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sampling scheme so that the test procedure can ensure a prespecified level both for the size and power. We apply the
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data by the proposed test procedure.

Keywords: Cross-data-matrix method; Gene expression data; HDLSS; Noise detection; Noise-reduction method;
Sphericity.

Subject Classifications:62H15; 62H10; 62L10.

1. INTRODUCTION

High-dimension, low-sample-size (HDLSS) data situations occur in many areas of modern science such as
genetic microarrays, medical imaging, text recognition, finance, chemometrics, and so on. In the HDLSS
situations, the large sample theory does not work and hence some new theories and methodologies are
expected to develop for high-dimensional inferences. Aoshima and Yata (2011a,b) is pioneering work which
established a variety of inference for HDLSS data such as given-bandwidth confidence regions, two-sample
tests, tests of the equality of two covariance matrices, classification, variable selection, regression, tests
of the correlation coefficients and so on, and discussed sample size determination to ensure prespecified
accuracy for each inference. Afterward, those high-dimensional inferences have been further studied and
developed by many researchers in the field of high-dimensional statistical analysis. In the current paper, we
consider a test of the sphericity for high-dimensional covariance matrices.

Suppose we take samples,xj , j = 1, ..., n, of sizen (≥ 4) from a population, which are independent
and identically distributed (i.i.d.) as ap-variate distribution. We assume thatxj has an unknown mean vector
µ and unknown covariance matrixΣ. We denote the eigenvalue decomposition ofΣ by Σ = HΛHT ,
whereΛ is a diagonal matrix of eigenvalues,λ1 ≥ · · · ≥ λp ≥ 0, andH is an orthogonal matrix of the
corresponding eigenvectors. Letxj = HΛ1/2zj +µ, wherezj = (z1j , ..., zpj)T is considered as a sphered
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data vector having the zero mean vector and identity covariance matrix. Letσ = tr(Σ)/p. We assume that
σ ∈ (0,∞) asp → ∞. For a function,f(·), “f(p) ∈ (0,∞) asp → ∞” implies thatlim infp→∞ f(p) > 0
andlim supp→∞ f(p) < ∞. We consider the following model:

xj = Γwj + µ, (1.1)

whereΓ = (γ1, . . . ,γq) is ap×q matrix for someq > 0 such thatΓΓT = Σ, andwj = (w1j , ..., wqj)T , j =
1, . . . , n, are i.i.d. random vectors havingE(wj) = 0 and Var(wj) = Iq. Here,Iq denotes the identity
matrix of dimensionq. Let Var(w2

rj) = Mr, r = 1, . . . , q. We assume thatMr ∈ (0,∞) asp → ∞ for all
r. Similar to Bai and Saranadasa (1996) and Aoshima and Yata (2015), we assume that

(A-i) E(w2
rjw

2
sj) = E(w2

rj)E(w2
sj) = 1 andE(wrjwsjwtjwuj) = 0 for all r ̸= s, t, u.

We assume the following assumption instead of (A-i) as necessary:

(A-ii) E(wα1
r1jw

α2
r2j · · ·w

αv
rvj) = E(wα1

r1j)E(wα2
r2j) · · ·E(wαv

rvj) for all r1 ̸= r2 ̸= · · · ≠ rv ∈ [1, q] and
αi ∈ [1, 4], i = 1, . . . , v, wherev ≤ 8 and

∑v
i=1 αi ≤ 8.

See Chen and Qin (2010) about (A-ii). Note that (A-ii) implies (A-i). Whenxj is Gaussian, it holds that
Γ = HΛ1/2 andwj = zj in (1.1). Note that (A-ii) is naturally satisfied whenxj is Gaussian because
the elements ofzj are independent andMr = 2 for all r. We assume the following HDLSS divergence
condition:

(A-iii) p, n → ∞ andn/p → 0.

In this paper, we are interested in testing the sphericity ofΣ:

H0 : Σ = σIp vs. H1 : Σ ̸= σIp. (1.2)

We give a two-stage test procedure which can ensure a prespecified level both for the size and power. Most
interestingly, we apply the test procedure to detect divergently spiked noise in high-dimensional statistical
analysis.

Whenn > p andp is fixed, Nagao (1973) and others gave test statistics for (1.2) by using the large
sample theory. Ledoit and Wolf (2002) investigated asymptotic properties of the test statistics whenp/n →
c > 0. Since the conventional test statistics do not work for HDLSS data, Srivastava et al. (2011) gave a
test statistic under (A-iii). However, the test statistic is heavily biased for high-dimensional data unlessxj

is Gaussian. On the other hand, Chen et al. (2010) gave a test statistic based on the U-statistic for high-
dimensional data. In the current paper, we shall also pursue a non-parametric approach, but we produce a
new test statistic by using theextended cross-data-matrix (ECDM) methodology. The ECDM method was
developed by Yata and Aoshima (2013) and was motivated by the cross-data-matrix (CDM) method due to
Yata and Aoshima (2010). One of the advantages of the ECDM method is that one can produce an unbiased
estimator having a small variance at a low computational cost even for ultra high-dimensional data. In
addition, the ECDM method possesses a high versatility in high-dimensional data analysis. See Yata and
Aoshima (2016) for the details.

The paper is organized as follows: In Section 2, we produce a test statistic for (1.2) by using the ECDM
method. We show that the ECDM test statistic is based on an unbiased estimator of a sphericity measure.
In addition, the ECDM test statistic enjoys consistency properties and the asymptotic normality in high-
dimensional settings. In Section 3, we propose a new test procedure based on the ECDM test statistic and
evaluate its asymptotic size and power theoretically. In Section 4, we give a two-stage sampling scheme so
that the test procedure can ensure a prespecified level both for the size and power. In Section 5, we apply
the test procedure to detect divergently spiked noise in high-dimensional statistical analysis. In Section 6,
we give simulation studies to investigate the performance of the proposed test procedure. Finally, in Section
7, we analyze gene expression data by the proposed test procedure.
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2. UNBIASED ESTIMATOR OF SPHERICITY MEASURE

Let Σ∗ = Σ − σIp and∆ = ||Σ∗||2F = tr(Σ2) − σ2p, where|| · ||F is the Frobenius norm. Note that
∆ = 0 underH0 in (1.2) and∆ is regarded as a sphericity measure. See Ahn et al. (2007) for the sphericity
measure. In this section, we give an unbiased estimator of∆ by using the extended cross-data-matrix
(ECDM) methodology.

The ECDM methodology was developed by Yata and Aoshima (2013) as an extension of the CDM
method due to Yata and Aoshima (2010). One of the advantages of the ECDM method is that one can
produce an unbiased estimator having a small variance at a low computational cost even for ultra high-
dimensional data. See Section 2.5 of Yata and Aoshima (2013) for the details. Letn(1) = ⌈n/2⌉ and
n(2) = n − n(1), where⌈x⌉ denotes the smallest integer≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋ + n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋ + 1, . . . , ⌊k/2⌋ + n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋ + 1, . . . , n} otherwise

for k = 3, . . . , 2n−1, where⌊x⌋ denotes the largest integer≤ x. Let#S denote the number of elements in
a setS. Note that#V n(l)(k) = n(l), l = 1, 2, V n(1)(k)∩V n(2)(k) = ∅ andV n(1)(k)∪V n(2)(k) = {1, . . . , n}
for k = 3, . . . , 2n − 1. Also, note that

i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n). (2.1)

See Figure 1.

Figure 1. Illustration of (2.1) when⌊(i + j)/2⌋ > n(1).

Let
x(1)(k) = n−1

(1)

∑
j∈V n(1)(k)

xj and x(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj

for k = 3, . . . , 2n − 1. From (2.1), we note that(xi − x(1)(i+j)) and(xj − x(2)(i+j)) are independent for
all i < j. Then, Yata and Aoshima (2013) gave an estimator of tr(Σ2) by the ECDM method as

Wn =
2un

n(n − 1)

n∑
i<j

{
(xi − x(1)(i+j))

T (xj − x(2)(i+j))
}2

, (2.2)
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whereun = n(1)n(2)/{(n(1) − 1)(n(2) − 1)}. Note thatE(Wn) = tr(Σ2). Aoshima and Yata (2015) and
Yata and Aoshima (2016) gave the following result.

Lemma 2.1 (Aoshima and Yata (2015); Yata and Aoshima (2016)). Assume (A-i). Then, it holds that as
p, n → ∞

Var
( Wn

tr(Σ2)

)
=

4
n2

{1 + o(1)} + O
( tr(Σ4)

tr(Σ2)2n

)
→ 0.

Also, we can give an estimator ofσ2p by the ECDM method as

Un =
2un

pn(n − 1)

n∑
i<j

||xi − xn(1)(i+j)||2 ||xj − xn(2)(i+j)||2, (2.3)

where|| · || denotes the Euclidean norm. Note thatE(Un) = tr(Σ)2/p = σ2p. We have the following result.

Lemma 2.2. Assume (A-i). Then, it holds that asp, n → ∞

Var
( Un

σ2p

)
= O

( tr(Σ2)
tr(Σ)2n

)
→ 0.

Finally, we construct an estimator of∆ by the ECDM method as

Tn = Wn − Un. (2.4)

We note thatE(Tn) = ∆ without any assumptions. We have the following result.

Lemma 2.3. Assume (A-i). Then, it holds that asp, n → ∞

Var(Tn) = 4
tr(Σ2)2

n2
{1 + o(1)} + O

( tr(Σ4)
n2

+
tr{(ΣΣ∗)2}

n

)
.

3. NEW TEST PROCEDURE FOR (1.2)

ForTn given by (2.4), we have the following results.

Lemma 3.1. Assume (A-i) and

(A-iv)
tr(Σ2)
n∆

→ 0 under (A-iii).

Then, it holds that under (A-iii)

Tn

∆
= 1 + oP (1).

Lemma 3.2. Assume (A-ii) and

(A-v) lim sup
{ n∆

tr(Σ2)

}
< ∞ under (A-iii).

Then, it holds that under (A-iii)
Tn − ∆

2tr(Σ2)/n
⇒ N(0, 1),

where “⇒” denotes the convergence in distribution andN(0, 1) denotes a random variable distributed as
the standard normal distribution.
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Note that tr(Σ2) = σ2p underH0 in (1.2). From Lemma 3.2 we propose a test procedure for (1.2) by

rejectingH0 ⇐⇒ nTn

2Un
> zα, (3.1)

wherezα is a constant such thatP{N(0, 1) > zα} = α with α ∈ (0, 1/2). Then, we have the following
result.

Theorem 3.1. Assume (A-ii) and (A-v). For the test by (3.1), we have that under (A-iii)

Size= α + o(1) and Power= Φ
( n∆

2tr(Σ2)
− zα

)
+ o(1), (3.2)

whereΦ(·) denotes the c.d.f. ofN(0, 1).

When (A-iv) is met, we have the following result.

Corollary 3.1. Assume (A-i). Assume (A-iv) underH1. For the test by (3.1), we have that under (A-iii)

Power= 1 + o(1).

Remark 3.1. Chen et al. (2010) gave a test procedure for (1.2) based on the following statistic:

TCZZ = An − tr(Sn)2/p,

whereSn is the sample covariance matrix havingE(Sn) = Σ, and

An =
1

n(n − 1)

n∑
j ̸=j′

(xT
j xj′)2 −

2
n(n − 1)(n − 2)

n∑
j ̸=j′ ̸=j′′

xT
j′xjx

T
j xj′′

+
1

n(n − 1)(n − 2)(n − 3)

ni∑
j ̸=j′ ̸=l ̸=l′

xT
j xj′x

T
l xl′ .

Note thatE(An) = tr(Σ2). However,TCZZ is biased for high-dimensional data becauseE{tr(Sn)2} >
tr(Σ)2. Although the test by Chen et al. (2010) is asymptotically equivalent to the test by (3.1), the latter is
much more applicable to the sequential analysis ensuring prespecified accuracy as seen in the next section.

4. TWO-STAGE SAMPLING SCHEME TO CONTROL BOTH SIZE AND POWER

We are interested in designing a test of (1.2) having sizeα and power no less than1 − β when∆ ≥ ∆L,
whereα ∈ (0, 1/2), β ∈ (0, 1/2) and∆L (> 0) are prespecified constants. We assume that∆L → ∞ and
∆L = o(p) asp → ∞.

From Theorem 3.1 we considern satisfying

n∆
2tr(Σ2)

− zα ≥ zβ when ∆ ≥ ∆L.

Then, one finds the sample size as

n ≥
2(zα + zβ)tr(Σ2)

∆L
(= C, say). (4.1)

We note thatC → ∞ asp → ∞ from the facts that tr(Σ2) ≥ σ2p and∆L = o(p) asp → ∞. Also, note
thatC/p → 0 asp → ∞ underH0 in (1.2) from the fact that∆L → ∞ asp → ∞. Then, from Theorem
3.1, we have the following result.
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Theorem 4.1. Assume (A-ii) and (A-v). For the test by (3.1) withn ≥ C given by (4.1), we have under
(A-iii)

Size= α + o(1), and Power≥ 1 − β + o(1) when ∆ ≥ ∆L. (4.2)

SinceC includes unknown parameter tr(Σ2), it is necessary to estimateC with some pilot samples. We
proceed with the following two steps:

1. Choosem(≥ 4) satisfying

m

C
≤ 1,

C

m2
→ 0 and

C

m

tr(Σ4)
tr(Σ2)2

→ 0 as p → ∞ under
tr(Σ4)
tr(Σ2)2

→ 0 as p → ∞. (4.3)

Take pilot samples,xj , j = 1, ..., m, of sizem. Then, calculateWm according to (2.2). Define the total
sample size by

N = max
{

m,
⌈2(zα + zβ)Wm

∆L

⌉}
. (4.4)

2. If N = m, do not take any additional samples and otherwise, that is ifN > m, take additional
samples,xj , j = m+1, ..., N , of sizeN −m. By combining the pilot samples and the additional samples,
calculateUN andTN according to (2.3) and (2.4). Then, we propose a test procedure for (1.2) by

rejectingH0 ⇐⇒ NTN

2UN
> zα. (4.5)

We have the following result.

Theorem 4.2. Assume (A-ii). Assume also

(A-vi) lim sup
p→∞

{ C∆
tr(Σ2)

}
< ∞.

For the test by (4.5), we have (4.2) asp → ∞.

Remark 4.1. Under (A-vi), the condition “tr(Σ4)/tr(Σ2)2 → 0 asp → ∞” in (4.3) holds. See (A.5) in
Appendix. From Lemma 2.1, under (A-i) and (4.3), we have thatWm = tr(Σ2){1+oP (C−1/2)} asp → ∞.
Then, it holds thatN − C = oP (C1/2) asp → ∞.

5. DETECTION OF DIVERGENTLY SPIKED NOISE

In this section, we consider the detection of divergently spiked noise as an application of the sphericity test.
Paul (2007) and Johnstone and Lu (2009) handled the following multicomponent covariance model:

xj = µ +
k∑

i=1

ρiξij + τ1/2εj for j = 1, ..., n, (5.1)

whereτ ∈ (0,∞) asp → ∞, ξijs are i.i.d. asN(0, 1), εjs are i.i.d. asNp(0, Ip), andξijs andεjs
are mutually independent. Here,k is a fixed positive integer (not depending onp) andρis are mutually
orthogonal with

||ρ1||2 ≥ · · · ≥ ||ρk||2 > 0.

Note that (A-ii) is met under (5.1). We have thatΣ =
∑k

i=1 ρiρ
T
i + τIp and

λj = ||ρj ||2 + τ for j = 1, ..., k, and λk+1 = · · · = λp = τ. (5.2)
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In (5.2), the firstk eigenvalues are spiked compared to the remaining. Johnstone (2001), Baik and Silverstein
(2006), Paul (2007), and Johnstone and Lu (2009) considered the following spiked model:

λj (> τ) is fixed (not depending onp) for j = 1, ..., k. (5.3)

They studied asymptotic behaviors of the conventional principal component analysis (PCA) whenn/p →
c > 0 under (5.3). However, high-dimensional eigenvalues naturally depend onp and it is probable that
λj → ∞ asp → ∞ for the first severaljs. See Jung and Marron (2009), Yata and Aoshima (2009), Fan
et al. (2013), Ishii et al. (2016), Shen et al. (2016), and Aoshima and Yata (2018) for the details. They
considered the following spiked model in which the firstk eigenvalues are divergently spiked:

λj = pαj for j = 1, ..., k. (5.4)

Here, αjs are fixed positive constants (not depending onp) preserving the order thatλ1 ≥ · · · ≥ λk.
For such divergently spiked models, Yata and Aoshima (2010, 2012) developed new PCA methods. They
showed that the new PCAs can enjoy consistency properties both for the eigenvalues and PC directions when
λj → ∞ asp → ∞.

One would be interested in testing the following hypotheses:

H0 : (5.3) holds vs. H1 : (5.4) holds. (5.5)

From (5.2) we have that

tr(Σ2) = (p − k)τ2 +
k∑

j=1

λ2
j and σ =

(p − k)τ
p

+

∑k
j=1 λj

p
.

Under (5.3), we have that∆ = O(1) asp → ∞, so that from Lemma 3.2 it holds that

Tn

2tr(Σ2)/n
⇒ N(0, 1)

under (A-iii) sincen∆/tr(Σ2) = O(n/p) → 0. Under (5.4), we have that

∆ =
k∑

j=1

p2αj{1 + o(1)} → ∞ asp → ∞.

Thus, for the test of (5.5), one can apply the test procedure (3.1) or (4.5).

Corollary 5.1. The test procedure (3.1) for (5.5) has (3.2) under (A-iii) and (A-v).

Corollary 5.2. The test procedure (4.5) for (5.5) has (4.2) asp → ∞ under (A-vi).

We note that

∆ ≥ p2α1{1 + o(1)} (5.6)

asp → ∞ under (5.4). Thus we can consider a lower bound of∆ as∆ > p2α1 . Then, one may set
∆L = p2α1L with a prespecified constantα1L ∈ (0, 1/2) in view of the assumptions that∆L → ∞ and
∆L = o(p) asp → ∞.

6. SIMULATION STUDIES

In order to investigate the performance of the test procedure (4.5) for (1.2) or (5.5), we used computer
simulations.
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6.1. Test Procedure (4.5) for (1.2)

We set∆L = p2/3. We considered constructing a test having sizeα = 0.01 and power no less than
1 − β = 0.8 when∆ ≥ ∆L. We setp = 250, 500, 1000, 2000 and4000. We putp1 = ⌈(6/5)p2/3⌉. The
following two cases were considered:

(a) Σ = Ip and (b) Σ = Ip + G,

whereG = diag(1, ..., 1, 0, ..., 0) whose firstp1 elements are1. Note that∆ = 3p1 + p − (p1 + p)2/p =
p1 − p2

1/p ≥ ∆L whenp is large for (b). Also, note that (A-vi) is met both for (a) and (b). We considered a
non-Gaussian case by settingq = p, Γ = HΛ1/2 andwrj = (vrj − 5)/101/2 in (1.1), wherevrjs are i.i.d.
as the chi-squared distribution with 5 degrees of freedom. Note that (A-ii) is met. We setm = ⌈C/2⌉. Note
that (4.3) is met both for (a) and (b).

In Tables 1 and 2, we summarized the findings obtained by averaging the outcomes from 2000(= 2R,
say) replications, where the first1000 replications were generated for (a) and the last1000 replications were
generated for (b). Under a fixed scenario, suppose that therth replication ends withN = Nr observations
given by (4.4) and the test result given by (4.5). We definedPr = 1 (or 0) accordingly asH0 was falsely
rejected (or not) andH1 was falsely rejected (or not). We definedα = R−1

∑R
r=1 Pr to estimate the size

and1 − β = 1 − R−1
∑2R

r=R+1 Pr to estimate the power when∆ ≥ ∆L, while their estimated standard
errors,s(α) ands(β), were given bys2(α) = R−1α(1 − α) ands2(β) = R−1β(1 − β). For (a), we
calculatedN = R−1

∑R
r=1 Nr and MSE(N/C) = R−1

∑R
r=1(Nr/C − 1)2. Similarly, we calculatedN

and MSE(N/C) for (b).

Table 1. Required sample size and average size by the test procedure (4.5) for (1.2) in case of (a).

p m C N N − C MSE(N/C) α s(α)

250 20 39.91 39.91 -0.01 0.0173 0.017 0.0041

500 26 50.29 50.63 0.34 0.0094 0.014 0.0037

1000 32 63.36 63.65 0.29 0.0052 0.016 0.004

2000 40 79.83 79.95 0.12 0.0033 0.011 0.0033

4000 51 100.58 101.23 0.66 0.0018 0.014 0.0037

We observed that the test procedure (4.5) for (1.2) provides good performances especially whenp is
large.

6.2. Test Procedure (4.5) for (5.5)

We set∆L = (5/6)p3/4. We considered constructing a test having sizeα = 0.05 and power no less than
1−β = 0.9 when∆ ≥ ∆L. We setp = 250, 500, 1000, 2000 and4000. We handled (5.1) with (5.2). The
following two cases were considered:

(c) Σ = diag(2, 1, 0, ..., 0) + Ip and (d) Σ = diag(p3/8, p1/4, 0, ..., 0) + Ip

for (5.3) and (5.4), respectively. Note that (A-vi) is met both for (c) and (d), and∆ = p3/4 + p1/2 + o(1) ≥
∆L whenp is large for (d). We setm = ⌈C/2⌉.
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Table 2. Required sample size and average power by the test procedure (4.5) for (1.2) in case of (b).

p m C N N − C MSE(N/C) 1 − β s(β)

250 32 62.9 63.29 0.39 0.0079 0.771 0.0133

500 37 73.22 73.5 0.28 0.0048 0.809 0.0124

1000 44 86.17 86.43 0.26 0.0028 0.835 0.0117

2000 52 102.7 103.21 0.51 0.0021 0.871 0.0106

4000 62 123.43 124 0.56 0.0013 0.897 0.0096

Similar to Tables 1 and 2, we calculatedα, 1−β, s(α), s(β), N and MSE(N/C), by 2000 replications.
In Tables 3 and 4, we summarized the results. We observed that the test procedure (4.5) for (5.5) provides
good performances especially whenp is large.

Table 3. Required sample size and average size by the test procedure (4.5) for (5.5) in case of (c).

p m C N N − C MSE(N/C) α s(α)

250 15 29.16 29.82 0.66 0.031 0.115 0.0101

500 17 33.94 34.38 0.43 0.02 0.072 0.0082

1000 20 39.93 40.52 0.59 0.013 0.056 0.0073

2000 24 47.23 47.9 0.68 0.01 0.06 0.0075

4000 29 56.01 56.67 0.66 0.0062 0.058 0.0074

Throughout the simulations, we observed that the test procedure (4.5) meets the required accuracy suc-
cessfully.

7. ACTUAL DATA ANALYSIS

We analyzed gene expression data for the test of (5.5). We handled microarray data of Naderi et al. (2007)
with 47293 (= p) genetic probes. We used the data set of luminal group (84 samples). We setα = 0.05 and
β = 0.1. From (5.6) we set∆L = p4/5, that is, we designed the test of (5.5) to have size0.05 and power no
less than0.9 whenλ1 ≥ p2/5. We setm = 30. We took the first 30 samples as a pilot sample. We calculated
Wm = 35079 according to (2.2). From (4.4) the total sample size was calculated as

N = max
{

30,
⌈2(zα + zβ)Wm

∆L

⌉}
= 38.

Thus we took the next 8(= 38−30) samples. We calculatedUN andTN according to (2.3) and (2.4). Then,
it follows that

NTN

2UN
> zα (= 1.64),
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Table 4. Required sample size and average power by the test procedure (4.5) for (5.5) in case of (d).

p m C N N − C MSE(N/C) 1 − β s(β)

250 20 39.38 39.65 0.28 0.0385 0.888 0.001

500 22 43.71 44.35 0.63 0.026 0.924 0.0084

1000 25 49.27 49.77 0.51 0.0193 0.914 0.0089

2000 29 56.17 56.57 0.4 0.0119 0.917 0.0087

4000 33 64.61 65.4 0.79 0.0088 0.94 0.0075

so thatH0 in (5.5) was rejected in terms of (4.2). We concluded thatλj → ∞ for the first severaljs and
λ−1

1 = O(p−2/5). Hence, we recommend to use new PCA methods given by Yata and Aoshima (2010,
2012) becauseλj → ∞ for the first severaljs.

For instance, Yata and Aoshima (2012) developed a new PCA called the noise-reduction (NR) method-
ology. In the NR method,λjs are estimated by

λ̃j = λ̂j −
tr(Sn) −

∑j
i=1 λ̂i

n − 1 − j
(j = 1, ..., n − 2),

whereλ̂j is thej-th eigenvalue ofSn. We note that̃λj has a consistency property in the sense that

λ̃j/λj = 1 + oP (1) whenλj → ∞ asp → ∞

under some regularity conditions. On the other hand, the conventional estimator,λ̂j , includes a large bias in
the sense that

λ̂j/λj = 1 + κj + oP (1) whenλj → ∞ asp → ∞, (7.1)

whereκj = λ−1
j

∑p
i=k+1 λi/(n − 1). See Yata and Aoshima (2012) and Aoshima and Yata (2018) for the

details. In Table 5, we estimated the first five eigenvalues for the data set (38 (= n) samples) both by the
NR method and the conventional PCA. We observed thatλ̂j is quite large compared with̃λj for all j. This

Table 5. Estimates of the first five eigenvalues by the NR method and conventional PCA together with their
ratios for the data set in Naderi et al. (2007).

j 1 2 3 4 5

λ̃j 225.2 120.1 89.3 66 54.3

λ̂j 278.8 170.4 137 111.8 98.5

λ̂j/λ̃j 1.238 1.419 1.535 1.694 1.813

is probably because the bias in (7.1) is quite large for eachj. On the other hand,̃λj does not depend on the
bias under (5.4). Thus, we recommend to use the NR method (or the CDM method by Yata and Aoshima
(2010)) whenH0 in (5.5) is rejected.
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A. APPENDIX

We putK = 4tr(Σ2)2/n2 throughout this section. Let̂Σij(1) = n(1)(xi−x(1)(i+j))(xi−x(1)(i+j))T /(n(1)−
1), Σ̂ij(2) = n(2)(xj − x(2)(i+j))(xj − x(2)(i+j))T /(n(2) − 1), Aij = tr{(Σ̂ij(1) − σIp)(Σ̂ij(2) − σIp)}
andBij = tr(Σ̂ij(1) − σIp)tr(Σ̂ij(2) − σIp)/p for all i < j.

Proofs of Lemmas 2.2 and 2.3.We write that

εij =Aij + σtr(Σ̂ij(1)) + σtr(Σ̂ij(2)) − σ2p and

ζij =Bij + σtr(Σ̂ij(1)) + σtr(Σ̂ij(2)) − σ2p

for all i < j. Note thatWn = 2
∑n

i<j εij/{n(n− 1)} andUn = 2
∑n

i<j ζij/{n(n− 1)}. Thus, it holds that

Tn = 2
n∑

i<j

Aij

n(n − 1)
− 2

n∑
i<j

Bij

n(n − 1)
. (A.1)

Here, we can evaluate that

Var

(
2

n∑
i<j

Bij

n(n − 1)

)
= O

(
tr(Σ2)2

p2n2

)
= o(K) and (A.2)

Var

(
2

n∑
i<j

σtr(Σ̂ij(1)) + σtr(Σ̂ij(2))
n(n − 1)

)
= O

(σ2tr(Σ2)
n

)
under (A-i) and (A-iii). Thus, we conclude the result of Lemma 2.2. On the other hand, from Lemma 5.1 in
Yata and Aoshima (2016), we have that

Var

(
2

n∑
i<j

Aij

n(n − 1)

)

=
{8tr{(ΣΣ∗)2} + 4

∑q
j=1(Mj − 2)(γT

j Σ∗γj)2

n
+ K

}
{1 + o(1)} + O

( tr(Σ4)
n2

)
(A.3)

under (A-i) and (A-iii). Then, by noting that
∑q

j=1(γ
T
j Σ∗γj)2 ≤

∑q
j,j′=1(γ

T
j Σ∗γj′)2 = tr{(ΣΣ∗)2} and

E
{(

2
n∑

i<j

Aij

n(n − 1)
− ∆

)(
2

n∑
i<j

Bij

n(n − 1)

)}
= o

{
Var

(
2

n∑
i<j

Aij

n(n − 1)

)1/2

K1/2

}
under (A-i) and (A-iii), from (A.2) and (A.3), we can conclude the result of Lemma 2.3.

Proof of Lemma 3.1.Note that tr(Σ4) ≤ tr(Σ2)2 and tr{(ΣΣ∗)2} ≤ λ1tr(Σ∗ΣΣ∗) ≤ λ2
1∆ ≤ tr(Σ2)∆.

Then, from Lemma 2.3, it holds that

Var(Tn/∆) = O
{

tr(Σ2)2/(n2∆2) + tr{(ΣΣ∗)2}/(n∆2)
}
→ 0

under (A-i), (A-iii) and (A-iv), so thatTn/∆ = 1 + oP (1). It concludes the result.
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Proof of Lemma 3.2.If lim infp→∞ tr(Σ2)/(σ2p) > 1, it holds thatlim infp→∞ ∆/tr(Σ2) > 0, so that
(A-iv) holds. Thus under (A-v), it holds that asp → ∞

tr(Σ2)/(σ2p) → 1. (A.4)

If lim infp→∞ λ2
1/(σ2p) > 0, it holds thatlim infp→∞ ∆/(σ2p) > 0 from the fact thatσp =

∑p
j=1 λj .

Thus, under (A-v) it follows thatλ2
1/tr(Σ2) → 0 asp → ∞, so that

tr(Σ4)
tr(Σ2)2

≤ λ2
1tr(Σ2)

tr(Σ2)2
→ 0 (A.5)

asp → ∞ under (A-v). Then, from Corollary 5.2 in Yata and Aoshima (2016), we have that

2
n∑

i<j

Aij

K1/2n(n − 1)
⇒ N(0, 1)

under (A-ii), (A-iii) and (A-v). Thus, from (A.1) and (A.2) we conclude the result.

Proofs of Theorem 3.1 and Corollary 3.1.First, we consider Corollary 3.1. From Lemmas 2.2 and 3.1 we
have that

P

(
nTn

2Un
> zα

)
= P

(
Tn

∆
> zα

2σ2p{1 + oP (1)}
n∆

)
= P {1 + oP (1) > oP (1)} → 1

under (A-i), (A-iii) and (A-iv) from the fact thatσ2p ≤ tr(Σ2). It concludes the result of Corollary 3.1.
Next, we consider Theorem 3.1. From Lemmas 2.2, 3.2 and (A.4) we have that

P
(nTn

2Un
> zα

)
= P

( Tn − ∆
2tr(Σ2)/n

> zα
Un

tr(Σ2)
− n∆

2tr(Σ2)

)
(A.6)

= Φ
( n∆

2tr(Σ2)
− zα

)
+ o(1)

under (A-ii), (A-iii) and (A-v). Hence, we conclude the result of Theorem 3.1. The proofs are completed.

Proof of Theorem 4.1.From Theorem 3.1, the result of Theorem 4.1 is obtained straightforwardly.

Proof of Theorem 4.2.We assume thatµ = 0 without loss of generality. LetCL = ⌊C − (ωC)1/2⌋ and
CU = ⌈C + (ωC)1/2⌉, whereω (> 0) is a variable such thatω → 0 asp → ∞. Under (A-vi), (A.5) holds
asp → ∞. Then, from the proof of Theorem 5 in Aoshima and Yata (2014), it holds that under (A-i) and
(A-vi)

max{m,CL} ≤ N < CU (A.7)

as p → ∞ with probability tending to1. Let Aoij = tr{(xix
T
i − σIp)(xjx

T
j − σIp)} and Boij =

tr(xix
T
i − σIp)tr(xjx

T
j − σIp)/p for all i < j. Now, we write that

ToN =
CL∑
i<j

2(Aoij − Boij)
N(N − 1)

+
N∑

j=CL+1

CL∑
i=1

2(Aoij − Boij)
N(N − 1)

+
N∑

i ̸=j(>CL)

(Aoij − Boij)
N(N − 1)

. (A.8)
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Let KC = 4tr(Σ2)2/C2
L. By using Chebyshev’s inequality and Schwarz’s inequality, for anyη > 0, from

(A.7), we have that asp → ∞

P
(∣∣∣ N∑

j=CL+1

CL∑
i=1

(Aoij − Boij − ∆)/C2
∣∣∣ > ηK

1/2
C

)

≤ P
( CU∑

j=CL+1

∣∣∣ CL∑
i=1

(Aoij − Boij − ∆)/C2
∣∣∣ > ηK

1/2
C

)
= O

{
ω(tr(Σ2)2 + tr{(ΣΣ∗)2})/(C2KC)

}
→ 0 and

P
(∣∣∣ N∑

i ̸=j(>CL)

(Aoij − Boij − ∆)/C2
∣∣∣ > ηK

1/2
C

)

≤ P
( CU∑

i ̸=j(>CL)

∣∣∣(Aoij − Boij − ∆)/C2
∣∣∣ > ηK

1/2
C

)
= O

{
ω2(tr(Σ2)2 + tr{(ΣΣ∗)2})/(C2KC)

}
→ 0

under (A-ii) and (A-vi) from the fact that tr{(ΣΣ∗)2} = O{tr(Σ2)2}. Thus, from (A.8) and Lemma 3.2,
we have that

ToN − ∆

K
1/2
C

=
CL∑
i<j

2(Aoij − Boij − ∆)

K
1/2
C N(N − 1)

+ oP (1) =
CL∑
i<j

2(Aoij − Boij − ∆)

K
1/2
C CL(CL − 1)

+ oP (1) ⇒ N(0, 1) (A.9)

under (A-ii) and (A-vi) from the fact that

TCL
− ∆ =

CL∑
i<j

2(Aoij − Boij − ∆)
CL(CL − 1)

+ oP (K1/2
C ).

Here, in a way similar to the proof of Lemma A.5 in Yata and Aoshima (2013), we have that

TN = ToN + oP (K1/2
C ) (A.10)

under (A-ii) and (A-vi). By combining (A.9) with (A.10), we conclude the result.

Proofs of Corollaries 5.1 and 5.2.Under (5.1) and (5.3), it holds thatn∆/tr(Σ2) → 0 under (A-iii) and
C∆/tr(Σ2) = O(1/∆L) → 0 asp → ∞. Then, from Theorems 3.1 and 4.2, we conclude the results.
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