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Abstract: In this paper, we consider a test of the sphericity for high-dimensional covariance matrices. We produce

a test statistic by using the extended cross-data-matrix (ECDM) methodology. We show that the ECDM test statistic
is based on an unbiased estimator of a sphericity measure. In addition, the ECDM test statistic enjoys consistency
properties and the asymptotic normality in high-dimensional settings. We propose a new test procedure based on the
ECDM test statistic and evaluate its asymptotic size and power theoretically and numerically. We give a two-stage
sampling scheme so that the test procedure can ensure a prespecified level both for the size and power. We apply the
test procedure to detect divergently spiked noise in high-dimensional statistical analysis. We analyze gene expression
data by the proposed test procedure.
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1. INTRODUCTION

High-dimension, low-sample-size (HDLSS) data situations occur in many areas of modern science such as
genetic microarrays, medical imaging, text recognition, finance, chemometrics, and so on. In the HDLSS
situations, the large sample theory does not work and hence some new theories and methodologies are
expected to develop for high-dimensional inferences. Aoshima and Yata (2011a,b) is pioneering work which
established a variety of inference for HDLSS data such as given-bandwidth confidence regions, two-sample
tests, tests of the equality of two covariance matrices, classification, variable selection, regression, tests
of the correlation coefficients and so on, and discussed sample size determination to ensure prespecified
accuracy for each inference. Afterward, those high-dimensional inferences have been further studied and
developed by many researchers in the field of high-dimensional statistical analysis. In the current paper, we
consider a test of the sphericity for high-dimensional covariance matrices.

Suppose we take samples;, j = 1,...,n, of sizen (> 4) from a population, which are independent
and identically distributed (i.i.d.) asavariate distribution. We assume thathas an unknown mean vector
1 and unknown covariance matr®. We denote the eigenvalue decompositiorsbby = = HAH”,
whereA is a diagonal matrix of eigenvalues; > --- > X, > 0, andH is an orthogonal matrix of the
corresponding eigenvectors. Lef = HA'Y2z; + u, wherez; = (21, ..., 2;)" is considered as a sphered
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data vector having the zero mean vector and identity covariance matrix. £etr(3)/p. We assume that
o € (0,00) asp — oo. For a functionf(-), “ f(p) € (0,00) asp — oo” implies thatliminf, . f(p) > 0
andlimsup,,_,, f(p) < co. We consider the following model:

zj =Tw; + p, (1.2)
wherel’ = (vy,...,7,) is apxq matrix for somey > Osuchthal’'T? = X, andw; = (wyj, ..., wg)T, j =
1,...,n, are ii.d. random vectors having(w;) = 0 and Vafw,) = I,. Here, I, denotes the identity
matrix of dimension;. Let Var(wfj) =M,,r=1,...,q. We assume tha¥/,, € (0, c0) asp — oo for all

r. Similar to Bai and Saranadasa (1996) and Aoshima and Yata (2015), we assume that

(A-1) E(wfngj) = E(wfj)E(wzj) =l andE(w,jwsjwjw,;) = 0 forall r # s, ¢, u.

We assume the following assumption instead of (A-i) as necessary:

(A-il)  E(wplwp?---wpy) = E(w] ) E(we?) - E(wyy;) forall vy # g # -+ # 7, € [1,9] and

r1j . rej o] r2] Tvj
a; € [1,4],i=1,...,v,wherev <8and)_;_ , o; <8.
See Chen and Qin (2010) about (A-ii). Note that (A-ii) implies (A-i). Whenis Gaussian, it holds that
I' = HA'? and w; = zj; in (1.1). Note that (A-ii) is naturally satisfied whety is Gaussian because
the elements of; are independent and/, = 2 for all ». We assume the following HDLSS divergence
condition:

(A-iii)) p,n — ocoandn/p — 0.
In this paper, we are interested in testing the sphericif of
Hy:X=0l, vs. H :X#o0l, (1.2)

We give a two-stage test procedure which can ensure a prespecified level both for the size and power. Most
interestingly, we apply the test procedure to detect divergently spiked noise in high-dimensional statistical
analysis.

Whenn > p andp is fixed, Nagao (1973) and others gave test statistics for (1.2) by using the large
sample theory. Ledoit and Wolf (2002) investigated asymptotic properties of the test statistics/mhen
¢ > 0. Since the conventional test statistics do not work for HDLSS data, Srivastava et al. (2011) gave a
test statistic under (A-iii). However, the test statistic is heavily biased for high-dimensional datazinless
is Gaussian. On the other hand, Chen et al. (2010) gave a test statistic based on the U-statistic for high-
dimensional data. In the current paper, we shall also pursue a non-parametric approach, but we produce a
new test statistic by using thextended cross-data-matrix (ECDM) methodolo@ize ECDM method was
developed by Yata and Aoshima (2013) and was motivated by the cross-data-matrix (CDM) method due to
Yata and Aoshima (2010). One of the advantages of the ECDM method is that one can produce an unbiased
estimator having a small variance at a low computational cost even for ultra high-dimensional data. In
addition, the ECDM method possesses a high versatility in high-dimensional data analysis. See Yata and
Aoshima (2016) for the details.

The paper is organized as follows: In Section 2, we produce a test statistic for (1.2) by using the ECDM
method. We show that the ECDM test statistic is based on an unbiased estimator of a sphericity measure.
In addition, the ECDM test statistic enjoys consistency properties and the asymptotic normality in high-
dimensional settings. In Section 3, we propose a new test procedure based on the ECDM test statistic and
evaluate its asymptotic size and power theoretically. In Section 4, we give a two-stage sampling scheme so
that the test procedure can ensure a prespecified level both for the size and power. In Section 5, we apply
the test procedure to detect divergently spiked noise in high-dimensional statistical analysis. In Section 6,
we give simulation studies to investigate the performance of the proposed test procedure. Finally, in Section
7, we analyze gene expression data by the proposed test procedure.
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2. UNBIASED ESTIMATOR OF SPHERICITY MEASURE

LetE, = ¥ — oI, andA = ||Z.]2 = tr(Z?) — o?p, where|| - || is the Frobenius norm. Note that

A = 0 underH in (1.2) andA is regarded as a sphericity measure. See Ahn et al. (2007) for the sphericity
measure. In this section, we give an unbiased estimatak by using the extended cross-data-matrix
(ECDM) methodology.

The ECDM methodology was developed by Yata and Aoshima (2013) as an extension of the CDM
method due to Yata and Aoshima (2010). One of the advantages of the ECDM method is that one can
produce an unbiased estimator having a small variance at a low computational cost even for ultra high-
dimensional data. See Section 2.5 of Yata and Aoshima (2013) for the details:;Let [n/2] and
n(2) = n — n(, where[z| denotes the smallest integerx. Let

v k2l =gy + 1, LR/2)) it [k/2] > ng,
"OW T, k203 U{k/2) 4 ngy 1,0} otherwise

v B2+ 2] ) it [k/2] < g,
"OE T, k2] —=nayU{[k/2) +1,...,n}  otherwise

fork =3,...,2n—1, where|z| denotes the largest integerx. Let#S denote the number of elements in
asetsS. Note that#V (k) = N(1) l=1,2, Vn(l)(k)ﬂvn(g)(k) =0 anan(l)(k)UVn(g)(k) ={1,...,n}
fork =3,...,2n — 1. Also, note that

1€ Vn(l)(i+j) andj S Vn(?)(i+j) for ¢ <}J (S n) (21)
See Figure 1.
#V,axish = Py
___________________ I“__......_____..._...____...._
[} \
I 1
1 I
i J
n(2)(i+j) Vn(l)(i+j) v n(2)i+j)

Figure 1. lllustration of (2.1) wher{ (i + 5)/2] > n().

Let
— -1 — -1
T(1)(k) = 1) Z x; and Tk = n Z Zj
€V iy i€V
fork = 3,...,2n — 1. From (2.1), we note thdte; — ®(1)(;+;)) and(x; — ®()(;+;)) are independent for

all i < j. Then, Yata and Aoshima (2013) gave an estimator(&%y by the ECDM method as

Wn = (n— 1 Z{ —Z() (H—j T(mj - f(z)(i+j))}2, (2.2)

z<]



whereu,, = nyne)/{(nay — 1)(n@e) — 1)}. Note thatE(W,,) = tr(2?). Aoshima and Yata (2015) and
Yata and Aoshima (2016) gave the following result.

Lemma 2.1 (Aoshima and Yata (2015); Yata and Aoshima (201&3%sume (A-i). Then, it holds that as

p,Mm — 00
W, 4 tr(x4
Var(tr(EQ)) = ﬁ{l +o(1)} + O(tr(r(22)2)n> — 0.

Also, we can give an estimator efp by the ECDM method as
U :Aiw._i RN — By |2 (2.3)
" pn(n —1) o i ™ Tn(1)(i+5) i T Zn@) i)l :
where|| - || denotes the Euclidean norm. Note t4{/,,) = tr(X)?/p = o?p. We have the following result.

Lemma 2.2. Assume (A-i). Then, it holds that asn — oo

() o) o

Finally, we construct an estimator &f by the ECDM method as
T, = W, — U,. (2.4)
We note that(7},) = A without any assumptions. We have the following result.
Lemma 2.3. Assume (A-i). Then, it holds that asn — oo

tr(3?)2
n?

tr(34) N tr{(EE*)Q})

Var(T,) = 4 {1+o(1)}+0( =

n

3. NEW TEST PROCEDURE FOR (1.2)

ForT,, given by (2.4), we have the following results.

Lemma 3.1. Assume (A-i) and

2
aiv) T under (A,
nA
Then, it holds that under (A-iii)
Ty
Lemma 3.2. Assume (A-ii) and
(A-v) limsup {tr(EQ)} < oo under (A-iii).
Then, it holds that under (A-iii)
T, —
— = = N(0,1),
2tr(22)/n .1

where “=" denotes the convergence in distribution and0, 1) denotes a random variable distributed as
the standard normal distribution.



Note that ttX?) = o?p underH, in (1.2). From Lemma 3.2 we propose a test procedure for (1.2) by

— T,
rejectingHy <— 37 > Za, (3.2)

wherez, is a constant such thd&{N(0,1) > z,} = a with a € (0,1/2). Then, we have the following
result.

Theorem 3.1. Assume (A-ii) and (A-v). For the test by (3.1), we have that under (A-iii)

Size=a+o0(1) and Power= @(2”7@:2) — za) +o(1), (3.2)

where®(-) denotes the c.d.f. d¥ (0, 1).
When (A-iv) is met, we have the following result.
Corollary 3.1. Assume (A-i). Assume (A-iv) unddi. For the test by (3.1), we have that under (A-iii)
Power= 1+ o(1).
Remark 3.1. Chen et al. (2010) gave a test procedure for (1.2) based on the following statistic:
Tezz = An — t(S5)?/p,

whereS,, is the sample covariance matrix haviags,,) = 3, and

n

1 T 2 2 . T T
J#3’ J#I#5"

g

1 T T
+ g T;XTiT] Ty
—1)(n—-2)(n—3 7
nn-Dn-2)n-3) =,

Note thatF(A,) = tr(X?). However, T, is biased for high-dimensional data becalsgr(S,)%} >
tr(X)2. Although the test by Chen et al. (2010) is asymptotically equivalent to the test by (3.1), the latter is
much more applicable to the sequential analysis ensuring prespecified accuracy as seen in the next section.

4. TWO-STAGE SAMPLING SCHEME TO CONTROL BOTH SIZE AND POWER

We are interested in designing a test of (1.2) having sizexd power no less than— 5 whenA > A,
wherea € (0,1/2), 8 € (0,1/2) andAy, (> 0) are prespecified constants. We assumeat— co and
Ar = o(p) asp — oo.
From Theorem 3.1 we considersatisfying
nA

— — 2y > when A > Arp.
or(x?) =P ==L

Then, one finds the sample size as

ns Wt o (4.1)
Ap

We note that” — oo asp — oo from the facts that t5?) > o2p andAy = o(p) asp — oo. Also, note
thatC/p — 0 asp — oo underHj in (1.2) from the fact that\; — oo asp — oo. Then, from Theorem
3.1, we have the following result.



Theorem 4.1. Assume (A-ii) and (A-v). For the test by (3.1) with> C given by (4.1), we have under
(A-iii)
Size=a+o0(1), and Power>1—(+o0(l) whenA > Aj. (4.2)
SinceC includes unknown parametef¥2), it is necessary to estimatéwith some pilot samples. We

proceed with the following two steps:
1. Choosen(> 4) satisfying

tr(x4)

tr(x?)2

tr(x4
<1, £—>0 andgg—m as p — oo under

- m tr(52)2 — 0 as p — oo. (4.3)

m
C
Take pilot samplesg;, j = 1,...,m, of sizem. Then, calculatéV,, according to (2.2). Define the total
sample size by
2(zq + zg)Wm" }
Ap '
2. If N = m, do not take any additional samples and otherwise, that ¥ it m, take additional
samplesg;, j =m+1,..., N, of sizeN —m. By combining the pilot samples and the additional samples,
calculatel/y andT according to (2.3) and (2.4). Then, we propose a test procedure for (1.2) by

N = max {m, [ (4.4)

_— NT
rejectingHy <— N Zo- (4.5)
2UN

We have the following result.

Theorem 4.2. Assume (A-ii). Assume also

N CA
(A-vi) hzrjrls(,gp {tl’(22>} < 00.

For the test by (4.5), we have (4.2) as— co.

Remark 4.1. Under (A-vi), the condition “tf=*)/tr(£%)2 — 0 asp — oo” in (4.3) holds. See (A.5) in
Appendix. From Lemma 2.1, under (A-i) and (4.3), we have Higt = tr(22){140p(C~/?)} asp — .
Then, it holds thatV — C' = op(C'/?) asp — .

5. DETECTION OF DIVERGENTLY SPIKED NOISE

In this section, we consider the detection of divergently spiked noise as an application of the sphericity test.
Paul (2007) and Johnstone and Lu (2009) handled the following multicomponent covariance model:

k
Tj=p+ Zpi&j + 7'1/25]- forj=1,...n, (5.1)
i=1

wherer € (0,00) asp — oo, ;S are i.i.d. asV(0,1), ;s are i.i.d. asV,(0,1I,), and;;s ande;s
are mutually independent. Herk,is a fixed positive integer (not depending pnand p,;s are mutually
orthogonal with

lol1? = - = [lpgl* > 0.
Note that (A-ii) is met under (5.1). We have that= Zle p;pl +1I,and

)\] = HpJH2+T for,j = 17"'7k7 and )‘k+1 == Ap =T (52)
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In (5.2), the first; eigenvalues are spiked compared to the remaining. Johnstone (2001), Baik and Silverstein
(2006), Paul (2007), and Johnstone and Lu (2009) considered the following spiked model:

Aj (> 7) is fixed (not depending op) for j =1, ..., k. (5.3)

They studied asymptotic behaviors of the conventional principal component analysis (PCA)yhen

¢ > 0 under (5.3). However, high-dimensional eigenvalues naturally depempdaon it is probable that

Aj — oo asp — oo for the first severajs. See Jung and Marron (2009), Yata and Aoshima (2009), Fan
et al. (2013), Ishii et al. (2016), Shen et al. (2016), and Aoshima and Yata (2018) for the details. They
considered the following spiked model in which the fiestigenvalues are divergently spiked:

Aj=pY forj=1,.. k. (5.4)

Here, ;s are fixed positive constants (not dependingpdmpreserving the order that; > --- > ;.
For such divergently spiked models, Yata and Aoshima (2010, 2012) developed new PCA methods. They
showed that the new PCASs can enjoy consistency properties both for the eigenvalues and PC directions when
Aj — 00 asp — oo.

One would be interested in testing the following hypotheses:

Hy : (5.3) holds vs. H; : (5.4) holds (5.5)

From (5.2) we have that

k k
_ DV
(%) = (p—k)r>+ ) A ando = (p—k) , 2= i

‘= p p
Under (5.3), we have that = O(1) asp — oo, so that from Lemma 3.2 it holds that
Ty
— " = N(0,1
2tr(2?) /n 0.1)

under (A-iii) sincenA /tr(X2) = O(n/p) — 0. Under (5.4), we have that

k
A= meﬂf{l +0(1)} — o0 asp — 0.
j=1

Thus, for the test of (5.5), one can apply the test procedure (3.1) or (4.5).
Corollary 5.1. The test procedure (3.1) for (5.5) has (3.2) under (A-iii) and (A-v).
Corollary 5.2. The test procedure (4.5) for (5.5) has (4.2yas> co under (A-vi).
We note that
A > p?* {1 +0(1)} (5.6)

asp — oo under (5.4). Thus we can consider a lower bound\oas A > p?*1. Then, one may set
Ap = p*™ir with a prespecified constant;, € (0,1/2) in view of the assumptions that; — oo and
Ar = o(p) asp — oo.

6. SIMULATION STUDIES

In order to investigate the performance of the test procedure (4.5) for (1.2) or (5.5), we used computer
simulations.



6.1. Test Procedure (4.5) for (1.2)

We setA; = p?/3. We considered constructing a test having size= 0.01 and power no less than
1 — 8 =0.8whenA > A;. We setp = 250, 500, 1000, 2000 and4000. We putp; = [(6/5)p*/?]. The
following two cases were considered:

(a)2=1I, and (b)X=1,+G,

whereG = diag(1, ..., 1,0, ..., 0) whose firstp; elements aré. Note thatA = 3p; +p — (p1 +p)?/p =

p1 — pi/p > A whenpis large for (b). Also, note that (A-vi) is met both for (a) and (b). We considered a
non-Gaussian case by settipg= p, T = HA'Y? andw,; = (v,; — 5)/10"/% in (1.1), wherev, ;s are i.i.d.

as the chi-squared distribution with 5 degrees of freedom. Note that (A-ii) is met. We=seftC'/2]. Note

that (4.3) is met both for (a) and (b).

In Tables 1 and 2, we summarized the findings obtained by averaging the outcomes fro(s=20R0
say) replications, where the firBd00 replications were generated for (a) and the 1880 replications were
generated for (b). Under a fixed scenario, suppose thattthesplication ends withV = N,. observations
given by (4.4) and the test result given by (4.5). We defifled= 1 (or 0) accordingly as{, was falsely
rejected (or not) andi; was falsely rejected (or not). We definad= R~! Zle P, to estimate the size
andl -3 =1-R! ZfERH P, to estimate the power whel > A;, while their estimated standard
errors, s(@) ands(3), were given bys?(@) = R~'a(1 — @) ands?(3) = R~'B(1 — ). For (a), we
calculatedV = R~' "% | N, and MSEN/C) = R~' 3% (N,/C — 1). Similarly, we calculatedV
and MSEN/C) for (b).

Table 1 Required sample size and average size by the test procedure (4.5) for (1.2) in case of (a).

p |m C N N-C MSEN/C)

o]
Y
&

250 | 20 3991 3991 -0.01 0.0173 0.017 0.0041
500 | 26 50.29 50.63 0.34 0.0094 0.014 0.0037
1000} 32 63.36 63.65 0.29 0.0052 0.016 0.004
2000| 40 79.83 79.95 0.12 0.0033 0.011 0.0033
4000| 51 100.58 101.23 0.66 0.0018 0.014 0.0037

We observed that the test procedure (4.5) for (1.2) provides good performances especially isshen
large.

6.2. Test Procedure (4.5) for (5.5)

We setA; = (5/6)p*/%. We considered constructing a test having size: 0.05 and power no less than
1—03=0.9whenA > Ap. We setp = 250, 500, 1000, 2000 and4000. We handled (5.1) with (5.2). The
following two cases were considered:

(¢) T =diag2,1,0,...,0) + I, and (d) = = diag(p*®,p'/*,0,..,0) + I,

for (5.3) and (5.4), respectively. Note that (A-vi) is met both for (c) and (d),and p3/* + p'/2 4+ o(1) >
Ar, whenp is large for (d). We setr = [C/2].



Table 2 Required sample size and average power by the test procedure (4.5) for (1.2) in case of (b).

D m C N N—-C MSEN/C) 1-8 s(B)
250 | 32 629 63.29 0.39 0.0079 0.771 0.0133
500 | 37 73.22 735 0.28 0.0048 0.809 0.0124
1000| 44 86.17 86.43 0.26 0.0028 0.835 0.0117
2000| 52 102.7 103.21 0.51 0.0021 0.871 0.0106
4000| 62 123.43 124 0.56 0.0013 0.897 0.0096

Similar to Tables 1 and 2, we calculatadl — 3, s(a), s(3), N and MSEN/C'), by 2000 replications.
In Tables 3 and 4, we summarized the results. We observed that the test procedure (4.5) for (5.5) provides
good performances especially whers large.

Table 3 Required sample size and average size by the test procedure (4.5) for (5.5) in case of (c).

p |m C N N-C MSEN/C) @ s(@)

250 | 15 29.16 29.82 0.66 0.031 0.115 0.0101
500 | 17 33.94 34.38 0.43 0.02 0.072 0.0082
1000} 20 39.93 40.52 0.59 0.013 0.056 0.0073
2000| 24 47.23 479 0.68 0.01 0.06 0.0075
4000| 29 56.01 56.67 0.66 0.0062 0.058 0.0074

Throughout the simulations, we observed that the test procedure (4.5) meets the required accuracy suc-
cessfully.

7. ACTUAL DATA ANALYSIS

We analyzed gene expression data for the test of (5.5). We handled microarray data of Naderi et al. (2007)
with 47293 (= p) genetic probes. We used the data set of luminal group (84 samples). We-s&@05 and

= 0.1. From (5.6) we sef\;, = p*/®, that is, we designed the test of (5.5) to have 686 and power no

less thar).9 when); > p%/®. We setn = 30. We took the first 30 samples as a pilot sample. We calculated
W, = 35079 according to (2.2). From (4.4) the total sample size was calculated as

N = max{30, [W—‘} = 38.

Thus we took the next 8= 38 — 30) samples. We calculatédy andTy according to (2.3) and (2.4). Then,

it follows that NT
N
—_— =1.64
2UN > Ra ( )7



Table 4 Required sample size and average power by the test procedure (4.5) for (5.5) in case of (d).

D m C N N-C MSEN/C) 1-8 s(B)

250 | 20 39.38 39.65 0.28 0.0385 0.888 0.001
500 | 22 43.71 4435 0.63 0.026 0.924 0.0084
1000| 25 49.27 49.77 0.51 0.0193 0.914 0.0089
2000| 29 56.17 56.57 0.4 0.0119 0.917 0.0087
4000| 33 64.61 654 0.79 0.0088 0.94 0.0075

so thatH in (5.5) was rejected in terms of (4.2). We concluded that— oo for the first severajs and
/\1‘1 = O(p_2/5). Hence, we recommend to use new PCA methods given by Yata and Aoshima (2010,
2012) becausg; — oo for the first severajs.

For instance, Yata and Aoshima (2012) developed a new PCA called the noise-reduction (NR) method-
ology. In the NR method);s are estimated by

tr(S,) — 7 i
n—1—7

Aj=Aj—

(j=1,...,n—2),

wherej\j is the j-th eigenvalue of,,. We note thaﬁ\j has a consistency property in the sense that
S\j/)\j =1+ Op(l) When)\j — 00 asSp — 00

under some regularity conditions. On the other hand, the conventional estiﬁqfaiopludes alarge bias in
the sense that )
Ai/Aj =1+ kK; +op(l) when); — oo asp — oo, (7.1)

wherer; = A;l >0 ki1 Ai/(n —1). See Yata and Aoshima (2012) and Aoshima and Yata (2018) for the
details. In Table 5, we estimated the first five eigenvalues for the data set (88 gamples) both by the

NR method and the conventional PCA. We observed,i!aéza; quite large compared withj for all j. This

Table 5 Estimates of the first five eigenvalues by the NR method and conventional PCA together with their
ratios for the data set in Naderi et al. (2007).

j 1 2 3 4 5
\; | 2252 1201 893 66 543
\; |2788 1704 137 111.8 98.5

Aj/\; | 1.238 1.419 1.535 1.694 1.813

is probably because the bias in (7.1) is quite large for ga€n the other hande does not depend on the
bias under (5.4). Thus, we recommend to use the NR method (or the CDM method by Yata and Aoshima
(2010)) whenH, in (5.5) is rejected.
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A. APPENDIX

We putK = 4“'(22)2/?7,2 throughout this section. Lé\tij(l) = n(l)(mi—i(l)(iﬂ))(mi—i(l)(iﬂ))T/(n(l)—

1), Sij) = () (T = T(2)(i49)) (T = T(yi)" /() = 1), Aij = r{(Zi;0) — o L) (Sijee) — o1p)}
andB;; = tr(X;;1) — o Ip)tr(Xy2) — ol,)/pforalli < j.

Proofs of Lemmas 2.2 and 2.8Ve write that
Eij :AZ] + Utr(il](l)) —+ O'tr(i”@)) — O'Qp and
Gij =Bij + otr(Sy51)) + otr(Zyj9)) — op

foralli < j. Note thatW,, =23 1" ;e;;/{n(n—1)} andU, =237 . (;;/{n(n—1)}. Thus, it holds that

nizz n—l Z n—l (A1)

1<j 1<J
Here, we can evaluate that
"~ Bij . tr(22)2 .
= Utr(iij(l)) + Utr(iij(Z)) _ottr(2?)
Var<2 Zj: n(n —1) > a O(T)

under (A-i) and (A-iii). Thus, we conclude the result of Lemma 2.2. On the other hand, from Lemma 5.1 in
Yata and Aoshima (2016), we have that

Var(2§ n(:—]l)>

_ {8tr{(22*)2} +4300 (M) = 2)(v] 2i;)?

n

+ K}{l +o(1)} + o("(nzf)) (A.3)

under (A-i) and (A-iii). Then, bynotingth@?zl( 3.,)? Z”, 1( ' 3.y,)? = tr{(2X.)*} and

~ Ay ~ By _ S Ay Y
E{(QZn(n—l)_A)(QZn(n—l))}_O{Var(22n(n—1) K
1<) 1<J 1<J
under (A-i) and (A-iii), from (A.2) and (A.3), we can conclude the result of Lemma 2.3. O

Proof of Lemma 3.1Note that ttX4) < tr(Z?)? and t{(E£X,)?} < Mtr(Z.EX,) < MA < tr(ZHA.
Then, from Lemma 2.3, it holds that

Var(T,/A) = O{tr(EQ)Q/(nQAQ) + tr{(EE*)Q}/(nAQ)} —

under (A-i), (A-iii) and (A-iv), so thatl;,/A = 1 4 op(1). It concludes the result. O
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Proof of Lemma 3.2If liminf, . tr(X%)/(c2p) > 1, it holds thatliminf, .., A/tr(£?) > 0, so that
(A-iv) holds. Thus under (A-v), it holds that as— oo

tr(%?)/(o%p) — 1. (A.4)

If lim inf,, oo A7/(0%p) > 0, it holds thatliminf, .., A/(a®p) > 0 from the fact thap = >7_, \;.
Thus, under (A-v) it follows thaa? /tr(2?) — 0 asp — oo, so that

tr(34)  Mr(z?)
=2 = wm A9

asp — oo under (A-v). Then, from Corollary 5.2 in Yata and Aoshima (2016), we have that
n A
2y ——7 = N(0,1
Z K'/2n(n —1) = N(0,1)
1<)
under (A-ii), (A-iii) and (A-v). Thus, from (A.1) and (A.2) we conclude the result. O

Proofs of Theorem 3.1 and Corollary 3.First, we consider Corollary 3.1. From Lemmas 2.2 and 3.1 we

have that
nT), T, 20%p{1 + op(1)}
P<M>ZQ>—P<A>za nA

=P{l+4+o0p(1) >0p(1)} —1

under (A-i), (A-iii) and (A-iv) from the fact that?p < tr(X?). It concludes the result of Corollary 3.1.
Next, we consider Theorem 3.1. From Lemmas 2.2, 3.2 and (A.4) we have that

nT, T, — A U, nA
P<ﬁ ~ Za) - <2tr(22)/n Ty 2tr(22)) (A.6)
_ @(2t222> ~za) +o(1)

under (A-ii), (A-iii) and (A-v). Hence, we conclude the result of Theorem 3.1. The proofs are completed.
]

Proof of Theorem 4.1From Theorem 3.1, the result of Theorem 4.1 is obtained straightforwardly. (]

Proof of Theorem 4.2We assume that = 0 without loss of generality. Le€;, = |C — (wC)'/?| and

Cy = [C + (wC)Y/?], wherew (> 0) is a variable such that — 0 asp — co. Under (A-vi), (A.5) holds

asp — oo. Then, from the proof of Theorem 5 in Aoshima and Yata (2014), it holds that under (A-i) and
(A-vi)

max{m,Cr} <N < Cy (A7)

asp — oo with probability tending tol. Let Ay; = tr{(zx] — ol,)(xjx] — oI,)} and B,i; =
tr(x;x] — oIp)tr(z;a] —ol,)/pforalli < j. Now, we write that

Cr N Cy, N

B 2(Aoij — Boij) 2(Aoij — Boij) (Avij — Boij)
TON_,Z N(N —1) +,Z Z NN-1) Z N(N-1) (A-8)
i<j j=Cr+1i=1 i#j(>CL)
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Let Ko = 4tr(X£%)2/C2. By using Chebyshev's inequality and Schwarz’s inequality, formny 0, from
(A.7), we have that ag — oo

P(‘ iv: %(Am-j = Boij — A)/02‘ > 77Ké‘/2)

j=Cp+1i=1
Cy Cy,

< P( Z ’Z(Aoij — Boij — A)/Cz‘ > 77K(1;/2>
j=Cr+1 =1

= O{w(tr(¥%)? + tr{(£X,)?})/(C*K¢)} — 0 and

P(‘ XN: (Aoij — Boij — A)/02‘ > nKé/2>

i#j(>CrL)
Cy
<P( S [(Aois = Boiy = 8)/C| > nkY?) = O{wP (52 4+ t{(25.)21)/(C?K o)} — 0
i#j(>CL)

under (A-ii) and (A-vi) from the fact that f(XX,)?} = O{tr(2?)?}. Thus, from (A.8) and Lemma 3.2,
we have that

CL PR — P — CL P — R —
TON172A - Z 2(14()172 Boig = 2) +op(l) = Z 2(1410/1‘27 Boij = 2) +op(1l) = N(0,1) (A.9)
Kg i; Ko NIN-1) ic; Ko CL(CL—1)

under (A-ii) and (A-vi) from the fact that

Cr,
. Q(Am'j — Boij — A) 1/2
To, —A=) A +op(K).

i<j

Here, in a way similar to the proof of Lemma A.5 in Yata and Aoshima (2013), we have that

Ty = Ton + op(KJ?) (A.10)
under (A-ii) and (A-vi). By combining (A.9) with (A.10), we conclude the result. O

Proofs of Corollaries 5.1 and 5.2Under (5.1) and (5.3), it holds thatA /tr(X?) — 0 under (A-ii)) and
CA/tr(2?) = O(1/AL) — 0 asp — oo. Then, from Theorems 3.1 and 4.2, we conclude the resulfs!
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