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Abstract

This paper investigates stochastic stability of noisy best response dynamics with reference-

dependent preferences. We define a strategy as super-dominant in a 2×2 coordination game if it

is risk-dominant and the maximin strategy in terms of monetary returns and all players playing

it constitutes an equilibrium which Pareto-dominates all other equilibria. If such a strategy

exists, the corresponding equilibrium, which we call the super-dominant equilibrium, is uniquely

stochastically stable for the BRM choice rule (the best response choice rule with uniform random

errors) given any model of reference-dependent preferences. However, for any 2×2 coordination

game with a super-dominant strategy, there exists a model of reference-dependent preferences

with which the super-dominant equilibrium fails to be stochastically stable for the logit choice

rule.

Keywords: Evolutionary game theory; Behavioral game theory; Equilibrium selection;

Stochastic Stability; Reference-dependent preferences; Loss-aversion; Loss-avoidance; Maximin;

Risk-dominance; Payoff-dominance.

JEL Code: C72, C73.

∗Sawa: Department of Policy and Planning Sciences, University of Tsukuba, email: rsawa@sk.tsukuba.ac.jp. Wu:

Department of Economics, University of Oregon, email: jwu5@uoregon.edu. Please direct correspondence to either

author.

1



1 Introduction

A growing body of experimental evidence suggests that people’s preferences are reference-dependent.

That is, outcomes are evaluated in relative terms rather than in absolute terms.1 Yet, little is known

about how and to what extent reference-dependent preferences affect the long-run behavior of indi-

viduals in a society. This paper attempts to answer this question by employing stochastic stability

analysis from evolutionary game theory.

Stochastic stability analysis (Foster and Young, 1990) offers a framework to study dynamic

processes, and deduces predictions of social conventions selected by a population of individuals in

the long run. It is known that, when individuals obey expected utility theory for non-forward look-

ing behavior within a single period, stochastic stability analysis uniquely selects the risk-dominant

equilibrium in 2×2 coordination games if individuals adopt the best response with mutations rule

(BRM) (Kandori et al. 1993 and Young 1993), i.e. the best response choice rule (Cournot, 1838)

plus uniform errors, or the logit choice rule (Blume 1993).2 Since then, a variety of choice rules have

been examined in different contexts. For example, among many others, the BRM rule is examined

by Ellison (2000) and Neary (2012), the logit choice rule is examined by Blume (2003), Hwang and

Newton (2017) and Hwang and Rey-Bellet (2017), and the probit choice rule is examined by Myatt

and Wallace (2003) and Dokumacı and Sandholm (2011). There are also many studies that examine

some classes of noisy best response choice rules, e.g. Bergin and Lipman (1996), Maruta (2002),

Naidu et al. (2010), Peski (2010), Sandholm (2010a), Staudigl (2012), Kreindler and Young (2013),

Staudigl and Weidenholzer (2014), Newton and Sawa (2015), Bilancini and Boncinelli (2016), Klaus

and Newton (2016), Sandholm and Staudigl (2016), and Newton (2018a). For experimental investi-

gations, see Lim and Neary (2016), Mäs and Nax (2016), and Hwang et al. (2018). See also Newton

(2018b) for a survey of recent works.

Recently, Sawa and Wu (2018) studied stochastically stable states of games with players who

have a specific type of reference-dependent preferences, loss-aversion proposed by Kahneman and

Tversky (1979), which is restricted to individual periods. That is, agents’ perceived losses are

weighed more heavily than their perceived gains in each single period.3 They found that stochastic

stability of the risk-dominant equilibrium is no longer guaranteed given that agents are loss-averse

1See for example, Kahneman and Tversky (1979) and Kőszegi and Rabin (2006).
2The terminology “the best response with mutations rule (BRM)” follows extant studies, e.g. Sandholm (2010b),

and it refers to a stochastic choice rule under which every suboptimal strategy is equally likely to be chosen.
3See also Thaler (1980), Knetsch and Sinden (1984), Tversky and Kahneman (1992a) and Kőszegi and Rabin

(2006).
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and they show that an equilibrium is always stochastically stable under the BRM choice rule if

the strategy played in the equilibrium is both risk-dominant and a maximin strategy in terms of

monetary returns.

In this paper, we extend the analysis to a more general class of reference-dependent preferences

restricted to individual periods: First, we allow agents’ reference points to take various forms. A

reference point can be an agent’s status-quo, an expected outcome, an outcome of some foregone

action, or any outcome an agent could think that “might have been”.4 As Sawa and Wu (2018)

pointed out, stability of equilibria may be affected by reference points that players have. Second,

the mechanism of evaluating outcomes relative to reference points may also vary. People may

exhibit loss aversion. Alternatively, people may exhibit loss avoidance as proposed in Cachon and

Camerer (1996). That is, people do not choose actions that result in certain losses.5 We find that,

given individuals in the population have reference-dependent preferences, a strong concept, which

we call super-dominance, serves as an important condition for stochastic stability.

We define a strategy in a 2×2 coordination game to be super-dominant if it satisfies two con-

ditions in terms of monetary returns: (i) it is a (weak) maximin strategy, and (ii) the equilibrium

where all players play that strategy is weakly payoff-dominant, with at least one of the two con-

ditions being strict. We call a strategy profile a super-dominant equilibrium if all individuals play

a super-dominant strategy. Note that with at least one of the two conditions being strict, super-

dominance directly implies strict risk-dominance. Both properties have been shown to give an

individual intuitive reasons for choosing a strategy.6 Hence, a super-dominant strategy (if exists)

is arguably the most salient strategy for individuals to coordinate on. Note that, Proposition 4.1

of Maruta (2002) shows that super-dominance is a sufficient condition for stochastic stability for a

broad class of payoff-dependent mistake models.

We first consider the BRM choice rule and find that an equilibrium is uniquely stochastically

stable under the BRM rule for all models of reference-dependent preferences if and only if it is super-

dominant. Risk-dominance (in terms of monetary outcomes) is sufficient to guarantee stochastic

stability in 2× 2 coordination games if utility functions are linear in monetary outcomes. We show

that for a broader class of utility functions, not only risk-dominance but also payoff-dominance and

4Chapter 26 of Kahneman (2011) offers a brief discussion on difficulties of choosing appropriate reference points

and the dependence of reference points on situations.
5See also Rydval and Ortmann (2005), Feltovich (2011) and Feltovich et al. (2012) for experimental evidence on

loss-avoidance.
6See von Neumann and Morgenstern (1944) for a maximin strategy, and Harsanyi and Selten (1988) for risk-

dominance and payoff-dominance.
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being a maximin strategy are required to guarantee stochastic stability under the BRM rule.

Second, we find that for the logit choice rule, super-dominance does not guarantee stochastic

stability. For any 2×2 game with a super-dominant equilibrium, there exists a model of reference-

dependent preferences with which it fails to be stochastically stable under the logit rule. Nevert-

heless, if agents adopt some constant reference point, we show that super-dominance still serves as

a tight condition for stochastic stability.

Although super-dominance is a rather strong concept, it is not unusual to consider such a

concept and investigate its influence on long-run social conventions. For example, games with a

super-dominant strategy have been examined in the literature on dynamic technology diffusion. In

a typical model in this literature, there are two technologies, a status-quo and a new technology.

The new technology is often assumed to be super-dominant. Hence, it is superior comparing to

the status-quo. Morris (2000), Young (2011), Kreindler and Young (2014), and Newton and Angus

(2015), among many others, study whether a population in which all individuals initially adopt the

status-quo technology will eventually switch to the new technology through dynamic processes and

how long such a transition would take place.7 Our results suggest that whether the new technology

can become prevalent in a society with reference-dependent individuals depend on the choice rules

adopted by the individuals.

The paper is organized as follows. Section 2 provides the model. Section 3 conducts analysis

on stochastic stability. Section 4 discusses the tightness of the conditions on reference-dependent

preferences. Section 5 concludes.

2 The Model

2.1 The Population Game and Its Dynamics

We consider a discrete-time dynamic process in which n < ∞ identical agents are repeatedly and

randomly matched to play a coordination game. Let N = {1, . . . , n} denote the set of agents. We

restrict our attention to 2× 2 symmetric coordination games with strategy space S = {0, 1}. The

monetary returns received from the coordination game are illustrated in Table 1. The state of the

process is given by the fraction of agents playing strategy 1. Let X ≡ {0, 1
n ,

2
n , . . . , 1} denote the

state space and x ∈ X denote the current state. We assume that x is observed by every agent. For

s ∈ S, the state in which all agents play strategy s is called all-s.

7The focus of those studies is not on super-dominant strategies. Some of the studies restrict their attention to
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Table 1: 2× 2 Coordination Game (Monetary Returns)

Player 2

0 1

Player 1 0 a00, a00 a01, a10

1 a10, a01 a11, a11

The monetary returns from the game satisfy a00, a01, a10, a11 > 0, a00 > a10 and a11 > a01. We

will shortly assume that agents’ utility functions are strictly increasing in monetary returns, which

implies that (0, 0) and (1, 1) are strict Nash equilibria.

Each agent occasionally reconsiders her choice of strategy, using some myopic best response rule.

Myopic best responses for an agent are not determined by monetary returns but by her perceived

utilities, which will be introduced in Section 2.2. Each agent’s myopic best response rule is assumed

to be perturbed by a small stochastic noise, which allows us to select an equilibrium based on the

robustness of the equilibrium against the noise. The choice rule, the dynamics and the selection

concept will be introduced more precisely in Section 2.3.

2.2 Reference-dependent preferences

Agents’ preferences are reference-dependent. That is, each agent has a reference point which

determines whether she perceives the monetary return from the game as a gain or a loss. The

reference point of each agent i ∈ N is given by a function ri : [0, 1] → R, which maps each

population state to her reference point. In other words, we allow an agent’s reference point to be

affected by other agents’ behavior.

For simplicity, we assume that all agents have the same reference point in the major part of the

paper. However, our main results, Theorems 3.4 and 3.5, hold for agents who have heterogeneous

reference points.

An agent i ∈ N with reference-dependent preferences who anticipates receiving a monetary

payoff a will assign a value to it, which is denoted by v(a, ri(x)). We assume that the value

function v(·, ·) : R× R→ R satisfies some or all of the following general conditions for each of our

results.

games with a super-dominant strategy for simplicity’s sake.
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Assumption 2.1 (value function).

(i) v(a, r) > 0 if a > r,

(ii) v(a, r) = 0 if a = r,

(iii) v(a, r) < 0 if a < r,

(iv) v(a, r) > v(a′, r) ∀a > a′,

(v) v((1 + γ)r, r) ≤ −v((1− γ)r, r) ∀γ > 0.

The first three conditions indicate that the agents derive positive values from gains and negative

values from losses. The fourth condition indicates that a greater monetary return is always strictly

better than a smaller one. For the fifth condition, observe that (1+γ)r−r = γr = |(1−γ)r−r|. So

the condition captures a well-known phenomenon that losses are weighed more heavily than equal-

sized gains (Kahneman and Tversky (1979)). The five conditions are satisfied by many known value

functions capturing reference-dependent preferences. Below, we provide two examples.

Example 1 (loss-aversion). Tversky and Kahneman (1992b) propose the following value function

to capture loss-averse preferences.

v(a, r) =

(a− r)α if a− r ≥ 0,

−λ(r − a)β otherwise,
(1)

for β ≥ α > 0 and λ ≥ 1. Parameters α and β measure the diminishing sensitivity of an agent’s

valuations on gains and losses, respectively. Also, losses are weighed more heavily than gains

proportionally by λ.

Example 2 (loss-avoidance). Feltovich et al. (2012) propose the following value function to capture

loss-avoidance preferences:

v(a, r) =

(a− r) if a− r ≥ 0,

(a− r)−B otherwise,

for B > 0. The value function indicates that losses are weighed more heavily than gains by some

lump-sum disutility B.

Given the value function, the utility of an agent i ∈ N of choosing strategy s ∈ {0, 1} is given

by

us(x, ri(x)) = (1− x)v(as0, ri(x)) + xv(as1, ri(x)), (2)
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which is the expectation of her value functions. The probability weights are objective and equal to

the probabilities that this agent meets agents with different strategies.8

2.3 Prospect Dynamic and Stochastically Stable States

The agents are recurrently matched to play the coordination game in Table 1. In each period

t ∈ {1, 2, . . .}, one agent is randomly chosen and given an opportunity to revise her strategy. Given

the revision opportunity, an agent i ∈ N follows the noisy best response revision protocol:

ρ01(x, ri(x)) = ση(u1(x, ri(x))− u0(x, ri(x))), (3)

ρ10(x, ri(x)) = ση(u0(x, ri(x))− u1(x, ri(x))), (4)

where ση : R → [0, 1] and η > 0 denotes the noise (error) level. When agent i receives an

opportunity to revise her strategy, she switches from strategy 0 to 1 with probability ρ01(x, ri(x)) if

she is currently using strategy 0; and she switches from strategy 1 to 0 with probability ρ10(x, ri(x))

if she is currently using strategy 1. We assume that ση(·) becomes the best response protocol when

the noise level approaches zero, that is,

lim
η→0

ση(a) =

1 if a > 0,

0 if a < 0.
(5)

We call the dynamic generated by (3) and (4) the prospect dynamic. In particular, we adopt two

widely used revision protocols, the best response with mutations (BRM) choice rule from Kandori

et al. (1993) and the logit choice rule from Blume (1993).

Example 3 (BRM choice rule). The choice probabilities are given by

ση(a) =

1− exp(−η−1) if a > 0,

exp(−η−1) if a < 0,
(6)

where exp(−η−1) can be considered as the mutation rate, ε.

Example 4 (logit choice rule). The choice probabilities with noise level η > 0 are given by

ση(a) =
exp(η−1a)

1 + exp(η−1a)
. (7)

8The probability weights people place on different lottery outcomes may be subjective and potentially be influenced

by loss-aversion (see Tversky and Kahneman (1992b)). For simplicity, we do not consider such a possibility in this

paper.
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The logit choice rule can be derived from a random utility model in which the utility for each

strategy is perturbed by i.i.d. random variables with the Gumbel distribution, which is similar to a

normal distribution. The main difference between the two choice rules is in the exponential decay

rates of error probabilities. The exponential decay rate for the BRM rule is uniform for all errors

while that for the logit choice rule depends on the amount of payoff decrease caused by each error.

The model described above defines a Markov chain {Xn
t } on the discrete state space X. We

focus on the stationary distribution µ of the Markov chain when the noise level approaches zero

and population size approaches infinity. A state is said to be stochastically stable if it has a

non-negligible weight in the limiting distribution.

Definition 2.2 (stochastic stability). A state x ∈ X is stochastically stable if limη→0 µ(x) > 0

for all sufficiently large n.

Here we provide some intuitions for how to determine stochastically stable states under the two

choice rules. Recall that in Section 2.2, for simplicity, we assume that all agents have the same

reference point, i.e. ri(x) = r(x) for some r(·) : [0, 1]→ R and all i ∈ N . Define

κ+(x) = − lim
η→0

η log[ση(u1(x, r(x))− u0(x, r(x)))],

κ−(x) = − lim
η→0

η log[ση(u0(x, r(x))− u1(x, r(x)))].

κ+(x) and κ−(x) are the exponential decay rates of the transition probability from x to x+ 1
n and

from x to x − 1
n , respectively. For example, Eq.(6) and (7) imply that if strategy 0 is the unique

best response in state x, then κ+(x) = 1 for the BRM rule and κ+(x) = u0(x, r(x)) − u1(x, r(x))

for the logit choice. The one dimensional state space together with that exactly one agent revises

in each period implies that the process is a birth and death process. It is known (see Durrett 2005)

that the stationary distribution of the process can be expressed as

µ(x)

µ(0)
=

nx∏
y=1

n− y + 1

y

ση(u1(y−1
n , r(y−1

n ))− u0(y−1
n , r(y−1

n )))

ση(u0( yn , r(
y
n))− u1( yn , r(

y
n)))

.

Taking logarithms, multiplying by η/n, and taking the limit of the small noise level η yields

lim
η→0

η

n
log

µ(x)

µ(0)
=

1

n

nx∑
y=1

κ−

(y
n

)
− κ+

(
y − 1

n

)
. (8)

Recall that all-s is the state in which all agents play strategy s. Given that all-0 and all-1 are can-

didates of stochastically stable states, if limη→0
η
n log µ(1)

µ(0) < 0, then all-0 is uniquely stochastically

stable, and if the opposite inequality holds, then all-1 is uniquely stochastically stable.
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For the BRM choice rule, we employ the ‘mutation counting’ technique to characterize stochas-

tically stable states. This technique is an implication of Freidlin and Wentzell (1998) and is shaped

by Kandori et al. (1993), Young (1993) and their successors. Theorem 1 of Sandholm (2010a) shows

that, for all sufficiently large n, this technique is reduced to examine which strategy has a greater

basin of attraction on the continuous interval [0, 1]. For example, all-0 is uniquely stochastically

stable if there exists some γ > 1/2 such that strategy 0 is the unique best response for all x ∈ [0, γ].

For the logit choice rule, the exponential decay rate of the transition probability from x to x+ 1
n

is κ+(x) = [u0(x, r(x))− u1(x, r(x))]+ for all x ∈ X.9 Similarly, the exponential decay rate for the

opposite move is κ−(x) = [u1(x, r(x))− u0(x, r(x))]+. Substituting those into Eq.(8), we find that

all-0 state is uniquely stochastically stable if
∑

x∈X u1(x, r(x))− u0(x, r(x)) < 0.

It is known that if we choose an appropriate ordinal potential function for a given choice rule,

stochastic stability in 2×2 symmetric games is characterized by potential maximization (see Blume

2003; Maruta 2002; Sandholm 2010a). We will discuss such potential functions corresponding to

our settings and relate them to stochastically stable states in Section 4.2.

3 Super-dominance and its stochastic stability

3.1 Super-Dominance

We define a concept called super-dominance which combines three important concepts in game

theory: risk-dominance, payoff-dominance and maximin strategy.10

Definition 3.1. Strategy s ∈ {0, 1} is a super-dominant strategy if the following two conditions

are satisfied for s′ 6= s and at least one is strict.

(1) min{as0, as1} ≥ min{as′0, as′1},

(2) ass ≥ as′s′.

A population state in which every agent is playing the super-dominant strategy s ∈ {0, 1} (all-s) is

a super-dominant equilibrium.

The first condition of Definition 3.1 states that it is the (weak) maximin strategy. Hence, this

concept captures agents’ tendency to avoid losses, particularly the loss occurred in the worst case

9[y]+ = y if y > 0 and [y]+ = 0 if y ≤ 0.
10We define the condition in terms of (usually observable) monetary payoffs as in experimental studies Battalio

et al. (2001) and Schmidt et al. (2003). Our intention is to examine if such a condition on monetary payoffs guarantee

stochastic stability given that agents have reference-dependent preferences.
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scenario. The second condition states that the equilibrium corresponding to the super-dominant

strategy Pareto-dominates the other equilibrium. A strategy s is said to be risk-dominant if as0 +

as1 ≥ as′0 + as′1 for s′ 6= s. The two conditions with at least one condition being strict imply that

a super-dominant strategy must be the unique risk-dominant strategy.

3.2 The BRM choice rule and stochastic stability of super-dominance

Sawa and Wu (2018) define a strategy to be loss-dominant if it is risk dominant and the (weak)

maximin strategy. They show that a state in which all agents adopt the loss-dominant strategy

is stochastically stable under the prospect dynamic with BRM choice rule, given that agents have

loss-averse preferences with no diminishing sensitivity (i.e. α = β = 1 in Eq.(1)). In this pa-

per, we consider a broader set of reference-dependent preferences. The following two lemmas

demonstrate why loss-dominance is not sufficient for stochastic stability given that agents have

reference-dependent preferences and why payoff-dominance is needed.

Lemma 3.2. Suppose all agents have loss-averse preferences as given in Eq.(1), If s is not payoff-

dominant, then there exist some α, β, λ and {ri(x)}i∈N such that all-s state is not stochastically

stable under the prospect dynamic with BRM choice rule.

Proof. Without loss of generality, let strategy 0 be a maximin strategy but not payoff dominant.

We must have a11 > max{a00, a01} > a10. Let ri(x) = r for some constant r ∈ (max{a00, a01}, a11)

for all x ∈ X and all i ∈ N .

Choose δ ∈ (0, 1), let β < 1 and choose β such that

(r − a10)β − (r − a00)β < δ < (r − a01)β.

Note that the left-hand and right-hand sides approach 0 and 1, respectively, as β approaches 0.

Hence, an β satisfying the above inequalities exists. Observe that

u1(x, r)− u0(x, r) = x(a11 − r)α − (1− x)λ((r − a10)β − (r − a00)β) + xλ(r − a01)β

> x(a11 − r)α + λδ(2x− 1).

For x ∈ [1/2, 1], x(a11−r)α+λδ(2x−1) is strictly positive. Since u0(x, r) and u1(x, r) are continuous

on x ∈ (0, 1), all-1 is uniquely stochastically stable.

Note that when β = 1, we have u1(1
2 , r)− u0(1

2 , r) < 0 as long as 0 is loss-dominant defined in

Sawa and Wu (2018), implying that the payoff-dominant equilibrium (all-1) is not stochastically
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stable. However, as β decreases, agents start to experience less disutility in the loss frame and

they become more risk-seeking. When agents’ reference point r ∈ (max{a00, a01}, a11), the only

positive gain comes from a11. Hence, when agents are sufficiently risk-seeking (low β), they are

more willing to choose strategy 1 to achieve the positive gain. Lemma 3.2 highlights that allowing

for diminishing sensitivity to losses (β < 1) can give rise to new results not accounted for in Sawa

and Wu (2018).11

Lemma 3.3. Suppose all agents have loss-avoidance preferences as given in Eq.(2). If s is not

payoff-dominant, then there exist some B and {ri(x)}i∈N such that all-s state is not stochastically

stable under the prospect dynamic with BRM choice rule.

Proof. Without loss of generality, let strategy 0 be the one that is not payoff-dominant. We must

have a11 > max{a00, a01} > a10. Let ri(x) = r for some constant r ∈ (max{a00, a01}, a11) for all

x ∈ X and all i ∈ N .

The expected utilities for strategies 0 and 1 are, respectively, given by

u0(x, r) = (1− x)(a00 − r −B) + x(a01 − r −B),

u1(x, r) = (1− x)(a10 − r −B) + x(a11 − r).

For sufficiently large B, strategy 1 is the unique best response for x ∈ [1/2, 1]. Since u0(x, r) and

u1(x, r) are continuous on x ∈ (0, 1), this proves that all-1 is uniquely stochastically stable. The

claim follows.

Lemma 3.2 and 3.3 both utilize the fact that choosing the payoff dominant strategy helps

reference-dependent agents to reduce losses. Next, we provide the first main result of the paper:

Theorem 3.4. (I) If all-s is uniquely stochastically stable under the prospect dynamic with BRM

choice rule for all models of reference points and all forms of the value function satisfying conditions

(i)–(v) of Assumption 2.1, then s is super-dominant.

(II) If s is super-dominant, then all-s is stochastically stable under the prospect dynamic with BRM

choice rule for all models of reference points and all forms of the value function satisfying condition

(iv) of Assumption 2.1. Furthermore, all-s is uniquely stochastically stable if s is super-dominant

and the condition below holds:

lim inf
x↘ 1

2

u0(x, ri(x))− u1(x, ri(x)) > 0, (9)

11Note that Theorem 6.1 in Sawa and Wu (2018) shows that loss-dominance is sufficient for stochastic stability

only if β is not sufficiently small.
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for any i ∈ N and any n > n, for some n > 0.

Proof. Proof of claim (I):

We follow Sawa and Wu (2018) to prove the necessity of the first condition of Definition 3.1.

Without loss of generality, suppose that strategy 0 does not satisfy the first condition of Definition

3.1, which implies that a01 < a10. Assume that agents have preferences given by Eq.(1) with

α = β = 1, i.e. loss averse preferences with no diminishing sensitivity, and have a constant reference

point r that satisfies a01 < r < min{a10, a11}. Then, the all-0 state is not stochastically stable for

sufficiently large λ. This is because for all x ∈ [0, 1] and any value of a00, if λ is sufficiently large,

u0(x, r) = (1− x)v(a00, r) + xλ(a01 − r) < u1(x, r) = (1− x)(a10 − r) + x(a11 − r).

For the second condition of Definition 3.1, Lemma 3.2 and 3.3 show that if s fails to satisfy

the second condition, then there exist reference-dependent preferences under which all-s is not

stochastically stable.

Finally, we consider the case in which both conditions of Definition 3.1 hold weakly. In this case,

we have a11 = a00 and a10 = a01. Symmetry in payoffs immediately implies that both all-0 and all-1

are stochastically stable. Hence, neither of them are uniquely stochastically stable. To conclude, if

all-s is uniquely stochastically stable for all reference-dependent models, then s is super-dominant.

Proof of claim (II):

Without loss of generality, let 0 be the super-dominant strategy, which implies that a00 ≥ a11 >

a01 ≥ a10, with at least one of the two weak inequalities being strict. Hence, by condition (iv) of

Assumption 2.1, we have v(a00, ri(x)) ≥ v(a11, ri(x)) and v(a01, ri(x)) ≥ v(a10, ri(x)) with at least

one weak inequality being strict for any ri(x). Then we have, for any x ∈ [0, 1/2], any ri(x) and

any v(·) that satisfies condition (iv) of Assumption 2.1,

u0(x, ri(x)) = (1− x)v(a00, ri(x)) + xv(a01, ri(x))

> (1− x)v(a11, ri(x)) + xv(a10, ri(x))

≥ xv(a11, ri(x)) + (1− x)v(a10, ri(x)) = u1(x, ri(x)).

Thus, 0 is the unique best response for all x ∈ [0, 1/2]. This proves the first statement, i.e., all-0

is stochastically stable. Note that for even n, the basin of attraction of all-0 includes {0, . . . , 1
2},

while the basin of attraction of all-1 is a subset of {n−2
2n , . . . , 1}. The former is strictly larger than

the latter. Thus, if n is even, all-0 is uniquely stochastically stable.

Next, we prove the second statement. If condition (9) holds, then 0 is the unique best response

of all agents in state x = n+1
2n for all sufficiently large n. This implies that the basin of attraction
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of all-0 includes {0, . . . , n+1
2n } for all sufficiently large odd n, while the basin of attraction of all-1 is

a subset of {n+3
2n , . . . , 1}.

Note that when all agents adopt the same constant reference point r ∈ R, strategy 0 being

super-dominant together with condition (iv) of Assumption 2.1 implies that v(a00, r) + v(a01, r) ≥

v(a11, r)+v(a10, r). This is the condition for 0 being the risk-dominant strategy in the transformed

payoff matrix shown in Table 2.

Table 2: 2× 2 Coordination Game (Value Function)

Player 2

0 1

Player 1 0 v(a00, r), v(a00, r) v(a01, r), v(a10, r)

1 v(a10, r), v(a01, r) v(a11, r), v(a11, r)

Hence, the same logic of equilibrium selection in Kandori et al. (1993) and Young (1993) applies

to our setting and all-0 is stochastically stable.

Theorem 3.4 provides a positive result in regard to super-dominance. It shows that a super-

dominant equilibrium is the unique social convention selected by agents with reference-dependent

preferences because it helps agents to avoid not only risks but also losses.

As shown in Theorem 3.4, condition (iv) of Assumption 2.1 is the key condition for stochastic

stability. In addition, claim (I) of the theorem concerns the other conditions of the assumption.

When a strategy s fails to be super-dominant, some reference-dependent preferences satisfying all

conditions (i)-(v) of Assumption 2.1 exist such that all-s is not stochastically stable. Condition

(9) in claim (II) is satisfied by a broad class of preferences including all continuous preferences,

i.e. continuous value functions with continuous reference point functions, and some discontinuous

preferences such as the loss-avoidance preferences in Example 2. We hope that the result will

provide guidance for future experimental investigation of equilibrium selection problem in games

played by subjects with reference-dependent preferences.

3.3 The logit choice rule and instability of super-dominance

Although we find that super-dominant equilibrium is uniquely stochastically stable under the pro-

spect dynamic with BRM choice rule, the second main result of the paper demonstrates that it

is no longer the case if the agents instead employ the logit choice rule. The difference in re-

13



sults between the two choice rules is caused by the fact that stochastic stability for the logit

choice rule is characterized by states that maximize the potential function of the underlying game,

i.e. argmaxx∈X
∑

0≤x′≤x u1(x′) − u0(x′). However, a state that maximizes the potential does not

necessarily have a greater basin of attraction when the payoff difference function is nonlinear.

Theorem 3.5. Suppose that s is super-dominant and s′ 6= s. There exists a value function v(·)

satisfying conditions (i)–(v) of Assumption 2.1 such that all-s′ is uniquely stochastically stable under

the prospect dynamic with logit choice rule.

Proof. Without loss of generality, assume that 0 is super-dominant, i.e., a00 ≥ a11 > a01 ≥ a10. Let

x̄ =
a00 − a10

a00 − a01 + a11 − a10
.

At state x̄, the expected monetary outcomes of the two strategies are the same. Strategy 0 being

risk-dominant implies that x̄ > 1
2 . Assume that all agents have the following reference point:

r(x) =

a10 for x ∈ [0, x̄],

a11 for x ∈ (x̄, 1],

which is state-dependent. Also, all agents have loss-avoidance preferences given by Eq.(2). In this

case, 0 is unique best response for x < x̄ and 1 is so for x > x̄.

We prove the claim by showing that
∑

x∈X u1(x) − u0(x) > 0. Observe that u0(x) − u1(x) ≤

a00 − a10 for x ≤ x̄, and that u1(x)− u0(x) > (2x− 1)B for x > x̄. Hence, we have∑
x≤x̄

u0(x)− u1(x) < nx̄(a00 − a10),

∑
x>x̄

u1(x)− u0(x) > n

(
1− x̄− 1

n

)
(2x̄− 1)B.

For sufficiently large B > 0, we have that∑
x∈X

u1(x)− u0(x) =
∑
x≤x̄

u1(x)− u0(x) +
∑
x>x̄

u1(x)− u0(x)

> n

(
1− x̄− 1

n

)
(2x̄− 1)B − nx̄(a00 − a10) > 0.

This implies that all-1, or the super-dominated equilibrium, is uniquely stochastically stable.

The intuition behind Theorem 3.5 is as follows. The severity of suboptimal choices, i.e. payoff

deficits, is an important determinant of stochastic stability under logit choice rule because the

14



unlikeliness of transitions is captured by payoff deficits faced by agents who revise their strategies.

When B is sufficiently large for agents with loss-avoidance preferences, payoff deficits associated

with strategy 0 in population state x ∈ (x̄, 1], where strategy 1 is the unique best response, would

be sufficiently large to make all-0 unstable.

The next example illustrates that when agents have loss-averse preferences with diminishing

sensitivity, a super-dominated equilibrium can be uniquely stochastically stable under the prospect

dynamic with logit choice rule.

Example 5 (Loss aversion). Consider a game with monetary payoffs a00 = 2, a01 = a10 = 0 and

a11 = 1. Assume that all agents have state-dependent reference point given as follows:12

r(x) =

0 for x ∈ [0, 2/3],

1 for x ∈ (2/3, 1],

Agents have loss-averse preferences given by Eq.(1) with α = β ∈ (0, 1] and λ ≥ 1. Let x̄ = 2/3,

which corresponds to the mixed-strategy equilibrium of the game. Observe that u0(x) − u1(x) =

2α(1− x)− x < 2α for x ≤ x̄, and that u1(x)− u0(x) = λ(2x− 1)− (1− x) > λ(2x̄− 1) + x̄− 1 for

x > x̄. Hence, we have∑
x≤x̄

u0(x)− u1(x) < 2αnx̄ =
2α+1n

3
,

∑
x>x̄

u1(x)− u0(x) >
n

3

(
1

3
− 1

n

)
(λ− 1),

∑
x>x̄

u1(x)− u0(x) >
∑
x≤x̄

u0(x)− u1(x) ⇒ λ >
3 · 2α+1n

n− 3
+ 1.

All-1 is stochastically stable under the prospect dynamic with logit choice rule if the degree of loss

aversion λ is sufficiently large. The condition will be reduced to λ > 3 · 2α+1 + 1 as the population

size n approaches infinity.

The intuition behind Example 5 is similar to that of Theorem 3.5. Strong loss-aversion creates

large payoff deficits associated with the super-dominant strategy, which makes the super-dominant

equilibrium unstable.

Although we show that super-dominant equilibrium is not stochastically stable given some

reference-dependent preferences under the prospect dynamic with logit choice rule. The following

proposition provides a positive result on super-dominant equilibrium given that agents adopt a

common constant reference point.

12Note that we use the same reference point as in the proof of Theorem 3.5.
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Proposition 3.6. Suppose that the value function adopted by the agents satisfies condition (iv)

of Assumption 2.1 and all agents adopt the same constant reference point r ∈ R. Then all-s is

uniquely stochastically stable under the prospect dynamic with logit choice rule for all forms of the

value function if and only if s is super-dominant.

Proof of Proposition 3.6. ‘if’ part:

Without loss of generality, let strategy 0 be the super-dominant strategy, which implies that a00 ≥

a11 > a01 ≥ a10, with at least one of the two weak inequalities being strict. Hence, by condition (iv)

of Assumption 2.1, v(a00, r) ≥ v(a11, r) and v(a01, r) ≥ v(a10, r) with at least one weak inequality

being strict. Then we have∑
x∈X

u1(x)− u0(x) =
∑
x∈X

(1− x)(v(a10, r)− v(a00, r)) +
∑
x∈X

x(v(a11, r)− v(a01, r))

=
n+ 1

2
(v(a11, r) + v(a10, r)− v(a00, r)− v(a01, r)) < 0. (10)

Therefore, all-0 is uniquely stochastically stable.

‘only if’ part:

We will show that if strategy 0 fails to be super-dominant, there exists some reference-dependent

preference for which all-1 is stochastically stable.

Case 1: Suppose strategy 0 is payoff-dominant but fails to be the maximin strategy. We must

have a00 ≥ a11 ≥ a10 > a01. Assume that agents have loss-averse preferences given by Eq.(1) with

no diminishing sensitivity (i.e. α = β = 1) and r ∈ (a01, a10). We have∑
x∈X

u1(x)− u0(x) =
n+ 1

2
(v(a11, r) + v(a10, r)− v(a00, r)− v(a01, r))

=
n+ 1

2
((a11 − r) + (a10 − r)− (a00 − r)− λ(a01 − r)).

When λ is sufficiently large, the above expression is strictly positive, implying that all-1 is uniquely

stochastically stable.

Case 2: Suppose strategy 0 is the maximin strategy but not payoff-dominant. The proof of this

case is similar to the proof of Lemma 3.2. Consider loss-averse preferences given by Eq.(1) and let

r be such that a11 > r > max{a00, a01}. Choose δ ∈ (0, 1), and there exists a sufficiently small

β < 1 such that∑
x∈X

u1(x)− u0(x) =
n+ 1

2
((a11 − r)α − λ(r − a10)β + λ(r − a00)β + λ(r − a01)β)

>
n+ 1

2
((a11 − r)α + λδ) > 0.
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Hence, all-1 is uniquely stochastically stable.

Case 3: Suppose strategy 0 is neither payoff-dominant nor the maximin strategy, then strategy

1 must be the super-dominant strategy. By the proof of the ‘if’ part, we have that all-1 is uniquely

stochastically stable.

Remark 3.7. When the reference point function is constant, the payoff difference between the

two strategies, u1(x)− u0(x), is linear in x. From Eq.(10) in the proof of Proposition 3.6, one can

observe that

sgn

[∑
x∈X

u1(x)− u0(x)

]
= sgn[v(a11, r) + v(a10, r)− v(a00, r)− v(a01, r)],

where sgn[a] = 1 if a > 0, sgn[a] = 0 if a = 0, and sgn[a] = −1 otherwise. This observation together

with our discussion in Section 3.2 implies that the sets of stochastically stable states coincide among

the BRM rule and the logit choice if the reference point function is constant.

Remark 3.8. The proof of Case 1 in the ‘only if’ part shows, as a byproduct, that a strategy being

a maximin strategy is a necessary condition for stochastic stability even if we restrict preference

models to the ones with no diminishing sensitivity, e.g. α = β = 1 in Eq.(1). This observation leads

to a counterpart of the only if part of Theorem 3.2, which is a result under the BRM rule, in Sawa

and Wu (2018). That is, all-s is uniquely stochastically stable under the logit choice rule for all

models of reference points and all forms of the value function with no diminishing sensitivity only

if s is risk-dominant and a maximin strategy.

4 Discussion

4.1 The tightness for Assumption 2.1

We have shown that given any preferences satisfying condition (iv) of Assumption 2.1, a super-

dominant equilibrium, if exists, is uniquely stochastically stable. In this section, we show that a

super-dominated equilibrium can be stochastically stable if condition (iv) is violated.

Proposition 4.1. If v(·, ·) fails to satisfy (iv) of Assumption 2.1, then there exists some game

for which a super-dominated equilibrium is stochastically stable under some reference-dependent

preferences.

Proof. Assume that all agents have a value function v(·) and adopt an exogenous reference point

equal to r. Suppose for some a∗ > a∗∗, v(a∗, r) = v(a∗∗, r) for some r ∈ R. Let a00 = a∗,
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a01 = a10 < a∗ and a11 = a∗∗. Given this payoff structure, strategy 0 is the super-dominant

strategy, and we have v(a00, r) = v(a11, r) and v(a01, r) = v(a10, r). This implies that both all-0

and all-1, which is super-dominated, are stochastically stable.

4.2 Ordinal potential function and loss evaluation function

In this section, we hope to provide some further explanations for our results. We define an ordinal

potential function for the coordination games under each strategy choice rule, and relate it to

stochastic stability. We further define a function, which we call a loss evaluation function, that

maps a state to the difference in losses associated with the two strategies. The loss evaluation

function enables us to obtain graphic illustrations for the difference between the BRM and the logit

choice rule.

To simplify the analysis in this section, we restrict preferences to be loss-averse given by Eq.(1),

and we assume that the common reference point function r : [0, 1] → R is Riemann integrable on

[0, 1].13 Define ordinal potential functions (Monderer and Shapley, 1996) for the BRM rule and the

logit rule as follows.

IBRM (x;λ) =

∫ x

0
sgn+[u1(y)− u0(y)]− sgn+[u0(y)− u1(y)] dy,

Ilogit(x;λ) =

∫ x

0
u1(y)− u0(y) dy,

where sgn+[a] = 1 if a > 0, and sgn+[a] = 0 otherwise. Note that the potential of all-0 under

each choice rule is zero, i.e. IBRM (0;λ) = Ilogit(0;λ) = 0, and that both potential functions have

local maximum points at x = 0 and x = 1. The next result states that the state maximizing the

potential under a given choice rule is stochastically stable.

Proposition 4.2. If ICh(1;λ) < 0, then all-0 is uniquely stochastically stable under the choice rule

Ch. If ICh(1;λ) > 0, then all-1 is uniquely stochastically stable under the choice rule Ch.

The proposition resembles the results proved by studies that employ a Riemann-integral ar-

gument to determine stochastically stabile states, e.g. Blume (2003); Maruta (2002); Sandholm

(2010a). The proof is straightforward. For example, IBRM (1;λ) < 0 implies that the basin of

attraction of all-0 is strictly greater than that of all-1 in the limit of large population size. Hence,

all-0 is uniquely stochastically stable. We omit the formal proof.

13All reference point functions in our examples have at most finite discontinuities, i.e. Riemann integrable.
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Let function L : [0, 1]× R→ R be such that

L(x, a) =

(r(x)− a)β if a < r(x),

0, otherwise,

where r(x) is the common reference point function. L(x, a) gives the loss perceived by an agent

who receives monetary payoff a in state x. Define the loss-evaluation function L : X → R as

L(x) = (1− x)(L(x, a00)− L(x, a10)) + x(L(x, a01)− L(x, a11)).

When an agent chooses strategy i, the perceived loss associated with the strategy is (1−x)L(x, ai0)+

xL(x, ai1) multiplied by λ. L(x) gives the difference in the perceived losses of the two strategies

for λ = 1. The next result relates L(x) to the maximizers of the ordinal potential function for each

choice rule.14

Proposition 4.3. Suppose that preferences are given by Eq.(1).

(i) If
∫ 1

0 sgn+[−L(x)]dx > 1/2, then IBRM (1;λ) < 0 for all sufficiently large λ. If
∫ 1

0 sgn+[L(x)]dx >

1/2, then IBRM (1;λ) > 0 for all sufficiently large λ.

(ii) If
∫ 1

0 L(x)dx < 0, then Ilogit(1;λ) < 0 for all sufficiently large λ. If
∫ 1

0 L(x)dx > 0, then

Ilogit(1;λ) > 0 for all sufficiently large λ.

Proof. Let G(x, a) = (a− r(x))α if a ≥ r(x), and G(x, a) = 0 otherwise. Define

G(x) = (1− x)(G(x, a00)−G(x, a10)) + x(G(x, a01)−G(x, a11)),

Observe that the utility difference can be written as u0(x)− u1(x) = G(x)− λL(x), and that L(x)

and G(x) do not depend on λ.

Proof of claim (i):

If L(x) < 0, then u0(x)− u1(x) > 0 for all sufficiently large λ. This implies that for all sufficiently

large λ, if |{x∈X:L(x)<0}|
n > 1

2 , then
∑

x∈X sgn+[u1(x) − u0(x)] − sgn+[u0(x) − u1(x)] < 0; and if
|{x∈X:L(x)<0}|

n < 1
2 , then

∑
x∈X sgn+[u1(x) − u0(x)] − sgn+[u0(x) − u1(x)] > 0. |{x∈X:L(x)<0}|

n is

approximated by the integral
∫ 1

0 sgn+[−L(x)]dx and the summation 1
n

∑
x∈X sgn+[u1(x)−u0(x)]−

sgn+[u0(x)− u1(x)] is approximated by IBRM (1;λ) in the limit of large population size.

Proof of claim (ii):

Observe that
∑

x∈X u0(x)−u1(x) =
∑

x∈X G(x)−λ
∑

x∈X L(x). This implies that if
∑

x∈X L(x) <

14A similar function is defined in Sawa and Wu (2018), which shows an analogous result to (i) in Proposition 4.3.
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0, then
∑

x∈X u1(x) − u0(x) < 0, and if
∑

x∈X L(x) > 0, then
∑

x∈X u1(x) − u0(x) > 0 for

all sufficiently large λ. The summation 1
n

∑
x∈X L(x) is approximated by the integral

∫ 1
0 L(x)dx

and the summation 1
n

∑
x∈X u1(x) − u0(x) is approximated by Ilogit(1;λ) in the large population

limit.

The intuition for Proposition 4.3 is as follows. When λ is sufficiently large, the difference in

perceived losses dominates the difference in perceived gains, implying that a strategy associated

with a lower loss becomes the unique best response. Hence, we can use the loss evaluation function

to determine stochastically stable states under the BRM choice rule. Furthermore, the utility

difference between the two strategies increases as λ becomes larger. Hence, for sufficiently large λ,

we can use the integration of the loss evaluation function to determine stochastically stable states

under the logit choicer rule.

As Theorem 3.5 suggests, the potential maximizers (stochastically stable states) for the BRM

rule and those for the logit choice do not necessarily coincide.15 The next example provides a

graphic illustration for how one can use the loss evaluation function to determine the potential

maximizers under the BRM and the logit choice rules.

Example 6. Consider a game with a00 = 10, a01 = 1, a10 = 0 and a11 = 9. Strategy 0 is super-

dominant. Assume that all agents have the preferences given by Eq.(1) with α = β = 1, and the

state-dependent reference point given by r(x) = 1 for x ∈ [0, 2/3], and r(x) = 9 for x ∈ (2/3, 1].

The loss evaluation function is depicted by the kinked line in Figure 1. For comparison, the straight

line in Figure 1 shows the loss evaluation function for a constant reference point, r = 5.

0.2 0.4 0.6 0.8 1.0
x

- 5

5

10
L(x)

state-dependent
ref. point

constant ref. point

Figure 1: The loss evaluation function

15In the special case that the reference point is constant, they do coincide (Proposition 3.6).
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The point where each line crosses the x-axis is greater than x > .5. Proposition 4.3 implies that

all-0 is the unique potential maximizer for large λ under the BRM rule, which is consistent with

Theorem 3.4.

For the logit choice rule,
∫ 1

0 L(x)dx > 0 holds for the state-dependent model. Hence, all-1 is the

unique potential maximizer for large λ. On the other hand,
∫ 1

0 L(x)dx < 0 holds for the constant

reference point. Hence, all-0 is the unique potential maximizer for large λ, which is consistent with

Proposition 3.6.

4.3 Matching without Self-Matching

We consider a matching protocol without self-matching and discuss the robustness of our results.

For every agent i, define

zi(x) =


nx
n−1 if agent i plays strategy 0,

nx−1
n−1 if agent i plays strategy 1.

That is, zi(x) is the fraction of agents playing strategy 1 over all agents except agent i. When agent

i is not matched with herself, her utility of playing strategy s and her reference point depend on

the strategy distribution of the other n− 1 agents, i.e., zi(x). Agent i’s utility is written as

us(zi(x), ri(zi(x))) = (1− zi(x))v(as0, ri(zi(x))) + zi(x)v(as1, ri(zi(x))). (11)

The next proposition generalizes our results to settings with the matching protocol without

self-matching.

Proposition 4.4. For all sufficiently large n, Theorem 3.4 and Proposition 3.6 are valid for settings

with the matching protocol without self-matching.

Proof. For the ’only if’ part, the counter-examples in the proofs of Theorem 3.4 and Proposition

3.6 also work for the matching without self-matching. The proof of the ’if’ part of Proposition 3.6

is straightforward. We prove the ’if’ part of Theorem 3.4 for this matching protocol.

Let strategy 0 be the super-dominant strategy, i.e. a00 ≥ a11 > a01 ≥ a10, with at least one of the

two weak inequalities being strict. Hence, v(a00, ri(zi(x))) ≥ v(a11, ri(zi(x))) and v(a01, ri(zi(x))) ≥

v(a10, ri(zi(x))) with at least one weak inequality being strict for all i ∈ N . For any x ∈ [0, 1/2]

and any v(·) that satisfies Assumption 2.1, we have that for all sufficiently large n,

u0(zi(x), ri(zi(x))) = (1− zi(x))v(a00, ri(zi(x))) + zi(x)v(a01, ri(zi(x)))
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> (1− zi(x) +
1

n− 1
)v(a11, ri(zi(x))) + (zi(x)− 1

n− 1
)v(a10, ri(zi(x)))

≥ zi(x)v(a11, ri(zi(x))) + (1− zi(x))v(a10, ri(zi(x))) = u1(zi(x), ri(zi(x))).

The strict inequality is implied by the assumption that 0 is super-dominant and the fact that

1/(n − 1) is close to zero for sufficiently large n. For the weak inequality, observe that for all

x ∈ [0, 1/2] and all i ∈ N ,

zi(x) ≤ nx

n− 1
⇒ 1− zi(x) +

1

n− 1
≥ zi(x).

Then a11 > a10 implies the weak inequality. Therefore, strategy 0 is the unique best response for

all agents if x ∈ [0, 1/2], which implies that all-0 is uniquely stochastically stable.

5 Conclusion

This paper incorporates insights from behavioral economics into the study of game theory. We

investigate what social conventions would emerge in 2 × 2 coordination games through evolutionary

dynamics in a population of agents with reference-dependent preferences.

We define a concept called super-dominance which combines three important concepts in game

theory: risk-dominance, payoff-dominance and the maximin strategy. In 2 × 2 coordination games,

the super-dominant strategy (if exists) is arguably the most salient strategy that agents would

coordinate on. We first find that a population state in which all agents adopt the same strategy

is uniquely stochastically stable under dynamic with BRM choice rule if and only if the strategy

is super-dominant. We call this population state the super-dominant equilibrium. The result

demonstrates that the super-dominant equilibrium constitutes a robust social convention that will

be selected by agents with reference-dependent preferences in the long run if agents adopt the BRM

choice rule. However, we also find that super-dominance does not guarantee stochastic stability

under dynamic with the logit choice rule. For any 2× 2 coordination game with a super-dominant

strategy, there exists a model of reference-dependent preferences with which the super-dominant

equilibrium fails to be stochastically stable.

We hope that this study will encourage further investigations on how psychological biases in-

fluence the long run behavior of individuals in a society.
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