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Similarly, by using Proposition 6.1 we can associate with equations (6.15) and
(6.17) a densely defined, closed linear operator

T : Hs+3/2(Γ ) −→ Hs+1/2(Γ )

for s > −1/2 as follows.

(α) The domain D(T ) of definition of T is the space

D(T ) =
{
φ ∈ Hs+3/2(Γ ) : Tφ ∈ Hs+1/2(Γ )

}
. (6.24)

(β) T φ = Bγ (Pφ) = µ(x′)Πφ+Q
(
x′, Dx′

)
φ for every φ ∈ D(T ).

Indeed, since T : Hs+3/2(Γ ) → Hs−1/2(Γ ) is continuous, it follows that T is a
closed operator. Furthermore, the operator T is densely defined, since the do-
main D(T ) contains a dense subspace C∞(Γ ) of Hs+3/2(Γ ). The situation can be
visualized in Table 6.2 below.

Hs+3/2(Γ )
T−−−−−→ Hs−1/2(Γ )x x

D(T ) T−−−−−→ Hs+1/2(Γ )x x
C∞(Γ ) −−−−−→

T
C∞(Γ )

Table 6.2 The mapping property of the operator T

Then we obtain the following formula for the indices of the operators A and T
(see [49, Theorem 8.3.8]):

Theorem 6.2 Assume that condition (5.2) is satisfied. If the operator T , defined by

formula (6.24), is a Fredholm operator, then the operator A, defined by formula (6.23),
is a Fredholm operator. In this case, we have the formula

ind A = ind T . (6.25)

6.3 Index of the operator T

The purpose of this subsection is to prove the assertion

ind T = ind A = 0 for every s > −1/2

under condition (H.2) (Proposition 6.6 and Theorem 6.3).
First, since the pseudo-differential operator

T = µ(x′)Π +Q
(
x′, Dx′

)
(6.17)
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has the complete symbol t(x′, ξ′) given in formula (6.20), we can obtain the fol-
lowing fundamental proposition for T (see [24, Theorem 5.2] and [38, Theorem
7]):

Proposition 6.3 Assume that condition (H.2) is satisfied. Then we have the following

three assertions:

(i) There exist constants c > 0 and C > 0 such that

−Re (Tφ, φ)L2(Γ ) ≥ c ∥φ∥
2
H1/2(Γ ) − C ∥φ∥

2
L2(Γ ) for all φ ∈ C∞(Γ ). (6.26)

(ii) There exists a constant C1 > 0 such that

∥φ∥2H1/2(Γ ) ≤ C1

(
∥Tφ∥2H−1/2(Γ ) + ∥φ∥

2
L2(Γ )

)
for all φ ∈ C∞(Γ ).

(iii) The pseudo-differential operator T is hypoelliptic with loss of one derivative on Γ .

More precisely, we have, for every s ∈ R,

φ ∈ D′(Γ ), Tφ ∈ Hs(Γ ) =⇒ φ ∈ Hs+1(Γ ). (6.27)

Moreover, for any s′ < s+ 1 there exists a constant Cs,s′ > 0 such that

∥φ∥2Hs+1(Γ ) ≤ Cs,s′

(
∥Tφ∥2Hs(Γ ) + ∥φ∥

2
Hs′ (Γ )

)
. (6.28)

Proof (i) We decompose the differential operator Q
(
x′, Dx′

)
, given by formula

(1.3), as follows:

Q
(
x′, Dx′

)
φ := R

(
x′, Dx′

)
φ+ β

(
x′, Dx′

)
φ

=

 n−1∑
i,j=1

αij(x′)
∂2φ

∂xi∂xj
+ γ(x′)φ

+
n−1∑
i=1

βi(x′)
∂φ

∂xi
.

Hence, we have the decomposition formula

−T = −µ(x′)Π −Q
(
x′, Dx′

)
=
(
−µ(x′)Π −R(x′, Dx′)

)
− β(x′, Dx′).

Then, by integration by parts it follows that

Re
(
β(x′, Dx′)φ,φ

)
L2(Γ )

= −1

2
(div β · φ,φ) ,

so that

−Re
(
β(x′, Dx′)φ,φ

)
L2(Γ )

≥ −1

2
max
x′∈Γ

∣∣div β(x′)∣∣ · ∥φ∥2L2(Γ ) (6.29)

for all φ ∈ C∞(Γ ).

The proof of part (i) is divided into three steps.
Step (I): First, we consider the case of the open subset

Γ \ Γ0 =
{
x′ ∈ Γ : µ(x′) > 0

}
.

In this case, by using local coordinate systems flattening out Γ , together with a
partition of unity we can apply Theorems 3.1 and 3.3 (or [25, Theorem 22.3.3]) to
the pseudo-differential operator

−µ(x′)Π −R(x′, Dx′)

in the following way:
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(1) Apply the G̊arding inequality (3.2) to the pseudo-differential operator A :=
−µ(x′)Π with m := 1 and s := 0.

(2) Apply the Fefferman–Phong inequality (3.4) to the differential operator A :=
−R

(
x′, Dx′

)
.

Case (1): By assertion (6.21b), we remark that the real part µ(x′) p1
(
x′, ξ′

)
of the principal symbol of µ(x′)Π satisfies the condition: For every compact set
K ⊂ Γ \ Γ0 we can find a constant δK > 0 such that

−µ(x′) p1(x′, ξ′) ≥ δK
∣∣ξ′∣∣ for every x′ ∈ K.

Case (2): On the other hand, it follows from condition (6.21a) that the complete
symbol r(x′, ξ′) of R

(
x′, Dx′

)
satisfies the condition

−r(x′, ξ′) =
n−1∑
i,j=1

αij(x′) ξi ξj − γ(x′) ≥ 0 on T ∗(Γ ),

since γ(x′) ≤ 0 on Γ .
Then we can find constants cK > 0 and CK > 0 such that

−Re
((
µ(x′)Π +R(x′, Dx′)

)
φ,φ

)
L2(Γ )

(6.30)

≥ cK ∥φ∥2H1/2(Γ ) − CK ∥φ∥2L2(Γ ) for all φ ∈ C∞
K (Γ ),

where
C∞
K (Γ ) =

{
φ : φ ∈ C∞(Γ ), suppφ ⊂ K

}
.

Indeed, it suffices to note (see [34, Lemma 2.1]) that if P
(
x′, Dx′

)
is a first order,

pseudo-differential operator with real principal symbol, then we can find some
constant d0 > 0 such that

Re
(√
−1P

(
x′, Dx′

)
φ,φ

)
L2(Γ )

≥ −d0 ∥φ∥2L2(Γ ) for all φ ∈ C∞(Γ ).

Therefore, by combining inequalities (6.29) and (6.30) we have the inequality

−Re (Tφ, φ)L2(Γ ) (6.31)

= −Re
((
µ(x′)Π +R

(
x′, Dx′

)
+ β

(
x′, Dx′

))
φ,φ

)
L2(Γ )

≥ cK ∥φ∥2H1/2(Γ ) −
(
CK +

1

2
max
x′∈Γ

∣∣div β(x′)∣∣) ∥φ∥2L2(Γ ) for all φ ∈ C∞
K (Γ ),

where K is an arbitrary compact set in Γ \ Γ0.
Step (II): Secondly, we consider the case of an open neighborhood V of the

closed subset
Γ0 =

{
x′ ∈ Γ : µ(x′) = 0

}
.

In this case we can apply Theorems 3.2 and 2.1 to the pseudo-differential operator

−µ(x′)Π −R(x′, Dx′)

in the following way:

(3) Apply the sharp G̊arding inequality (3.3) to the pseudo-differential operator
A := −µ(x′)Π with m := 1 and s := −1/2.
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(4) Apply the Fefferman–Phong subelliptic estimate (2.2) to the differential oper-
ator Q(x′, Dx′) := R(x′, Dx′) with ε := 1/2.

Case (3): By assertion (6.21b), we remark that the real part µ(x′) p1
(
x′, ξ′

)
of

the principal symbol of µ(x′)Π satisfies the condition

−µ(x′) p1
(
x′, ξ′

)
≥ 0 for every x′ ∈ V .

By applying the sharp G̊arding inequality (3.3) to A := −µ(x′)Π with m := 1
and s := −1/2, for every compact set K′ ⊂ V we can find constants dK′ > 0 and
DK′ > 0 such that

−Re
(
µ(x′)Πφ,φ

)
L2(Γ )

≥ −dK′ ∥φ∥2L2(Γ ) −DK′ ∥φ∥2H−1/2(Γ ) for all φ ∈ C∞
K′(Γ ).

Since the injection L2(Γ ) ↪→ H−1/2(Γ ) is continuous, we can find another constant
CK′ > 0 such that

−Re
(
µ(x′)Πφ,φ

)
L2(Γ )

≥ −CK′ ∥φ∥2L2(Γ ) for all φ ∈ C∞
K′(Γ ). (6.32)

Case (4): On the other hand, since the differential operator R
(
x′, Dx′

)
satisfies

condition (H.2), by applying the Fefferman–Phong subelliptic estimate (2.2) to
R
(
x′, Dx′

)
with ε := 1/2 we can find constants c′K′ > 0 and C′

K′ > 0 such that

−Re
(
R
(
x′, Dx′

)
φ,φ

)
L2(Γ )

≥ c′K′ ∥φ∥2H1/2(Γ ) − C
′
K′ ∥φ∥2L2(Γ ) (6.33)

for all φ ∈ C∞
K′(Γ ).

Therefore, by combining inequalities (6.29), (6.32) and (6.33) we have the in-
equality

−Re (Tφ, φ)L2(Γ ) = −Re
((
µ(x′)Π +R(x′, Dx′) + β(x′, Dx′)

)
φ,φ

)
L2(Γ )

(6.34)

≥ c′K′ ∥φ∥2H1/2(Γ ) −
(
CK′ + C′

K′ +
1

2
max
x′∈Γ

∣∣div β(x′)∣∣) ∥φ∥2L2(Γ )

for all φ ∈ C∞
K′(Γ ),

where K′ is an arbitrary compact set in the open neighborhood V of Γ0.
Step (III): Now we choose an open subset W of Γ such that{

Γ ⊂W ∪ V,
W ∩ Γ0 = ∅,

and construct two functions θ ∈ C∞
0 (W ) and ω ∈ C∞

0 (V ) such that

θ(x′)2 + ω(x′)2 = 1 on Γ .

Then any function φ ∈ C∞(Γ ) can be expressed in the form

φ = θ (θ φ) + ω (ω φ) on Γ ,

where {
θ φ ∈ C∞

K (Γ ), K = supp θ ⊂ Γ \ Γ0,
ω φ ∈ C∞

K′(Γ ), K′ = suppω ⊂ V.
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We recall that if P
(
x′, Dx′

)
is a first order, pseudo-differential operator with real

principal symbol, then we have the inequality

Re
(√
−1P

(
x′, Dx′

)
φ,φ

)
L2(Γ )

≥ −d0 ∥φ∥2L2(Γ ) for all φ ∈ C∞(Γ ).

Therefore, the desired global inequality (6.26) follows by applying inequality
(6.31) to the function θ φ and inequality (6.34) to the function ω φ, respectively.
More precisely, the reader might be referred to the proof of Wloka [61, Theorem
19.2].

(ii) By using the generalized Schwarz inequality (see [12, Chapitre II, Théorème
2.8]), we obtain from inequality (6.26) that there exist constants c0 > 0 and C0 > 0
such that

c0 ∥φ∥2H1/2(Γ ) − C0 ∥φ∥2L2(Γ )

≤ Re (Tφ, φ)L2(Γ ) ≤
∣∣∣(Tφ, φ)L2(Γ )

∣∣∣ ≤ ∥Tφ∥H−1/2(Γ ) ∥φ∥H1/2(Γ )

≤ ε2

2
∥φ∥2H1/2(Γ ) +

1

2ε2
∥Tφ∥2H−1/2(Γ ) for every ε > 0.

Therefore, by taking

ε :=
√
c0,

we have the desired inequality (6.28)

∥φ∥2H1/2(Γ ) ≤
1

c20
∥Tφ∥2H−1/2(Γ ) +

2C0

c0
∥φ∥2L2(Γ ) ≤ C1

(
∥Tφ∥2H−1/2(Γ ) + ∥φ∥

2
L2(Γ )

)
,

with

C1 := max

{
1

c20
,
2C0

c0

}
.

(iii) By using Proposition 6.2, we find from condition (6.21a) that the principal
symbol t2(x

′, ξ′) of T = µ(x′)Π +Q
(
x′, Dx′

)
satisfies the condition (see condition

(4.2))

−t2(x′, ξ′) =
n−1∑
i,j=1

αij(x′) ξi ξj ≥ 0 on T ∗(Γ ).

Therefore, part (iii) follows by applying Hörmander [24, Theorem 5.2 and estimate
(1.1)] to the pseudo-differential operator −T with

m := 2, s0 := −1/2, s′ := 0

(see inequality (4.3) and assertion (4.4)).
The proof of Proposition 6.3 is complete.

Similarly, we can prove the following results for the adjoint T ∗ =
(
µ(x′)Π +Q

)∗
of the pseudo-differential operator T = µ(x′)Π +Q, analogous to Proposition 6.3:

Proposition 6.4 Assume that condition (H.2) is satisfied. Then we have the following

three assertions:
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(i) There exist constants c > 0 and C > 0 such that

−Re
(
T ∗ψ,ψ

)
L2(Γ )

≥ c ∥ψ∥2H1/2(Γ ) − C ∥ψ∥
2
L2(Γ ) for all ψ ∈ C∞(Γ ). (6.35)

Here it should be noticed that we can choose the same constants c and C as in

inequality (6.26).
(ii) There exists a constant C2 > 0 such that

∥ψ∥2H1/2(Γ ) ≤ C2

(∥∥T ∗ψ
∥∥2
H−1/2(Γ )

+ ∥ψ∥2L2(Γ )

)
for all ψ ∈ C∞(Γ ).

(iii) The pseudo-differential operator T ∗ is hypoelliptic with loss of one derivative on

Γ . More precisely, we have, for every s ∈ R,

ψ ∈ D′(Γ ), T ∗ψ ∈ Hs(Γ ) =⇒ ψ ∈ Hs+1(Γ ). (6.36)

Moreover, for any s′ < s+ 1 there exists a constant C∗
s,s′ > 0 such that

∥ψ∥2Hs+1(Γ ) ≤ C
∗
s,s′

(∥∥T ∗ψ
∥∥2
Hs(Γ )

+ ∥ψ∥2Hs′ (Γ )

)
. (6.37)

Proof Indeed, it suffices to note that

2Re
(
T ∗ψ,ψ

)
L2(Γ )

=
(
T ∗ψ,ψ

)
L2(Γ )

+ (T ∗ψ,ψ)L2(Γ )

=
(
T ∗ψ,ψ

)
L2(Γ )

+
(
ψ, T ∗ψ

)
L2(Γ )

=
(
T ∗ψ,ψ

)
L2(Γ )

+ (Tψ, ψ)L2(Γ )

= (ψ, Tψ)L2(Γ ) + (Tψ, ψ)L2(Γ ) = (Tψ, ψ)L2(Γ ) + (Tψ, ψ)L2(Γ )

= 2Re (Tψ, ψ)L2(Γ ) ,

since we have the formula(
T ∗)∗ =

((
µ(x′)Π +Q

)∗)∗
= µ(x′)Π +Q = T

for the pseudo-differential operator T (see [12], [25], [28], [58]).
The proof of Proposition 6.4 is complete.

Recall that the operator

T : Hs+3/2(Γ ) −→ Hs+1/2(Γ )

is a densely defined, closed linear operator given by formula (6.24) for s > −1/2
(see also Table 6.2).

The adjoint operator T ∗ of T is a densely defined, closed linear operator

T ∗ : H−s−1/2(Γ ) −→ H−s−3/2(Γ )

for s > −1/2 such that

s+1/2 (T φ,ψ)−s−1/2 = s+3/2

(
φ, T ∗ψ

)
−s−3/2

for all φ ∈ D(T ) and ψ ∈ D(T ∗),

where σ (·, ·)−σ denotes the sesquilinear pairing between the Sobolev spaces Hσ(Γ )

and H−σ(Γ ) for each σ ∈ R (see [62, Chapter VII]). The situation can be visualized
in Table 6.3 below.

The next lemma allows us to give a characterization of the adjoint operator
T ∗ in terms of pseudo-differential operators (see [49, Lemma 8.4.8]):
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H−s−5/2(Γ )
T∗

←−−−−− H−s−1/2(Γ )x x
H−s−3/2(Γ )

T ∗
←−−−−− D(T ∗)x x

C∞(Γ ) ←−−−−−
T∗

C∞(Γ )

Table 6.3 The mapping property of the adjoint operator T ∗

Lemma 6.2 Let M be a compact, C∞ manifold without boundary. If T is a classical,

pseudo-differential operator of second order on M , we define a densely defined, closed

linear operator

T : Hs+3/2(M) −→ Hs+1/2(M) for some s ∈ R

as follows:

(a) The domain D(T ) of T is the space

D(T ) =
{
φ ∈ Hs+3/2(M) : Tφ ∈ Hs+1/2(M)

}
.

(b) T φ = Tφ for every φ ∈ D(T ).
Here Tφ is taken in the sense of distributions.

Then the adjoint operator T ∗ of T is characterized as follows:

(c) The domain D(T ∗) of T ∗ is contained in the space{
ψ ∈ H−s−1/2(M) : T ∗ψ ∈ H−s−3/2(M)

}
,

where T ∗ is the adjoint of the pseudo-differential operator T .

(d) T ∗ψ = T ∗ψ for every ψ ∈ D(T ∗).

Proof Let ψ be an arbitrary element of D(T ∗) ⊂ H−s−1/2(M). By using Friedrichs’

mollifiers ([22, p. 178, Remark], [12, Chapitre IV, Corollaire 10.5]), we can find a
sequence

{
ψj

}∞
j=1

of C∞(M) such that{
ψj −→ ψ in H−s−1/2(M),

T ∗ψj −→ T ∗ψ in H−s−3/2(M).

Then we have, for all φ ∈ C∞(M) ⊂ D(T ),

−s−3/2

(
T ∗ψ,φ

)
s+3/2

= −s−1/2 (ψ, T φ)s+1/2 = −s−1/2 (ψ, Tφ)s+1/2

= lim
j→∞

(ψj , Tφ)L2(Γ )
= lim

j→∞

(
T ∗ψj , φ

)
L2(Γ )

= −s−3/2

(
T ∗ψ,φ

)
s+3/2

.

This proves that
T ∗ψ = T ∗ψ ∈ H−s−3/2(M).

The proof of Lemma 6.2 is complete.
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Moreover, the next regularity results for the closed operators T and T ∗ follow
by combining Propositions 6.3 and 6.4 and Lemma 6.2:

Proposition 6.5 Assume that condition (H.2) is satisfied. Then we have the following

two regularity results:

(i) If φ ∈ D′(Γ ) and Tφ ∈ Hσ(Γ ) for σ ∈ R, then it follows from the regularity

property (6.27) that φ ∈ Hσ+1(Γ ). In particular, we have the regularity result for

the null space of the closed operator T :

N (T ) =
{
φ ∈ Hs+3/2(Γ ) : Tφ = 0

}
⊂ C∞(Γ ). (6.38)

(ii) If ψ ∈ D′(Γ ) and T ∗ψ ∈ Hσ(Γ ) for σ ∈ R, then it follows from the regularity

property (6.36) that ψ ∈ Hσ+1(Γ ). In particular, we have the regularity result for

the null space of the adjoint operator T ∗:

N
(
T ∗) = {ψ ∈ H−s−1/2(Γ ) : T ∗ψ = 0

}
⊂ C∞(Γ ). (6.39)

Now we can prove the following index formula for the closed operator T :

Proposition 6.6 If condition (H.2) is satisfied, then the closed operator T is a Fred-

holm operator with index zero:

ind T = 0 for every s > −1/2. (6.40)

Proof The proof is divided into three steps.
Step 1: First, by virtue of Friedrichs’ mollifiers ([22, p. 178, Remark], [12,

Chapitre IV, Corollaire 10.5]), for every φ ∈ D (T ) we can find a sequence
{
φj

}∞
j=1

of C∞(Γ ) such that {
φj −→ φ in Hs+3/2(Γ ),

Tφj −→ Tφ in Hs+1/2(Γ ).

Hence, by passing to the limit in inequality (6.28) with

φ := φj , s := s+
1

2
, s′ := s− 1

2
,

we have the inequality

∥φ∥2Hs+3/2(Γ ) ≤ C3

(
∥Tφ∥2Hs+1/2(Γ ) + ∥φ∥

2
Hs−1/2(Γ )

)
for all φ ∈ D (T ). (6.41)

However, by the Rellich–Kondrachov theorem ([1, Theorem 6.3, Parts I and II], [12,
p. 95, Proposition 3.4]) it follows that the injection

Hs+3/2(Γ ) −→ Hs−1/2(Γ )

is compact.
Therefore, by applying Peetre’s lemma (Lemma 6.1) to the closed operator T

we obtain from assertion (6.38) and inequality (6.41) that

dimN (T ) <∞. (6.42a)

The range R (T ) is closed in Hs+1/2(Γ ). (6.42b)
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Similarly, it follows from an application of inequality (6.37) with

s := −s− 3/2, s′ := −s− 5/2

that

∥ψ∥2H−s−1/2(Γ ) ≤ C
∗
3

(∥∥T ∗ψ
∥∥2
H−s−3/2(Γ )

+ ∥ψ∥2H−s−5/2(Γ )

)
(6.43)

for all ψ ∈ D (T ∗).

Therefore, by applying Peetre’s lemma (Lemma 6.1) to the adjoint operator
T ∗ we obtain from assertion (6.39) and inequality (6.43) that

dimN
(
T ∗) = codimR (T ) <∞. (6.44a)

The range R (T ∗) is closed in H−s−3/2(Γ ), (6.44b)

since the injection
H−s−1/2(Γ ) −→ H−s−5/2(Γ )

is compact.
By combining assertions (6.42a) and (6.44a), we find that

ind T = dimN (T )− dimN
(
T ∗) <∞. (6.45)

Moreover, we remark from assertions (6.38) and (6.39) that ind T is independent

of s > −1/2.
Step 2: Now we show that

ind (T − C) = 0 for every s > −1/2, (6.46)

where C is the same positive constant as in inequalities (6.26) and (6.35).
First, we show that

N (T − C) = {0} . (6.47)

To do so, we assume that φ ∈ N (T − C):

φ ∈ Hs+3/2(Γ ) and (T − C)φ = 0.

Then, by virtue of Friedrichs’ mollifiers we can find a sequence
{
φj

}∞
j=1

of C∞(Γ )

such that we have, for s > −1/2,{
φj −→ φ in Hs+3/2(Γ ) ⊂ L2(Γ ),

(T − C)φj −→ 0 in Hs+1/2(Γ ) ⊂ L2(Γ ).

However, by using Schwarz’s inequality we obtain from inequality (6.26) with
φ := φj that

c
∥∥φj

∥∥2
H1/2(Γ )

≤ −Re ((T − C)φj , φj)L2(Γ )
≤
∣∣∣((T − C)φj , φj)L2(Γ )

∣∣∣
≤
∥∥(T − C)φj

∥∥
L2(Γ )

·
∥∥φj

∥∥
L2(Γ )

,

so that
φj −→ 0 in H1/2(Γ ) ⊂ L2(Γ ).

This proves that φ = 0.
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Similarly, by using inequality (6.35) we can prove that

N
(
T ∗ − C

)
= {0} . (6.48)

Therefore, the desired assertion (6.46) follows from assertions (6.47) and (6.48):

ind (T − C) = dimN (T − C)− dimN
(
T ∗ − C

)
= 0.

Step 3: Finally, we are in a position to prove the desired assertion

ind T = 0 for every s > −1/2. (6.40)

By the Rellich–Kondrachov theorem ([1, Theorem 6.3, Parts I and II], [12, p. 95,
Proposition 3.4]), it follows that the constant mapping

C : Hs+3/2(Γ ) −→ Hs+1/2(Γ )

is compact. However, it is known (see Gohberg–Krĕın [20]) that the index is stable

under compact perturbations.
Therefore, the desired assertion (6.40) follows from assertion (6.46):

ind T = ind ((T − C) + C) = ind (T − C) = 0.

Now the proof of Proposition 6.6 is complete.

Therefore, by combining formulas (6.25) and (6.40) we obtain the following
index formula for the operator A = (A, Bγ):

Theorem 6.3 If condition (H.2) is satisfied, then we have the assertion

indA = 0 for every s > −1/2. (6.49)

Proof Indeed, by considering A−λ0 and A∗−λ0 for some large number λ0 > 0 we
may assume that condition (5.2) is satisfied for the operator A− λ0:

N0 (A− λ0) = N0

(
A∗ − λ0

)
= {0} .

Then, by formulas (6.16) in Proposition 6.1 with A := A − λ0 we can express
the solution u ∈ Hs+2(Ω) of the non-homogeneous Vǐsik–Ventcel’ boundary value
problem {

(A− λ0)u = f in Ω,

Bγu = ψ on Γ

in the following forms:

u = GD(λ0)f + P(λ0)φ ∈ Hs+2(Ω), (6.50a)

φ = u|Γ ∈ H
s+3/2(Γ ). (6.50b)

Here we recall that the mapping

P(λ0) : Hs+3/2(Γ ) −→ Hs+2(Ω)



Spectral analysis of hypoelliptic Vǐsik–Ventcel’ boundary value problems 37

is the Poisson operator for the Dirichlet problem (see problem (5.5)){
(A− λ0)w = 0 in Ω,

γ0w = φ on Γ

and that the mapping

GD(λ0) : H
s(Ω) −→ Hs+2(Ω)

is the Green operator for the Dirichlet problem (see problem (6.4)){
(A− λ0) v = f in Ω,

γ0v = 0 on Γ .

Moreover, we have the pseudo-differential equation (see equation (6.22))

T (λ0)φ := Bγ (P(λ0)φ) = ψ − µ(x′)
∂

∂ν
(GD(λ0)f)

∣∣∣∣
Γ

∈ Hs+1/2(Γ ). (6.51)

Therefore, by applying the index formulas (6.25) and (6.40) with

A := A− λ0, A := A(λ0) = (A− λ0, Bγ) , T := T (λ0) = Bγ (P(λ0)) ,

we obtain that

indA(λ0) = ind T (λ0) = 0 for every s > −1/2.

This gives that

indA = ind (A, Bγ) = ind ((A− λ0, Bγ) + (λ0, 0)) = indA(λ0)
= 0 for every s > −1/2,

since the constant mapping

(λ0, 0) : H
s+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ )

is compact for every s > −1/2, just as in the proof of assertion (6.40).
The proof of Theorem 6.3 is complete.

7 Regularity theorem for the Vǐsik–Ventcel’ boundary problem (1.4)

In this section, by using Propositions 6.1 and 6.5 we prove a regularity theorem
for the non-homogeneous Vǐsik–Ventcel’ boundary value problem (1.4) under con-
dition (H.2) (Theorem 7.1). Moreover, by applying Sobolev’s imbedding theorem
we obtain a regularity result for the null space of the mapping

A = (A, Bγ) : Hs+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ ) for s > −1/2

(Corollary 7.1). Moreover, we prove the closedness of A defined by formula (2.7a)
and the regularity property (2.7b) (Proposition 7.1).

(I) First, by using Propositions 6.1 and 6.5 we can prove the following regularity

property for the Vǐsik–Ventcel’ boundary value problem (1.4):
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Theorem 7.1 Assume that condition (H.2) is satisfied. Then we have, for every s ≥ 0.
u ∈ L2(Ω),

Au = f ∈ Hs(Ω),

Bγu = ψ ∈ Hs+1/2(Γ )

=⇒ u ∈ Hs+2(Ω). (7.1)

Proof We recall that all the sufficiently large eigenvalues of the Dirichlet problem
for the differential operator A and its formal adjoint A∗ lie in the parabolic type
region, as discussed in [2, pp. 274–277] and [31, Chapter 3]. Hence, by considering
A− λ0 and A∗ − λ0 for some large number λ0 > 0 we may assume that condition
(5.2) is satisfied for the operator A− λ0:

N0 (A− λ0) = N0

(
A∗ − λ0

)
= {0} .

Assume that{
u ∈ L2(Ω),

Au = f ∈ Hs(Ω) and Bγu = ψ ∈ Hs+1/2(Γ ) for s ≥ 0.

Then we have the assertions{
u ∈ L2(Ω),

(A− λ0)u = f − λ0 u ∈ L2(Ω).

By using assertion (6.3) with A := A − λ0 and the pseudo-differential equation
(6.51), we obtain thatφ = u|Γ ∈ H

−5/2(Γ ),

T (λ0)φ = ψ − µ(x′) ∂
∂ν (GD(λ0) (f − λ0 u))

∣∣∣
Γ
∈ H1/2(Γ ).

Hence, it follows from the regularity property (6.27) with T := T (λ0) and s := 1/2
that

φ ∈ H3/2(Γ ).

Moreover, we have, by formula (6.50a) with f := f − λ0u and s := 0,

u = GD(λ0) (f − λ0 u) + P(λ0)φ ∈ H2(Ω).

Therefore, by repeating this process (a bootstrap argument) we can prove that

u ∈ Hs+2(Ω) for s ≥ 0.

The proof of Theorem 7.1 is complete.

(II) Secondly, by applying Sobolev’s imbedding theorem (see [1, Theorem 4.12,
Part II]) we obtain the following regularity result for the null space of the operator
A = (A,Bγ):

Corollary 7.1 If condition (H.2) is satisfied, then we have the assertion
u ∈ L2(Ω),

Au = 0 in Ω,

Bγu = 0 on Γ

=⇒ u ∈
∩
σ≥0

Hσ(Ω) = C∞(Ω).
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(III) Finally, we are in a position to prove the following proposition:

Proposition 7.1 Assume that condition (H.2) is satisfied. Then the operator

A : L2(Ω) −→ L2(Ω)

is closed. Moreover, we have the assertion

D (A) = {u ∈ HA(Ω) : Bγu = 0 on Γ} ⊂ H2(Ω). (7.2)

This implies the desired regularity property (2.7b).

Proof The proof of Proposition 7.1 is divided into two steps.
Step (1): First, we prove the closedness of the operator A. Without loss of

generality, we may assume that condition (5.2) is satisfied for the operator A− λ0
for some large number λ0 > 0, as in the proof of Theorem 7.1.

Let {uj}∞j=1 be an arbitrary sequence in the domain D (A− λ0 I) = D (A) such
that

uj −→ u in L2(Ω), (7.3a)

(A− λ0)uj −→ v in L2(Ω). (7.3b)

Then it follows from assertion (7.3a) that

(A− λ0)uj −→ (A− λ0)u in the space D′(Ω) of distributions,

and further from assertion (7.3b) that

(A− λ0)u = v ∈ L2(Ω).

By definition (6.1) and formula (6.2) with A := A− λ0, we find that

u ∈ HA−λ0
(Ω), (7.4a)

uj −→ u in HA−λ0
(Ω). (7.4b)

Moreover, by inequality (6.3) wit A := A−λ0 it follows from assertion (7.4b) that

Bγu = lim
j→∞

Bγuj = 0 in H−5/2(Γ ). (7.5)

Therefore, by combining assertions (7.4a) and (7.5) we obtain that{
u ∈ D (A− λ0 I) ,
(A− λ0 I)u = (A− λ0)u = v.

This proves the closedness of the operator A− λ0 I.
However, it is easy to see that the operator A is closed if and only if the operator

A− λ0I is closed.
Step (2): Secondly, by using the regularity property (7.1) with s := 0 we find

that {
u ∈ HA(Ω),

Bγu = 0 on Γ
⇐⇒


u ∈ L2(Ω),

Au ∈ L2(Ω),

Bγu = 0 on Γ

=⇒ u ∈ H2(Ω).

This proves the desired assertion (7.2) and hence the regularity property (2.7b).
The proof of Proposition 7.1 is complete.
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8 Proof of Theorems 2.2 and 2.3

This section is devoted to the proof of Theorems 2.2 and 2.3. In Subsection 8.1,
we prove Theorem 2.2. More precisely, we can prove that if conditions (2.4), (H.1)
and (H.2) are satisfied, then the mapping A is bijective for every s > −1/2.

The proof of Theorem 2.3 in Subsection 8.2 is essentially the same as that
of Theorem 2.2 if we replace formula (1.3) by formula (2.6) and condition (H.2)
by condition (H.3), respectively. Indeed, it suffices to note that Propositions 6.3,
6.4, 6.5 and 6.6 and Theorem 6.3 remain valid for the pseudo-differential operator
T = µ(x′)Π +Q(x′, Dx′) when we replace condition (H.2) by condition (H.3).

8.1 Proof of Theorem 2.2

The proof of Theorem 2.2 is divided into three steps.
Step I: First, we prove the following uniqueness theorem for the Vǐsik–Ventcel’

boundary value problem (1.4) in the framework of smooth functions:

Theorem 8.1 Assume that conditions (2.4) and (H.1) are satisfied. Then every solu-

tion u ∈ C2(Ω) of the Vǐsik–Ventcel’ boundary value problem

Au = 0 in Ω, (8.1a)

Bγu = 0 on Γ (8.1b)

is identically equal to zero in Ω:

u(x) ≡ 0 in Ω. (8.2)

Proof The proof is divided into two steps.
Step (1): The case where u(x) is constant in Ω. Then we have, by equation

(8.1a),
0 = Au(x) = c(x)u(x) in Ω.

This proves the desired assertion (8.2), since condition (2.4) is satisfied.
Step (2): The case where u(x) is not constant in Ω. Our proof is based on a

reduction to absurdity.
In this case, by applying the strong maximum principle (see [37, p. 64, Theorem

6]) we may assume that there exists a boundary point x′0 ∈ Γ such that (if necessary
replacing u by −u)

u(x′0) = max
x∈Ω

u(x) > 0. (8.3)

Then, by applying Hopf’s boundary point lemma (see [37, p. 67, Theorem 8]) we
obtain that

∂u

∂ν
(x′0) < 0, (8.4)

and further that
∂u

∂xi
(x′0) = 0 for 1 ≤ i ≤ n− 1.

Hence, we have, by the boundary condition (8.1b),

0 = Bγu(x′0) = µ(x′0)
∂u

∂ν
(x′0) +Qu(x′0) (8.5)
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= µ(x′0)
∂u

∂ν
(x′0) +

n−1∑
i,j=1

αij(x′0)
∂2u

∂xi∂xj
(x′0) + γ(x′0)u(x

′
0)

≤ µ(x′0)
∂u

∂ν
(x′0) + γ(x′0)u(x

′
0),

since the matrix
(
αij(x′0)

)
1≤i,j≤n−1

is non-negative definite.

However, in view of condition (H.1) we obtain from assertions (8.3) and (8.4)
that

µ(x′0)
∂u

∂ν
(x′0) + γ(x′0)u(x0) < 0.

This contradicts inequality (8.5).

The proof of Theorem 8.1 is complete.

Step II: Secondly, by combining Corollary 7.1 and Theorem 8.1 we find that
if conditions (2.4), (H.1) and (H.2) are satisfied, then the mapping

A = (A, Bγ) : Hs+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ )

is injective for every s > −1/2.
Step III: Thirdly, it follows from Theorem 6.3 that if condition (H.2) is satis-

fied, then we have the assertion

indA = dimN (A)− codimR(A) = 0 for every s > −1/2. (6.49)

Therefore, we have proved that if conditions (2.4), (H.1) and (H.2) are satisfied,
then the mapping

A = (A, Bγ) : Hs+2(Ω) −→ Hs(Ω)⊕Hs+1/2(Γ ) (8.6)

is bijective for every s > −1/2.
The proof of Theorem 2.2 is complete. ⊓⊔

Remark 8.1 By combining assertion (8.6) and Proposition 6.1, we can prove the
following theorem:

Theorem 8.2 Assume that conditions (2.4), (H.1) and (H.2) are satisfied. Then the

closed operator

T : Hs+3/2(Γ ) −→ Hs+1/2(Γ ), (8.7)

defined by formula (6.24), is bijective for every s ≥ 0 (see Table 6.2).

Indeed, the above assertion (8.6) implies that the non-homogeneous Vǐsik–
Ventcel’ boundary value problem (1.4) is uniquely solvable in the framework of
Sobolev spaces. Hence, by virtue of Proposition 6.1 we find that the operator T is
bijective for every s ≥ 0.
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8.2 Proof of Theorem 2.3

The proof of Theorem 2.3 is essentially the same as that of Theorem 2.2 if we
replace condition (H.2) by condition (H.3). More precisely, Propositions 6.3, 6.4,
6.5 and 6.6 and Theorem 6.3 remain valid for the pseudo-differential operator

T = µ(x′)Π +Q(x′, Dx′) = µ(x′)Π +
r∑

j=1

Xj

(
x′, Dx′

)2
+X0

(
x′, Dx′

)
+ γ(x′),

when we replace formula (1.3) by formula (2.6) and condition (H.2) by condition
(H.3), respectively.

In fact, if K′ is an arbitrary compact set in the open neighborhood V of the
boundary portion

Γ0 =
{
x′ ∈ Γ : µ(x′) = 0

}
,

then, by using the energy estimate due to Olĕınik–Radkevič [33, Theorem 2.5.1] (or
[34, Theorem 2.1]) and [33, Theorem 2.2.8] with s := 0 and [33, Lemma 2.5.3] with
R(K) := 1 and s := −1/2, we can obtain inequality (6.33) under condition (H.3).
Hence, by combining inequalities (6.29), (6.32) and (6.33) we have the fundamental
inequality (6.34) under condition (H.3).

In this way, the proof of Theorem 2.3 goes through just as in Section 7 and Sub-
section 8.1 if conditions (2.4), (H.1) and (H.3) are satisfied. Therefore, assertions
(8.6) and (8.7) remain valid if conditions (2.4), (H.1) and (H.3) are satisfied.

The proof of Theorem 2.3 is complete. ⊓⊔

9 Agmon’s method

In order to prove an existence and uniqueness theorem for the homogeneous Vǐsik–
Ventcel’ boundary value problem (1.5) in the framework of Sobolev spaces when
|λ| → ∞ (Theorem 2.4), we make use of a method essentially due to Agmon
([2], [29]). This is a technique of treating a spectral parameter λ as a second order,
elliptic differential operator of an extra variable y on the unit circle S, and relating
the old problem to a new one with the additional variable (see [17], [48]).

First, we introduce an auxiliary variable y of the unit circle

S = R/2πZ,

and replace the complex parameter λ by the second order differential operator

−eiθ ∂
2

∂y2
for −π < θ < π.

More precisely, if we express the complex parameter λ in the form

λ = r2 eiθ for r ≥ 0 and −π < θ < π,

then we replace the differential operator

A− λ = A− r2 eiθ
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defined in the original domain Ω by the second order differential operator

Λ̃(θ) := A+ eiθ
∂2

∂y2
for −π < θ < π, (9.1)

defined in the product domain Ω×S. We remark that the operator Λ̃(θ) is strongly
uniform elliptic for −π < θ < π in Ω × S (see [61, p. 146, Definition 10.6]).

Now we consider instead of the original Vǐsik–Ventcel’ boundary value problem
with spectral parameter(A− λ)u = f in Ω,

Bγu = µ(x′)
∂u

∂ν

∣∣∣∣
Γ

+Q (u|Γ ) = 0 on Γ .
(1.5)

the following homogeneous Vǐsik–Ventcel’ boundary value problem in the product
domain Ω×S: Given a function f̃(x, y) defined in Ω×S, find a function ũ(x, y) in
Ω × S such that

Λ̃(θ)ũ =

(
A+ eiθ

∂2

∂y2

)
ũ = f̃ in Ω × S,

Bγũ = µ(x′)
∂ũ

∂ν

∣∣∣∣
Γ×S

+Q(x′, Dx′) (ũ|Γ×S) = 0 on Γ × S.
(9.2)

In order to prove Theorem 2.4, we associate with the homogeneous Vǐsik–
Ventcel’ boundary value problem (9.2) a densely defined, closed linear operator

Ã(θ) : L2(Ω × S) −→ L2(Ω × S)

in the Hilbert space L2(Ω × S) as follows (see formulas (2.7a) and (2.7b)):

(a) The domain D(Ã(θ)) of definition of Ã(θ) is the space

D(Ã(θ) =
{
ũ ∈ L2(Ω × S) : Λ̃(θ)ũ ∈ L2(Ω × S), Bγũ = 0 on Γ × S

}
(9.3a)

=
{
ũ ∈ H2(Ω × S) : Bγũ = 0 on Γ × S

}
. (9.3b)

(b) Ã(θ)ũ = Λ̃(θ)ũ for every ũ ∈ D(Ã(θ)).
Indeed, since Λ̃(θ) : L2(Ω×S)→ D′(Ω×S) and Bγ : H

Λ̃(θ)
(Ω×S)→ H−5/2(Γ×

S) are both continuous, it follows that Ã(θ) is a closed operator (see the proof

of Proposition 7.1). Furthermore, the operator Ã(θ) is densely defined, since the

domain D(Ã(θ)) contains a dense subspace C∞
0 (Ω × S) of L2(Ω × S).

The next theorem asserts that if condition (G) is satisfied, then the operator

Ã(θ) is a Fredholm operator:

Theorem 9.1 Let θ ∈ (−π, π). Assume that condition (G) is satisfied. Then the op-

erator Ã(θ) : L2(Ω×S)→ L2(Ω×S) is a Fredholm operator. Moreover, there exists

a constant C̃(θ) > 0, continuously depending on θ, such that the a priori estimate

∥ũ∥H2(Ω×S) ≤ C̃(θ)
(∥∥∥Λ̃(θ)ũ∥∥∥

L2(Ω×S)
+ ∥ũ∥L2(Ω×S)

)
(9.4)

holds true for all functions ũ ∈ D(Ã(θ)).

The proof of Theorem 9.1 will be given in Section 13, due to its length.
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10 The Dirichlet problem for Agmon’s method

In this section, by using the theory of pseudo-differential operators we consider the
following non-homogeneous Dirichlet problem (D̃) for the second order, strongly
uniform elliptic differential operator Λ̃(θ) for −π < θ < π in the framework of
Sobolev spaces on the product domain Ω×S: For given functions f̃ and φ̃ defined
in Ω × S and on Γ × S, respectively, find a function ũ in Ω × S such that{

Λ̃(θ)ũ = f̃ in Ω × S,
γ0ũ = ũ|Γ×S = φ̃ on Γ × S.

(D̃)

Following Seeley [43] and [44], we let (cf. formula (5.1))

N0

(
Λ̃(θ)

)
=

{
ũ ∈ C∞(Ω × S) : supp ũ ⊂ Ω × S, Λ̃(θ)ũ = 0 in Ω × S

}
. (10.1)

It is known (see [43, Theorem 7]) that N0

(
Λ̃(θ)

)
is finite-dimensional. We remark

from formula (10.1) that

N0

(
Λ̃(θ)

)
⊂ N

(
Ã(θ)

)
.

10.1 Symbol of the differential operator Λ̃(θ)

In this subsection, we calculate explicitly the symbol of the strongly uniform elliptic
differential operator Λ̃(θ) defined by formula (9.1). However, it is easy to see that
there is a homotopy in the class of strongly uniform elliptic symbols between the
elliptic differential operatorsΛ̃1(θ) = Λ̃(θ) = A+ eiθ ∂2

∂y2 ,

Λ̃0(θ) = ∆+ eiθ ∂2

∂y2 = ∂2

∂x2
1
+ . . .+ ∂2

∂x2
n
+ eiθ ∂2

∂y2 .

For example, we may take

Λ̃t(θ) := tA+ (1− t)∆+ eiθ
∂2

∂y2
for 0 ≤ t ≤ 1. (10.2)

Therefore, we have only to calculate explicitly the symbol of the strongly uni-
form elliptic differential operator Λ̃0(θ) for the usual Laplacian A = ∆:

Λ̃0(θ) = ∆+ eiθ
∂2

∂y2
in Ω × S for −π < θ < π. (10.3)

To do so, let

(x, ξ, y, η) = (x1, . . . , xn, ξ1, . . . , ξn, y, η)

be a local coordinate system of the cotangent bundle T ∗(Ω×S) = T ∗(Ω)×T ∗(S).
Then the principal symbol of the differential operator Λ̃0(θ) is equal to the follow-
ing:

−
((
|ξ|2 + cos θ · η2

)
+
√
−1 sin θ · η2

)
.
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Moreover, we remark that

(
|ξ|2 + cos θ · η2

)
+
√
−1 sin θ · η2

=

(
|ξ|2 + cos θ · η2 +

√
−1 sin θ · η2

|ξ|2 + η2

)(
|ξ|2 + η2

)
,

and further that the middle term can be estimated as follows:

∣∣∣∣ |ξ|2 + cos θ · η2 +
√
−1 sin θ · η2

|ξ|2 + η2

∣∣∣∣ ≥

√

1+cos θ
2 if |θ| ≤ π/2,

1√
2

4

√
1+cos θ
1−cos θ if π/2 < |θ| < π.

(10.4)

By virtue of inequality (10.4), we are reduced to the study of the non-homoge-
neous Dirichlet problem for the strongly uniform elliptic differential operator Λ̃0(θ)
defined by formula (10.3).

In this way, we can prove the following existence and uniqueness theorem for the
non-homogeneous Dirichlet problem (D̃) in the framework of Sobolev spaces (cf.
[3], [12], [19], [29], [44], [61]), analogous to Theorem 5.3:

Theorem 10.1 The non-homogeneous Dirichlet problem (D̃) has a unique solution

ũ in the space Hs+2(Ω × S) for any f̃ ∈ Hs(Ω × S) and any φ̃ ∈ Hs+3/2(Γ × S)
with s > −3/2. Moreover, the unique solution ũ of the Dirichlet problem (D̃), modulo

N0

(
Λ̃(θ)

)
⊂ C∞(Ω × S), can be expressed in the form (cf. formula (5.7))

ũ =
(
F̃(θ)Ẽf̃

)∣∣∣
Ω×S

+ P̃(θ)
(
φ̃−

(
F̃(θ)Ẽf̃

)∣∣∣
Γ×S

)
in Ω × S. (10.5)

Here:

(a) F̃(θ) : Hs(M × S)→ Hs+2(M × S) is the right inverse to Λ̃(θ).
(b) P̃(θ) : Hs−1/2(Γ × S)→ Hs(Ω × S) is the Poisson kernel for Λ̃(θ).
(c) Ẽ : Hs(Ω × S)→ Hs(M × S) is the Seeley extension operator (see [1, Theorems

5.21 and 5.22]).

By applying Theorem 10.1 with φ̃ := 0, we find from formula (10.5) that the
homogeneous Dirichlet problem

{
Λ̃(θ)ṽ = f̃ in Ω × S,
γ0ṽ = 0 on Γ × S

(10.6)

has a unique solution ṽ ∈ Hs+2(Ω×S) for every f̃ ∈ Hs(Ω×S). We let (cf. formula
(6.5))

ṽ := G̃D(θ)f̃ =
(
F̃(θ)Ẽf̃

)∣∣∣
Ω×S

− P̃(θ)
(
F̃(θ)Ẽf̃

∣∣∣
Γ×S

)
. (10.7)

The operator G̃D(θ) is called the Green operator for the Dirichlet problem (10.6).
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11 A special reduction to the boundary Γ × S

In this section, we reduce the homogeneous Vǐsik–Ventcel’ boundary value problem
(9.2) to the study of a second order, pseudo-differential operator T̃ (θ) := Bγ(P̃(θ))
on the boundary Γ × S.

More precisely, we can prove the following result, analogous to Proposition 6.1
with ψ := 0 and formulas (6.15) and (6.16):

Proposition 11.1 For a given function f̃ ∈ Hs(Ω × S) with s > −1/2, there exists

a solution ũ ∈ Hs+2(Ω × S) of the homogeneous Vǐsik–Ventcel’ problem (9.2) if and

only if there exists a solution φ̃ ∈ Hs+3/2(Γ × S) of the equation (cf. formula (6.15))

Bγ
(
P̃(θ)φ̃

)
= − µ(x′)

∂

∂ν

(
G̃D(θ)f̃

)∣∣∣∣
Γ×S

on Γ × S. (11.1)

Moreover, the solutions ũ and φ̃ are related as follows (cf. formula (6.16)):

ũ = G̃D(θ)f̃ + P̃(θ)φ̃ ∈ Hs+2(Ω × S), (11.2a)

φ̃ = ũ|Γ×S ∈ Hs+3/2(Γ × S). (11.2b)

If we introduce a boundary operator T̃ (θ) by the formula

T̃ (θ) : C∞(Γ × S) −→ C∞(Γ × S)

φ̃ 7−→ Bγ
(
P̃(θ)φ̃

)
,

then we have the formula (cf. formula (6.17))

T̃ (θ) = Bγ
(
P̃(θ)

)
= µ(x′)γ1P̃(θ) +Q

(
x′, Dx′

) (
γ0P̃(θ)

)
(11.3)

= µ(x′)Π̃(θ) +Q
(
x′, Dx′

)
,

where γ0P̃(θ) = I and Π̃(θ) = γ1P̃(θ) is called the Dirichlet-to-Neumann operator

defined as follows:

Π̃(θ)φ̃ :=
∂

∂ν

(
P̃(θ)φ̃

)∣∣∣∣
Γ×S

for all φ̃ ∈ C∞(Γ × S). (11.4)

By combining formulas (11.1) and (11.2), we have proved that the homogeneous
Vǐsik–Ventcel’ boundary value problem (9.2) can be reduced to the study of the
pseudo-differential equation on Γ × S (cf. formula (6.22) with ψ := 0)

T̃ (θ)φ̃ = µ(x′)Π̃(θ)φ̃+Q
(
x′, Dx′

)
φ̃ = − µ(x′)

∂

∂ν

(
G̃D(θ)f̃

)∣∣∣∣
Γ×S

. (11.5)
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12 Symbolic calculus

The purpose of this section is to prove that if condition (G) is satisfied, then the
closed realization

T̃ (θ) : H3/2(Γ × S) −→ H1/2(Γ × S),

defined by formula (12.7), is a Fredholm operator for every −π < θ < π (Proposi-
tion 12.3).

First, we show that the pseudo-differential operator

T̃ (θ) = µ(x′)Π̃(θ) +Q
(
x′, Dx′

)
associated with the differential operator

Λ̃1(θ) = Λ̃(θ) = A+ eiθ
∂2

∂y2
for −π < θ < π (9.1)

is hypoelliptic with loss of one derivative if condition (G) is satisfied (Proposition
12.2). By using the homotopy (10.2) in the class of strongly uniform elliptic sym-
bols, we have only to calculate the complete symbol

t̃2(x
′, ξ′, y, η; θ) + t̃1(x

′, ξ′, y, η; θ) + . . .

of the pseudo-differential operator T̃ (θ) for the differential operator

Λ̃0(θ) = ∆+ eiθ
∂2

∂y2
for −π < θ < π, (10.3)

just as in Subsection 10.1.

12.1 Symbols of T̃ (θ) for the differential operator Λ̃0(θ)

In this subsection, we calculate explicitly the principal symbols of the pseudo-
differential operators Π̃(θ) and T̃ (θ) associated with the differential operator Λ̃0(θ)
defined by formula (10.3).

Step 1: First, we calculate the symbol of the Dirichlet-to-Neumann operator

Π̃(θ) defined by formula (11.4). To do this, we let

(x′, ξ′, y, η) = (x1, . . . , xn−1, ξ1, . . . , ξn−1, y, η)

be a local coordinate system of the cotangent bundle T ∗(Γ ×S) = T ∗(Γ )× T ∗(S).
Then it is known (see [50, Section 10.2]) that the complete symbol of Π̃(θ) is given
by the following formula:(

p̃1(x
′, ξ′, y, η; θ) +

√
−1 q̃1(x′, ξ′, y, η; θ)

)
+
(
p̃0(x

′, ξ′, y, η; θ) +
√
−1 q̃0(x′, ξ′, y, η; θ)

)
+ terms of order ≤ −1,

where −p̃1(x′, ξ′, y, η; θ) > 0 on the bundle T ∗(Γ × S) \ {0} of non-zero cotangent
vectors, for −π < θ < π. More precisely, we have the formulas

• p̃1(x
′, ξ′, y, η; θ)
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= − 1√
2

[[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
+
(
|ξ′|2 + cos θ · η2

)]1/2
.

• q̃1(x
′, ξ′, y, η; θ)

= − 1√
2

[[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
−
(
|ξ′|2 + cos θ · η2

)]1/2
.

Hence, we have the formula

p̃1(x
′, ξ′, y, η; θ)2 + q̃1(x

′, ξ′, y, η; θ)2 =

[(
|ξ′|2 + cos θ · η2

)2
+ sin2 θ · η4

]1/2
.

Moreover, it is easy to see that

−p̃1(x′, ξ′, y, η; θ) ≥


√

1+cos θ
2

(
|ξ′|2 + η2

)1/2
if |θ| ≤ π/2,

1√
2

4

√
1+cos θ
1−cos θ

(
|ξ′|2 + η2

)1/2
if π/2 < |θ| < π,

(12.1)

and further that

p̃1(x
′, ξ′, y, η; θ)2 + q̃1(x

′, ξ′, y, η; θ)2 ≥ 1 + cos θ

2

(
|ξ′|2 + η2

)
, −π < θ < π. (12.2)

Therefore, we obtain that the operator T̃ (θ) = µ(x′)Π̃(θ) + Q(x′, Dx′) is a
classical, pseudo-differential operator of second order on the boundary Γ × S and
further that its complete symbol is given by the following formula:

t̃2(x
′, ξ′, y, η; θ) + t̃1(x

′, ξ′, y, η; θ) + terms of order ≤ 0 (12.3)

:= −

 n−1∑
j,k=1

αjk(x′)ξjξk

+ µ(x′) p̃1(x
′, ξ′, y, η; θ)

+
√
−1

(
µ(x′) q̃1(x

′, ξ′, y, η; θ) +
n−1∑
k=1

βk(x′)ξk

)
+ terms of order ≤ 0.

Step 2: Summing up, we have the following proposition for the pseudo-differen-
tial operator T̃ (θ) associated with the differential operator Λ̃0(θ) in the case where
A = ∆, analogous to Proposition 6.2:

Proposition 12.1 The first two symbols

t̃2(x
′, ξ′, y, η; θ) + t̃1(x

′, ξ′, y, η; θ)

of the pseudo-differential operator

T̃ (θ) = µ(x′)Π̃(θ) +Q(x′, Dx′) for −π < θ < π (11.3)

are given respectively by the following formulas (see formula (12.3)) :

t̃2(x
′, ξ′, y, η; θ) = −

n−1∑
j,k=1

αjk(x′)ξjξk, (12.4a)

t̃1(x
′, ξ′, y, η; θ) = µ(x′) p̃1(x

′, ξ′, y, η; θ) (12.4b)
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+
√
−1

(
µ(x′) q̃1(x

′, ξ′, y, η; θ) +
n−1∑
k=1

βk(x′)ξk

)
,

where the symbols p̃1(x
′, ξ′, y, η; θ) and q̃1(x

′, ξ′, y, η; θ) satisfy inequalities (12.1) and

(12.2).

12.2 Hypoellipticity of T̃ (θ) for the differential operator Λ̃(θ)

In light of formulas (12.3) and (12.4), by using the homotopy (10.2) we can prove
the following proposition for the pseudo-differential operator T̃ (θ) associated with
the original differential operator Λ̃1(θ) = Λ̃(θ) defined by formula (9.1), analogous
to Proposition 6.3:

Proposition 12.2 Let −π < θ < π. If condition (G) is satisfied, then we have the

following three assertions:

(i) There exist constants c̃0(θ) > 0 and C̃0(θ) > 0, depending continuously on θ, such

that

−Re
(
T̃ (θ)φ̃, φ̃

)
L2(Γ×S)

≥ c̃0(θ) ∥φ̃∥2H1/2(Γ×S) − C̃0(θ) ∥φ̃∥2L2(Γ×S) (12.5)

for all φ̃ ∈ C∞(Γ × S).

(ii) There exists a constant C̃1(θ) > 0, depending continuously on θ, such that

∥φ̃∥2H1/2(Γ×S) ≤ C̃1(θ)

(∥∥∥T̃ (θ)φ̃∥∥∥2
H−1/2(Γ×S)

+ ∥φ̃∥2L2(Γ×S)

)
for all φ̃ ∈ C∞(Γ × S).

(iii) The pseudo-differential operator T̃ (θ) is hypoelliptic with loss of one derivative on

Γ × S. More precisely, we have, for every s ∈ R,

φ̃ ∈ D′(Γ × S), T̃ (θ)φ̃ ∈ Hs(Γ × S) =⇒ φ̃ ∈ Hs+1(Γ × S). (12.6)

Moreover, for any t < s+ 1 there exists a constant C̃s,t(θ) > 0, depending contin-

uously on θ, such that

∥φ̃∥2Hs+1(Γ×S) ≤ C̃s,t(θ)

(∥∥∥T̃ (θ)φ̃∥∥∥2
Hs(Γ×S)

+ ∥φ̃∥2Ht(Γ×S)

)
.

Here (·, ·)L2(Γ×S) is the inner product of the Hilbert space L2(Γ × S) = H0(Γ × S)
and ∥ · ∥Hs(Γ×S) is the norm of the Sobolev space Hs(Γ × S), respectively.

Indeed, by formula (12.4b), inequality (12.1) and condition (G) it suffices to
note that we have, for −π < θ < π,

−Re t̃1(x
′, ξ′, y, η; θ) = µ(x′)

(
−p̃1(x′, ξ′, y, η; θ)

)
> 0

on the bundle T ∗(Γ × S) \ {0}
of non-zero cotangent vectors.

Hence, the desired inequality (12.5) follows by applying Hörmander [25, Theorem
22.3.3] (with m := 1) to the pseudo-differential operator −T̃ (θ) = −µ(x′)Π̃(θ) −
Q(x′, Dx′).
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Remark 12.1 Proposition 12.2 remains valid for the adjoint T̃ (θ)∗ of the pseudo-
differential operator T̃ (θ), analogous to Proposition 6.4.

Now we can associate with the Vǐsik–Ventcel’ boundary value problem (9.2) a
densely defined, closed linear operator

T̃ (θ) : H3/2(Γ × S) −→ H1/2(Γ × S)

as follows (cf. formula (6.24) and Table 6.2):

(1) The domain D(T̃ (θ)) of definition of T̃ (θ) is the space

D(T̃ (θ)) =
{
φ̃ ∈ H3/2(Γ × S) : T̃ (θ)φ̃ ∈ H1/2(Γ × S)

}
. (12.7)

(2) T̃ (θ)φ̃ = T̃ (θ)ũ for every φ̃ ∈ D(T̃ (θ)).

Then, by using Proposition 12.2 with s := 1/2 and t := −1/2 we can prove the
following fundamental results for the closed operator T̃ (θ) associated with the
original differential operator Λ̃1(θ) = Λ̃(θ), analogous to assertions (6.45) and
(6.41):

Proposition 12.3 Let −π < θ < π. If condition (G) is satisfied, then we have the

following two assertions:

(i) The operator T̃ (θ) defined by formula (12.7) is a Fredholm operator.
(ii) There exists a constant C̃2(θ) > 0, depending continuously on θ, such that we have,

for all φ̃ ∈ D(T̃ (θ)),

∥φ̃∥H3/2(Γ×S) ≤ C̃2(θ)

(∥∥∥T̃ (θ)φ̃∥∥∥
H1/2(Γ×S)

+ ∥φ̃∥H−1/2(Γ×S)

)
. (12.8)

13 Proof of Theorem 9.1

This section is devoted to the proof of Theorem 9.1. More precisely, we show
how Theorem 9.1 follows from Propositions 11.1, 12.2 and 12.3 if condition (G) is
satisfied. The proof of Theorem 9.1 is divided into three steps.

Step 1: By virtue of the pseudo-differential equation (11.5) and the regularity
property (12.6), we find from Proposition 11.1 that if f̃ ∈ Hs(Ω × S), then every
solution ũ ∈ L2(Ω×S) of the homogeneous Vǐsik–Ventcel’ boundary value problem{

Λ̃(θ)ũ = f̃ in Ω × S,
Bγũ = 0 on Γ × S,

(9.2)

belongs to the Sobolev space Hs+2(Ω×S) for every s ≥ 0, and it can be expressed,

unique modulo N0

(
Λ̃(θ)

)
⊂ C∞(Ω × S), in the form

ũ = G̃D(θ)f̃ + P̃(θ)φ̃ ∈ Hs+2(Ω × S), (11.2a)

φ̃ = ũ|Γ×S ∈ H
s+3/2(Γ × S). (11.2b)

Therefore, we obtain the following regularity result for the homogeneous Vǐsik–
Ventcel’ boundary value problem (9.2) in the framework of Sobolev spaces, anal-
ogous to Theorem 7.1:
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Theorem 13.1 Let θ ∈ (−π, π). Assume that condition (G) is satisfied. If f̃ is a

function in Hs(Ω×S), then every solution ũ ∈ L2(Ω×S) of the homogeneous Vǐsik–

Ventcel’ boundary value problem (9.2) belongs to Hs+2(Ω × S) for every s ≥ 0.

Rephrased, Theorem 13.1 asserts that every solution ũ of the homogeneous
Vǐsik–Ventcel’ boundary value problem (9.2) has the elliptic gain of 2 derivatives
from f̃ in the framework of Sobolev spaces.

Step 2: Furthermore, we have the following two assertions:

(i) The regularity property (9.3b) holds true for the operator Ã(θ) defined by
formula (9.3a), if we take s := 0 in Theorem 13.1.

(ii) It follows from Propositions 11.1 and 12.3, Peetre’s lemma (Lemma 6.1) and
Theorem 13.1 that the null space

N
(
Ã(θ)

)
=

{
ũ ∈ H2(Ω × S) : Λ̃(θ)ũ = 0 in Ω × S, Bγũ = 0 on Γ × S

}
is a finite-dimensional, subspace of C∞(Ω × S). Indeed, it suffices to note that

ũ ∈ N
(
Ã(θ)

)
⇐⇒

{
ũ = P̃(θ)φ̃, φ̃ ∈ H3/2(Γ × S),
T̃ (θ)φ̃ = 0.

In order to prove the desired a priori estimate (9.4), we may assume that (see
formula (10.1))

N0

(
Λ̃(θ)

)
= N

(
Ã(θ)

)
= {0},

since all norms on the finite-dimensional space N
(
Ã(θ)

)
are equivalent. More pre-

cisely, the reader might be referred to Taira [52, pp. 1314–1315, Proof of Theorem
7.1].

Step 3: Now it follows from an application of Theorem 10.1 and formula (10.7)
with s := 0 that the Green operator

G̃D(θ) : L2(Ω × S) −→ H2(Ω × S) (13.1)

and the Poisson kernel

P̃(θ) : H3/2(Γ × S) −→ H2(Ω × S) (13.2)

are both continuous.
Therefore, by using assertions (13.1) and (13.2) and the a priori estimate (12.8)

we obtain from formulas (11.2) and (11.5) that if a function ũ ∈ H2(Ω × S) is a
solution of the homogeneous Vǐsik–Ventcel’ boundary value problem (9.2), then
we have the inequality

∥ũ∥H2(Ω×S) (13.3)

≤
∥∥∥G̃D(θ)f̃

∥∥∥
H2(Ω×S)

+
∥∥∥P̃(θ)φ̃∥∥∥

H2(Ω×S)
≤ C̃1(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+ ∥φ̃∥H3/2(Γ×S)

)
≤ C̃1(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+ C̃2(θ)

(∥∥∥T̃ (θ)φ̃∥∥∥
H1/2(Γ×S)

+ ∥φ̃∥H−1/2(Γ×S)

))
= C̃1(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+ C̃2(θ)

∥∥∥∥∥µ(x′) ∂∂ν (G̃D(θ)f̃
)∣∣∣∣

Γ×S

∥∥∥∥∥
H1/2(Γ×S)
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+ C̃2(θ)

∥∥∥∥(ũ− G̃D(θ)f̃
)∣∣∣

Γ×S

∥∥∥∥
H−1/2(Γ×S)

)
= C̃1(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+ C̃2(θ)
∥∥∥µ(x′)γ1 (G̃D(θ)f̃

)∥∥∥
H1/2(Γ×S)

+ C̃2(θ)
∥∥∥γ0 (ũ− G̃D(θ)f̃

)∥∥∥
H−1/2(Γ×S)

)
≤ C̃3(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+
∥∥∥G̃D(θ)f̃

∥∥∥
H2(Ω×S)

+
∥∥∥ũ− G̃D(θ)f̃

∥∥∥
L2(Ω×S)

)
≤ C̃3(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+
∥∥∥G̃D(θ)f̃

∥∥∥
H2(Ω×S)

+ ∥ũ∥L2(Ω×S) +
∥∥∥G̃D(θ)f̃

∥∥∥
L2(Ω×S)

)
≤ C̃4(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+
∥∥∥G̃D(θ)f̃

∥∥∥
H2(Ω×S)

+ ∥ũ∥L2(Ω×S)

)
≤ C̃5(θ)

(∥∥∥f̃∥∥∥
L2(Ω×S)

+ ∥ũ∥L2(Ω×S)

)
= C̃5(θ)

(∥∥∥Λ̃(θ)ũ∥∥∥
L2(Ω×S)

+ ∥ũ∥L2(Ω×S)

)
,

since the trace operatorsγ0 : N
(
Λ̃(θ), 0

)
−→ H−1/2(Γ × S),

γ1 : H
2(Ω × S) −→ H1/2(Γ × S)

are both continuous (see assertion (5.4a) with A := Λ̃(θ) and s := 0). Here the
letter C̃j(θ) denotes a generic positive constant.

In this way, we find from inequality (13.3) that the desired a priori estimate

(9.4) holds true for all ũ ∈ D(Ã(θ)).
Now the proof of Theorem 9.1 is complete. ⊓⊔

14 Proof of Theorem 2.4

This section is devoted to the proof of Theorem 2.4. We recall that conditions
(H.1), (H.2) and (H.3) are trivially satisfied under condition (G). The proof is
divided into four steps.

Step I: We associate with the Vǐsik–Ventcel’ boundary value problem (1.5) a
densely defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

in the Hilbert space L2(Ω) as follows (see Proposition 7.1):

(a) The domain D(A) of definition of A is the space

D(A) =
{
u ∈ H2(Ω) : Bγu = 0 on Γ

}
. (2.7b)

(b) Au = Au for every u ∈ D(A).
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Step II: By applying Theorem 2.2 with A := A− λ and ψ := 0, we can obtain
that if condition (G) is satisfied, then the homogeneous Vǐsik–Ventcel’ boundary
value problem (1.5) has a unique solution u ∈ H2(Ω) for any f ∈ L2(Ω), provided
that λ > 0. Indeed, it suffices to note that condition (2.4) is satisfied:

c(x)− λ ≤ λ < 0 in Ω.

In particular, we have the assertion for λ = 1

ind (A− I) = 0. (14.1)

However, by the Rellich–Kondrachov theorem ([1, Theorem 6.3, Parts I and II],
[12, p. 95, Proposition 3.4]) it follows that the constant mapping

(1− λ) I : H2(Ω) −→ L2(Ω)

is compact for all complex number λ ∈ C.
Hence, we obtain from assertion (14.1) that the index of the operator A − λI

is equal to zero for all complex number λ ∈ C:

ind (A− λ I) = ind ((A− I) + (1− λ)I) = ind (A− I) = 0,

since the index is stable under compact perturbations (see Gohberg–Krĕın [20]).
In this way, we have proved the following fundamental theorem (cf. Theorem

6.3) :

Theorem 14.1 If condition (G) is satisfied, then we have the assertion

ind (A− λ I) = 0 for all number λ ∈ C. (14.2)

Step III: The next theorem plays an essential role in the proof of the resolvent
estimates (2.8) and (2.9) due to Taira [49, Corollary 8.4.2] based on Agmon [2,
p. 272, Theorem 15.4]:

Theorem 14.2 Let θ ∈ (−π, π). Assume that the a priori estimate

∥ũ∥H2(Ω×S) ≤ C̃(θ)
(∥∥∥Λ̃(θ)ũ∥∥∥

L2(Ω×S)
+ ∥ũ∥L2(Ω×S)

)
(9.4)

holds true for all functions ũ ∈ H2(Ω×S) satisfying the boundary condition Bγũ = 0
on Γ × S. Then, for every −π < θ < π there exists a constant R(θ) > 0, continuously
depending on θ, such that if λ = r2 eiθ and |λ| = r2 ≥ R(θ), we have, for all functions

u ∈ H2(Ω) satisfying the boundary condition Bγu = 0 on Γ (that is, u ∈ D(A)),

|u|2 + |λ|
1/2 · |u|1 + |λ| · ∥u∥L2(Ω) ≤ C(θ) ∥(A− λ)u∥L2(Ω) , (14.3)

with a constant C(θ) > 0 continuously depending on θ. Here | · |j is the seminorm on

the Sobolev space H2(Ω) defined by the formula

|u|j =

∫
Ω

∑
|β|=j

∣∣∣Dβu(x)
∣∣∣2 dx

1/2

for j = 1, 2.
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Proof Now let u(x) be an arbitrary function in the domain D(A):

u ∈ H2(Ω) and Bγu = 0 on Γ .

We choose a function ζ(y) in C∞(S) such that
0 ≤ ζ(y) ≤ 1 on S,

supp ζ ⊂
[
π
3 ,

5π
3

]
,

ζ(y) = 1 for
π

2
≤ y ≤ 3π

2
,

and let
ṽη(x, y) := u(x)⊗ ζ(y)eiηy for all x ∈ Ω, y ∈ S and η ≥ 0.

Then we have the assertions

• ṽη ∈ H2(Ω × S) for all η ≥ 0,

• Λ̃(θ)ṽη =

(
A+ eiθ

∂2

∂y2

)
ṽη

=
(
A− η2eiθ

)
u⊗ ζ(y)eiηy

+ 2(iη)eiθu⊗ ζ′(y)eiηy + eiθu⊗ ζ′′(y)eiηy ∈ L2(Ω × S) for all η ≥ 0,

and also the boundary condition

• Bγ (ṽη(x, y)) = (Bγu(x))⊗ ζ(y)eiηy = 0 for all η ≥ 0.

Thus, by applying the a priori estimate (9.4) to the functions

ṽη(x, y) = u(x)⊗ ζ(y)eiηy ∈ D(Ã(θ)) for all η ≥ 0,

we obtain that∥∥∥u⊗ ζeiηy∥∥∥
H2(Ω×S)

(14.4)

≤ C̃(θ)
(∥∥∥Λ̃(θ)(u⊗ ζeiηy)∥∥∥

L2(Ω×S)
+ ∥u⊗ ζeiηy∥L2(Ω×S)

)
for all η ≥ 0.

We can estimate each term of inequality (14.4) as follows:

•
∥∥∥u⊗ ζeiηy∥∥∥

L2(Ω×S)
=

(∫
Ω×S

|u(x)|2 |ζ(y)|2 dx dy
)1/p

(14.5)

= ∥ζ∥L2(S) · ∥u∥L2(Ω).

•
∥∥∥Λ̃(θ)(u⊗ ζeiηy)∥∥∥

L2(Ω×S)
(14.6)

≤
∥∥∥(A− η2eiθ)u⊗ ζeiηy∥∥∥

L2(Ω×S)
+ 2η∥u⊗ ζ′eiηy∥L2(Ω×S) + ∥u⊗ ζ

′′eiηy∥L2(Ω×S)

≤ ∥ζ∥L2(S) ·
∥∥∥(A− η2eiθ)u∥∥∥

L2(Ω)
+
(
2η
∥∥ζ′∥∥

L2(S)
+
∥∥ζ′′∥∥

L2(S)

)
∥u∥L2(Ω) .

•
∥∥∥u⊗ ζeiηy∥∥∥2

H2(Ω×S)
(14.7)
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=
∑
|α|≤2

∫
Ω×S

∣∣∣Dα
x,y(u(x)⊗ ζ(y)eiηy)

∣∣∣2 dx dy
≥
∑
|α|≤2

∫
Ω

∫ 3π/2

π/2

∣∣∣Dα
x,y(u(x)⊗ eiηy)

∣∣∣2 dx dy
=

∑
k+|β|≤2

∫
Ω

∫ 3π/2

π/2

∣∣∣ηkDβu(x)
∣∣∣2 dx dy

≥ π
( ∑
|β|=2

∫
Ω

∣∣∣Dβu(x)
∣∣∣2 dx+ η2

∑
|β|=1

∫
Ω
|Dβu(x)|2 dx+ η4

∫
Ω
|u(x)|2 dx

)
= π

(
|u|22 + η2|u|21 + η4∥u∥2L2(Ω)

)
.

Therefore, by carrying these three inequalities (14.5), (14.6) and (14.7) into
inequality (14.4) we obtain that

|u|2 + η |u|1 + η2 ∥u∥L2(Ω)

≤ C̃′(θ)

(∥∥∥(A− η2eiθ)u∥∥∥
L2(Ω)

+ η ∥u∥L2(Ω)

)
for all η ≥ 0,

with another constant C̃′(θ) > 0 continuously depending θ. If η is so large that

η ≥ 2C̃′(θ),

then we can eliminate the last term on the right-hand side to obtain that

|u|2 + η |u|1 + η2 ∥u∥L2(Ω) ≤ 2C̃′(θ)
∥∥∥(A− η2eiθ)u∥∥∥

L2(Ω)
for all η ≥ 2C̃′(θ).

This proves the desired a priori estimate (14.3) if we take

λ := η2eiθ, R(θ) := 4 C̃′(θ)2, C(θ) := 2 C̃′(θ). (14.8)

The proof of Theorem 14.2 is now complete.

By combining Theorems 9.1 and 14.2, we can obtain the desired resolvent
estimates (2.8) and (2.9) for the operator A − λI. More precisely, we prove the
following corollary:

Corollary 14.1 Assume that condition (G) is satisfied. Then, for every 0 < ε < π/2
there exist constants r(ε) > 0 and c(ε) > 0 such that we have, for all λ = r2 eiθ

satisfying the conditions r ≥ r(ε) and −π + ε ≤ θ ≤ π − ε,

|u|2+ |λ|
1/2 · |u|1+ |λ| · ∥u∥L2(Ω) ≤ c(ε) ∥(A− λI)u∥L2(Ω) for all u ∈ D(A). (14.9)

Proof By the a priori estimate (14.3), we have, for all λ = r2 eiθ, −π < θ < π and
|λ| = r2 ≥ R(θ),

|u|2 + |λ|
1/2 · |u|1 + |λ| · ∥u∥L2(Ω) ≤ C(θ) ∥(A− λI)u∥L2(Ω) for all u ∈ D(A).

However, we find from formulas (14.8) that the constants R(θ) and C(θ) depend
continuously on θ ∈ (−π, π), so that they may be chosen uniformly in θ ∈ [−π +
ε, π − ε], for every ε > 0. This proves the existence of the constants r(ε) and c(ε).
Namely, the desired a priori estimate (14.9) holds true for all λ = r2 eiθ satisfying
the conditions r ≥ r(ε) and θ ∈ [−π + ε, π − ε].

The proof of Corollary 14.1 is complete.
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Step IV: The a priori estimate (14.9) asserts that the operator A−λI is injective
if λ belongs to the set

Σ(ε) =
{
λ = r2 eiθ : r ≥ r(ε),−π + ε ≤ θ ≤ π − ε

}
.

Hence, it follows from assertion (14.2) that A− λI is bijective for all λ ∈ Σ(ε).
Summing up, we have proved that the resolvent set of A contains the set Σ(ε)

and further that the resolvent (A− λI)−1 satisfies the estimate∥∥∥(A− λI)−1
∥∥∥ ≤ c(ε)

|λ| for all λ ∈ Σ(ε). (2.8)

Finally, we remark that the resolvent estimate (2.9) is a special case of the
resolvent estimate (2.8).

Now the proof of Theorem 2.4 is complete. ⊓⊔

15 The Vǐsik–Ventcel’ boundary value problem via the Boutet de Monvel

calculus

This Section 15 and the next Section 16 are devoted to the proof of Theorem 2.5.
Our proof of Theorem 2.5 is based on Agmon [2, Theorems 14.4 and 15.1] which
are summarized in [55, Section 4].

In Section 15, for some large number λ0 > 0 (see condition (5.2) with A :=
A− λ0) we study the homogeneous Vǐsik–Ventcel’ boundary value problem{

(A− λ0)u = f in Ω,

Bγu = 0 on Γ
(15.1)

in the framework of Sobolev spaces, if condition (G) is satisfied. However, in the
hypoelliptic (degenerate) case, we cannot use Green’s formula to characterize the
adjoint operator A∗−λ0 I of the boundary value problem (15.1) in the framework
of Sobolev spaces. Therefore, we shift our attention to the Green operator (the
resolvent) (A− λ0 I)−1 and its adjoint operator (A∗ − λ0 I)−1, just as in Taira [53],
[55]. In Sections 15 and 16, we make use of the Boutet de Monvel calculus ([8], [39],
[41], [50, Appendix B]) in order to study the mapping properties of (A− λ0 I)−1

and (A∗ − λ0 I)−1 (Theorems 15.2 and 16.1). In this way, we can verify all the
conditions of [55, Theorem 4.1] and [55, Remark 4.1].

In order to study the homogeneous Vǐsik–Ventcel’ boundary value problem
(15.1), we consider a homotopy in the class of second order, uniformly elliptic
symbols between the elliptic differential operators A− λ0 and ∆− 1, by taking

At := (1− t) (A− λ0) + t (∆− 1) for 0 ≤ t ≤ 1. (15.2)

Therefore, we are reduced to the study of the differential operator

A1 = ∆− 1 =
∂2

∂x21
+ . . .+

∂2

∂x2n
− 1, (15.3)

just as in Section 10.
First, we construct a right inverse Q1 to the differential operator A1 = ∆ − 1

adapted to the Boutet de Monvel calculus. Following Rempel–Schulze [39], we
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denote by f0 the extension of f to the whole Euclidean space Rn with f0 = 0
outside Ω:

f0(x) =

{
f(x) for x ∈ Ω,
0 for x ∈ Rn \Ω.

Let G2(x) be the Bessel potential of order 2 (see [45, Chapter V, Section 3]), that
is,

G2(x) =
1

(4π)n/2

∫ ∞

0
e−t− |x|2

4t t
2−n

2
dt

t
, (15.4a)

Ĝ2(ξ) =

∫
Rn

e−ixξG2(x) dx =
1

1 + |ξ|2
. (15.4b)

If we let

Q1f(x) = −G2 ∗ f0(x) = −
∫
Ω
G2(x− y)f(y) dy for all x ∈ Ω, (15.5)

then we obtain from the transmission property of the Bessel potential G2(x) (see
Boutet de Monvel [8], Rempel–Schulze [39, p. 161, Theorem 2]) that the operator

Q1 : H
s(Ω) −→ Hs+2(Ω)

is continuous for all s > −1/2, and further from [39, p. 100, Lemma 5] that (cf.
formula (5.6))

A1Q1f = (∆− 1)Q1f = f in Ω. (15.6)

This proves that Q1 is a right inverse to A1.
The main purpose of Section 15 is to characterize the mapping property of

the Green operator (the resolvent) G of the homogeneous Vǐsik–Ventcel’ boundary
value problem {

A1u = (∆− 1)u = f in Ω,

Bγu = µ(x′)γ1u+Q
(
x′, Dx′

)
(γ0u) = 0 on Γ

(15.7)

in the framework of Sobolev spaces if condition (G) is satisfied (Theorem 15.2).

15.1 The Green operator for the Dirichlet problem

First, we study the Green operator GD for the homogeneous Dirichlet problem from
the viewpoint of the Boutet de Monvel calculus. For every function f ∈ Hs(Ω)
with s > −1/2, the function v = GDf ∈ Hs+2(Ω) is the unique solution of the
homogeneous Dirichlet problem for the elliptic differential operator A1 = ∆ − 1
defined by formula (15.3):{

A1v = (∆− 1) v = f in Ω,

γ0v = v|Γ = 0 on Γ .
(15.8)

By using formula (15.6), we obtain that (cf. formula (6.5))

v = GDf = Q1f − P1 (γ0 (Q1f)) for f ∈ Hs(Ω). (15.9)

Here P1 is the Poisson kernel for the differential operator A1 = ∆− 1.
First, the next theorem characterizes the Green operator GD defined by formula

(15.9) in terms of the Boutet de Monvel calculus (cf. [55, Theorem 8.1]):
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Theorem 15.1 The Green operator GD given by formula (15.9) can be expressed in

the matrix form (see Table 15.1 below)

D =

 Q1 −P1

γ0Q1 I

 (15.10)

with the principal symbol

σ(D) =

−
1

2⟨ξ′⟩

(
1

⟨ξ′⟩+iν
+ 1

⟨ξ′⟩−iν

)
− 1

⟨ξ′⟩+iν

− 1
2⟨ξ′⟩

1
⟨ξ′⟩−iτ

1

 . (15.11)

Here and in the following we use the notation

ξ =
(
ξ′, ν

)
= (ξ1, ξ2, . . . , ξn−1, ν) ∈ Rn,

⟨ξ′⟩ =
√
1 + |ξ′|2,

ξ =
(
ξ′, ν

)
= (ξ1, ξ2, . . . , ξn−1, ν) ∈ Rn for potential operators,

ξ =
(
ξ′, τ

)
= (ξ1, ξ2, . . . , ξn−1, τ) ∈ Rn for trace operators.

Proof (1) We remark from formulas (15.4) and (15.5) that the principal symbol of
Q1 of −G2(x) is given by the formula

σ (Q1) = −
1

⟨ξ′⟩2 + ν2
= − 1

2⟨ξ′⟩

(
1

⟨ξ′⟩+ iν
+

1

⟨ξ′⟩ − iν

)
. (15.12)

(2) By using Rempel–Schulze [39, p. 100, Lemma 4], we obtain from formula
(15.12) that the operator γ0Q1 is a trace operator of order −2 with the principal
symbol

σ (γ0Q1) = −
1

2⟨ξ′⟩
1

⟨ξ′⟩ − iτ . (15.13)

(3) On the other hand, we find from formula (15.12) ([39, p. 102, Proposition
6]) that the Poisson kernel P1 is a potential operator of order −1 with the principal
symbol

σ (P1) =
1

⟨ξ′⟩+ iν
. (15.14)

Therefore, the desired assertions (15.10) and (15.11) follow by combining for-
mulas (15.12), (15.13) and (15.14).

Finally, the mapping property of the Green operator GD follows from an ap-
plication of Rempel–Schulze [39, p. 176, Theorem 1], as is shown in Table 15.1
below.

The proof of Theorem 15.1 is complete.
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Hs(Ω)
γ0Q1−−−−−→ Hs+3/2(Γ )

Q1

y yI

Hs+2(Ω) ←−−−−−
−P1

Hs+3/2(Γ )

Table 15.1 The mapping property of the Green operator GD for s ≥ 0

15.2 The Green operator for the Vǐsik–Ventcel’ boundary problem (15.7)

In this subsection, by using formulas (6.5), (6.6), (6.16), (6.17) and (6.22) with

A := A1 = ∆− 1, P := P1, T := T1 = BγP1 = µ(x′)Π1 +Q(x′, Dx′),

we prove the mapping property of the Green operator (resolvent) G = (A− I)−1

of the Vǐsik–Ventcel’ boundary value problem (15.7) under condition (G) in the
framework of Sobolev spaces:

Theorem 15.2 Assume that condition (G) is satisfied. Then the Green operator G =
(A− I)−1

, given by the formula

Gf = GDf − P1
(
T −1
1

(
µ(x′) γ1 (GDf)

))
for f ∈ L2(Ω), (15.15)

maps Hs(Ω) continuously into Hs+2(Ω) for every s ≥ 0 (see Table 15.3 below).

Proof By applying Theorem 8.2 with A := A1 = ∆ − 1 under condition (G), we
find from assertion (8.7) that the closed operator

T1 : Hs+3/2(Γ ) −→ Hs+1/2(Γ ) (15.16)

is bijective for every s ≥ 0 in formula (15.15) (see definition (6.24) with T := T1).
The situation can be visualized in Table 15.2 below (see Table 6.2 with T := T1).

Hs+3/2(Γ )
T1−−−−−→ Hs−1/2(Γ )x x

D(T1)
T1−−−−−→ Hs+1/2(Γ )x x

C∞(Γ ) −−−−−→
T1

C∞(Γ )

Table 15.2 The mapping property of the operator T1 for s ≥ 0
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Therefore, we find from formulas (6.19) and (6.20) that the principal term
s(x′, ξ′) of the symbol of the pseudo-differential operator T−1

1 is “formally” given
by the formula

s(x′, ξ′) = − 1∑n−1
j,k=1 α

jk(x′)ξjξk + µ(x′) ⟨ξ′⟩
(15.17)

in terms of the Boutet de Monvel calculus, where

µ(x′) > 0 on Γ .

The proof of Theorem 15.2 is divided into four steps.
Step (1): First, we obtain from formulas (15.10) and (15.11) that the Green

operator
GD = Q1 − P1 (γ0Q1) , (15.9)

has the principal symbol

σ (GD) = − 1

2⟨ξ′⟩

(
1

⟨ξ′⟩+ iν
+

1

⟨ξ′⟩ − iν

)
+

1

2⟨ξ′⟩
1

⟨ξ′⟩+ iν

1

⟨ξ′⟩ − iτ . (15.18)

Step (2): Secondly, it follows from formula (6.19) that the principal symbol of
the Dirichlet-to-Neumann operator Π1 = γ1P1 is given by the formula

σ (Π1) = −⟨ξ′⟩. (15.19)

Moreover, by using Rempel–Schulze [39, p. 100, Lemma 4] we obtain from
formula (15.12) that the operator γ1Q1 is a trace operator of order −1 with the
principal symbol

σ (γ1Q1) = −
1

2

1

⟨ξ′⟩ − iτ . (15.20)

Therefore, by combining formulas (15.20), (15.19) and (15.13) we find that the
operator

γ1GD = γ1Q1 −Π1 (γ0Q1)

is a trace operator of order −1 with the principal symbol

σ (γ1GD) = − 1

⟨ξ′⟩ − iτ . (15.21)

Step (3): Thirdly, since γ0GD = 0 we have the formula

BγGD = µ(x′) γ1GD +Q(x′, Dx′) (γ0GD) = µ(x′) γ1GD.

Hence, it follows from formula (15.21) that the operator BγGD = µ(x′) γ1GD is a
trace operator of order −1 with the principal symbol

σ (BγGD) = µ(x′)σ (γ1GD) = − µ(x′)

⟨ξ′⟩ − iτ . (15.22)

Step (4): In terms of the Boutet de Monvel calculus, we can express each
operator in the representation formula (15.15) in the matrix form (see Table 15.3
below)

R =

 GD −P1

µ(x′) γ1GD T −1
1

 (15.23)
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and further from formulas (15.18), (15.14), (15.22) and (15.17) that the principal
symbol of R is “formally” given by the formula

σ(R) =

−
1

⟨ξ′⟩2+ν2 + 1
2⟨ξ′⟩

1
⟨ξ′⟩+iν

1
⟨ξ′⟩−iτ

− 1
⟨ξ′⟩+iν

− µ(x′)
⟨ξ′⟩−iτ

s(x′, ξ′)

 . (15.24)

Therefore, we find from Rempel–Schulze [39, p. 176, Theorem 1] that the re-
solvent G = (A− I)−1 maps Hs(Ω) continuously into Hs+2(Ω) for every s ≥ 0, as
is shown in Table 15.3 below.

The proof of Theorem 15.2 is complete.

Hs(Ω)
µ(x′) γ1GD−−−−−−−−→ Hs+1/2(Γ )

GD

y T −1
1

y
Hs+2(Ω) ←−−−−−

−P1

Hs+3/2(Γ )

Table 15.3 The mapping property of the resolvent G for s ≥ 0

16 Proof of Theorem 2.5 via the Boutet de Monvel calculus

This section is devoted to the proof of Theorem 2.5. By virtue of the homotopy

(15.2), we are reduced to the study of the homogeneous Vǐsik–Ventcel’ boundary
value problem (15.7). The proof is divided into two steps.

Step 1: First, by using Theorems 15.1 and 15.2 we can characterize explicitly
the mapping property of the adjoint operator G∗ of the Green operator G (defined
by formula (15.15)) as follows:

Theorem 16.1 Assume that condition (G) is satisfied. Then the adjoint operator G∗
of G is given by the formula

G∗g = GD∗g −
(
µ(x′) γ1GD

)∗ (T1∗)−1 (P1∗g) for g ∈ L2(Ω), (16.1)

and it maps Hs(Ω) continuously into Hs+2(Ω) for every s ≥ 0 (see Table 16.2 below).

Proof First, we find from formula (15.15) and assertion (15.16) that

T1
∗ = (BγP1)∗ =

(
µ(x′)Π1

)∗
+Q(x′, Dx′)∗

and the adjoint operator

T1∗ : Hs+3/2(Γ ) −→ Hs+1/2(Γ )

is bijective for every s ≥ 0 in formula (16.1). The situation can be visualized in
Table 16.1 below (see Table 6.3 with T := T1 and s := −s− 2).
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Hs−1/2(Γ )
T1

∗
←−−−−− Hs+3/2(Γ )x x

Hs+1/2(Γ )
T1

∗
←−−−−− D(T1∗)x x

C∞(Γ ) ←−−−−−
T1

∗
C∞(Γ )

Table 16.1 The mapping properties of the adjoint operator T1∗ for s ≥ 0

Secondly, by virtue of formulas (15.23) and (15.24) we obtain that the adjoint

operator R∗ of R in the Boutet de Monvel calculus can be expressed in the matrix
form (see Table 16.2 below)

R∗ =

 GD∗ (
µ(x′) γ1GD

)∗
−P1∗ (T ∗

1 )−1

 (16.2)

with principal symbol

σ
(
R∗) =

− 1
⟨ξ′⟩2+ν2 − 1

2⟨ξ′⟩
1

⟨ξ′⟩+iν
1

⟨ξ′⟩−iτ
− µ(x′)

⟨ξ′⟩+iν

− 1
⟨ξ′⟩−iτ

s(x′, ξ′)

 . (16.3)

Indeed, by Rempel–Schulze [39, p. 151, Corollary 11] it follows from formula (15.22)
that the adjoint operator (BγGD)∗ =

(
µ(x′) γ1GD

)∗
is a potential operator of order

−1 with the principal symbol

− µ(x′)

⟨ξ′⟩+ iν
. (16.4)

Therefore, we obtain from formula (15.15) that the adjoint operator

G∗ =
(
(A− I)−1

)∗
=
(
A∗ − I

)−1

is given by the formula

G∗ = GD∗ −
(
µ(x′) γ1GD

)∗ (T1∗)−1 P1∗.

Moreover, we obtain from formulas (16.2), (16.3) and (16.4) and [39, p. 176, The-
orem 1] that the adjoint operator

G∗ : Hs(Ω) −→ Hs+2(Ω)

is continuous for every s ≥ 0, as is shown in Table 16.2 below.
The proof of Theorem 16.1 is complete.

Step 2: By virtue of part (i) of Theorem 2.4, Theorem 15.2 and Theorem 16.1,
we can apply [55, Theorem 4.1] and [55, condition (4.4)] with A := A− I to obtain
Theorem 2.5.

Now the proof of Theorem 2.5 is complete. ⊓⊔
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Hs(Ω)
−P1

∗
−−−−−→ Hs+1/2(Γ )

GD
∗
y (T1

∗)−1
y

Hs+2(Ω) ←−−−−−−−−−−
(µ(x′) γ1GD)∗

Hs+3/2(Γ )

Table 16.2 The mapping property of the adjoint operator G∗ for s ≥ 0

17 Concluding remarks

In this last section, we state a brief history of the stochastic analysis methods for
Vǐsik–Ventcel’ boundary value problems. More precisely, we remark that the Vǐsik–
Ventcel’ boundary value problem (1.5) was studied by Anderson [5], [6], Cattiaux
[11] and Takanobu–Watanabe [56] from the viewpoint of stochastic analysis (see
also Ikeda–Watanabe [26, Chapter IV, Section 7]).

(I) Anderson [5] and [6] studies the non-degenerate case under low regular-
ity in the framework of the submartingale problem and shows the existence and
uniqueness of solutions to the considered submartingale problem.

(II) Takanobu–Watanabe [56] study certain cases of both degenerate interior
and boundary operators under minimal assumptions of regularity based on the the-
ory of stochastic differential equations, and they show the existence and uniqueness
of solutions. Such existence and uniqueness results on the diffusion processes cor-
responding to the boundary value problems imply the existence and uniqueness of
the associated Feller semigroups on the space of continuous functions.

(III) Cattiaux [11] studies the hypoellipticity for diffusions with Vǐsik–Ventcel’
boundary conditions. By making use of a variant of the Malliavin calculus under
Hömander’s type conditions, he proves that some laws and conditional laws of
such diffusions have a smooth density with respect to the Lebesgue measure.
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