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Chapter 1 Introduction 
Metal is one of the most important materials for human civilization. Here, ‘metal’ includes 

both pure metals from single elements and alloys comprising of multi-elements. Pure copper and iron 
have been used as materials for human tools for over 5000 years, pure copper is still used for electrical 
wiring. The Japanese 1-yen coin is made of pure aluminum. Aluminum alloys are widely used in window 
sashes, beverage cans, bicycles, cars, and airplane parts. Pure nickel is used as plating owing to its high 
corrosion resistance and conductivity. Pure molybdenum has a high melting point and good workability. 
Iron alloys containing molybdenum are used for vehicles frames and kitchen knives, among others, 
owing to their corrosion resistance, high strength, and hardness. 

The enhancement of the function of metal is an important contribution to the change of human 
civilization. The difference in hardness between natural pure copper and bronze produced the Bronze 
Age. The lightness and strength of aluminum alloys have contributed to the increase in airplanes and 
improvement of the fuel efficiency of cars. The enhancement of the strength and corrosion resistance of 
iron has promoted its use in daily human life. This includes, for example, cooking using knives and 
pans, building using steel bars and reinforcing bars, and manufacturing of heat engines. The annual 
production of crude steel around the world has reached 1.6 billion tons. 

The efficient enhancement of the functions of metals requires explanation and prediction of 
the properties of metals based on quantum mechanics. The explanation and prediction form the electron 
theory of metals. Historically important works were carried out by P. K. L. Drude and H. A. Lorentz 
in the 19th century [1]. An electron theory of metals has been established by N. F. Mott and H. Jones, 
etc. at around 1930 soon after an establishment of quantum mechanics. Pure metals and simple alloys 
were the central topics in the first stage of quantum condensed matter physics. The periodic table 
contains 113 elements, more than 70% of which are solid pure metal under normal temperature and 
pressure. These metals form binary, ternary, quaternary and other alloys. The properties of alloys and 
pure metals are different. Even alloys made of the same element have different properties owing to their 
compositions. Investigation of the properties of metals by the brute force method requires an enormous 
number of samples and measurements. This survey cannot be achieved in terms of time and money. 
Explaining and predicting of the properties of metals using the electron theory of metals provide the 
guidelines for the material design and experiment using theoretical calculation. This guidance 
considerably saves time and money. 

The electron theory of metals explains and predicts a large part of the electrical, thermal and 
magnetic properties of metals from quantum mechanics but does not explain the mechanical properties 
of metals. For example, the high electrical and thermal conductivities in metals are explained by the 
long mean free path of conduction electrons. The long mean free path is explained by Lindhard's 
equation of dielectric constant within the nearly free electron model. The nearly free electron model 
and the tight binding model are two kinds of extremely simple approximation for solids in theoretical 
study. The nearly free electron model is appropriate for pure metal systems such as aluminum and 
copper. The tight binding model is appropriate for covalent bonding materials such as silicon. An 
extraordinary amount of research including the electrical properties and structure have been carried 
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out during the past 100 years based on quantum mechanics. However, the elastic constants of metals 
are explained by a classical mechanical model in which atoms are connected by springs. 

Metallic properties are governed by the accurate structure of metals. Accurate structures are 
the spatial distribution of nuclei and electrons in metals and their changes due to thermal vibration of 
the nuclei. Accurate structures determine the nature of defect-free metals. At present, the mechanical 
properties of metals are studied by lattice defects. Lattice defects correct the properties of defect-free 
metals. The mechanical properties of the actual metal consist of: (1) the properties of the defect-free 
metal and (2) the modification of the properties of the metal by lattice defects. Understanding the 
actual properties of metal based on quantum mechanics requires elucidations of the accurate structure 
of metal. 

Since 2002, the relationship between the mechanical properties of metals and the spatial 
distribution of electrons, that is, the electron density distribution in metals, has been reported. Ogata 
et al. [2] reported a relationship between the ideal shear strength and electron density distribution in 
aluminum and copper. Eberhart et al. [3] reported an agreement between the elastic constants from 
the electron density and experimental values of the Cauchy pressure in the body-centered cubic (bcc) 
monovalent metals molybdenum, niobium, tantalum, vanadium, and tungsten. A relationship between 
the brittleness and the electron density of the CrAl, MnAl, FeAl, CoAl, and NiAl alloys was also 
reported [4].  

With the development of computers, theoretical uses of electron density distribution have 
developed remarkably. The relationship with the mechanical properties and the electron density 
distribution of metals researched by Eberhart is a representative example. The electron density 
distribution is also used in quantum crystallography. Quantum crystallography is a field which leads 
more accurate crystallographic experiments and calculation results by using mutual utilization of 
experimental observation and theoretical calculation. This includes improvements of approximated 
theoretical wave function with incomplete consideration of electronic correlation by a limitation from 
experimental results and improvements of experimental models by quantum mechanics. The former 
uses the density matrix representation of the electron density distribution. The latter realizes an 
accurate observation of electron density distribution by a more precise model based on quantum 
mechanics. Eberhart's method is applied only to the theoretical electron density distribution. Mutual 
complement of experiment and theory in quantum crystallography depends on the accuracy of 
experimental electron density distribution. The provision of accurate experimental electron density 
distribution is synonymous with the development of these fields. 

Only one report has been reported so far for experimental observation of the accurate electron 
density distribution of metal. Since the electron redistribution in pure metal is smaller than ionic crystal 
and covalent crystal, experimental electron density distribution other than the report could not observe 
the electron redistribution. Here, the electron redistribution is a deviation of the electron density 
distribution from the superposition of spherical electron density distribution of isolated atoms. This 
occurs as a result of periodic arrangement of atoms. The redistribution is called chemical bonding. 
Generally, the electron density value of chemical bonding in metals is smaller than that of covalent 
crystals. The electron density at the midpoint of chemical bonding between the nearest atoms in 
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diamond is ~1.0 e/Å3 [5]. When the valence electrons of trivalent aluminum are uniformly distributed 
in the crystal, the electron density value is 0.18 e/A3. Detection of this difference from the uniform 
distribution requires an accuracy of ~0.01 e/A3 of the electron density. Metal is easily oxidized. Softness 
of metal leads to internal strain and defects. The low Debye temperature of metal makes it difficult to 
accurately observe structure factors. Owing to these difficulties, accurate electron density distributions 
of metals have not been observed until recently. In 2011, Nakashima et al. [6] successfully measured 
the lowest two accurate structure factors of aluminum by quantitative convergent-beam electron 
diffraction (QCBED). From the two structure factors, the electron density value 0.05 e/A3 of the 
chemical bonding in aluminum was reported. This value is two orders of magnitude smaller than that 
for diamond. The preparation of the QCBED measurement sample is difficult for metals because 
mechanical processes such as cutting and polishing are included. These processes lead to internal strain 
and defects to the measurement sample. Nakashima et al. described that the accuracy of observed 
structure factors using QCBED is sufficient for the detection of the electron redistribution [7]. 

The structures of metals have been observed by X-ray diffraction whereby an X-ray is scattered 
by an electron in a crystal. The X-ray elastically scattered by the electron forms a diffraction radiation 
due to the periodicity of the crystal. The intensity of X-ray diffraction peak is proportional to the 
square of the structure factor. The structure factor is the Fourier coefficient in the Fourier series 
expansion of the electron density distribution of a crystal. More details on this are given in Section 2.2. 
The measurement sample of X-ray diffraction is a single crystal or powder. In 1913, Henry and Lawrence 
Bragg [8] reported the first crystal structure analysis by X-ray diffraction. The structures of simple 
metals have been reported by Hull [9, 10] using powder X-ray diffraction. The advantage of conventional 
powder X-ray diffraction is the ease of sample preparation and measurement. For metals, high purity 
powder samples with submicron- to micron-order particle size suitable for measurements can easily be 
prepared without a mechanical process. The disadvantage is the low accuracy of observed structure 
factors. 

Synchrotron radiation powder X-ray diffraction techniques have been developed by Japanese 
and Danish research groups to be compatible the ease of sample preparation and the accuracy of 
observed structure factors. Synchrotron radiation is an electromagnetic wave radiated when the 
traveling direction of charged particles changes close to the speed of light. Synchrotron radiation in the 
X-ray wavelength region is called synchrotron radiation X-ray. X-ray diffraction using synchrotron 
radiation X-ray is called synchrotron radiation X-ray diffraction. Observation of the accurate structure 
requires a large number of accurate structure factors. X-ray diffraction by high energy and coherent 
synchrotron radiation X-ray improves the number and accuracy of structure factors than characteristic 
X-ray sources. The accurate structures of diamond [5, 11, 12, 13], silicon [13, 14], LaB6 [15], and boron 
nitride [16] were observed by synchrotron radiation powder X-ray diffraction. The magnitude of the 
electron redistribution of metal is on the order of 1/100 of diamond. For this reason, there is no report 
on the electron distribution of pure metal by synchrotron powder X-ray diffraction. In 2016, Wahlberg 
et al. [17] successfully observed a potential of the anharmonic vibration of copper at temperatures of 
100 and 300 K by synchrotron powder X-ray diffraction. The resolution of the measurement data was 
d > 0.23 Å. The report is an example of observation of the accurate structure of metals by state-of-
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the-art synchrotron powder X-ray diffraction. The establishment of an accurate observation method 
for electron density distribution of metals by synchrotron powder X-ray diffraction will enable the 
accurate observation of the electron density distribution in a wide range of metals. 

In this research, aluminum and molybdenum were used as the samples to observe accurate 
structures because they have properties suitable for the measurement in this research. More details for 
this are provided in Chapter 2. The former metal is one of the most free-electron-like metals with a 
Mohs hardness of 2.75. There are a large number of papers regarding electron density distribution and 
structure factors. The latter metal has d-electrons and an electronic state far from free electron 
approximation with a Mohs hardness of 5.5. Experimental electron distribution and structure factors 
of molybdenum have not been reported. There are only two reports of theoretical valence electron 
distribution [18] and structure factors [19] using the first principles calculation. 

The purpose of this research is a demonstration of accurate observation of the electron density 
distribution of aluminum and molybdenum by synchrotron radiation powder X-ray diffraction. The 
goal is beyond the accuracy of the observed structure factors by QCBED. The lowest two order and 
the higher order observed structure factors of QCBED have error of less than 0.3% and over 1%, 
respectively. The improvement of the accuracy of observed electron density distribution is the key of 
the relationship with mechanical properties of metals and the quantum crystallography. The 
demonstrations of the observation of accurate electron density distribution by a simple experimental 
technique such as powder X-ray diffraction accelerate developments of these researches. To accurately 
observe the static electron density distribution, the synchrotron powder X-ray diffraction must be 
measured at low temperature. Estimation of the thermal vibration parameters at low temperature is 
necessary. To establish a method applicable to a wide range of metals and alloys, synchrotron powder 
X-ray diffraction measurement was employed. Synchrotron X-ray with a high energy and low emittance 
in the third-generation synchrotron radiation source SPring-8 was used owing to secure the resolution 
d > 0.22 Å. For comparison with experimental electron distributions, the static electron density 
distribution at the ground state was determined using WIEN2k [20]. The accuracy of observed chemical 
bonding by X-ray diffraction depends on the accuracy of the observed diffraction peaks at a low 
diffraction angle region. X-ray scattering due to chemical bonding in the low-angle region is stronger 
than those in the high-angle region. The number of diffraction peaks in aluminum and molybdenum in 
the low-angle region is low because the unit cells are small and have cubic symmetry. The experimental 
error of the lowest order two structure factors in aluminum, determined by Nakashima et al. [6], is 1/10 
of the experimental error of past observation structure factors. In this research, more than 100 
experimental structure factors were determined. The low order structure factors have the accuracy 
equal to or better than the two structure factors. 
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Chapter 2 Difficulties in observation of electron distribution of metals 

2.1 Purpose and contents of this chapter 

 This chapter explains the difficulties of observing the electron density distribution in metals 
and provides reasons for the selection of aluminum and molybdenum as measurement samples. Section 
2.2 explains the relationship between the structure factors measured by powder X-ray diffraction and 
the electron density distribution of crystal. The difficulties of observation of the electron density 
distribution in metals derive from the small electron density values of the chemical bonding in metals, 
the low Debye temperatures of metals, and strains or defects in actual metal crystals. Sections 2.3, 2.4, 
and 2.5 explain the influence of the observation of the electron density distributions from these origins. 
Section 2.6 explains why aluminum and molybdenum were selected as measurement samples. 
 

2.2 Relationship between structure factors and electron density distribution 

 The structure factor 𝐹  is the Fourier coefficient in the Fourier series expansion of electron 
density distribution of a crystal 𝜌(𝒓). 

𝐹(𝑯) = ௷𝜌(𝒓) exp(2𝜋𝑖𝑯 ⋅ 𝒓) 𝑑𝒓 

where, 𝑯 is the diffraction vector, 𝑯 = ℎ𝒃φ + 𝑘𝒃ϵ + 𝑙𝒃ϯ; ℎ, 𝑘, and 𝑙 are the Miller indices of the 
crystal, 𝒃φ, 𝒃ϵ, and 𝒃ϯ are the reciprocal vectors. 𝒓 is the position vector in the crystal. 𝜌(𝒓) is the 
dynamical electron density distribution containing thermal smearing from the time averaged thermal 
vibration. 

The electron distribution can be determined by the observation of structure factors. Structure 
factors are the amplitude and phase of the X-ray diffracted by a (hkl) plane of a crystal. Scattered X-
ray waves from one electron are spherical scattered waves. The atomic scattering factor is a 
superposition of the spherical scattering waves from one electron. The structure factor is a superposition 
of the associated waves from each atom of a unit cell. The phase difference of the scattered waves from 
each electron in the atom follows the position of the electron in the classical sense. When considering 
each electron as a spreading negative charge cloud, the position of the electron becomes the electron 
density distribution. For this reason, an infinite number of structure factors and electron distributions 
correspond one to one. 

The number of structure factors observed in the diffraction experiment is finite. Each structure 
factor has an experimental error. The number of observed structure factors is directly related to the 
resolution of the reproduced electron density distribution. The error of the value of each structure 
factor affects the error of the value of the electron density. The square of the absolute value of the 
structure factor is proportional to the diffraction intensity. A finite number of diffraction intensities 
limit the number of structure factors. We can observe only the diffraction intensities within a diffraction 
angle of 2𝜃 = 0~180°. The error of the value of structure factor is a statistical error of counts in the 
diffraction intensity. 
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The model of dynamic structure factors 𝐹΄Ђό used in the analysis of experimental data is the 
superposition of the multiplication of the Fourier transformation of the electron density distribution of 
a static atom 𝑓(𝑯) and the probability density function of electrons due to the thermal vibration 
𝑇ք(𝑯) within a unit cell. This is because the model of the dynamic electron density distribution 𝜌(𝒓) 
is expressed by the superposition of atoms with thermal vibration. The electron density distribution of 
the dynamical atoms is a convolution of the electron density distribution of a static atom and the 
probability density distribution of electrons due to thermal vibration. The former is the atomic 
scattering factor: 

𝑓(𝑯) = ௷𝜌͘Ϭ(𝒓) exp(2𝜋𝑖𝑯 ⋅ 𝒓) 𝑑𝒓 

where 𝜌͘Ϭ(𝒓) is the static electron density distribution of atom. 𝐹΄Ђό is expressed by: 

𝐹΄Ђό = ం𝑓ք(𝑯)𝑇ք(𝑯)
կ

ք

 

where 𝑖 shows the label of an atom within a unit cell. The total number of atoms in a unit cell is 𝑁 . 
𝑇ք(𝑯) consists of harmonic thermal vibration and anharmonic thermal vibration. The isotropic and 
harmonic thermal vibration term 𝑇Ј(𝑯) is given by: 

𝑇Ј(𝑯) = exp(−8𝜋ϵ𝑈Џϣπ|𝑯|ϵ) 
where 𝑈Џϣπ is the isotropic thermal displacement. As 𝑈Џϣπ increases with increasing thermal vibration, 
𝑇Ј(𝑯) decreases with increasing measurement temperature. That is, 𝐹΄Ђό decreases due to thermal 
vibration, and diffraction intensity also decreases. This reduces the resolution of the electron density 
distribution. The probability density distribution of the electrons due to anharmonic thermal vibration 
is explained in Chapter 4. 
 Figure 2.1 shows plots of 𝑇Ј(𝑯) values of aluminum at 80 and 300 K. The values of 8𝜋ϵ𝑈Џϣπ 
were employed from McDonald [21]. The vertical axis represents 𝑇Ј(𝑯) and the horizontal axis the 
diffraction angle 2𝜃. The black and red lines are 80 and 300 K, respectively. The wavelength of the 
incident X-ray is set at 0.328 Å. 𝑇Ј(𝑯) rapidly decreases at 300 K. The value of 𝑇Ј(𝑯) at 2𝜃 = 40° 
is less than 0.2 for 300 K. The decreasing of intensity of diffraction peak of 2𝜃 = 40° at 300 K is over 
80% due to the 𝑇Ј(𝑯). For 80 K, the decreasing is less than 50%. 
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Figure 2.1  Plots of 𝑇Ј(𝑯) of aluminum at 80 and 300 K. 
 

2.3 Small electron density value of chemical bonding in metals 

 The fundamental difficulty of observation of the chemical bonding in metals is the difference 
of ~105 between the value of the electron density of the inner shell electrons and chemical bonding. As 
mentioned in Chapter 1, the electron density value of chemical bonding is ~1.0 e/Å3 for diamond and 
~0.01 e/Å3 for aluminum. Furthermore, the electron density value due to the inner shell electrons 
around the nucleus is ~100 e/Å3 for diamond and ~1000 e/Å3 for aluminum. The ratio of the value of 
the electron density of the inner shell electron to that of the chemical bonding is 100:1 for diamond 
and 100,000:1 for aluminum. In any experiment, it is necessary to discriminate a difference between 1% 
for diamond and 0.001% for aluminum in measurement data. Diamond is an ideal crystal as a model 
case of observation of chemical bonding. There are a large number of papers based on observation of 
electron density distributions. The forbidden 222 reflection of diamond in X-ray diffraction was reported 
by W. H. Bragg in 1921. Chemical bonding of aluminum was first reported in 2011 by P. N. H. 
Nakashima et al. To select a model case of observation of chemical bonding in metals, it is necessary 
to select metals of which the ratio is small as possible. 
 The ratio of the value of the electron density of inner shell electrons to that of chemical 
bonding in metals can be evaluated by the valence electron density. The valence electron density is 
expressed by: 

𝜌֑ =
𝑍𝑛֐վ

𝑉֐վ

 

where, 𝑍 is the number of valence electrons in an isolated atom, 𝑛֐վ is the number of atoms in a unit 
cell, and 𝑉֐վ is the volume of a unit cell. The numbers of valence electrons are 1, 2, 3, and 4 for groups 
1, 2, 13, and 14 in the periodic table, respectively. Transition metals, which are groups 3 to 12, have 
multiplex values. Assuming that the all valence electrons contribute to the formation of the valence 
electron density, the value 𝜌֑/𝑋, the division of 𝜌֑ by the number of inner-shell electrons 𝑋, shows 
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the difficulty of detection of chemical bonding in metals. 
 Table 2.1 shows 𝑍 , the number of electrons per cubic centimeter 𝑛 , the valence electron 
density 𝜌֑ , 𝑋 , and 𝜌֑/𝑋  for representative metals. The values 𝑍  of transition metals and 𝑛  are 
employed from Ashcroft [1]. 

𝑛 = 6.022 × 10ϵϯ ×
𝑍𝜌ֈ

𝐴
 

6.022 × 10ϵϯ is the number of atoms per mole, 𝜌ֈ is the mass density in gram per cubic centimeter, 
and 𝐴 is the mass of an atom. The largest value of 𝜌֑/𝑋 is beryllium, second to this is aluminum. 
 
Table 2.1 The number of electron per cubic centimeter 𝑛, the valence electron density 𝜌֑, and 𝜌֑/𝑋 

for representative metals. 

 

 The value of the electron redistribution from a superposition of isolated atoms in metals is 
~0.01 e/Å3. The approximation of the electron density distribution in a crystal by superposition of the 
spherical electron density distribution of isolated atoms is called the independent atom model (IAM). 
Figure 2.1 shows a schematic representation of the electron density distribution in an actual crystal 
and the IAM. The red circles represent the spherical electron density distribution of atoms, and the 
red bars between the nearest atoms show the electron redistribution due to a periodic arrangement of 
atoms. The redistribution in an actual crystal is not reproduced by the IAM. In metal, the difference 
between the structure factors from the electron density distribution of an actual crystal and from the 
IAM is small. This is because electron redistribution due to chemical bonding is small. Nakashima et 
al. reported that the value of the redistribution in aluminum was 0.05 e/Å3. This is owing to the 
detection of the difference in the value of about 1% at the two lowest order structure factors between 
the experiment and IAM. Here, the order of the structure factor 𝐹(𝑯) is expressed by the ℎ𝑘𝑙 of 𝑯. 
The order decreases with decreasing the value of ℎϵ + 𝑘ϵ + 𝑙ϵ. Detection of metallic bonding requires 
(i) a high statistical accuracy of the structure factors for detecting a slight change of the structure 
factor from a neutral atom and (ii) large number of structure factors for asymptotic to a true electron 
distribution. 
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Figure 2.2  A schematic representation of electron density distribution in an actual crystal and IAM. 
 

2.4 Low Debye temperature 

The Debye temperature is the temperature at which all normal modes of thermal vibration 
are excited within the Debye model of specific heat. The Debye temperature of metals is generally 
lower than that of covalent crystals. The Debye temperature 𝜃ե is defined by 𝑘գ𝜃ե = ℎ𝜈ζ͘Ђ, where 
𝑘գ is the Boltzmann constant and ℎ𝜈ζ͘Ђ is the maximum frequency in the normal mode. Therefore, 
𝜃ե is an index of the thermal vibration at a certain temperature. A higher Debye temperature means 
less susceptible of the thermal vibration to temperature. For example, 𝑈Џϣπ  is expressed by the 
following equation: 

𝑈Џϣπ =
3ℏϵ𝑇

𝑚𝑘ս𝜃ե
ϵ ছ𝛷 গ

𝜃ե

𝑇
ঘ +

1

4

𝜃ե

𝑇
জ 

where, ℏ is Planck’s constant over 2𝜋, 𝑇  is the measurement temperature, 𝑚 is the atomic mass, 𝛷 
is the Debye integral. As can be seen, the larger 𝜃ե derives a smaller 𝑈Џϣπ. 
 Table 2.2 shows the Debye temperature of representative pure metals at 0 K. All Debye 
temperatures are less than 500 K except for beryllium, chromium, ruthenium, and osmium. In covalent 
crystals, for instance, silicon is 645 K and diamond is 2230 K. 
 

Table 2.2  Debye temperature of representative pure metals at 0 K. 
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 Figure 2.3 shows 𝑇Ј(𝑯) at 300 K using the Debye temperature of aluminum and diamond. 
The vertical axis represents 𝑇Ј(𝑯) and the horizontal axis the diffraction angle 2𝜃. Black and blue 
lines are aluminum and diamond. The wavelength of the incident X-ray is set at 0.328 Å. The decreasing 
of intensity of diffraction peaks at 2𝜃 = 40° due to 𝑇Ј(𝑯) at 300 K in aluminum and diamond are 
82% and 35%, respectively. A small Debye temperature leads to a large decreasing of the diffraction 
intensity. 
 

 

Figure 2.3  𝑇Ј(𝑯) at 300 K using Debye temperature of aluminum and diamond. 
 
 Figure 2.4 shows the results of the powder X-ray diffraction measurements of aluminum at 30 
K and 600 K. The vertical axis represents the intensity and the horizontal axis the diffraction angle 2𝜃. 
Further experimental details are in Chapter 3. The black lines in both upper and bottom figures show 
the intensities measured at 30 K and 600 K respectively. The delta function-like peaks show the 
intensity of the diffraction X-ray. Diffraction X-ray is caused by interference of the scattered X-ray 
from the measurement sample. The area of each diffraction peak gives the diffraction intensity. Because 
of the difference in 𝑈Џϣπ  between 30 K and 600 K, the diffraction peaks in 600 K are buried by 
background intensity at 2𝜃 = 40°. The decrease in the number of observed diffraction peaks becomes 
prominent when 𝜃ե is small even at the same temperature. For this reason, metals with a low Debye 
temperature require a low-temperature measurement by securing the number of observed structure 
factors. 
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Figure 2.4  Results of powder X-ray diffraction measurements of aluminum at 30 K and 600 K. 
 
 Figure 2.5 is a plot of the three sets of structure factors of aluminum. These were calculated 
from (1) the electron density distribution of the IAM, (2) the theoretical electron density distribution 
by WIEN2k, and (3) the structure factors of (2) multiplied by the value of 𝑇֊(𝑯) at 100 K. The 
horizontal axis represents sin 𝜃 /λ. The inserted figure at the left-side shows an expanded view of the 
lowest three structure factors of hkl = 111, 200, and 220. Deviations of the values of the structure 
factors due to electron redistribution from the IAM are ~1% in the narrow range of a low diffraction 
angle. The right-side figure shows an expanded view of the range from 1.5 to 2 on the horizontal axis. 
Owing to the harmonic thermal vibration of 100 K, there is a difference in the value of the structure 
factors of 65%. The 1% difference in the lower order structure factor is easily changed by the estimation 
of the thermal vibration. Increasing the number of structure factors increases the accuracy of the 
estimation of the thermal vibration. For this reason, a large number of structure factors must be 
observed. 
 

 
Figure 2.5  Plot of three sets of structure factors of aluminum. 
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Figure 2.6(a) is expanded view of the background intensity of the results of powder X-ray 
diffraction measurements in aluminum at 30 K and 600 K. The black and red lines show the results at 
30 K and 600 K. The vertical axis represents the intensity and the horizontal axis the diffraction angle 
2𝜃 . At 30 K and 600 K, the shape of background is considerably different. This is caused by an 
increasing of the contribution of the thermal diffuse scattering. Further details regarding thermal diffuse 
scattering are given in Chapter 4. Figure 2.6(b) shows a schematic representation of the diffraction 
peak and intensity of thermal diffuse scattering. The intensity of thermal diffuse scattering takes a 
maximum value at the 2𝜃 position of the diffraction peak. Since the intensity of the diffraction peak 
apparently increases, the estimation of 𝑇ք(𝑯) becomes inaccurate. For an accurate observation of the 
electron density distribution of metals, the thermal diffuse scattering intensity must be estimated. 
 

 

Figure 2.6  (a) The expanded view of the background intensity of results of powder X-ray diffraction 
measurements in aluminum at 30 K and 600 K. (b) A schematic representation of diffraction peak and 
intensity of thermal diffuse scattering. 
 

2.5 Strain and defect 

The internal strain and defects of metals affect the widths of diffraction peaks. This leads to 
an inaccurate estimation of the diffraction intensity. The softness of metals leads to an easy introduction 
of the internal strain. The internal strain changes the interplanar spacing d in the Bragg’s equation. 
Defects disturb the periodicity of a crystal lattice. These cause a phase shift of scattered waves. The 
phase shifts affect the diffraction intensity through a change of structure factors. 
 Figure 2.7 shows the diffraction peaks of hkl = 222 and 400 in the measurement results of the 
powder X-ray diffraction of copper. The vertical axis represents the intensity and the horizontal axis 
the diffraction angle 2𝜃. Both ranges of the horizontal axis is 0.4°. A decrease in the width of the 
diffraction peak in the 111, 222, ... series and an increase in the width of the 200, 400, ... series were 
observed. For instance, the values of the full-width-half-maximum of 222 and 400 diffraction peaks are 
0.06 and 0.09°, respectively. This is the effect of internal distortion. 
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Figure 2.7  Diffraction peaks of hkl = 222 and 400 in the measurement results of powder X-ray 
diffraction of copper. 
 

2.6 Aluminum and molybdenum 

 Aluminum and molybdenum are suitable metals for the accurate observation of the 
electron density distribution. Aluminum has the second largest 𝜌֑/𝑋 value in simple metals. Ogata et 
al. [2] reported that the intrinsic stacking fault energy of aluminum is very high. Therefore, the amount 
of stacking faults is smaller to that of other metals with the same face-centered cubic (fcc) structure. 
The observed electron density distribution by synchrotron powder X-ray diffraction can be compared 
with the report of Nakashima et al. [6]. Table 2.3 shows the error ratio of reported observed structure 
factors in aluminum. The ratio is defined by 𝜎էȩǌɌ

|𝐹πͣϣ|⁄  for each index structure factor. 𝜎էȩǌɌ
 is value 

of error and 𝐹πͣϣ is value of observed structure factor. Nakashima et al. [6] and Fox [22] used electron 
diffraction. Takama et al. [23] used Pendellosung-beat measurement. de Macro [24] used single crystal 
X-ray diffraction. The others [25, 26, 27, 28, 29, 30] are results of powder X-ray diffraction. The results 
of Nakashima et al. were reported in 2011, while other results have been reported before 2000. The 
maximum number of observed structure factors before 2000 is eleven. The minimum error of the 
observed structure factor before 2000 is ~ 0.5%, of Takama et al. Nakashima et al. [6] showed that 
these observed structure factors have no unified picture of electron distribution of the chemical bonding 
in aluminum. They used only the lowest two structure factors to observe a metallic bonding. Other 
structure factors are the same as those of the neutral atom. The error of these two are less than 0.24%. 
The observed bonding electron distributions almost agreed with a calculated electron distribution by 
WIEN2k.  
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Table 2.3  The error ratio of reported observed structure factors in aluminum. 
hkl Nakashima 

[6] 

Fox 

[22] 

Takama 

[23] 

Batterman 

[25] 

Jarvinen 

[27] 

de Marco 

[24] 

Raccah 

[26] 

Rantavuori 

[28] 

Inkinen 

[30] 

Bench 

[29] 

1 1 1 0.11 0.45 0.34 1.62 0.69 0.49 0.68 0.45 0.79 1.51 

2 0 0 0.24 0.24 0.59 1.70 1.21 0.80 0.72 0.48 0.95 0.96 

2 2 0 1.09 
 

0.41 1.83 1.26 0.80 0.83 0.55 1.10 0.97 

3 1 1 0.90 
 

0.30 1.87 
  

0.90 0.45 1.05 1.07 

2 2 2 1.07 
 

0.46 2.10 
  

0.93 0.77 1.40 0.92 

4 0 0 1.03 
  

2.74 
  

1.04 1.05 1.58 1.02 

3 3 1 3.77 
 

0.38 2.82 
  

1.13 0.94 1.33 1.48 

4 2 0 0.19 
 

0.58 2.78 
  

0.96 0.96 1.36 1.47 

4 2 2 2.00 
 

0.85 3.42 
  

1.07 1.07 1.28 4.16 

3 3 3 4.35 
  

4.00 
     

4.05 

5 1 1 2.15 
  

4.00 
     

4.02 

4 4 0 9.76 
         

5 3 1 11.36 
         

4 4 2 2.22 
         

 
Molybdenum is a hard metal with a Mohs hardness of 5.5. Because of its hardness, it can be 

expected to suppress introductions of strain and defects. Molybdenum has the simplest system of the 
chromium group metals. That is, there is no magnetism and spin-orbit interaction is very small. There 
are no reports of the observed structure factors of molybdenum. The theoretical electron density 
distribution, theoretical structure factors, the experimental and theoretical Fermi surface, and band 
structures were reported [18, 19, 31, 32]. 

Among other difficulties, the structures of pure metals with high symmetry and small lattice 
constants prevent the observation of accurate structure factors. A highly symmetrical structure leads 
to a reduction of the number of diffraction peaks in powder X-ray diffraction. The structure also 
introduces systematically weak intensity diffraction peaks. High multiplicity for diffraction peaks in the 
low angle region of diffraction angle 2𝜃 produces a large diffraction intensity. The ratio of the diffraction 
intensity between the first diffraction peak and the 100th in aluminum or molybdenum is 1,000,000: 1. 
The ratio in counts is 1000:1. The intensities of the systematically weak diffraction peaks are less than 
1/4 of the surrounding diffraction peaks. 

The fact that observed structure factors have no unified picture of the electron density 
distribution of chemical bonding is attributable to errors in the observed structure factors. Figure 2.9 
shows deviation from the IAM with reported observed structure factors in aluminum. The vertical axis 
shows the deviation and the horizontal axis the sin 𝜃 /λ. The calculation method of the deviation is 
defined in Section 4.7. All deviations at the lowest order are normalized to 1. The deviation results 
from the chemical bonding in principle. The deviation of the second lowest structure factor of 
Nakashima et al. have a significant difference to that of the lowest structure factor. All other deviations 
of higher order from the lowest deviations are the same as their lowest deviation. An observation of the 
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deviation of structure factors by chemical bonding in aluminum requires an accuracy of the structure 
factors which is same as Nakashima et al. in the lowest two. This accuracy requires a statistical error 
of ~0.34% in the powder X-ray diffraction intensity. 
 

 
Figure 2.9  Deviations from IAM with reported observed structure factors in aluminum. (a) Batterman 
et al. [25], (b) ,de Marco [24], (c) Fox and Fisher [22], (d) Jarvinen et al. [27], (e) Raccah and Henrich 
[26], (f) Rantavuori and Tanninen [28], (g) Takama et al. [23], (h) Nakashima et al. [6]. 
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Chapter 3 Measurement of synchrotron powder X-ray diffraction 

3.1 Introduction 

The synchrotron powder X-ray diffraction of aluminum and molybdenum were measured. In 
X-ray diffraction, information about electron distribution is included in the structure factor. 
Observation of the electron distribution for one conduction electron in LaB6 [15] required the resolution 
of d > 0.23 Å in the measurement data of the powder X-ray diffraction. A component of the harmonic 
oscillation of atomic thermal vibration can be observed by decreasing the structure factor with respect 
to the diffraction angle 2𝜃. The higher order components of the thermal vibration are anharmonic 
terms. The anharmonic terms of thermal vibration can be analyzed by electron distribution modeling 
using a Gaussian probability density function. As X-ray diffraction is the elastic scattering of X-rays, 
thermal diffuse scattering is included in the background intensity. 

To measure accurate powder X-ray diffraction data, it is necessary to deal with oxidation and 
distortion of the aluminum and molybdenum powder. To prevent oxidation, exposure of the two 
powders to the atmosphere must be avoided. The two powders were stored in a desiccator evacuated 
with a rotary pump. The sealing of the powder in the Lindemann glass capillary for X-ray diffraction 
measurement was carried out in a glove box under inert gas, as neccessary. To prevent distortion, 
milling in a laboratory cannot be done. It is fundamenal to purchase aluminum and molybdenum 
powder of a suitable particle size for accurate measurement. 

To improve the resolution of measurement data, high-energy incident X-rays, low temperature 
measurement, and measurement of the diffraction peaks in a high diffraction angle region are required. 
A small value of resolution d value indicates the measurement of a large number of diffraction peaks 
and can be expressed by 𝑑 = 𝜆/(2 sin 𝜃), where 𝜆 is the wavelength of the incident X-ray, and 𝜃 is 
the diffraction angle. The relationship between the wavelength 𝜆 and energy E is E = 12.4/𝜆. The 
units of measurement for E and 𝜆 are keV and Å, respectively. The resolution d decreases with the 
increase in the maximum diffraction angle 𝜃 of measurement region. High-energy incident X-rays have 
short wavelengths, which reduce the value of d. Low-temperature measurements reduce the effects of 
the atomic thermal vibrations. The thermal vibration leads to a rapid attenuation of diffraction peak 
intensities to the diffraction angle. Increasing the intensity of the thermal diffuse scattering increases 
the background intensity. The Debye temperatures of aluminum and molybdenum are 390 and 377 K, 
respectively. The low-temperature measurement enables the observation of the diffraction peaks in the 
high angle region. 

High-energy incident X-rays reduce the extinction effect. The extinction effect, comprising 
primary and secondary, in X-ray diffraction decreases low order structure factors. The primary 
extinction effect depends on the size of perfect crystals in the measurement sample. In the powder 
sample, the size of the perfect crystal was, at most, equal to the particle size of the powder. The 
extinction distance t is expressed by t = V/(𝜆F), where V is the volume of the unit cell, 𝜆 is the 
wavelength of the incident X-ray, and F is the structure factor. The larger the extinction distance 
compared to perfect crystals, the smaller the primary extinction effect. Short incident X-ray 
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wavelengths increase the extinction distance. Low-order structure factors have large values, which 
reduce the extinction distance. The secondary extinction effect depends on the degree of parallelism 
between perfect crystals. In the powder sample, the direction of perfect crystals is random. 

To improve the counting statistics of the X-ray diffraction data, it is necessary to divide the 
measurement range of the diffraction angle 2𝜃, and to ensure stability of the X-ray source and high 
intensity of the incident X-ray. Increasing the measurement counts improves the statistical error. The 
intensities of the X-ray diffraction peaks were decreased exponentially with respect to the diffraction 
angle 2𝜃. The ratio of the counts of the diffraction peaks between 2𝜃 = 8° and 100° in aluminum is 
10,000:1. The saturation of counts in the Imaging Plate detector limits the counts of diffraction peaks 
at high angles of 2𝜃. To improve the counting statistics of the diffraction peaks in the high angle region, 
it is necessary to divide the measurement range into the low angle side and the high angle side. 
Increasing the counts of diffraction peaks requires high-intensity incident X-rays. For a prolonged 
measurement in the high angle side, an X-ray source with good stability is necessary. 

Metal foil is useful for removing the background intensity with a specific wavelength. The 
background intensity of X-ray diffraction comprise thermal diffuse scattering, X-ray fluorescence from 
sample, air scattering, scattering by capillaries, among others. The wavelength of the X-ray fluorescence 
for each element has a unique value. X-ray fluorescence can be reduced by placing metal foil between 
the diffracted X-ray and the detector. The selection of the optimum metal foil and the setting place 
are necessary to utilize metal foils. 

The third-generation synchrotron radiation source SPring-8 satisfies the requirements of this 
measurement. BL02B2 is a beamline for high-energy synchrotron powder X-ray diffraction. The 
maximum energy of the incident X-ray of BL02B2 is 37.7 keV. Low temperature measurement is 
available with a helium gas cooling device. Owing to the movement of the Imaging Plate detector, it is 
possible to measure the high angle region of the diffraction angle 2𝜃. Metal foil can be placed on the 
front of slit of the Imaging Plate cassette. Split measurements can be performed on the low angle side 
and high angle side of 2𝜃. SPring-8 is the most stable synchrotron X-ray source in the world. 

The purpose of the experiments is to accurately measure the powder X-ray diffraction dataset 
of pure metals. The diffraction data for a charge density study of metal require an electron density 
resolution better than 0.01 e/Å3. The electron density between the nuclei of pure metals is evaluated 
by the average valence electron density per unit cell. In trivalent aluminum, the density is 0.18 e/Å3.  

From the measurement results of the QCBED structure factors in aluminum by Nakashima 
et al. [6], the observation of chemical bonding in aluminum requires an errors of 0.24% in counts at the 
diffraction peaks of the lowest-order two structure factors. For a statistical error, ~ 90,000 counts are 
necessary. 
 

3.2 Experimental 

This section explains experimental devices, equipment, and the diffractometer in this research. 
3.2.1 explains the glovebox system for the sample preparation. 3.2.2 shows the X-ray diffractometer at 
SPring-8 BL02B2. 3.2.3 shows the examination of a new Imaging Plate reader.  
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3.2.1 Glovebox 

Figure 3.1 shows the glovebox system used for sample preparation. It was used to prevent the 
oxidation of the powder during sample preparation. The black frame is the glovebox, the blue frame is 
a vacuum chamber, the red frame is a hygrometer, and the orange frame is an oximeter and an 
automatic internal pressure regulator. The glovebox is under an Ar atmosphere due to the flow of Ar 
gas from the Ar cylinder. In the system, both the moisture and oxygen concentration can reach an 
order of ~1000 ppm order. The powder was sealed in a Lindemann glass capillary using the following 
system. 
 

 
Figure 3.1 The glove box system used for sample preparation. 
 
3.2.2 Large Debye-Scherrer camera  

Figure 3.2 shows the large Debye-Scherrer camera installed at the SPring-8 beamline BL02B2. 
The measurement sample was placed on the 2𝜃 axis. The sample was rotated during measurement. 
The measurement temperature was set by a gas flow device. The X-ray was incident to the sample 
through the collimator. The diffracted X-ray was recorded on an Imaging Plate detector. BAS IP MS 
2040E was used for measurement. 

Figure 3.3 shows a schematic view of the arrangement of the large Debye-Scherrer camera. 
The red arrows represent the incident and diffracted X-rays. The black circle represents the sample. 
The diffraction angle is between the direction of the incident and diffraction X-rays. The green and 
orange curves indicate the two measurement positions of the Imaging Plate. The measurement region 
of a single Imaging Plate is 78° in 2𝜃. The starting position of 2𝜃 in the low-angle side was 2𝜃 = 0°. 
The starting position on the high angle side was 2𝜃 = 30°. 
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Figure 3.2  The large Debye-Scherrer camera installed at SPring-8 beamline BL02B2. 
 

 
Figure 3.3  A schematic view of the arrangement of the large Debye-Scherrer camera. 
 
3.2.3 Imaging Plate reader 

A new Imaging Plate reader that reproduces the reading result of the Imaging Plate from Fuji 
BAS-2500 is necessary. The IP reader Fuji BAS-2500 has been employed at beamline BL02B2. The 
reader has, so far, successfully observed a large number of electron distributions. The Imaging Plate 
reader cannot be maintained in the future due to a withdrawal of Fuji from support work of the Imaging 
Plate reader series. 

A candidate for a new Imaging Plate reader is the Rigaku RAXIA-Di. The dynamic range of 
the Imaging Plate is over 106. To realize the linearity of the reading result of photoemission from the 
Imaging Plate, the Imaging Plate reader usually uses two photomultiplier tubes. The sensitivity of the 
photomultiplier tube can be tuned by voltage. An optimized setting for reading of the Imaging Plate 
at BL02B2 is needed for accurate measurement of the synchrotron powder X-ray diffraction. 

The synchrotron powder X-ray diffraction measurement of CeO2 was carried out at SPring-8 
beamline BL02B2. This is an investigation of the reproducibility of the reading result in IP reader 
Rigaku RAXIA-Di. To compare the results between the BAS-2500 and Rigaku RAXIA-Di, the 
measurement results of the powder X-ray diffraction of the standard sample CeO2 was read by RAXIA. 
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To investigate the position dependence of the measurement results by reading the position of the 
Imaging Plate, seven 2-dimensional (2-D) diffraction data were measured in one Imaging Plate. The 
slit width was 20 mm. The measurement position in the Imaging Plate was moved to 21 mm, and the 
initial measurement position was 20 mm. 

Figure 3.4 shows the results of the Rietveld refinement of the 1-dimensional (1-D) diffraction 
data from RAXIA, auto-wave.exe was used for the analysis. The vertical axis represents the intensity 
and the horizontal axis the diffraction angle 2𝜃 for each figure. The refined parameters were the scale 
factor s, background parameters b1 to b12, zero point adjustment parameter t1, lattice constant, 
parameters of half width of diffraction peaks w, v, and u, asymmetric parameter of the half width of 
diffraction peaks a2, parameter of the ratio of the Gaussian and Lorentzian in the pseudo Voigt function, 
eta, the ratio of half width, eps, and the temperature factors of Ce and O. The full width at half 
maximum of the measured diffraction peaks are larger than those of the pseudo Voigt function. This is 
remarkable at the high angle region. The deviation between the peak position 2𝜃 in the measurement 
data and that of the pseudo Voigt function cannot be corrected by t1. The peak positions of the 
measurement data and fitting results are reversed 2𝜃 = 20°. From the middle angle region to the high 
angle region, the deviation amount for each peak are different. 
 

 

 

Figure 3.4  The results of Rietveld refinement of 1-dimensional diffraction data from RAXIA-Di. 
 
Figure 3.5 shows the superposition of the diffraction peaks in seven measurement data within 
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the same Imaging Plate. This is to investigate the dependence of the reading position of the Imaging 
Plate for the deviation. The measurement is carried out at room temperature. The incident X-ray 
wavelength is 0.328 Å. The exposure time is 5 minutes. The upper side shows an expanded view of the 
diffraction peak with the maximum intensity. The peak position increases with the increasing vertical 
position (mm) of the Imaging Plate. This phenomenon is maintained at a low angle. The bottom side 
shows an expanded view of the peak in the medium angle region. The phenomena is reduced around 
2𝜃 = 40°. 

Fuji BAS-2500 was employed in the present powder X-ray diffraction measurement. This is 
because the deviation of the peak position between the experiment and fitting in the Rigaku RAXIA-
Di considerably affects the estimation of the diffraction intensity. 
 

 
Figure 3.5  The superposition of diffraction peaks in seven measurement data within the same Imaging 
Plate. 
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3.3 Preparation of measurement sample  

Aluminum powder and molybdenum powder were brought from the Kojundo chemical 
laboratory and Nilaco Corporation, respectively. The purity of the powders was 99.9%. The particle 
sizes were 3 μm for the aluminum and 3-5 μm for the molybdenum powder. Both powders were not 
milled to avoid introduction of internal strains and defects of grains. 

The aluminum powder was sealed in a Lindemann glass capillary with Ar gas. The internal 
diameter of the capillary is 0.4 mm and 0.2 mm for aluminum and molybdenum, respectively. The 
glovebox was used in the process. Ar gas was made to flow through the glovebox after the evacuation 
of air with a rotary pump. The hygrometer and oximeter showed ~1000 ppm.The capillary was inserted 
in a straw. The capillary and tube were fixed with mending tape. Two sets of these and one spatula 
were put in a styrene case. The aluminum or molybdenum powder, grease tube, a piece of parafilm and 
weighing papers were also put in the case. The case was then placed in the pass box in the glovebox 
system. The pass box was evacuated up to a pressure of -0.1 MPa. The box was filled with Ar gas at 
a pressure up to 0 MPa. Then, the case was moved into the glovebox. 

The aluminum and molybdenum powders were packed into the capillaries in the glovebox. 
Small amounts of aluminum or molybdenum powder were picked up and dropped in the capillary. The 
powder dropped to the bottom of the capillary by vibration through the tube. A small amount of grease 
was put out on a weighing paper. The upper part of the capillary was sealed using silicon grease with 
Ar gas. The capillaries and others were put into the styrene case. The case was removed from the 
glovebox through the pass box. The capillary was sealed using a fire from a lighter outside of the 
glovebox. 

Figure 3.6 shows the prepared sample of aluminum in a sample case. One sample was prepared 
and was attached to a small amount of black clay at the edges of the capillaries. The sample was fixed 
in the sample case with the clay. The sample was labelled “Al2”, with a length of 54 mm. The 
molybdenum samples were fixed in the sample case using the same method. 
 

 
Figure 3.6. The prepared samples of aluminum. 
 

3.4 Synchrotron powder X-ray diffraction experiment of aluminum and 

molybdenum 

Synchrotron powder X-ray diffraction measurements were carried out with a transmission 



23 
 

arrangement using the large Debye-Scherrer camera installed at the large synchrotron radiation facility 
SPring-8 beamline BL02B2. BL02B2 is a dedicated beamline for crystal structure analysis by 
synchrotron powder X-ray diffraction. The beamline can measure powder X-ray diffraction data with 
the highest resolution in Japan, and has many achievements and know-how. The capillary was fixed 
with a compound along the groove of the sample folder. To avoid the preferred orientation in X-ray 
diffraction, the capillary was rotated during measurements. Automatic centering was used to correct 
the rotation axis of the capillary. The measurement wavelength was set to 0.328 Å. An Imaging Plate 
was used for the X-ray detector due to its high counting efficiency at the wavelength. A BAS-MS 
200×400 mm Imaging Plate made by Fuji Film was used. The pixel size during the reading process 
was 50 × 50 μm. The 2𝜃 axis of the diffractometer was set to 2𝜃 = 0° and 30°. The standard sample 
CeO2 was measured from 2𝜃 = 0 to 78° at room temperature. The exposure time was 5 minutes. 
Wavelength calibration was performed with the lattice constant of CeO2 which is 5.4111 Å.  

Preliminary measurements of the aluminum and molybdenum were performed under the same 
experimental conditions as that of CeO2. The saturation times of the Imaging Plate for aluminum and 
molybdenum were calculated from the results of the preliminary measurements. The measurement time 
for the low angle side was set to 70% of the saturation time. The high angle side was set to 4 times 
that of the low angle side. 
 
3.4.1 Reduction of fluorescence X-ray from molybdenum 

A combination of copper and nickel foil with a thickness of 0.05 mm was placed in front of the 
Imaging Plate to reduce the X-ray fluorescence of molybdenum and to reduce X-ray fluorescence from 
the copper foil. The energy of the K absorption edge of the molybdenum is 20 keV. To identify the 
cause of the large background scattering in high energy X-ray powder diffraction and to select a 
combination of optimum metal foils, the synchrotron powder X-ray diffraction of molybdenum was 
preliminary performed at the SPring-8 BL02B2 beamline. The wavelength of the incident X-ray was 
37.7 keV. The measurement time was 5 min. An Imaging Plane was used as the detector. 

The black line in figure 3.7A represents the 1-D diffraction data of the preliminary 
measurements at room temperature. The horizontal axis represents the diffraction angle 2𝜃 and the 
vertical axis the intensity. The peak intensity of 110 reflection and the background intensity are 
approximately 940,000 and 16,500 counts, respectively. The statistical fluctuation of the background 
intensity is 128 counts. Reflections from the (h00), (hk0), and (hkl) planes (h=k, h=k=l, h,k,l are 
multiples of 4) are systematically weak. For 2𝜃 = 72.5°, sin 𝜃 /λ > 1.80 Å-1, the intensities of the weak 
peaks were less than the statistical fluctuation. 

In Figure 3.7A, the intensities of the black line indicate the independence from diffraction 
angle. The angle-independent background is a feature of X-ray fluorescence. The wavelengths of the 
incident X-ray and X-ray fluorescence of molybdenum were 0.328 and 0.711 Å, respectively. To remove 
the X-ray fluorescence intensity, a metal foil was placed in front of the detector. 

The red line in Figure 3.7A shows the 1-D diffraction data at room temperature using 0.015 
mm tantalum foil. The tantalum foil transmits 75% of the diffracted X-rays and 11% of the X-ray 
fluorescence. Compared with the case without tantalum foil, the background intensity was 1/5. Figures 
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3.7B and C show expanded views of 2𝜃 = 70 to 76° with and without tantalum foil, respectively. Owing 
to the X-ray fluorescence from the tantalum foil caused by the diffracted X-rays, additional peaks 
formed, indicated by the blue lines at C. 

The purple line in figure 3.7A shows the 1-D diffraction data at room temperature using the 
combination of 0.05 mm copper and 0.05 mm nickel foils. To remove X-ray fluorescence from the copper 
foil, the nickel foil was placed between the copper foil and the detector. The copper foil transmits 77% 
of the diffracted X-rays and 12% of the X-ray fluorescence. The wavelength of the X-ray fluorescence 
of copper foil is 1.38 Å. The nickel foil transmits 79% of the diffracted X-rays, 12% of the X-ray 
fluorescence of molybdenum, and 0% of the X-ray fluorescence of copper foil. Figure 3.7D shows an 
expanded view of 2𝜃  = 70 to 76° with the combination of copper and nickel foils. There are no 
additional peaks from the copper foil. The fluctuation of the background intensity clearly decreased. A 
small diffraction peak at 2𝜃 = 72.5° is also recognized. 
 

 

Figure 3.7  (a) 1-D diffraction data of molybdenum in the preliminary measurement at room 
temperature. (b-c) The expanded views of 2𝜃 = 70 to 76° (b) without metal foil and with (c) tantalum 
foil and (d) copper and nickel foils. 
 

Figure 3.8 shows plots of the 1-D diffraction data of the preliminary synchrotron powder X-
ray diffraction in molybdenum for each combination of metal foils. The horizontal axis represents the 
diffraction angle 2𝜃 and the vertical axis the intensity. The black line shows the measurement data 
without the metal foil. The data have approximately 22,000 counts of background intensity. Figure 3.8 
(bottom) shows an expanded view of the 1-D diffraction data with metal foils. Red, green, and orange 
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represent the copper, nickel, and tantalum foils, respectively. Using a single metal foil, the background 
intensity was less than 1/5. The intensity of the X-ray fluorescence from the tantalum foil can be clearly 
observed. Blue, pink, and purple show the results of the copper + tantalum, nickel + tantalum, and 
copper + nickel combined foils, respectively. The measurement data with these three combinations are 
similar. To avoid the use of tantalum foil with a high intensity of X-ray fluorescence, the combination 
of copper + nickel foil was employed for the synchrotron powder X-ray diffraction measurement of 
molybdenum. 
 

 
Figure 3.8  Plots of 1-dimensional diffraction data of the preliminary synchrotron powder X-ray 
diffraction in molybdenum for each combination of metal foils. 



26 
 

3.4.2 Experimental conditions of aluminum and molybdenum 
Table 3.1 shows the experimental conditions of the aluminum and molybdenum. The columns 

from the left to right show the wavelength of the incident X-ray, measurement time, measurement 
temperature, slit width, and the initial diffraction angle 2𝜃. In molybdenum, the measurements were 
carried out using the combination of copper and nickel foil. There are two sets of measurement times 
for aluminum. The first is 30 min in the low angle side and 120 min in the high angle side. The second 
is 27 min in the low angle side and 108 min in the high angle side. The fluctuation of the measurement 
time is due to the fluctuation of the beam intensity at the measurement wavelength, depending on the 
difference of the measurement date and time. In molybdenum, 20 min in the low angle side and 80 min 
in the high angle side were employed. The measurement temperatures were 30, 100, 200, 300, 400, 500, 
and 600 K. At 30 K, a He gas flow low-temperature device was used. At the other temperatures, a N 
gas flow device was used. The 2𝜃 axis of the diffractometer was 2𝜃 = 0° and 30° for 30, 200, 300 ,400, 
500, and 600 K. In molybdenum at 100 K, the axis was 2𝜃 = 0°, 30°, and 45°. 
 

Table 3.1 Experimental conditions of aluminum and molybdenum. 
Sample Wavelength 

(Å) 
Measurement time 

(min) 
Temperature 

(K) 
Slit width 

(mm) 
Diffraction angle 

(deg.) 
Al 0.328 30 / 120 100, 200, 300 30 0 / 30 
Al 0.328 27 / 108 30, 400, 500, 600 20 0 / 30 
Mo 0.328 20 / 80 30, 200, 300, 400, 

500, 600 
20 0 / 30 

Mo 0.328 20 / 80 100 20 0 / 30 / 45 
 

3.5 Diffraction data 

3.5.1 2-dimensional diffraction data of aluminum and molybdenum 
Figure 3.9 shows the 2-D diffraction data of the aluminum measured at (a) 30, (b) 100, 200, 

300, (c)400, and (d) 500 and 600 K. The data were plotted by ipview.exe. The pixel size was read at 
50 μm. The sensitivity was 1000. The left side in the figures shows the low diffraction angle and the 
right side shows the high diffraction angle. The X-ray irradiation intensity is represented by a black 
gradation. The white region is not irradiated with the X-ray. The short black line in the white region 
on the left side shows the direct beam of the incident X-ray. The direct beam is a transmitted X-ray 
that was not diffracted by the sample. One measurement is recorded as one rectangular band. The 
vertical width of the band is the slit width. The left side of low angle measurement is the diffraction 
angle of 2𝜃 = 0°. The left side of the high angle measurement is the diffraction angle of 2𝜃 = 30°. The 
upper band at each measurement temperature shows the low angle measurement. The lower side shows 
the high angle measurement. The upper, middle, and bottom sets in (b) are 100, 300, and 200 K, 
respectively. The upper and bottom sets in (d) are 500 and 600 K, respectively. The vertical black 
curves for each band indicate a part of the Debye-Scherrer ring. There were no black spots present on 
the Debye-Scherrer rings due to coarse particles. No influence on the 2-D diffraction data owing to a 
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defect of the Imaging Plate was found. 
 

 
(a) 2-dimensional diffraction data of aluminum at 30 K. 
 

 
(b) 2-dimensional diffraction data of aluminum at 100,200, and 300 K. 
 

 
(c) 2-dimensional diffraction data of aluminum at 400 K. 
 

 

(d) 2-dimensional diffraction data of aluminum at 500 and 600 K. 
 
Figure 3.9  2-dimensional diffraction data of aluminum measured at (a) 30, (b) 100, 200, 300, (c) 400, 
(d) 500 and 600 K. 
 

Figure 3.10 shows the 2-dimensional diffraction data of molybdenum measured at (a) 30, (b) 
100, (c)200 and 300, (d)400 and 500, and (e) 600 K. The geometry is same as the aluminum. The upper 
and bottom sets in (c) are 200 and 300 K, respectively. The upper and bottom sets in (d) are 500 and 
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400 K, respectively. The data of 100 K has the three diffraction angles. The upper, middle, and bottom 
rectangular are 2𝜃 = 0°, 30°, and 45°, respectively. As with the results of aluminum, there were no 
black spot present on the Debye-Scherrer rings, and no influence on the 2-D diffraction data owing to 
a defect of the Imaging Plate. 
 

 
(a) 2-dimensional diffraction data of molybdenum at 30 K. 
 

 

(b) 2-dimensional diffraction data of molybdenum at 100 K. 
 

 
(c) 2-dimensional diffraction data of molybdenum at 200 and 300 K. 
 

 

(d) 2-dimensional diffraction data of molybdenum at 400 and 500 K. 
 

 
(e) 2-dimensional diffraction data of molybdenum at 600 K. 
 
Figure 3.10  2-dimensional diffraction data of molybdenum measured at (a) 30, (b) 100, (c) 200 and 
300, (d) 400 and 500 and (e) 600 K.  
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3.5.2 Integration of 2-dimensional diffraction data to 1-dimensional diffraction data 
Figure 3.11 shows the origins of integration of the high angle measurement from the 2-D 

diffraction data to the 1-D diffraction data of the (a) aluminum and (b) molybdenum. The 2-D 
diffraction data were integrated to the 1-D diffraction data using ipview.exe. The integration widths in 
one band were 51 px and 251 px. The red and green lines show the integration range of 51 and 251 px, 
respectively. An “Automatic” mode in dual powder data tab was used to determine the origin of 
integration in the low angle side. For the high angle side, “manual” mode in dual powder data tab was 
used. 
 

 
(a) The origins of integration for aluminum. 
 

 
(b) The origins of integration for molybdenum. 
 
Figure 3.11  The origins of integration of high angle measurement from 2-dimensional diffraction data 
to 1-dimensional diffraction data of (a) aluminum and (b) molybdenum. 
 

Figure 3.12 shows the method of determining the origin of the integration region in the 2-D 
diffraction data of the high angle side. The integration regions are represented by the red line of 51 px 
and green line of 251 px. The yellow line is parallel to the vertical axis of the rectangular band of 
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integration range. Aligning the left edge of the measured Debye-Scherrer ring with the yellow line; if 
the horizontal positions of the contact point between the yellow line and the top and bottom of the 
Debye-Scherrer ring are different, the horizontal position of the yellow line is set to the right side of 
the contact point. In Figure 3.12, the upper side of the contact point between the Debye-Scherrer ring 
and the yellow line is further right than the bottom side. The red double-headed arrow indicates the 
vertical width of 40 px. The blue double arrow indicates a width of 520 to 900 px. The center position 
in the blue double arrow is taken as the vertical axis center of the integral width. The center position 
is 710 px in the vertical axis. A similar procedure was used for the other integration of the 2-D 
diffraction data. 
 

 

Figure 3.12  The method of determining origin of integration region in 2-dimensional diffraction data 
of high angle side. 
 

Figure 3.13 shows the integration regions in the integration procedures of the aluminum and 
molybdenum at 30 K. A band surrounded by the red line shows an integration width of 51 px. The 
green line shows an integration width of 251 px. The geometry of the figures is the same as 3.6.1. The 
vertical width of the measured 2-D diffraction data is sufficiently larger than the integration width of 
251 px. 

Figure 3.14 shows an expanded view of the boundary region of the rectangles between the 
lower measurement angle and higher angle in the aluminum and molybdenum data at 30 K data. This 
is a confirmation whether the 251 pixel region does not overlap to a part of Debye-Scherrer ring in the 
rectangle of the lower measurement angle. The green lines with an integration width of 251 px are in 
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each band. The high-intensity Debye-Scherrer ring at a low angle slightly protrudes from the band area. 
These protruding Debye-Scherrer rings are not in the integrated region of 251px. 
 

 
(a) Integration region of aluminum at 30 K. 
 

 

(b) Integration region of molybdenum at 30 K. 
 
Figure 3.13 shows integration region in the integration procedures of (a) aluminum and (b) 
molybdenum at 30 K. 
 

 

(a) The boundary region of rectangles in aluminum at 30 K 
 

 

(b) The boundary region of rectangles in molybdenum at 30 K 
 
Figure 3.14 An expanded view of the boundary region of rectangles between lower measurement angle 
and higher angle in (a) aluminum and (b) molybdenum at 30 K data. 
 
3.5.3 1-dimensional diffraction data of aluminum and molybdenum 

Figure 3.15 shows the 1-D diffraction data of aluminum at 30, 100, 200, 300, 400, 500, and 
600 K of the aluminum. The vertical axis is the intensity in the log scale and the horizontal axis is the 
diffraction angle 2𝜃. This is the low angle measurement data with 51 pixels. As the measurement 
temperature increases, the number of observable diffraction peaks decreases. At 30 K, there were 
diffraction peaks of ice attached to the surface of the capillary around 2𝜃 = 10°. The diffraction peaks 
of ice do not overlap the diffraction peaks of aluminum. Between 100 and 600 K, there were no second-
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phase diffraction peaks. At all temperatures, the intensity of the diffraction peaks of aluminum oxide 
and other phases is less than the background statistical error of ~70 counts. The index of the strongest 
diffraction peak of aluminum is hkl = 111, which is 1.25 million counts. The ratio of the intensity of 
the 111 diffraction peak to the statistical error of the background is 1:18,000. Aluminum oxide is less 
than 0.01%w in the measurement sample. 
 

 
Figure 3.15  1-dimensional diffraction data of aluminum at 30, 100, 200, 300, 400, 500, and 600 K. 
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Figure 3.16 shows changes in the diffraction peak due to the measurement temperature at 30, 
100, 200, and 300 K. The 1-D diffraction diffraction data of the low angle side at 30, 100, 200, and 300 
K with an integration width of 251 px were superimposed. The position of the strongest peak of 100, 
200, and 300 K was made to coincide with the position of 30 K. The black line represents 30 K, the 
blue line 100 K, the green line 200 K, and the orange line 300 K. The horizontal axis shows the 
diffraction angle 2𝜃, while the vertical axis shows the intensity. The correction amount on the horizontal 
axis is +0.005° at 100 K, +0.02° at 200 K and +0.03° at 300 K. These intensities are not normalized. 
At the diffraction peaks at 2𝜃 = 13.2°, a difference in the intensity due to temperature and a shift due 
to the thermal expansion of the lattice constant can be visually observed. The 300 K diffraction peaks 
can be seen up to 2𝜃 = 60.8°. The 200 K diffraction peaks can be seen up to 2𝜃 = 66.5°.  
 

 

Figure 3.16  Changes in the diffraction peak due to measurement temperature at 30, 100, 200, and 
300 K. 
 

Figure 3.17 shows the superposition of the strongest peaks and temperature change of 
diffraction peaks on the high angle side. The black line represents 30 K, the blue line 100 K, the green 
line 200 K, and the orange line 300 K. The horizontal axis shows the diffraction angle 2𝜃, and the 
vertical axis shows the intensity. The correction amount on the horizontal axis is +27.923° at 30 K, 
+27.92° at 100 K, +27.93° at 200 K and +27.931° at 300 K. The diffraction peaks of 100 K can be 
seen up to 2𝜃 = 86.5°. The diffraction peaks at 300 K can be seen up to 2𝜃 = 103.5°. In total, 217 
diffraction peaks can be observed in the low angle and high angle 1-D diffraction data at 30 K. 
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Figure3.17  The superposition of the strongest peaks and temperature change of diffraction peaks on 
the high angle side. 
 

Figure 3.18 shows the shapes of all the diffraction peaks in the 1-D diffraction data of 30 K 
of the aluminum with 51 px for the low angle side and 251 px for the high angle side. The diffraction 
peaks from the low and high angle data are 2𝜃 = 7~40° and 2𝜃 = 40~107°, respectively. This figure is 
necessary to confirm a broadening and splitting of the diffraction peaks. As a result, there were no 
broadening and splitting of the diffraction peaks in aluminum. This means an amount less than the 
detection limit in the synchrotron powder X-ray diffraction of intrinsic strain and stacking fault. 
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Figure 3.18  The shapes of all diffraction peaks in 1-dimensional diffraction data of aluminum at 30 
K with 51 pixels for low angle side and 251 pixels for high angle side. 
 

Figure 3.19 shows the 1-D diffraction data of 30, 100, 200, 300, 400, 500, and 600 K of 
molybdenum. The vertical axis represents the intensity in the log scale and the horizontal axis the 
diffraction angle 2𝜃. This is the superposition of four 1-D diffraction data. These are the data of 51 px 
and 251 px on the low angle side and 51 px and 251 px on the high angle side. As the measurement 
temperature increases, the number of observable diffraction peaks decreases. The 30 K data includes 
the diffraction peaks of ice attached to the surface of the capillary. A diffraction peak of ice overlaps 
with the 110 diffraction peak of molybdenum. The ratio of the intensity of the 110 diffraction peak to 
the diffraction peak of ice is 1:3800. The intensity of the diffraction peak of ice is less than 0.01%. The 
600 K data have additional diffraction peaks from the second phase. The diffraction pattern matched 
those of molybdenum oxide MoO3. No second phase was detected in the data at 100, 200, 300, 400, and 
500 K. The intensity of the diffraction peaks of molybdenum oxide is less than the background 
statistical error of ~60 counts. Molybdenum oxide comprises less than 0.01%w in the measurement 
sample. 
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Figure 3.19  1-dimensional diffraction data of 30, 100, 200, 300, 400, 500, and 600 K of molybdenum. 
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3.6 Summary 

The synchrotron powder X-ray diffraction measurement of aluminum and molybdenum were 
performed at SPring-8 BL02B2. The powders of aluminum and molybdenum were sealed in the 
Lindemann glass capillary in the glovebox under Ar gas. The sample temperatures were controlled at 
30, 100, 200, 300, 400, 500, and 600 K using the gas flow devices. The 217 and 193 diffraction peaks 
were successfully observed for the aluminum and molybdenum at 30 K data. The resolutions d and 
reciprocal resolutions sin 𝜃 /λ of the measurement data at 30 K are 0.22 Å and 2.31 Å-1 for aluminum 
and 0.22 Å and 2.32 Å-1 for molybdenum, respectively. The counts of the most intense diffraction peaks 
of aluminum and molybdenum were over 1.2 million counts. The error of less than 0.34% in the 
diffraction intensity was achieved with the 7 diffraction peaks for aluminum and the 8 for molybdenum. 
Oxides, internal strain, and stacking fault in the aluminum and molybdenum did not detect in the 
measurement. Both the aluminum and molybdenum samples include less than 0.01%w oxides. The 
diffraction peaks of aluminum and ice were not overlapped. The intensity of the diffraction peak of ice 
was less than 0.01% to the 110 diffraction peak of molybdenum. 
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Chapter 4 Principles and Analysis 

4.1 Introduction 

 This chapter explains the analysis method and sets of structure factors used in this research. 
The fundamental processing in the analysis are (1) sum up of the counts of diffraction peaks in 1-D 
diffraction data, and (2) division of integrated Bragg intensity of completely overlapped diffraction 
peaks. The process of (1) can be determined by counting the number of counts above the background 
scattering. The background was determined in Rietveld refinement. The intensity of thermal diffuse 
scattering was estimated for accurate determination of background scattering. The integrated intensity 
is proportional to square of the absolute value of the structure factor. The proportionality coefficient 
at each diffraction peak was calculated by Rietveld analysis. The multipole refinement was used for the 
process of (2). The 1-D diffraction data at 30 K were selected for the observation of electron density 
distributions of both aluminum and molybdenum. The reasons are as follows: these 30 K data has the 
largest number of observed diffraction peaks, the effect of ice can be ignored, and the effect of thermal 
vibration is the smallest. 
 Firstly, an intensity of the thermal diffuse scattering was estimated with the 1-D diffraction 
data of 30 K. Secondly, the Rietveld refinement was performed. Here, the lattice constants, 𝑈Џϣπ, and 
background intensity were determined. Thirdly, the anharmonic thermal vibration was estimated. 
Finally, intensity ratios of completely overlapped diffraction peaks were determined by the multipole 
refinement. The Section 4.2 is the principle of the Rietveld refinement. This includes a description of 
the model of the structure factor of the Rietveld refinement. The Section 4.3 explains the principle of 
the multipole refinement and the model of structure factors. The determination of intensity ratios of 
completely overlapped diffraction peaks is also described. The Section 4.4 shows a method for the 
analysis of thermal diffuse scattering intensity. The Section 4.5 shows the analysis method of the 
estimation of anharmonic thermal vibration. The Section 4.6 explains the set of structure factors used 
in this study. This includes a description of the difference of structure factor models between the 
Rietveld refinement and multipole refinement. 
 

4.2 Principle of Rietveld refinement 

 Rietveld refinement is a refinement method of a model crystal structure using the IAM. Here, 
the parameters of the model crystal structure are the lattice constant, the fractional coordinate of 
atomic site, and the atomic displacement parameter. These parameters are determined by the least 
squares method of the intensity count 𝑦πͣϣ for each data point in the 1-D diffraction data from the 
experiment and count 𝑦ζπͷ΄ΰ calculated from the model: 

𝑦ϝ΄ϣ = ం𝑤քृ𝑦πͣϣӴք − 𝑦ζπͷ΄ΰӴքॄ
ϵ

կ

ք=φ

 

where 𝑦ϝ΄ϣ is the residual square summation, 𝑖 is the number of data points, 𝑤ք is the weighting 
parameter, and 𝑦πͣϣ is the count at each 2𝜃 position in 1-D diffraction data. 
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The integrated intensity in 1-D diffraction data 𝐼πͣϣ  is estimated from 𝑦πͣϣ . 𝐼πͣϣ  is 
represented by the following expression: 

𝐼πͣϣ = 𝑚փֆև|𝐹πͣϣ(𝑯փֆև)|
ϵ𝐿𝑃փֆև𝑇ք(𝑯) 

where 𝑚փֆև  is the multiplicity, 𝐹πͣϣ(𝑯փֆև)  is the observed structure factor, 𝐿𝑃փֆև  is the Lorentz-
polarized factor, 𝐿𝑃փֆև = (1 + cosϵ 2𝜃) (sin 𝜃 sin 2𝜃)⁄ , and 𝑇ք(𝑯) is the thermal vibration term. The 
integrated intensity of Rietveld refinement 𝐼ζπͷ΄ΰ is represented by the following expression: 

𝐼ζπͷ΄ΰ = 𝑠𝑚փֆև|𝐹Ϝ(𝑯փֆև)|
ϵ𝐿𝑃փֆև𝑇֊(𝑯) 

where 𝑠  is the scale factor between 𝐼πͣϣ  and 𝐼ζπͷ΄ΰ , 𝐹ճ(𝑯փֆև)  is the structure factor of model, 
𝑇֊(𝑯) is harmonic thermal vibration term. 𝐹ճ(𝑯փֆև) is expressed by the following equation: 

𝐹ճ(𝑯փֆև) = ం𝑓օ(𝑯) expृ2𝜋𝑖िℎ𝑥օ + 𝑘𝑦օ + 𝑙𝑧օीॄ
կ

օ

 

where the atomic scattering factor𝑓օ(𝑯)  is a Fourier transform of a spherical electron density 
distribution of atom. For this reason, the structure factor 𝐹ճ(𝑯փֆև) follows the IAM model and does 
not consider the electron redistribution. 
 Figure 4.1 is a schematic diagram of the integrated intensity, 𝐼πͣϣ, the calculated integrated 
intensity, 𝐼ͩ͘ΰͩ, and the relationship between the integrated intensity and structure factor. 𝐼πͣϣ is the 
area of the diffraction peak above the background intensity. The integrated intensity is proportional to 
the square of the structure factor. 𝐼ͩ͘ΰͩ is estimated by the sum of rectangles whose height is the count 
of the model 𝑦ζπͷ΄ΰ. The interval between measurement points on diffraction angle in the diffraction 
data is 0.01°. 
 

 

Figure 4.1 A schematic diagram of the integrated intensity of the experiment 𝐼πͣϣ, the integrated 
intensity of the model 𝐼ͩ͘ΰͩ, and the relationship between the integrated intensity and structure 
factor. 
 
 In the case of powder X-ray diffraction of aluminum, several diffraction peaks such as 333/511 
and 600/442 completely overlap on 2𝜃 position. Table 4.1 lists the structure factors of the Rietveld 
refinement of these completely overlapping diffraction peaks. For Rietveld refinement, the estimated 
values of the respective structure factors in the pairs are equal, since the estimation is based on the 
IAM model. On the other hand, the values of these structure factors are important because these 
represent an anisotropy of the electron density distribution by the electron redistribution. 
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Table 4.1  The structure factors of Rietveld refinement of completely overlapping diffraction peaks of 
333/511 and 600/442. 

hkl Rietveld 

3 3 3 3.99 
5 1 1 3.99 
6 0 0 3.18 
4 4 2 3.18 

 
 The agreement of count between experiment and Rietveld refinement is represented by a 
reliability factor 𝑅Ѐό. 

𝑅Ѐό =

⎩৖
⎨
৖⎧ం 𝑤քज़𝑦πͣϣӴք

− 𝑦
ζπͷ΄ΰӴք

ड़
ϵկ

ք=φ

ం 𝑤ք𝑦πͣϣӴք
ϵ

կ

ք=φ ⎭৚
⎬
৚⎫

φ
ϵ

 

where, 𝑤ք is the weighting parameter, 𝑤ք = 1/𝑦πͣϣ. The agreement of integrated intensity between 
experiment and Rietveld refinement is represented by a reliability factor 𝑅Φ. 

𝑅Φ =
ం ੵ𝐼

πͣϣӴօ
− 𝐼

ͩ͘ΰͩӴօ
ੵ

ծ

օ=φ

ం 𝐼
πͣϣӴ

ծ

օ=φ

 

 

4.3 Principle of multipole refinement 

 Multipole refinement employs a non-spherical atomic electron density distribution called 
multipole model. The non-spherical atomic electron density distribution 𝜌ζό(𝒓) is expressed by the 
following equation: 

𝜌ζό(𝒓) = 𝑃ͩ𝜌ͩπϝ΄(𝑟) + 𝑃Ͼ𝜅
ϯ𝜌Ͼ͘ΰ΄μͩ΄(𝜅𝑟) + ం 𝜅஥ϯ𝑅և(𝜅′𝑟)

ևȟǁɫ

և=Ј

ం 𝑃ևֈ±𝑑ևֈ±(𝜃, 𝜙)
և

ֈ=Ј

. 

The first term on the right-hand-side gives the spherical electron distribution of the inner shell electrons. 
The second term gives the spherical electron distribution of the outer shell electrons. The third term 
gives the deformation density distribution from the spherical electron density distribution of the outer 
shell electrons. 𝑟, 𝜃, and 𝜙 are the radial distance from the atomic center of origin and the azimuth angles. 
𝑙 is a positive integer, −𝑙 ≤ 𝑚 ≤ 𝑙. 𝑅և is the radial function, 𝑃ևֈ± is the electron population parameter 

in the multipole functions, and 𝑑ևֈ±(𝜃, 𝜙) is the density function by the real spherical harmonics. 𝑃ͩ is 
the electron population of the inner shell electrons, 𝑃Ͼ is the electron population of the outer shell 
electrons, 𝜅 is the expansion / contraction parameter of the spherical distribution of the outer shell 
electrons, and 𝜅஥ is the expansion / contraction parameter of the radial function in the deformation 
density distribution.  
 Figure 4.2 shows the equation of multipole model and the schematic view of the electron 
density distribution for each term. The third term is called static deformation density. This multiplies 
the radial function and the spherical harmonic function. Here, “static” means the elimination of effects 
of thermal vibrations. The static deformation density has positive and negative electron densities. The 
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sum of the charges in the distribution is zero. 
 

 

Figure 4.2  The equation of multipole model and schematic view of electron density distribution for 
each term. 
 
 In cubic symmetry, point group symmetric elements are linear combinations of spherical 
harmonic functions. This is called Kubic harmonics [33]. Kubic harmonics 𝐾քօ is a linear combination 
of the multiplication of coefficients 𝑘օֈ±

և  and real spherical harmonics 𝑦ևֈ±. 

𝐾քօ = ం𝑘օֈ±
և 𝑦ևֈ±

ֈ±

 

A pick-up rule of indices for spherical harmonics under a site symmetry was given by Kurki-Suonio 
[34]. In cubic symmetry, only 𝑙𝑗 = 01, 41, 61 … are symmetry allowed. Table 4.2 shows the coefficients 
𝑘օֈ±

և  of the Kubic harmonics. 0+ and 4+ are indices 𝑚 ±. 
 

Table 4.2  The coefficients 𝑘օֈ±
և  of the Kubic harmonics. 

l  j 0+ 4+ 

0  1 1 
 

4  1 0.76376 0.64550 
6  1 0.35355 -0.93541 

 
 Multipole refinement is the least squares fitting of the input structure factor F and the 
structure factor based on multipole model FMP. The fitting parameters are the electron population 
parameters and the expansion / contraction parameters. These parameters are determined by the least 
squares fitting. Then, the parameters are introduced into the multipole model. Finally, the non-
spherical atomic electron density distribution 𝜌ζό(𝒓)  is reproduced. The superposition of 𝜌ζό(𝒓) 
reproduces the electron density distribution of a crystal. FMP is the superposition of the atomic 
scattering factor of 𝜌ζό(𝒓). Since the multipole model is merely a superposition of the atomic center 
electron density distribution, the parameters of the electron population and expansion / contraction 
do not have any physical meaning. The parameters are only for the accurate reproduction of the electron 
density distribution. The agreement between F and FMP is represented by a reliability factor 𝑅Α. 

𝑅է =
∑|𝐹 − 𝑘𝐹εϋ|

∑|𝐹 |
 

where, 𝑘 is the scale factor between F and FMP. 
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 Figure 4.3 shows the procedure of determination of observed structure factor. The background 
intensity in 1-D diffraction data is determined by the Rietveld refinement. Here, the integrated intensity 
𝐼πͣϣ of independent diffraction peak is determined. In the determination of the structure factor 𝐹πͣϣ 
from 𝐼πͣϣ, 𝑚փֆև and 𝐿𝑃փֆև at each diffraction peak are required. These values were calculated in the 
Rietveld refinement. 𝑇ք(𝑯) was analyzed separately for harmonic thermal vibration and anharmonic 
thermal vibration. The integrated intensity of completely overlapping diffraction peaks is determined 
by multipole refinement. For this reason, the model bias of the multipole refinement only affects the 
structure factor of the completely overlapping diffraction peak. 
 

 

Figure 4.3  The analysis procedure in this research. 
 
 Table 4.3 shows the structure factors in the multipole refinement of completely overlapping 
diffraction peaks in Table 4.1. The structure factors in the pair take the difference values due to the 
electron redistribution. In Fobs, these are same value due to their errors. For reproduction of the electron 
density distribution by the multipole refinement, these different values in FMP are used. 
 
Table 4.3  The structure factors values in multipole refinement of completely overlapping diffraction 

peaks. 
hkl Multipole Rietveld 

3 3 3 3.98 3.99 

5 1 1 3.97 3.99 

6 0 0 3.17 3.18 

4 4 2 3.16 3.18 

 The d-orbital population of transition metal atoms is derived from the electron population 
parameter of the multipole model. Assuming that (1) the d-orbital can be expressed by a single Slater 
type orbital and (2) the overlapping of the d-orbitals between the nearest atoms is small. The 
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relationship between the d-orbital population and electron population parameter of the multipole model 
is derived from an equivalence of two different descriptions of the atomic electron density. The one is a 
linear combination of atomic orbitals (LCAO) based atomic electron density and another one is based 
on the multipole model.  
 The d-electron density distribution in the LCAO is expressed by the atomic orbitals 𝑑ք. 

𝜌տ = ం𝑃ք𝑑ք
ϵ + ంం𝑃քօ𝑑ք𝑑օ

Θ

օ>ք

Θ

ք=φ

Θ

ք=φ

 

𝜌տ is the d-electron density distribution, 𝑑ք = 𝑅(𝑟)𝑦ևֈ±. The mixing term 𝑑ք𝑑օ occurs when overlapping 
of the d-orbitals exists. The terms only occur between orbitals which belong to the same symmetry 
representation. In an octahedral group, that is 𝑚3𝑚̅ (𝑂փ), the d-orbital is split into the bonding orbital 
𝑇ϵւand the antibonding orbital 𝑒ւ. In multipole model, the atomic d-electron density is expressed by the 

spherical outer electron density distribution and deformation density terms. 

𝜌տ = 𝑃֑𝜌Ͼ͘ΰ΄μͩ΄(𝜅𝑟) + ం঱𝑅և(𝜅
஥𝑟) ం 𝑃ևֈ±𝑦ևֈ± ঁ

𝒓

𝑟
ং

և

ֈ=Ј

ল
Κ

և=Ј

 

When the two 𝜌տ are equal, a coefficient of a relationship between 𝑃ևֈ and 𝑃ք or 𝑃քօ can be defined.  
 Table 4.4 shows the relationship between the d-orbital populations 𝑃ք or 𝑃քօ and the electron 
population parameter 𝑃ևֈ֋ . From 𝑃֕ to 𝑃֓֔ belong to 𝑃ք . 𝑃֓ɞ−֔ɞ/֓֔ represents a mixing term 𝑃քօ . 

𝑃ЈЈ, 𝑃ΚЈ, and 𝑃ΚΚ+ are the electron population parameters of the multipole model. Multipole functions 
which consist of the radial function and real spherical harmonic function are limited by the site symmetry 
of a crystal. In the molybdenum bcc lattice, the site symmetry is 𝑚3𝑚̅ (𝑂փ), hence the symmetry-allowed 
multipole functions in the d-orbital density are 𝑙𝑚𝑝 = 00, 40, and 44+, where 44+ = 0.74048∗40. 
 

Table 4.4  The relationship between the d-orbital populations 𝑃ք or 𝑃քօ and the electron population 
parameter 𝑃ևֈ֋. 

Orbital 𝑷𝟎𝟎 𝑷𝟒𝟎 𝑷𝟒𝟒+ 

𝑃𝑧 0.200 1.396  0.000  
𝑃𝑥𝑧 0.200 -0.931 0.000  
𝑃𝑦𝑧 0.200 -0.931 0.000  

𝑃𝑥2−֔ɞ 0.200 0.233  1.571  
𝑃𝑥𝑦 0.200 0.233  -1.571 

𝑃𝑥2−֔ɞ/֓֔ - - 3.142  

 

4.5 Analysis of anharmonic thermal vibration 

 The anharmonic thermal vibrations are expressed by third or higher order terms in the Taylor 
series expansion of the potential energy of a crystal due to atomic displacement. 
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𝒱 is the potential energy of whole crystal, 𝑢֎և is the displacement from the equilibrium position of the 
𝑠-th atom in the 𝑙-th unit cell, and j represents the components of the Cartesian coordinates. The 0th 
order term is the potential energy in a static crystal. The first-order term is 0 because it is near 
equilibrium. The second-order term is a harmonic term. 

The probability density function (pdf) of atomic thermal vibration is expressed by the Gram-
Charlier expansion. In harmonic oscillation, the pdf is Gaussian pdf. When including anharmonic 
thermal vibrations, the Taylor series expansion with the Gaussian pdf is used. This is called the Gram-
Charlier expansion. 

𝑃(𝒖) ≈ ঝ1 − 𝑐օ𝐷օ +
𝑐օֆ

2!
𝐷օ𝐷ֆ −

𝑐օֆև

3!
𝐷օ𝐷ֆ𝐷և +

𝑐օֆևֈ

4!
𝐷օ𝐷ֆ𝐷և𝐷ֈ ⋯+ (−1)֍ 𝑐ᆿȯ⋯ᆿ՗

𝑟!
𝐷ᆿ՗

⋯ 𝐷ᆿȯ
ঞ𝑃Ј(𝒖) 

𝑃(𝒖) is the pdf, 𝑃Ј(𝒖) is the Gaussian pdf, 𝐷ᆿ՗
⋯𝐷ᆿȯ

 represents the partial derivatives, and 𝑐ᆿȯ⋯ᆿ՗ 
is the element of coefficient tensor. The pdf of anharmonic vibration is expressed by third or higher 
order terms. In the expansion up to the fourth order, only the fourth terms 𝐷φφφφ and 𝐷φφϵϵ remain 
under site symmetry 𝑚3𝑚̅. 
 Figure 4.4 shows the schematic diagram of the 2-dimensional contour plot of pdfs by 𝐷φφφφ 
and 𝐷φφϵϵ around an atom. 𝑦 and 𝑧 shows the crystal axis. The origin is the center of the atom. The 
blue regions represent negative values, while the red regions are positive values. The positive values 
distribute to the [111] and [100] directions in 𝐷φφφφ  and 𝐷φφϵϵ , respectively. The negative values 
distribute around the atom. 
 

 
Figure 4.4  The schematic diagram of the 2-dimensional contour plot of pdfs by 𝐷φφφφ and 𝐷φφϵϵ 
around an atom. 
 

4.5 Analysis of thermal diffuse scattering 

Thermal vibration causes a change of electron density distribution due to the atomic vibration 
and thermal diffuse scattering in the X-ray diffraction. The former is explained in Section 4.4. The 
latter is the phonon-assisted Bragg reflection due to the sum of the diffraction vector and the wave 
vector of the phonons of lattice vibration. The thermal diffuse scattering occurs in both the harmonic 
thermal vibration and anharmonic thermal vibration. Figure 4.5 is a schematic view of the normal 
Bragg reflection and thermal diffuse scattering in the reciprocal lattice space. (a) is the normal Bragg 
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reflection, (b) is the first order thermal diffuse scattering, and (c) is the second order thermal diffuse 
scattering. The frame of black lines represent the reciprocal lattice. The triplet number shows indices 
hkl for the reciprocal lattice points. The diffraction vectors arise from the origin of the reciprocal lattice 
000. Note that the thermal diffuse scattering intensity in the figure is largely emphasized. The normal 
Bragg reflection occurs when the diffraction vector is terminated on the reciprocal lattice point. The 
first order thermal diffuse scattering is the Bragg reflection assisted by single phonon of lattice vibration. 
The wave vector of the phonon arise from the reciprocal lattice points with the normal Bragg reflection. 
Scattered X-rays due to the thermal diffuse scattering have an intensity at the end point of the 
diffraction vector and the wave vector of the phonon. The thermal diffuse scattering near the reciprocal 
lattice point occurs even when the lattice vibration is small. The thermal diffuse scattering in a region 
between adjacent reciprocal lattice points occurs only when the wave vector of the phonon is large, 
that is, when the thermal vibration is intense at high temperature. For this reason, the first-order 
thermal diffuse scattering takes a local maximum value at the positions of the reciprocal lattice point 
with the normal Bragg reflections. The second order thermal diffuse scattering is the Bragg reflection 
assisted by two phonons. The wave vector of the second phonon arises from the end of the wave vector 
of the first phonon. The second order thermal diffuse scattering has a local maximum value at the 
position of the reciprocal lattice point with the normal Bragg reflection as with the first order thermal 
diffuse scattering. However, the difference in intensity between the local maximum value and value of 
midpoint between adjacent reciprocal lattice points is smaller than that of the first order thermal 
diffuse scattering Olmer [35] reported that the intensity of the second order thermal diffuse scattering 
between adjacent reciprocal lattice points reaches 30% for that of the first order thermal diffuse 
scattering. 
 Figure 4.6 shows (a) an expanded view of the background scattering of 1-D diffraction data 
of 30 K and 600 K of aluminum and (b,c) the change in intensity of the diffraction peak due to thermal 
diffuse scattering. In figure 4.6(a), the shape of the background of 600 K of red line is different from 
30 K of black line. The blue line shows noticeable parts of the difference. Figure 4.6(b) shows the 
intensity of diffraction peak 𝐼͢ϝ͘ΜΜ and thermal diffuse scattering intensity 𝐼ϫͶϢ. Figure 4.6(c) shows 
the apparent intensity of the diffraction peak at 600 K by 𝐼͢ϝ͘ΜΜ + 𝐼ϫͶϢ. If the 𝐼ϫͶϢ is not estimated, 
the intensity of the diffraction peak apparently increases and the estimate of the integrated Bragg 
intensity becomes inaccurate. 
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Figure 4.5  Schematic view of (a) normal Bragg reflection, (b) first-order, and (c) second-order thermal 
diffuse scattering in reciprocal lattice space and 1-D diffraction data. 
 

 

Figure 4.6  (a) An expanded view of the background scattering of 1-D diffraction data of 30 K and 
600 K of aluminum and (b,c) the change in intensity of the diffraction peak due to thermal diffuse 
scattering. 
 
 In the estimation of thermal diffuse scattering intensity, an equation of the theoretical thermal 
diffuse scattering intensity was used. Firstly, the model of a crystal with an atomic thermal vibration 
is defined. Although the thermal diffuse scattering arises from both harmonic and anharmonic thermal 
vibrations, the present analysis assumes only the presence of the harmonic thermal vibration. Then, 
the equation of the intensity of the thermal diffuse scattering at any point in the reciprocal lattice 
space is derived. The intensity of thermal diffuse scattering in the 1-D diffraction data of powder X-
ray diffraction is a summation of the intensity distribution of the thermal diffuse scattering equidistant 
from the origin of the reciprocal lattice space. This is an integral on a spherical surface at a equidistant 
from the origin of the reciprocal lattice space. The equation of the thermal diffuse scattering intensity 
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under a high temperature approximation is derived. Finally, an expression corresponding to the all 
temperature by Herbstein and Averbach [36] is derived. 
 Figure 4.7 shows a two-dimensional schematic view of a position of an atom s in an arbitrary 
unit cell l from the origin of a crystal. The area surrounded by the solid black line represents a unit 
cell. The lower left shows the origin of the crystal. The position of the origin of a unit cell l is expressed 
by the following equation. 

𝒍 = 𝑙φ𝒂φ + 𝑙ϵ𝒂ϵ + 𝑙ϯ𝒂ϯ 
Here, 𝒂φӴϵӴϯ are vectors of the crystal axes, and 𝑙φӴϵӴϯ are integers. Let 𝒓֎ be the position vector from 
the origin l of the unit cell to an atom s in the unit cell. The position vector 𝑅֎۩ of the atom s from 
the origin of the crystal is given by the following equation. 

𝑅֎۩ = 𝑙φ𝒂φ + 𝑙ϵ𝒂ϵ + 𝑙ϯ𝒂ϯ + 𝒓֎ 

 

 
Figure 4.7  Two-dimensional schematic view of a position of an atom s in an arbitrary unit cell l from 
the origin of a crystal. 
 A thermal effect in the crystal is represented by the atomic thermal vibration. Assuming that 
(1) the thermal vibrations are represented by the harmonic vibrations around its equilibrium position 
𝑹֎۩, (2) the thermal vibration of each atom is not independent, that is, multiple atoms have the same 
thermal vibration. Let 𝒖֎۩ be the displacement of the atom s in the unit cell l from its equilibrium 
position 𝑹֎۩. The position of atom s at a moment is represented by 𝑹֎۩ + 𝒖֎۩. The kinetic energy 𝐸ֆ

֎ 
per atom s is given by the following equation due to harmonic vibration: 

𝐸ֆ
֎ =
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where 𝑀֎ is a mass of atom s. The kinetic energy from all atoms s in the crystal is the summation of 
the kinetic energies by all atoms s, s’,s’’, ... with the position 𝒓֎ from the origin of each unit cell. 
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When multiple atomic species are contained in the unit cell, the total kinetic energy of the crystal is 
the summation of 𝐸ֆ for each atom. 
 Assuming that the function 𝑉 (𝒖֎۩) represented by the potential energy of the crystal 𝐸֋ 
with displacement 𝒖֎۩ due to the thermal vibrations exist. When all atoms in the crystal are at its 
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equilibrium position 𝑹֎۩  the crystal is most stable. 𝑉 (𝒖֎۩)  takes the minimum value with 
displacement 𝒖֎۩ = 0. Since the thermal vibration is smaller than the nearest interatomic distance, 
𝑉 (𝒖֎۩) can be expanded into a power-series around the equilibrium position. 

𝑉 (𝒖֎۩) = 𝑉Ј + ంం𝑢֎۩
۩

ছ
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ϣ
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𝑉Ј is 𝐸֋ when all atoms s, s’, s’’,... are at its equilibrium position. Since the thermal vibration was 
approximated by the harmonic vibration, the equation of motion of the thermal vibration is derived 
from the third term of 𝑉 (𝒖֎۩): 
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The right-hand-side represents a force acting on the atom s in the unit cell l caused by a displacement 
𝒖֎஬۩஬ of the atom s’ in the unit cell l'. 
 The equation of motion satisfies the Bloch's theorem. The force acting between atoms depends 
only on a relative position of the atoms. Since l and l' are absolute positions, the relative position is 
defined as 𝒉 = 𝒍஥ − 𝒍. The equation of motion represented by 𝒉 is the following equation. 
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If 𝒖֎۩(𝑡) is a time-dependent function representing a displacement 𝒖֎۩ in a unit cell l, there is a wave 
vector q of thermal vibration expressed by the following equation from the Bloch condition. 

𝒖֎۩(𝑡) = eքۮ⋅۩𝒖֎ٕ(𝑡) 
𝒖֎ٕ(𝑡) represents the displacement of the atom s in an arbitrary unit cell which is the origin of the 
unit cell l. eքۮ⋅۩ is phase factor under the Bloch condition. From these, all atoms s, s’, s’’, ... in the 
crystals are related to each other by Bloch's theorem. All atoms s, s’, s’’, ... vibrate according to a 
same traveling wave represented by wave vector q. The change due to a translation of unit cell is only 
phase factor. 
 In the crystal, there is a traveling wave due to the thermal vibration represented by the wave 
vector q. In the case of three-dimension, the traveling wave q can be decomposed into the one 
longitudinal wave and two transverse waves. Let 𝒆֌օ (𝑗 = 1,2,3) be the unit vectors representing each 
vibration direction for each waves in the traveling wave q. Let 𝑗 = 1 be the longitudinal wave and 𝑗 =

2,3 be the two transverse waves. The wave 𝑗 obtained by decomposition of a traveling wave q is 
defined as a wave qj. The displacement 𝒖֎۩(𝑡) of the atom s by a wave qj is expressed by the following 
equation: 

𝒖֎۩(𝑡) = 𝑎֌օ𝒆֌օ cosि𝜔֌օ𝑡 − 2𝜋𝒒 ⋅ 𝑹֎۩ − 𝛿֌օी 
where 𝑎֌օ is amplitude of the wave qj, 𝜔֌օ is angular frequency of the wave qj, and 𝛿֌օ is an arbitrary 
phase factor. 𝛿֌օ indicates that the phase of each wave is independent and does not interfere with 
another wave. 𝒒 ⋅ 𝑹֎۩ is a component along 𝑹֎۩ of the traveling wave q.  
 Figure 4.8(a) shows schematic view of displacement of atomic positions according to a 
longitudinal wave. The green arrow is the traveling wave q. The red circles represents atomic positions 
displaced by the traveling wave, and the blue circles represents their equilibrium positions. Black and 
gray circles indicate the red and blue atomic positions projected onto the axis 𝑞֓. Figure 4.8(b) shows 
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the interatomic distance 𝛼 + 𝑢֎և due to the atoms displaced in the longitudinal wave. 𝛼 is the distance 
before displacement between atoms. 
The displacement of the atom s in unit cell l due to all waves qj in the crystal is the summation of 
displacements by all the waves qj in all traveling wave. 

𝒖֎۩(𝑡) = ం ం𝑎֌օ𝒆֌օ cosि𝜔֌օ𝑡 − 2𝜋𝒒 ⋅ 𝑹֎۩ − 𝛿֌օी
օۮ

 

In monoatomic crystals, s is vanished due to 𝑹֎۩ = 𝒍. 

𝒖۩(𝑡) = ం ం𝑎֌օ𝒆֌օ cosि𝜔֌օ𝑡 − 2𝜋𝒒 ⋅ 𝑹۩ − 𝛿֌օी
օۮ

 

 

 
Figure 4.8  (a) Schematic view of displacement of atomic positions according to a longitudinal wave. 
(b) The interatomic distance 𝛼 + 𝑢֎և due to the atoms displaced in the longitudinal wave. 
 

The following equation shows the first-order thermal diffuse scattering intensity of powder X-
ray diffraction in fcc crystals: 
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where, 𝑋 = 2𝑎 sin 𝜃 /𝜆 , 𝑋փֆև = 2𝑎 sin 𝜃փֆև /𝜆 , 𝜒 = 𝛩/𝑇  . 𝜙(𝜒)  is the Debye integration, 𝑎  is the 
lattice constants, 𝑗փֆ  is the multiplicity of the ℎ𝑘𝑙 reflection, 𝛩 is the Debye temperature, and 𝑇  is 
the measurement temperature. The amplitudes of the atomic thermal vibrations in solids are 
represented by elastic waves. Here, we assume that all elastic waves in solids have the same velocity. 
Each Brillouin zone is replaced by a sphere that has the same volume as the Brillouin zone. In a bcc 
crystal, (3/𝜋)

ɞ
ɘ becomes (3/2𝜋)

ɞ
ɘ. 

 The evaluation of the intensities of thermal diffuse scattering employed a scale factor 
𝜎΄Ђό/𝜎ͩ͘ΰͩ, where 𝜎΄Ђό is the difference of the background intensity between the 1-D diffraction data 
of 100 K and 300 K. 𝜎ͩ͘ΰͩ is the difference of G(X) between the calculated patterns of G(X) at 100 K 
and 300 K. It was assumed that the difference of the background intensity occurred only by first-order 
thermal diffuse scattering. 
 Figure 4.9 and 4.10 show the 𝜎ͩ͘ΰͩ, 𝜎΄Ђό, and positions of the calculated scale factors. The 
upper figure shows the distribution of G(X) at 30 and 300 K for 2𝜃 = 12 to 40°. The lower figure shows 
the background intensity of the 1-D diffraction data at 30 K and 300 K for 2𝜃 = 12 to 40°. The vertical 
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axis is the intensity and the horizontal axis is the diffraction angle 2𝜃. 23 black vertical lines show the 
2𝜃  values at minima between the adjacent diffraction peaks. The positions of peaks in G(X) are 
completely overlapped with diffraction peaks due to |𝑋 − 𝑋փֆև| in the equation of G(X). The averaged 
scale factor is calculated by the 23 scale factors. The thermal diffuse scattering is calculated by G(X) 
and the averaged scale factor. 
 

 
Fig. 4.9  The first order thermal diffuse scattering patterns for 100 and 300 K with labeled minimum 
points in 2𝜃 = 0~40°. 
 

 
Fig. 4.10  The 1-D diffraction data at 100 and 300 K. 
 
 Figure 4.11 shows the intensity of calculated thermal diffuse scattering 𝐺(𝑋) at 30 K and 
600 K and 1-D diffraction data of 30 K and 600 K in aluminum. The horizontal axis is the diffraction 
angle and the vertical axis is the intensity. Red and black lines are the 600 K and 30 K, pink and purple 
lines are the intensities of thermal diffuse scattering calculated at 600 K and 30 K. The flat part is 
subtracted as background scattering. Ignore the intensity at the peak position as it diverges to infinity 
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in 𝐺(𝑋). For this reason, the intensity of the part surrounded by the red frame is important. In the 
example of 30 K of aluminum in figure 4.11, this was less than the statistical error in the 1-D diffraction 
data. For this reason, ignoring the intensity of thermal diffuse scattering with the 1-D diffraction data 
of aluminum at 30 K. 
 

 

Figure 4.11  The intensity of calculated thermal diffuse scattering 𝐺(𝑋) at 30 K and 600 K and 1-D 
diffraction data of 30 K and 600 K in aluminum. 
 

4.6 Density functional theory 

In this study, the theoretical electron density distributions of aluminum and molybdenum by 
the density functional theory were employed. The theoretical electron density distribution 𝜌Ϭ΢΄π(𝒓) was 
determined by FP-LAPW + GGA + lo + ls in WIEN2k package where FP-LAPW is the full potential-
linearized augmented plane wave, GGA is the generalized gradient approximation, lo is the local orbitals, 
and ls is the local screening potentials. The theoretical structure factors 𝐹Ϭ΢΄π(𝑯) are the Fourier 
coefficients of the theoretical electron density distribution. 

𝐹Ϭ΢΄π(𝑯) = ௷𝜌Ϭ΢΄π(𝒓) exp(2𝜋𝑖𝑯 ⋅ 𝒓) 𝑑𝒓 

More details descriptions of the equation are in Section 2.2. 

The theoretical structure factor by WIEN2k was used in the multipole refinement to describe 
the theoretical electron density distribution. In the case of the fine electron density distribution where 
the difference of 0.01 e/Å3 is important, the influence of the model bias by the multipole model in the 
division of the completely overlapping diffraction peak is unknown. To compare the electron density 
distribution of experiment and theory, the theoretical electron density distribution was described by 
the same procedure as the experiment. For this reason, structure factors were calculated from the 
theoretical electron density distribution of WIEN2k, then, the structure factor and the electron density 
distributions were reproduced by the multipole refinement. An agreement between the reproduced and 
original structure factor was also confirmed. This agreement guarantees the validity of the reproduced 
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electron density distribution. 
 Figure 4.12 shows a residual electron density distribution of the residual structure factors Fres. 
The structure factors consist of the theoretical aluminum structure factor WIENFcalc by WIEN2k and 
the reproduced structure factor WIENFMP by the multipole refinement, and Fres = WIENFcalc − WIENFMP. 
The residual density is ~0.01 e/Å3. This means that the chemical bonding of metals can be reproduced 
by the multipole refinement. The feature of multipole refinement is a high reproducibility of electron 
density distribution with respect to that of actual crystals.  
 

 
Figure 4.12  A residual electron density distribution of residual structure factors Fres. 
 

4.7 Sets of structure factors  

 This research contains six sets of structure factors. These are the final observed structure 
factors and its reproduction by the multipole analysis, the theoretical structure factors and its 
reproduction by multipole refinement, the structure factors calculated by the IAM. The final observed 
structure factors is the observed structure factors in Figure 4.3. 
 Figure 4.13 shows the schematic view of the structure factors of IAM and multipole model in 
a fcc crystal. The structure factors by IAM can be calculated from the superposition of the atomic 
scattering factor fhkl by the spherical electron density distribution of atoms. In fcc, the “static” structure 
factor Fhkl is expressed by the following equation: 

𝐹փֆև = 4𝑓փֆև 

where the values of fhkl are taken from international tables for crystallography. When the index hkl does 
not satisfy ℎ + 𝑘 + 𝑙 = even, Fhkl value is vanished. Though the structure factors by multipole model 
are also a superposition of the atomic scattering factor, the atomic scattering factor consists of the 
non-spherical atomic electron density distribution of the multipole model. Hence, the structure factors 
of multipole model can express the electron redistribution of crystals. 
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Figure 4.13  Schematic view of structure factors of IAM and multipole model in fcc crystal. K 
represents scattering vector. 
 
 A modulation of structure factors is used for the comparison between the present experimental 
and other structure factors. Since the present synchrotron powder X-ray diffraction is relative 
measurement, the comparison between absolute values of structure factor sets cannot be executed. The 
modulation of structure factors is based on the relative values of the experimental or theoretical 
structure factors and the IAM structure factors /IAMFhkl. 

𝐹
/Φ͗ε

փֆև =
𝐹փֆև

𝐹փֆև
Φ͗ε

 

Fhkl is the experimental or theoretical structure factors for each hkl. IAMFhkl is the IAM structure factors 
for each hkl. For instance, at hkl = 111, the present theoretical structure factor and IAM structure 
factor of the aluminum is 8.86 and 8.95. /IAMF111. = 8.86 / 8.95 = 0.990. /IAMFhkl are calculated for all 
structure factors in all sets. Then, all /IAMFhkl are normalized with the value of /IAMF111 in the aluminum 
and /IAMF110 in molybdenum. The plot of the normalized values versus sin 𝜃 /λ called “modulation of 
structure factors”. This is same as Figure 2.9 in Section 2.6.  
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Chapter 5 Charge density and thermal motion of aluminum 

5.1 Introduction 

The accurate observation of the electron density distribution of aluminum is a fundamental 
issue in the solid state physics. The electronic state of aluminum is thought to be close to the free 
electron gas. This indicates a small electron redistribution due to the small chemical bonding. The 
small redistribution requires the extremely accurate low order structure factors, which can discriminate 
the difference of 1% in the structure factors of aluminum. The 11 results of experiments and 10 
theoretical calculations have reported about the structure factors of aluminum. The resolution of these 
experiments before 2000 cannot distinguish the difference of 1%. As shown in Section 2.6, only one 
report by Nakashima et al. detected the 1% and they observed the chemical bonding of aluminum. 

Nakashima et al. practically solved the difficulty of measuring an extremely accurate low order 
structure factor using the quantitative convergent-beam electron diffraction (QCBED) technique [6]. 
They measured 111 and 200 reflections of aluminum with sufficient accuracy to detect the deviations 
from free electron gas model. The charge density distribution of the aluminum was determined using 
the combined data of QCBED and XRD. They observed an electron accumulation at the tetrahedral 
site which is consistent with the density functional theory. They also found the relationship between 
the Young’s modulus and observed deformation density. 

A quantitatively accurate charge density of a metal provides an important clue for the 
understanding, development, and improvement of metal and related alloys [6]. Recent progress of 
synchrotron radiation (SR) XRD for a charge density study has enabled us to perform such a study. 
The diffractometers and measurement techniques of SRXRD were developed during the past decade [5, 
37]. Very small amounts of electron distributions were successfully observed in TiS2 [38] and LaB6 [15] 
using the diffractometers and techniques. The method can be applied to a pure metal system. For this 
research, we conducted an accurate charge density study of aluminum using state of the art SRXRD. 
Nakashima et al. shows the criteria for accuracy of structure factors to detect the chemical bonding of 
aluminum. The error of less than 0.3% in observed structure factors must be accomplished in the 
present experiment. 

We selected aluminum as the sample of the present study as it is an ideal metal to determine 
the accurate experimental charge density. Ogata et al. reported the high intrinsic stacking fault energy 
by a theoretical calculation [2]. We can measure the diffraction data without contribution from the 
stacking fault. In addition, aluminum has a relatively large contribution of valence electrons to 
diffraction data in the metal. The bonding electron density of aluminum based on the Drude model 
has the second largest value, 0.18 e/Å3, in the typical metals [1]. Aluminum is widely used in industry 
as aluminum alloy. 
 

5.2 Flow of data analysis 

The powder profiles were analyzed by the combination of Rietveld refinement and multipole 
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refinement. The details of the analysis are described in Chapter 4. The observed structure factors were 
extracted from the 30 K data. The total number of structure factors was 217 which corresponds to a 
reciprocal resolution of sin 𝜃 /λ < 2.31 Å−1. We also prepared three sets of theoretical structure factors, 
two of the three were prepared using the WIEN2k program [20] with two types of exchange parameters, 
the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE) and local spin density 
approximation (LSDA). The structure factors from the independent atom model (IAM) were also 
prepared using the XD2016 program [39]. The reciprocal resolution of these data is the same as that 
of the experimental data. 

Figure 5.1 shows the present static deformation density of (a) WIEN2k PBE and (b) LSDA 
in (110) plane. The contour interval is from −0.1 to 0.1 e/Å3 with 0.005 e/Å3 step width. Solid and 
dotted lines show positive and negative contours, respectively. There are aluminum atoms at four 
corners. Tetrahedral sites have positive charge density maxima. The contour maps are almost identical 
each other. The charge density at the peak maxima are 0.03 and 0.025 e/Å3 for WIEN2k PBE and 
LSDA. The static deformation density of WIEN2k PBE is almost identical to WIEN2k LSDA. 
Therefore, the WIEN2k PBE were employed in subsequent sections as the theoretical result. 
 

 

Figure 5.1 The present static deformation density of (a) WIEN2k PBE and (b) LSDA in (110) plane. 
 

5.3 Data analysis by Rietveld refinement 

Rietveld refinements using the multiple datasets were carried out using the program 
Synchrotron Powder (SP) [5]. The reciprocal resolution in the analysis correspond to sin 𝜃 /λ < 2.31, 
2.15, 1.77, and 1.62 Å-1 for 30, 100, 200, and 300 K data. The observed structure factors were initially 
extracted from the results of the Rietveld refinements based on the IAM. The extraction of the observed 
structure factors was improved by an iterative procedure of multipole refinement and powder diffraction 
pattern fitting. The reliability factors based on the weighted profile Rwp of the final pattern fitting were 
1.87%, 1.89%, 2.41%, and 2.73% for 30, 100, 200, and 300 K, respectively. The final reliability factors 



61 
 

based on the Bragg intensity RI were 2.37%, 2.85%, 3.19%, and 3.13% for 30, 100, 200, and 300 K. The 
determined lattice constants, a, isotropic atomic displacement parameter, Uiso, and their temperature 
dependences are shown in Table 5.1 and Figure 5.2. 

Table 5.1  The results of structural parameters determined by Rietveld refinement. 
 30 K 100 K 200 K 300 K 
a (Å) 4.03270(1) 4.03318(1) 4.04117(1) 4.04940(1) 
Uiso (Å2) 0.2284(6) 0.305(1) 0.507(3) 0.731(4) 

 

 

Figure 5.2  Temperature dependences of (a) lattice constants and (b) isotropic atomic displacement 
parameters. 
 

5.4 Theoretical calculation of charge density 

Table 5.2 shows the theoretical structure factors F of aluminum in sin 𝜃 /λ < 2.31 Å-1. The 
first principle calculation based on the density functional theory was performed by full potential-
linearized augmented plane wave (FP-LAPW) with the generalized gradient approximation (GGA), 
local orbitals, and local screening potentials in the WIEN2k package [20]. Experimental lattice 
constants were used for the calculations. We used 1000 k points with a plane-wave cutoff parameter of 
RMTKmax = 7.0. Theoretical structure factors were calculated using the lapw3 program. 
 

5.5 Multipole modeling of theoretical structure factors 

Table 5.3 shows the multipole parameters by XD2016 [39] for the theoretical structure factors. 
The extended Hansen-Coppens multipole model including the core deformation term [12] was used for 
the analysis. The electron configuration of aluminum was 1s2 2s2 2p6 3s2 3p1 [40]. We set 1s2, 2s2 + 2p6, 
and 3s2 + 3p1 valence electron shells. The local axes for the aluminum atom were parallel to the [100], 
[010], and [001] directions. The structure factors from the IAM were also prepared using the XD2016 
program. The scale factor s, radial expansion/contraction parameters, κcore and κvalence, and hexadecapole 
parameters, H0, were refined in the analysis. There is a relationship between H0 and H4+ , where H4+ 
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= 0.74048H0. 
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Table 5.2  Theoretical structure factors of PBE and LSDA with sin 𝜃 /𝜆 < 2.31 Å-1. 
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Table 5.3  Multipole parameters for the theoretical structure factors of PBE, LSDA, and the 
experimental structure factors at 30 K. 

 PBE LSDA 30 K 
RF / RwF (%) 0.08 / 0.1 0.1 / 0.11 1.97 / 1.27 
GOF 0.1270 0.1412 1.3321 
Scale 0.75 0.75 1.006(1) 
κ (1s) 0.9848(8) 0.9746(9) 0.9848 
κ (2s2p) 1.0010(3) 0.9983(3) 1.0010 
κ (3s3p) 0.943(2) 0.960(2) 0.95(2) 
H0 -0.00079(4) -0.00075(5) -0.0017(5) 
H4+ -0.00062(3) -0.00059(4) -0.0013(4) 

 

5.6 The estimation of first-order thermal diffuse scattering in diffraction data 

Figure 5.3(a) shows the calculated first-order thermal diffuse scattering in the powder X-ray 
diffraction of aluminum for 30, 100, 200, and 300 K. The horizontal axis is diffraction angle 2𝜃. The 
thermal diffuse scattering intensity were calculated from Herbstein’s equation [36] with the isotropic 
atomic displacement parameters for each temperature. Incident X-ray wavelengths and lattice constants 
were fixed to the results of 30 K owing to an alignment of the intensities in the diffraction angle 2𝜃. 
The intensities of the thermal diffuse scattering at 30 K are dramatically smaller than those at 300 K.  

Figure 5.3(b) shows the first-order thermal diffuse scattering for 30 and 300 K together with 
intensity baselines colored by blue and green, respectively. Figure 5.3(c) shows the modulations of the 
calculated first-order thermal diffuse scattering from the baselines. The horizontal axis is diffraction 
angle 2𝜃. The Purple and red lines represent the modulations of 30 and 300 K. The modulation at 30 
K is approximately 10 times smaller than that at 300 K.  

Table. 5.4 shows the estimations of the scale factors between the theoretical and experimental 
first-order thermal diffuse scattering at several measurement points. The 100 and 300 K data were used 
for the estimation owing to the same experimental conditions. Figure 5.4 shows the 1-D diffraction 
data at 100 and 300 K. The temperature dependent variations of the background intensities between 
100 and 300 K were regarded as the first-order thermal diffuse scattering intensities. Figure 5.5 shows 
the first-order thermal diffuse scattering patterns for 100 and 300 K. We used some minimum points 
between the Bragg positions, labeled by 1 ~ 23 in figure 5.5 up to 2𝜃 = 40°. The differences between 
the 100 and 300 K in the calculation pattern and the measurement data at the labeled positions were 
estimated. The derived average scale factor is ~230. The temperature dependent variation is 
approximately 1000 counts between 100 and 300 K. The maximum modulation at the Bragg peak in 
the 30 K data is less than 500 counts. The ratio of the thermal diffuse scattering intensity to the Bragg 
peak intensity is less than 0.001 at 30 K. We ignored thermal diffuse scattering based on this estimation. 
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Figure 5.3  The first order thermal diffuse scattering and structure factor modulations of aluminum. 
(a) The first order thermal diffuse scattering of aluminum for 30, 100, 200, 300 K based on Herbstein’s 
equation. (b) The first order thermal diffuse scattering of aluminum at 30 and 300 K together with 
purple and green guided spline curves. (c) The modulations of calculated first order thermal diffuse 
scattering from the baselines. 
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Table 5.4  The intensity differences between 100 and 300 K in calculation pattern σcalc, The difference 
in measurement data σexp, and estimated scale factors of first order thermal diffuse scattering intensities 
σexp/σcalc. 
 1 2 3 4 5 6 7 8 9 10 11 12 

σcalc 4.45 2.27 4.72 7.01 3.23 3.93 7.29 4.24 3.98 2.68 3.38 5.15 
σexp 763 372 1270 1661 938 899 1660 1060 1040 728 716 975 
σexp/σcalc 171 164 269 237 290 229 227 250 261 272 212 189 

 

 13 14 15 16 17 18 19 20 21 22 23 

σcalc 2.82 2.54 2.88 1.82 1.98 2.83 2.08 2.18 1.24 1.24 1.71 
σexp 766 618 519 507 482 444 507 494 358 321 272 
σexp/σcalc 272 244 180 279 244 157 244 227 289 260 159 

 

 
Fig. 5.4  The 1-dimensional diffraction data at 100 and 300 K. 
 

 
Fig. 5.5  The first order thermal diffuse scattering patterns for 100 and 300 K with labeled minimum 
points in 2𝜃 = 0~40°.  
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5.7 The estimation of anharmonic thermal vibration 

Figure 5.6 shows the temperature dependence of the anharmonic thermal parameters by the 
XD2016 [39] for 30, 100, 200, and 300 K. The anisotropic atomic displacement parameters, U11 = U22 
= U33, and the anharmonic thermal parameters, D1111 = D2222 = D3333 and D1122 = D2233 = D1133, were 
refined in the analyses. The reliability factors of the multipole refinements RF were 1.98%, 1.85%, 2.49%, 
and 2.59% for 30, 100, 200, and 300 K, respectively. The D1111 at less than 200 K was negative indicating 
no anharmonic thermal vibration below 200 K. The order of D1111 and D1122 at 30 K was less than the 
order of 1/1000 of the harmonic thermal vibration parameter Uiso. For this reason, the anharmonic 
thermal vibration was ignored at 30 K. 
 

 

Figure 5.6  The temperature dependence of anharmonic thermal parameters (a) D1111 and (b) D1122 for 
experimental 30, 100, 200, and 300 K data. 
 

5.8 Extraction of experimental structure factors with multipole model  

We performed multipole refinement of the observed structure factors extracted from the results 
of the Rietveld refinement. The multipole refinement updated the calculated structure factors. The 
intensity ratio of the completely overlapped Bragg reflections changed with the multipole refinement. 
The observed structure factor values of completely overlapping diffraction peaks were redistributed by 
pattern fitting of powder diffraction using structure factors obtained from multipole refinement. The 
iterative procedure of the multipole refinement and pattern fitting was conducted 10 times until all the 
parameters were converged within standard uncertainty. The final observed structure factors at 30 K 
are listed in Table 5.5. The low order structure factor have the error rate of less than 0.3%. 

The experimental multipole parameters are shown in Table 5.3. The radial 
expansion/contraction parameters of 3s23p1 fitted to theoretical structure factors were employed for the 
initial parameter of the multipole modeling. The extended Hansen-Coppens multipole model, including 
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the core deformation term, was used for the analysis. The scale factor, s, radial expansion/contraction 
parameters of 3s23p1, κvalence, anisotropic atomic displacement parameters, U11 = U22 = U33, and the 
multipole parameters, H0, were refined in the analyses. The radial expansion/contraction parameters 
of the inner core electrons 1s2 and 2s22p6 were fixed to theoretical values.  
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Table 5.5  The final observed structure factors of aluminum at 30 K. 
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5.9 Comparison of structure factor sets: Experimental, theoretical, reported 

sets 

Figure 5.7(a) shows plots of the modulations of structure factors nFhkl for the present 
experimental data and theoretical values. The modulations in the lowest three reflections nF111, nF200, 
nF220 of the experimental data are almost identical to those of the theoretical values. The plot of 
modulations after the fourth reflection in the theoretical data are almost flat, whereas the experimental 
data after the fourth reflection still has some fluctuation. Figure 5.7(b) shows the modulations of 
reported theoretical data in the literatures [42-50]. The modulations of the tight-binding approximation 
[41] shows similar fluctuations to the experimental data including after the fourth reflection. 

Many sets of observed structure factors for aluminum have been reported so far. Figure 5.7(c) 
shows the plot of their observations [16, 23-29]. The first three reflections of the QCBED data show 
similar modulation to the present experiment and theoretical calculations. The others cannot recognize 
the modulations from their nF111. These can be regarded as unity within experimental errors. Aluminum 
is one of the ideal metals to determine the accurate experimental charge density owing to a relatively 
high valence electron ratio. The present study shows the precisions of the QCBED and state of the art 
SRXRD are required to detect the charge density modulation from the IAM. 

Figure 5.8(a) shows plots of the relative ratio of the structure factors to the IAM for the 
multipole model and experimental data. The deviations of both the first three and after the fourth 
were clearly expressed by the multipole model. Figure 5.8(b) shows plots of the relative ratio of the 
structure factors to the IAM for the multipole model and theoretical structure factors. The deviations 
of the first three were well represented by the multipole model. Small deviations were found after the 
fourth for the multipole model. The multipole mode is an expansion using atom-centered spherical 
harmonics. The model can well express the charge density by the combining the atomic wave function 
such as the tight-binding method. The deviations after the fourth reflection in the experimental data 
indicate that the charge density of aluminum has a tight-binding like character.  
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Figure 5.7  Relative ratio of structure factors to IAM normalized by 111 reflection. Horizontal axis is 
reciprocal resolution sin 𝜃 /λ . (a) The present experimental and theoretical values. (b) Reported 
theoretical values and the present experimental values. Gray lines, which represent the reported 
theoretical values in Ref. [42-50], show no agreement with the present experimental values. (c) Reported 
experimental values in Ref. [16, 23-29] and the present experimental values. Gray lines have no 
significant deviation from 111. 
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Figure 5.8  Relative ratio of structure factors to IAM. Horizontal axis is reciprocal resolution sin 𝜃 /λ. 
(a) The present experimental and multipole model values. (b) The present theoretical and multipole 
model values. 
 

5.10 Static deformation densities 

The charge density distribution of aluminum was determined by the multipole refinement of 
the experimental and theoretical structure factors. A multipole model including core electron 
deformation terms was used in the analysis. The reliability factors of multiple refinements were 1.97%, 
0.08%, and 0.10% for the experimental data, WIEN2k PBE, and WIEN2k LSDA, respectively. We used 
the results of WIEN2k PBE in the following discussions. 

Figure 5.9(a,b) show the experimental and theoretical static deformation density of the (110) 
plane. The deformation density shows maxima at the center of the tetrahedral site, which is consistent 
with the previous study [6]. Figure 5.9(c,d) also show the 1-D charge density along lines on the 
deformation density map. The charge densities at the peak maxima are 0.04 and 0.03 e/Å3 for the 
experiment and WIEN2k PBE, respectively. The number of electrons in the peaks are ~0.06 e and 
~0.03 e for the experiment and WIEN2k, respectively. Very small amount of accumulation was 
successfully observed from SRXRD. Wide spread electrons in the left-right direction were found, as 
shown in Figure 5.9(b). The charge density at the octahedral site of the experiment is 0.01 e/Å3 smaller 
than those of WIEN2k. 
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Figure 5.9  Static deformation density of (110) plane. The present experimental (a) and theoretical 
deformation density (b). The drawing (110) plane is shown in the upper inset. Aluminum atoms are at 
four corners. The contour interval is 0.005 e/Å3 in -0.1~0.1 e/Å3 region. Solid and dotted lines show 
positive and negative contours, respectively. (c,d) Electron density values along purple and red solid 
line in (a) and (b), respectively. 

5.11 Discussion 

Nakashima et al. reported that tetrahedrally centered interatomic bonding could connect 
Young’s coefficients of aluminum [6]. The bonding observed in the present study is also the strongest 
along [111] and the weakest along [100] among the [100], [110], and [111] directions. Young’s modulus, 
Euvw, is proportional to Δρ, E100 < E110 < E111. These facts are also consistent with the present 
study. The charge density of the experiment is more localized at the center of the tetrahedral than that 
of the theoretical result. This fact is also consistent with the result of the QCBED. 

The previous QCBED study did not describe an origin of the higher charge density than that 
of theory at tetrahedral site. The present result also shows the higher charge density than the theoretical 
one. To reveal the origin of the density, we made a charge-density difference between the experiment 
and theory. Figure 5.10 shows the map of the charge-density difference. Peaks can be seen around 
atomic sites similar to an atomic orbital. This fact suggests that the deviation of the structure factors 
after the fourth reflections, as in Figure 5.7(b), indicates the existence of an isolated atomic like orbital. 
Superposition of the wave functions for the isolated atoms located at each atomic site was used in the 
tight-binding model. The present result indicates that the charge density of aluminum has a small 
amount of tight binding-like character supported by Figures 5.7(a), 5.8(a), and 5.10. This fact provides 
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a new view of the metallic bonding of aluminum, as the nearly free electron model is considered as a 
good approximation. In addition, the structure factors after the fourth reflection were required to reveal 
the tight-binding like feature that has not yet been observed with sufficient accuracy so far. The 
QCBED method can measure extremely accurate low order structure factors. The disadvantage of the 
method is the presence of a blind region. The advantage of SRXRD is to measure a full resolution 
dataset. 
 

 
Figure 5.10  Charge-density difference between experiment and theory. The drawing plane is indicating 
in the left inset inside black dotted line. Aluminum atom is at the center of the plane. The contour 
interval is 0.005 e/Å3 in -0.05~0.05 e/Å3 region. Solid and dotted lines show positive and negative 
contours, respectively. 
 

Aluminum alloys, in which aluminum is the predominant metal, are widely used in the 
industrial applications of many fields. A quantitatively estimation of the change of chemical bonding 
for doping will provide the most important knowledge to design, develop, and synthesize a high-
performance aluminum alloy. It is difficult to estimate the change from the theoretical calculation as 
the treatment of dopant is not an easy task for theoretical study. An X-ray charge density study can 
be applied to the alloys. A high resolution charge density study of aluminum alloy will improve the 
manufacture process of aluminum alloy. 

Currently, third generation SR facilities can be used in almost every advanced country. A 
similar quality of SRXRD can be measured elsewhere in the world. The charge density distribution in 
a material is crucial to understand its properties based on quantum mechanics. X-ray charge density is 
the most information rich observable in natural science. The technique used in the present study can 
be applied to many types of metals. We will perform charge density studies of metals using the present 
technique. The correlations between the mechanical properties and the charge density of metals will be 
revealed in the near feature. 
 



77 
 

5.12 Summary 

217 structure factors of aluminum were successfully extracted. The lowest-order two structure 
factors have the same degree of error as that of QCBED which has a high accuracy in the lower order. 
The error of the structure factors, except for the two mentioned, are one order of magnitude smaller 
than previous results. Experimental structure factors have modulation from the independent atom 
model up to the eighth. The modulation in calculation is up to the third. From the comparison with 
the modulation of past observed structure factors, the mismatch of the reported electron distributions 
of aluminum is caused by a large error of the structure factors. An accurate observation of the electron 
distribution of aluminum requires less than 0.4% errors of the structure factors in sin 𝜃/𝜆 <0.83 Å-1. 
The modulation of experimental structure factors is consistent with the calculated set by the tight-
binding approximation. 

The static deformation density of aluminum was successfully observed. The positive density 
peak at the tetrahedral site arose from the modulation of the lowest order two structure factors. The 
difference in the static deformation density between the experiment and theoretical calculation is due 
to the difference in modulation after the fourth structure factors. This difference causes an atomic 
orbital like electron distribution around the atoms in the electron density difference between the 
experiment and calculation. From the agreement with the modulation calculated by the tight binding 
approximation, the metallic bonding of aluminum contains tightly binding features. 

Accurate and high reciprocal resolution experimental structure factors of aluminum were 
determined from the synchrotron powder X-ray diffraction data measured at 30 K with sin 𝜃/𝜆 < 
2.31 Å-1. The structure factors have small deviations from the independent atom model in sin 𝜃/𝜆 < 
0.83 Å-1. Theoretical structure factors were prepared using density functional theoretical calculations 
by the full-potential linearized augmented plane wave method. The deviation between experimental 
and theoretical data was also observed at around sin 𝜃/𝜆  ≈  0.4 Å-1. The charge density was 
determined by an extended Hansen-Coppens multipole model using the experimental and theoretical 
structure factors. The charge density maxima at the tetrahedral site were observed in both the 
experimental and theoretical deformation density. The charge-density difference peaks, indicating 
directional bonding formation, were observed in the difference density between the experiment and 
theory. The present study reveals the tight binding like character of valence electrons of aluminum. 
This fact will provide a crucial information for the development of high-performance aluminum alloy. 
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Chapter 6 Charge density of molybdenum 

6.1 Introduction 

This section explains the accurate observation of the electron redistribution of d-electrons in 
molybdenum. Generally, d-electrons are localized around atoms even in crystals. The number of d-
electrons contributing to redistribution in the pure molybdenum is an unsolved issue. According to the 
crystal field theory, in the case of symmetry Oh in molybdenum with bcc structure, the five d-electrons 
are split into three of bonding orbitals and two of antibonding orbitals. The electron redistribution 
changes this number of electrons. The detection of difference of electron population in the two orbitals 
from the crystal field theory is a challenging issue to ascertain an achievement of the current accuracy 
of charge density study by synchrotron powder X-ray diffraction 

Electrons in the d-orbitals of transition metals and their complexes govern their properties 
and functions. The magnetism of a simple transition metal is caused by the interaction between its d-
electrons. Exotic properties such as superconductivity, multiferroicity, and colossal magnetoresistance 
were found in transition metal oxides. The properties are closely related to their electronic structure of 
the d-electron. The d-electrons have both an itinerant and localized character in the system. 
Characterization of the d-electron in the system is one of the main topics for condensed matter physics 
and considerable amounts of studies have been carried out to investigate the d-electron during the past 
one hundred years [42]. In particular, lots of research has been carried out for 3d-transition metal oxides 
during the last three decades after the discovery of the high-Tc superconductivity of copper oxide [43]. 
The heavier 4d- and 5d-elements and their complexes had been ignored until the discovery of the exotic 
superconductivity of Sr2RuO4 [44]. 

The spatial and energetic structures of d-electrons have been largely investigated both 
experimentally and theoretically. The distribution of d-electrons in 3d-transition metals [45, 46, 47, 48, 
49, 50] and their complexes [51, 52] have been observed by experimental charge density studies. 
Spectroscopic studies of 3d-transition metals [53, 54, 55] and their complexes [42, 56, 57] have also been 
carried out using optical [53, 55, 56, 58], photoemission, [42, 59, 54, 57] and X-ray absorption 
spectroscopies [60], among others. The spatial and energetic structures of the 3d-electrons have been 
revealed by the measurements. The energetic structure of the 4d- and 5d-system has also been 
investigated by the spectroscopies [61]. However, the spatial structure of the 4d- and 5d-system is yet 
to be revealed experimentally, as the contribution of the 4d- and 5d-electrons to X-ray diffraction is 
much lower than that of the 3d-system. 

We have conducted accurate structure factor measurements for the charge density study from 
high energy X-ray diffraction (HXRD) of one of the largest third generation synchrotron radiation (SR) 
facility SPring-8. The highest precision of structure factor using the technique exceeds 0.1%, which is 
comparable to the extremely accurate Pendellosung fringe method [62] and quantitative convergent 
beam electron diffraction [6]. The spatial distribution of small amounts of electrons such as the 
interlayer bonding electron of TiS2 [38] and the conductive π-like electron of LaB6 [15] have been 
revealed experimentally by SR-HXRD. It is essential to verify a performance of SR-HXRD for the 
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visualization of 4d- and 5d-electrons. Typical materials with 4d- and/or 5d-electrons are required for 
this purpose. 

Molybdenum is one of the simplest 4d-system. The electron configuration of molybdenum is 
4d55s1. The electronic structure of molybdenum was investigated by both theoretical and experimental 
studies [18, 19, 31, 32]. The Fermi surface was investigated using de Haas-van Alphen measurements 
by several research groups [31, 32]. The band structure was determined by theoretical calculations [18, 
19]. The experimental Fermi surface was consistent with that calculated from theory. Zunger et al. [18] 
demonstrated that the d-electrons in the molybdenum comprise bonding orbital dxy+yz+xz and 
antibonding orbitals dz2 and dx2y2 . The electronic structure of molybdenum was investigated by the 
liner combination of the Gaussian orbitals method (LCGO) [19]. The density of states, Fermi surface, 
charge form factors, Compton profiles, and optical conductivity were theoretically estimated by this 
method. The electron density distribution in real space from the experimental results will provide a 
further understanding of molybdenum. In this study, we completed a charge density study of 
molybdenum using the SR-HXRD technique [5]. 
 

6.2 Overview of Experiment 

Molybdenum powder with 99.9% purity and 3-5 μm average particle size was used as a sample. 
The powder was sealed in a 0.2 mmϕ Lindemann glass capillary with argon gas. Synchrotron powder 
X-ray diffraction data were measured at SPring-8 BL02B2. The Imaging Plate (IP) was used as a 
detector. The wavelength of the incident X-ray was 37.7 keV calibrated by the lattice constant of the 
National Institute of Standards and Technology (NIST) CeO2 standard sample. The temperature of 
the sample was controlled at 30 K using a He gas flow low-temperature device. Two two-dimensional 
powder images were measured. One of which was measured by moving detector position to a high 
scattering angle region in 2𝜃 to improve the counting statistics and extend the reciprocal resolution. 

Molybdenum emits huge amounts of fluorescence and characteristic X-rays when it receives 
high energy beam. The X-rays increase the background scattering in the powder diffraction data as 
shown in Figure 6.1(a). Figure 6.1(a) shows the powder profile of the 620 Bragg reflection. The ratio 
of the standard uncertainty to the Bragg intensity exceeds 1.6%. In this study, the combination of 
copper and nickel foils attached to the front of the IP was used to reduce the X-ray fluorescence from 
the molybdenum. Figure 6.1(b) shows the powder profile of the 620 Bragg reflection using metal foils. 
The ratio of the standard uncertainty to the Bragg intensity improved to 0.92%. The multiple overlaid 
measurements with the metal foils was effective for improving the precision of the measured structure 
factors. The ratios of the uncertainties and structure factors of the lowest 16 reflections were better 
than 0.004. 
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Figure 6.1  Plots of 620 refction (a) for normal measurement and (b) using copper and nickel foils. 
The foils reduce fluorescence and characteristic X-ray intensities from molybdenum. 
 

6.3 Data analysis by Rietveld refinement 

The Rietveld refinements using multiple datasets were carried out using the program 
Synchrotron Powder (SP) [5]. The reciprocal resolution in the analysis corresponds to sin 𝜃 /λ = 2.32 
Å-1. The observed structure factors were initially extracted from the results of the Rietveld refinements 
based on the independent atom model (IAM). 
 

6.4 Extraction of experimental structure factors with multipole model 

The extraction of the observed structure factors was improved by an iterative procedure of 
multipole refinement and powder diffraction pattern fitting. The electron configuration of molybdenum 
was 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1. We set 4d5 valence electron shell. The local axes for the 
molybdenum atom were parallel to the [100], [010], and [001] directions. The scale factor s, isotropic 
thermal displacement, uiso, radial expansion / contraction parameters for the spherical valence, κ, 
aspherical valence, κ′, octapole, O2-, and the hexadecapole parameters, H0, were refined in the 
analysis. There is a relationship between H0 and H4+, where H4+ = 0.74048H0. The reliability factors 
based on the weighted profile Rwp and the Bragg intensity RI of the final pattern fitting were 0.0253 
and 0.0133, respectively. The determined lattice constants, a, and the isotropic atomic displacement 
parameter, uiso, were 3.142600(1) Å and 0.0661(2) Å2, respectively. The reliability factor based on the 
observed structure factors of the multipole model RF was 0.0056. 
 

6.5 Theoretical structure factors 

We also prepared theoretical structure factors with the same reciprocal resolution of the 
observed data using the WIEN2k program [20]. The first principle calculation based on the density 
functional theory was performed using the full potential-linearized augmented plane wave (FP-LAPW) 
with the generalized gradient approximation (GGA) in the package. Experimental lattice constants 
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were used for the calculations. We used 1000 k points with a plane-wave cutoff parameter of RMTKmax 
= 7.0. The theoretical structure factors were calculated by the lapw3 program. The charge density from 
the theoretical structure factors was also determined by a multipole modelling. The RF for the 
theoretical structure factors was 0.0016. 
 

6.6 Comparison of structure factor sets 

The present experimental and theoretical structure factors are listed in Table 6.1. The 
structure factors of the IAM, fIAM and LCGO, fLGCO, by Jani et al. [19] are also listed in the table. The 
values are listed as form factors divided by the phase factor. The sixteen lower resolution reflections 
are also shown in the table. We call the present observed structure factors fobs, and the theoretical 
structure factors by WIEN2k fWIEN. The first two reflections of the fobs, fWIEN, and fLCGO were smaller 
than that of the fIAM. 

Figure 6.2 shows plots of the relative ratio of the structure factors to fIAM for fobs, fWIEN, and 
fLCGO. The deviations from fIAM in the lowest two reflections of fobs, fWIEN and fLCGO are also well recognized 
in the figure. The two reflections of the fobs are numerically identical to those of the fWIEN and fLCGO from 
Table 6.1. The reflections with resolutions better than 0.4 Å-1 were almost the same as those of fIAM 
within experimental uncertainties. The key features that deviated from the IAM were mainly included 
in the first two reflections. The maximum deviation of the structure factors from the fIAM was less than 
2% in the fobs, fWIEN and fLCGO. The deviations include information on the aspherical distribution of the 
d-electrons. 

 
Table 6.1  The lowest 16 structure factors of the present study and LCGO. fOBS and fWIEN denote the 

present experimental and theoretical structure factors. fIAM was calculated by XD2016. fLCGO is the 
theoretical results [19]. 

hkl fOBS fWIEN fIAM fLCGO 
110 31.31(4) 31.62 31.84 31.59 
200 27.11(5) 27.56 27.56 27.49 
211 24.71(4) 25.10 24.91 24.98 
220 22.73(5) 23.23 23.07 23.11 
310 21.19(4) 21.72 21.68 21.62 
222 20.24(6) 20.69 20.58 20.58 
321 19.20(4) 19.70 19.66 19.60 
400 18.35(8) 18.80 18.86 18.70 
330 17.55(6) 18.16 18.15 18.05 
411 17.56(5) 18.12 18.15 18.01 
420 16.92(5) 17.49 17.50 17.37 
332 16.35(5) 16.92 16.90 16.81 
422 15.84(5) 16.35 16.35 16.23 
431 15.24(4) 15.82 15.83 15.70 
510 15.24(5) 15.79 15.83 15.67 
521 14.12(4) 14.85 14.87 14.73 
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Figure 6.2  Plots of relative ratio of IAM structure factors. Horizontal axis represents reciprocal 
resolution sin 𝜃 /λ. Vertical axis represents the relative ratio. Closed circles, open circles, and open 
triangles are fOBS, fWIEN, and fLCGO, respectively. Dotted line represents the center of modulations of fOBS. 
 

6.7 Comparison of valence charge density 

Figure 6.3 shows valence charge density maps for the 110 plane from the multipole refinements 
of the (a) present observed (obs) and (b) theoretical (WIEN2k) structure factors. Contour lines were 
drawn from 0.0 to 2.0 with a step width of 0.1 e/Å3. The centers and corners of the figures present the 
atomic sites. The map of the same section was reported by [18]. There are four peaks around the atomic 
sites in Figure 6.3(a) and (b). These peaks were also found in the previous study [18]. The distances 
between the peaks and the atomic site for obs and WIEN2k were 0.574 and 0.557 Å, respectively. The 
charge densities at the maxima for obs and WIEN2k were 1.1 and 1.3 e/Å3, respectively. The features 
of the present observation are well-consistent with the theory. The numerical differences were 0.017 Å 
in distance and 0.2 e/Å3 in charge density. 
 

 
Figure 6.3  Valence charge density maps of (a) obs and (b) WIEN2k for (110) plane. The contour lines 
were drawn from 0.0 to 2.0 with 0.1 e/Å3 step width. 
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6.8 Comparison of static deformation densities 

Figure 6.4 shows static deformation density maps for 110 plane of (a) obs and (b) WIEN2k. 
Contour lines were drawn from -0.3 to 0.3 with a step width of 0.05 e/Å3. The static deformation 
density is the difference between the multipole model density and the IAM without effects of thermal 
smearing. The d3z2-r2 shaped negative regions along the up-down direction were found in both figures. 
In addition, an excess of the charge density was found in the diagonal directions. We have numerically 
estimated the electron occupancies of the 4d-orbitals of molybdenum. The quantization axes were 
parallel to the crystal axes as shown in Figure 6.4. 
 

 
Figure 6.4  Static deformation density maps of (a) obs and (b) WIEN2k for (110) plane. The contour 
lines were drawn from -0.30 to 0.30 with 0.05 e/Å3 step width. Solid and dashed lines represented 
positive and negative density. 
 

6.9 Results of d-orbital population analysis 

Table 6.2 lists the d-orbital occupancies of molybdenum of obs and WIEN2k. The d-electrons 
of molybdenum can occupy two types of orbitals. One is triply generate Γ’

25, dγ and the other is doubly 
generate Γ12, dε. Γ’

25 is dxy, dyz, and dzx and Γ12 is dx2y2 and d3z2r2 . Occupancies of the two orbitals are 
also listed in the table. It was found that almost 0.5 electron decreased from the Γ12 orbital in the result 
of the obs. The numbers of deficient and excess electrons of obs was approximately 0.2 electrons 
different from those of WIEN2k indicating the more aspherical feature of the valence electron of obs. 
 

Table 6.2  The d-orbital populations for obs and WIEN2k.  
orbital OBSdpop OBSdocc WIENdpop WIENdocc 

z2 0.76719 15.3% 0.86108 17.2% 
xz 1.15841 23.1% 1.09582 21.9% 
yz 1.15841 23.1% 1.09582 21.9% 
x2-y2 0.76634 15.3% 0.85755 17.1% 
xy 1.15909 23.1% 1.09925 21.9% 
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6.10 Bond characterization by topological analysis of charge density 

The topological properties of the charge density for obs and WIEN2k were calculated. The 
charge densities and Laplacians at the bond critical point (BCP) are listed in Table 6.3. The charge 
density and Laplacian of obs were 0.04 e/Å3 higher and 0.06 e/Å5 lower than those of WIEN2k, 
respectively. These facts suggest the more covalent bonding character of obs than that of WIEN2k. 
 

Table 6.3  Charge density 𝜌 and Laplacian ∇ϵ𝜌 at BCP for obs and WIEN2k. 
ρOBS ∇2ρOBS ρWIEN ∇2ρWIEN 

0.373 3.123 0.326 3.174 

 

6.11 Summary 

We completed an experimental charge density study of a 4d-transition metal, molybdenum, 
using state of the art SR-HXRD at SPring-8. Sufficient deviations from the IAM in the structure factors 
were observed in the first two reflections and the origin of the deviations was revealed by the charge 
density study by multipole modelling. Solid crystalline molybdenum was formed by the covalent 
bonding of the Γ′25 d-orbitals. The bonding contributes to the hardness of the molybdenum solid. The 
present charge density study supports this picture of solid molybdenum as a hard material. The present 
study also reveals that molybdenum has more covalent bonding character than the theoretical 
calculation by WIEN2k with the GGA basis set. We have recently observed a small amount of tight-
binding like electron in pure aluminum by SR-HXRD [63]. The chemical bonding was similar to the 
presently observed covalent bonding character. These studies imply that valence electrons in a pure 
metal system have a more atomic orbital like character than that expected by the DFT theory.  

The less than 0.5 electron deficiency of the orbitals was clearly recognized by the d-orbital 
population analysis and the spatial distribution of the 4d-electrons was well recognized in the valence 
and static deformation density maps in the present study. These facts suggest that the spatial structure 
of a 4d- and 5d-system can be experimentally revealed by the present SR-HXRD. Recent discovery of 
novel physical properties of a 4d- and 5d-system such as the superconductivity of Sr2RuO4 [64] and the 
metal-insulator transition in Cd2Os2O7 [65]. The present experimental and analytical techniques easily 
apply to these systems by changing the sample and temperature. 

The quality of high-energy quantum beam X-ray and electron beam has been drastically 
improved throughout the past decade such as with X-ray laser, etc. A state of the art high-energy 
quantum beam enables us to open a new door in subatomic scale studies. The 4d- and 5d-system with 
novel physical properties will be a promising target of high-energy quantum beam science. 
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Chapter 7 Conclusion 
The accurate observation of structure factors of aluminum and molybdenum were successfully 

observed using synchrotron powder X-ray diffraction. The synchrotron powder X-ray diffraction 
measurements of aluminum and molybdenum were performed in SPring-8 BL02B2. The resolution d 
and reciprocal resolution sin 𝜃 /λ of the measurement data at 30 K were d > 0.22 Å and sin 𝜃 /λ < 
2.31 Å-1 for aluminum and d > 0.22 Å and sin 𝜃 /λ < 2.32 Å-1 for molybdenum. The 217 and 193 
structure factors were observed for the aluminum and molybdenum, respectively. The errors of less 
than 0.19% in the diffraction intensity were achieved with the 7 structure factors for aluminum and 
the 8 for molybdenum. Oxides, internal strain, and stacking fault in the aluminum and molybdenum 
were not detected in the measurement. The effect to the structure factor of ice generated by the 
measurement can be neglected. The intensity of the thermal diffuse scattering was negligible at both 
30 K data. The effect to the electron density distribution from the electron probability density function 
of the anharmonic thermal vibration could also be negligible at both 30 K data. The harmonic thermal 
vibration parameters were accurately determined by the 217 and 193 diffraction peaks for aluminum 
and molybdenum. The static observed structure factors and its electron density distribution were 
determined by the estimation of these thermal vibrations.  

These observed structure factors by the synchrotron powder X-ray diffraction determined 
small electron redistributions in aluminum and molybdenum. The modulations of experimental 
structure factors of aluminum is consistent with the calculated structure factor set using tight-binding 
approximation. The electron accumulations of the electron redistribution in aluminum were consistent 
with that of Nakashima et al. [6]. This fact guarantees the validity of the present electron density 
distribution by the synchrotron powder X-ray diffraction. More detailed electron redistribution than 
QCBED was successfully observed. The distribution of the charge-density difference between the 
experimental and theoretical electron redistribution shows residual atomic orbital like electron 
accumulations. From the results of the structure factor modulations and the residual electron 
accumulations, the chemical bonding of aluminum contains tightly binding features. The determination 
of the electron redistribution by the synchrotron powder X-ray diffraction could also be performed in 
molybdenum. The difference of electron populations in d-orbitals under Oh symmetry was successfully 
observed in the molybdenum. The accurate observed structure factors of molybdenum reproduced the 
electron redistribution which includes a covalent bonding character than that in the theoretical 
calculation. The structure factor modulation of molybdenum was observed only in the lowest order two 
structure factors. The positive electron density from bonding electrons and negative electron density 
from antibonding electrons were clearly seen in the electron redistribution. The d-orbital population 
analysis showed less than 0.5 electron deficiency of the antibonding d-orbitals.  
 The observation of accurate structure factor and electron redistribution of metals by the 
synchrotron powder X-ray diffraction was demonstrated in the aluminum and molybdenum. The 
accuracy of the low order structure factor in the aluminum and molybdenum was less than 0.3%, 
exceeding the accuracy of QCBED. The accuracy of the lowest order structure factor was comparable 
to QCBED. The accuracy of higher order structural factors is one order of magnitude smaller than 



86 
 

QCBED. The synchrotron powder X-ray diffraction technique can be used with a wide range of pure 
metals and alloys for ease of the sample preparation. Therefore, the demonstration contributes to the 
increase of results of accurate observed electron density distribution in metals. However, it is necessary 
to carefully evaluate internal strains and defects of powder samples using 1-D diffraction data. The 
introductions of the internal strains and defects at the sample preparation can be prevented by the 
selection of powder samples with the appropriate particle size. 
In the state-of-the-art synchrotron powder X-ray diffraction, the perfect crystal with the minimum size 
of 500 nm in powder is sufficient for the measurement. 
 The present electron density distribution of aluminum and molybdenum is the most accurate 
in the world at present. The analysis results of the electron density distribution by Eberhart’s method 
and the improvement of the theoretical wave function in quantum crystallography depend on the 
accuracy of the experimental electron density distribution. The present electron density distribution 
pushes these limits due to the accuracy of these electron density distribution. The application of 
Eberhart's method to the experimental electron density distribution is an important subject in the 
future. This application contributes to realize an expansion of the electron theory of metals which 
explains mechanical properties from quantum mechanics. The construction of this new electron theory 
of metals provides a fundamental understanding of functions of metals and the efficient enhancement 
of functions of metals. For instance, from an estimation of necessary strength in materials of buildings 
or vehicles, the combination of elements in an alloy and its composition ratio that satisfies the strength 
can be determined theoretically. 
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