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Abstract 1 

Evolution of mitochondria is one of most intensively studied areas of biology. 2 

Mitochondria are organelles found in nearly all of eukaryotes, and arose through an 3 

endosymbiotic event in which ancestral eukaryotes engulfed a bacterium closely related 4 

to extantα-proteobacteria. For the last two decades, unusual and divergent 5 

mitochondria have been reported from various lineages. Their organelles were shown to 6 

be of mitochondrial origin, but they lacked aerobic respiration functions and/or their 7 

own genomes. These reductive organelles are currently known as mitochondrion-related 8 

organelles (MROs). Metamonada, a major clade of eukaryotes, is an important lineage 9 

for studying the reductive evolution of mitochondria, because nearly all metamonads 10 

appear to contain MROs rather than typical mitochondria and their phylogenetic 11 

relationships have been clearly resolved. Additionally, the MROs of metamonad 12 

parasites, including Trichomonas vaginalis, Giardia intestinalis, and Spironucleus 13 

salmonicida have been well studied in the proteomics level. 14 

 Although various functions are known in typical mitochondria, previous 15 

studies of the evolution of MROs in metamonads have mainly focused on functions 16 

related to energy metabolism. In the first comparative transcriptome study, 17 

contamination of bacterial sequences in the metamonad transcriptome data sometimes 18 

interfered with correctly annotating mitochondria/MRO-related proteins, as 19 

mitochondria have a bacterial origin. In addition, absence of reliable methods for 20 

predicting whether a given protein is a mitochondrial/MRO protein or not was critical 21 

issue when discussing what the functions are the mitochondrion/MRO really has. 22 
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List of abbreviations 42 

Abbreviations

(Abb.)

Descriptions Abb. Descriptions

ATP Adenosine triphosphate GDH Glutamate dehydrogenase

AUC Area under the curve GrpE molecular chaperone GrpE

CLO Carpediemonas-like organism Grx5 Glutaredoxin-5

DNA Deoxyribonucleic acid HCP Hybrid cluster protein

EST Expressed sequence tag HscB molecular chaperone HscB

GBM Gradient boosting machine Hsp70 heat shock protein 70

HMM hidden Markov model HydE Fe-hydrogenase Maturase E

ISC Iron sulfur cluster HydF Fe-hydrogenase Maturase F

LGT Lateral gene transfer HydG Fe-hydrogenase Maturase G

MRO Mitochondrion-related organelle IscA Iron-sulfur cluster assembly

Mt Mitochondria IscS Cysteine desulfurase IscS

NGS Next generation sequencing IscU Iron-sulfur cluster assembly enzyme ISCU

RNA Ribonucleic acid MDH Malate dehydrogenase

ROC Receiver operating characteristics ME Malic enzyme

SVM Support vector machine MGL Methionine gammma lyase

MPP Mitochondrial processing peptidase

AAT Asparate aminotransferase NFU Iron-sulfur cluster scaffold protein NFU

ACS Acethyl CoA Synthase NuoE NADH:ubiquinone dehydrogenase E

AD Arginine deminase NuoF NADH:ubiquinone dehydrogenase F

AK Adenylate kinase OCDA Ornithine cyclodeaminase

ALT Alanine aminotransferase OCT Ornithine carbamoyltransferase

ASCT Acetate:succinate CoA transferase PFO Pyruvate:ferredoxin oxidoreductase

Cpn60 Heat shock protein 60 PSAT Phosphoserine aminotransferase

CS Cysteine syntase Rbr Rubrerythrin

Fdx Ferredoxin Rxn Rubredoxin

FDXR Adrenodoxin-NADP+ reductase SCS Succinyl coenzyme A (CoA) synthetase

Fe Hase Fe only hydrogenase SHMT Serine hydroxymethyltransferase

Fxn Frataxin SOD Superoxide dismutase

GCS H Glycine cleavage system H-protein Tnase Tryptophanase

GCS L Glycine cleavage system L-Protein Trx Thioredoxin

GCS P Glycine cleavage system P-protein TrxP Thioredoxin Peroxidase

GCS T Glycine cleavage system T-protein TrxR Thioledoxin reductase   43 
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Chapter 1. General introduction 44 

1.1. Origin of mitochondria and its roles 45 

Nearly all eukaryotes possess mitochondria, which are the double-membraned 46 

organelles. Although the endosymbiotic origin of mitochondria remains controversial 47 

(Andersson et al., 1998; Embley & Martin, 2006, Williams et al., 2007; Brindefalk et 48 

al., 2011; Gray, 2012; Pittis & Gabaldón, 2016; Martin et al., 2017; Martijn et al., 2018), 49 

it is widely accepted that a bacterium closely related to extant -proteobacteria was 50 

engulfed by an ancestral eukaryotic host, giving rise to mitochondria. These organelles 51 

are responsible for various essential processes in the eukaryotic cells, such as aerobic 52 

energy metabolism, iron sulfur clusters (ISC) (Fe-S clusters) assembly, fatty acid 53 

metabolism, molecular chaperone system, anti-oxidant system, amino acid metabolism 54 

and apoptosis.  55 

 Mitochondria of extant species contain their own genome (mtDNA) typically 56 

composed of less than 100 genes coding for proteins and RNAs that function in 57 

mitochondria. Because most of the genes encoding mitochondrial proteins related to 58 

these biological processes are mainly located in the nuclear genome, these proteins must 59 

be translocated into the mitochondria by protein sorting and transport systems that 60 

recognize the mitochondrial targeting signal typically found in their N-terminal regions. 61 

This selective transport causes the concentration of mitochondrial proteins be in high 62 

concentration inside the mitochondria and maintains the efficiency of various enzymatic 63 

reactions.  64 

 The acquisition of mitochondria enabled aerobic respiration with high 65 

throughput energy production in ancestral eukaryotes, leading to the prosperity of 66 
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eukaryotes. However, the ability of aerobic respiration is one of the benefits by 67 

mitochondria. In addition to aerobic energy metabolism mitochondria have been playing 68 

other essential roles in the process of eukaryotic cellular evolution through the above 69 

mentioned functions derived originally from -proteobacteria. 70 

1.2. Previous research for mitochondrial/mitochondrion-related 71 

organelle proteins in Metamonada 72 

During the evolutionary process of eukaryotes, mitochondria have diverged extensively. 73 

Hydrogenosomes in Trichomonas vaginalis and mitosomes in Giardia intestinalis are 74 

typical examples of highly divergent mitochondria (Morrison et al., 2007; Jedelský et 75 

al., 2011; Schneider et al., 2011). These organelles are of mitochondrial origin, but they 76 

lack their own genomes and most of nuclear genome-encoded mitochondrial proteins 77 

related to the respiratory chain. These reductive organelles are currently referred to as 78 

mitochondrion-related organelles (MROs). Recently it was proposed that 79 

mitochondria/MROs should be classified into five functional types (Müller et al., 2012): 80 

aerobic mitochondria (Class 1), anaerobic mitochondria (Class 2), H2-producing 81 

mitochondria (Class 3), hydrogenosomes (Class 4), and mitosomes (Class 5). In general, 82 

MROs are involved in Class 4 or Class 5. Various types of MROs have been identified 83 

in phylogenetically independent lineages which grow in micro-aerobic and anaerobic 84 

environments, indicating that these organelles arose independently several times 85 

throughout eukaryotic evolution (Roger et al., 2017). Metamonada is a large assemblage 86 

of flagellates adapted to microaerophilic/anaerobic environments. The monophyly and 87 

branching order of metamonads was robustly resolved by a recent phylogenomic 88 

analysis (Leger et al., 2017) (Figure 1-1). Notably, nearly all metamonads appear to 89 
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possess MROs rather than typical aerobic mitochondria, indicating that analyses of 90 

metamonads can provide valuable information regarding the evolutionary process of 91 

MROs. Particularly, MROs of the ancestral metamonad lineage may have exhibited 92 

functions typical of those in the mitochondria, while those of derived lineages may have 93 

diverged towards reducing functions such as those in the mitosome of Giardia (Leger et 94 

al., 2017).  95 

1.2.1. Metamonada 96 

Metamonada is a major clade in Excavata, a large taxonomic group of eukaryotes (Adl 97 

et al., 2018). Metamonada consist of microaerophilic or anaerobic flagellates with 98 

various lifestyles, such as heterotrophic free-living, commensal, or parasitic. There are 99 

three sub clades of Metamonada, Preaxostyla, Parabasalia and Fornicata, exist with 100 

Preaxostyla as an early branching clade. 101 

1.2.2. Preaxostyla 102 

Transcriptome analyses were performed on two protists in Preaxostyla, Trimastix 103 

marina and Paratrimastix pyriformi. The data revealed the presence of mitochondrial 104 

protein homologs related to the functions of amino acid metabolism and pyruvate 105 

metabolism, suggesting that their putative MROs have these functions. However, the 106 

presence or absence of other mitochondrion derived functions in the MROs could not be 107 

concluded and their functions still remain unclear (Leger et al., 2017; Zubáčová et al., 108 

2013). Notably, Monocercomonoides sp. was the first eukaryote which was reported to 109 

have neither mitochondria nor MRO. Genome and transcriptome data of 110 

Monocercomonoides sp. are available in a public database (Karnkowska et al., 2016). 111 

Although MRO was not identified morphologically, the presence of mitochondrion-112 

related chaperon proteins such as CPN60 (chaperonin 60) suggested the secondary 113 



7 

 

absence of MROs in the line leading to Monocercomonoides sp. (Karnkowska et al., 114 

2016). 115 

1.2.3. Parabasalia 116 

Genome and/or transcriptome sequence data were reported from hydrogenosome-117 

containing parasites/commensals, Tritrichomonas foetus, Trichomonas vaginalis and 118 

Pentatrichomonas hominis in Parabasalia. More than four decades ago hydrogenosomes  119 

were discovered in T. foetus and T. vaginalis, but these were not recognized as MROs at 120 

that time (Lindmark & Müller 1973). Because T. vaginalis and T. foetus are important 121 

parasites in the medical or veterinary field, their biological characteristics and MRO 122 

features have been studied to a certain extent (Beltrán et al., 2013; Birkeland et al., 123 

2010; Carlton et al., 2007; Franzén et al., 2009; Jedelský et al., 2011; Schneider et al., 124 

2011). Based on biochemical, proteomic, genome and transcriptome analyses performed 125 

for both T. foetus and T. vaginalis, the trichomonad hydrogenosomes were shown to 126 

have lost their own genomes, parts of mitochondrial proteins and the ability to generate 127 

ATP by oxidative phosphorylation, whereas they possess Fe-S cluster assembly, amino 128 

acid metabolism and antioxidant systems (Schneider et al., 2011). 129 

1.2.4. Fornicata 130 

Fornicata consists of three taxonomic subgroups, diplomonads, retortamonads and 131 

Carpediemonas-like organisms (CLOs), but only diplomonads are monophyletic (Adl et 132 

al., 2018; Kolisko et al., 2010; Simpson 2003). Diplomonads include mammalian and 133 

fish parasites, such as Giardia intestinalis, Spironucleus salmonicida, S. barkhanus, S. 134 

vortens, and free-living flagellates classified to the genus Trepomonas or Hexamita. 135 

Morphological studies by electron microscopy showed that all of the fornicate 136 

organisms analyzed up to date do not contain typical mitochondria but do MROs: 137 
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previous studies have examined CLOs (Kolisko et al., 2010; Park et al., 2009; Yubuki et 138 

al., 2013; Yubuki et al., 2007), G. intestinalis (Tovar et al., 2003), S. salmonicida 139 

(Jerlström-Hultqvist et al., 2013), and S. vortens (Millet et al., 2013).  140 

 Genome and transcriptome analyses and proteomic analyses of MRO have 141 

been conducted for the human parasite G. intestinalis and a fish parasite S. salmonicida, 142 

indicating that these parasites possess highly derived MROs with reduced functions. 143 

Particularly, in the evolution leading to Giardia, the MRO (mitosome) lost most of its 144 

mitochondrial functions, and has only retained the function of the Fe-S cluster assembly 145 

(Jedelský et al., 2011; Morrison et al., 2007; Tovar et al., 2003).  146 

 Transcriptome data were reported for Chilomastix cuspidata and Chilomatix 147 

caulleryi, which are classified as retortamonads. Analyses of these data revealed that C. 148 

cuspidata MRO may function in amino acid metabolism and NADH reoxidation, while 149 

the MRO of C. caulleryi, a lumen-dwelling parasite, may have lost most of these 150 

functions during its evolution (Leger et al., 2017). 151 

 CLOs are a polyphyletic group and include Carpediemonas membranifera, 152 

Ergobibamus cyprinoides, Aduncisulcus plauster, Kipferlia bialata and Dysnectes 153 

brevis. Transcriptome analyses have been conducted for these organisms (Leger et al., 154 

2017), and genomic analyses were performed for K. bialata (Tanifuji et al., 2018). Their 155 

MROs were shown to retain functions of at least amino acid metabolism, ATP synthesis, 156 

NADH reoxidation and H2 production. 157 
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1.3. Application of bioinformatics method to the analysis of MRO 158 

proteome 159 

While transcriptome analyses have been performed for many metamonads, proteome 160 

analyses of MRO have been conducted only for T. foetus, T. vaginalis, G. intestinalis 161 

and S. salmonicida (Table 1-1). Because parasites are important in the medical, 162 

veterinary and fishery fields, experimental procedures such as axenic culture, organelle 163 

purification, and biochemical analysis have been established. However, these methods 164 

have not been established yet for heterotrophic metamonads which must be cultured 165 

with bacterial feed. Developing these methods for a direct proteome analysis of MROs 166 

is very difficult because of the contamination with bacteria in the materials used for 167 

molecular analyses. Thus, it is necessary to distinguish mitochondrial/MRO proteins 168 

from other proteins using various bioinformatics methods.  169 

Transcriptome data for heterotrophic metamonads such as K. bialata and D. 170 

brevis were generated from non-axenic cultures in a previous study by Leger et al. 171 

(2017). Bacterial contamination resulted in a low quality of assembly and a small 172 

amount of eukaryotic sequence data, preventing the detection of the presence or absence 173 

of each mitochondrial/MRO protein in the putative MRO proteome. To improve the 174 

quality of data, density gradient centrifugation was conducted to reduce bacterial 175 

contamination for the genome and transcriptome analyses of K bialata, resulting in the 176 

first report of a draft genome of heterotrophic metamonads (Tanifuji et al., 2018). 177 

Most previous studies (Jedelský et al., 2011; Rada et al., 2011; Schneider et al., 178 

2011) used prediction software for mitochondrial proteins such as TargetP 179 

(Emanuelsson et al., 2007), TPpred2 (Savojardo et al., 2014) and Mitofates (Fukasawa 180 
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Figure 1-1: Phylogenetic tree of Metamonada (Leger et al., 2017 modified into 

cladogram tree; 159 proteins, 39,089 sites, 94 taxa, CAT-GTR + Γ model.) 
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Table 1-1: List of previous omics studies for metamonads. A check mark (✓) 

indicates that the corresponding omics analysis was performed, and its data are 

available. A grey cell indicates that the data are unavailable or do not exist. 
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Chapter 3. NommPred: Prediction of Mitochondrial and 401 

Mitochondrion-related Organelle Proteins of 402 

Non-model Organisms 403 

3.1. Introduction 404 

Mitochondria are separated from other cellular components by a double membrane, 405 

resulting in the concentration of mitochondrial proteins inside the membrane. In 406 

general, the functions of an organelle are determined by the protein repertoire of the 407 

organelle. Therefore, the estimation of the function of mitochondria needs to determine 408 

the repertoire of mitochondrial proteins, most of which are nuclear encoded, expressed 409 

in cytosol, and finally transported into mitochondria (Gonczarowska-Jorge et al., 2017). 410 

To determine a repertoire of mitochondrial proteins, the proteomic analysis of 411 

mitochondria is essential. For model organisms, experimental methods for the 412 

proteomic analysis of mitochondria have already been established during their long 413 

research histories (Kumar et al., 2002; Sickmann et al., 2003; Reinders et al., 2006; 414 

Cherry et al., 2012; Chen et al., 2010); however, for non-model organisms, there are no 415 

general strategies for the proteomic analysis of mitochondria. Even in non-model 416 

organisms, information on the amino acid sequences of proteins is indirectly obtained 417 

from the nucleotide sequences of the genome or transcriptome analysis, and these are 418 

useful tools for studying the cellular and molecular biological research subjects of non-419 

model organisms of which proteins are difficult to treat directly during experiments. 420 

Recently, high throughput sequencing, the so-called next-generation sequencing (NGS), 421 

has allowed us to easily obtain the entire genome or transcriptome data even from non-422 

model organisms at a low cost and in a short time. Therefore, transcriptome analysis is 423 
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performed for the entire cell extracts of non-model organisms including mitochondria 424 

and the other cellular components, and the mitochondrial proteins are predicted by using 425 

an amino acid sequence-based computational method instead of purifying mitochondria 426 

and determining the repertoire of mitochondrial proteins directly. Such a bioinformatics 427 

approach needs to discriminate mitochondrial proteins from all the proteins that are 428 

deduced from the entire cell transcriptome data.  429 

A machine learning approach has been often used to classify 430 

mitochondrial/non-mitochondrial proteins. Various software programs based on 431 

machine learning are available; these programs predict whether an input protein 432 

sequence is a mitochondrial protein. For example, TPpred3 (Savojardo et al., 2015) and 433 

Mitofates (Fukasawa et al., 2015) are prediction software programs based on support 434 

vector machines, whereas TargetP (Emanuelsson et al., 2007) is a software program 435 

based on neural network techniques.  436 

Most of the current prediction software programs, including TPpred3, 437 

Mitofates, and TargetP, are trained only with the data derived from model organisms, 438 

which belong to the taxonomic groups, Metazoa, Fungi, or Embryophyta, and these 439 

programs are designed for application to the proteins of model organisms and their 440 

relatives. Model organisms have been studied experimentally at an enormous cost 441 

because of their basic biological, medical, or industrial importance. This has resulted in 442 

the accumulation of vast biochemical experimental data of protein localization to 443 

cellular compartments including mitochondria.  444 

On the other hand, in the case of non-model organisms, except for those that 445 

are closely related to the known model organisms, very few experimental data are 446 

available because of the shortage of basic experimental procedures although they 447 
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exhibit most parts of the eukaryotic diversities (Adl et al., 2018). Hereafter, I refer to 448 

such non-model organisms that do not belong to Metazoa, Embryophyta, and Fungi as 449 

non-model organisms. Therefore, for the study of the mitochondrial proteins derived 450 

from non-model organisms, the sequence data of genome or transcriptome that are 451 

produced by using the NGS approach are mainly used to predict the proteins that would 452 

be mitochondrially localized. In general, the prediction tools designed for model 453 

organisms are usually applied for these analyses; however, these tools do not necessarily 454 

guarantee accuracy of prediction because the N-terminal sequence features important 455 

for the prediction of the mitochondrial proteins could be far divergent in non-model 456 

organisms compared to those of the model organisms. In particular, in the case of the 457 

prediction of MRO protein, the prediction tools currently available are highly inaccurate 458 

(Makiuchi & Nozaki, 2014). Therefore, in general, for predicting of 459 

mitochondrial/MRO proteins in non-model organisms, the consensus of the results from 460 

multiple predictors is considered to avoid false predictions. However, this cannot be 461 

validated. 462 

To resolve this problem, here, I propose a software program, NommPred (non-463 

model organismal mitochondrial/MRO protein predictor), which predicts the 464 

mitochondrial/MRO proteins derived from non-model organisms. To develop this 465 

software, I prepared a dataset including the mitochondrial or MRO proteins derived 466 

widely from non-model organisms and adopted a gradient boosting machine (GBM) 467 

(Friedman, 1999; Friedman et al., 2000; Friedman, 2002) as a classifier. GBM, which is 468 

one of the ensemble classifiers, was used instead of the support vector machine (Cortes 469 

& Vapnik, 1995), which was adopted in the previous predictors Mitofates and TPpred3. 470 

NommPred could resolve the problem due to the inconsistency between the origins of 471 
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the training and input data when predicting the mitochondrial/MRO proteins of non-472 

model organisms. The performance of NommPred was shown to be superior to 473 

Mitofates, which was demonstrated to be the best among the alternative methods, in 474 

predicting the mitochondrial/MRO proteins derived from non-model organisms. 475 

Therefore, NommPred is the best predictor for the mitochondrial/MRO proteins of non-476 

model organisms. 477 

3.2. Materials and Methods 478 

3.2.1. Scheme of NommPred 479 

A flowchart and a message sequence chart of the newly developed software, 480 

NommPred, are illustrated in Figures 3-1 and 3-2, respectively. The software takes as 481 

input both the protein sequence in FASTA format (Definition is available from: 482 

www.ncbi.nlm.nih.gov/books/NBK53702/) and organismal information from which the 483 

protein sequence is derived. The feature of each protein was extracted based on 484 

Mitofates’ algorithm to create a 920-dimensional feature vector (Figure 3-1). The vector 485 

is subjected to the GBM predictor (Mit Predictor for mitochondrial proteins or MRO 486 

Predictor for MRO proteins as described below), and the predictor outputs the 487 

prediction results and probabilities.  488 
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Figure 3-1: Flowchart of NommPred. The closed circle represents the starting point 

of the program, and the closed circle surrounded by a larger open circle represents 

the endpoint. The user input data (Input data) include the protein sequence in FASTA 

format and information of the protein sequence origin (taxonomic group). The input 

data are classified into (the first black bar in User action step) protein sequence, 

which is used for feature extraction, and organismal information, which is used for 

the selection of an appropriate GBM Predictor: Mit Predictor, MRO Predictor, or 

others. In the feature extraction step, the 920 calculated features (Table 3-1) are 

integrated, and a 920-dimensional feature vector is obtained as the output. In the 

figure, only six feature categories are depicted with the number of individual 

features. This vector is subjected to a selected GBM Predictor as the input data, and 

then the prediction result is shown (Output Results). 
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  492 

Figure 3-2: Message sequence chart of NommPred. The software for NommPred is 

console user interface (CUI), and it runs on the terminal. The software accepts a 

protein sequence file in multi FASTA format and a text file with information of the 

origins of the sequences and outputs the prediction results at last. 



34 

 

3.2.2. Dataset construction 493 

The dataset used for the training and test is shown in Table 3-1. The mitochondrial or 494 

MRO proteins are treated as positive samples and the others as negative samples. The 495 

sequence data were obtained from UniProt (UniProt C, 2017; www.uniprot.org/), 496 

GiardiaDB (Hagen et al, 2011; Aurrecoechea et al, 2009; giardiadb.org/giardiadb/), 497 

TrichDB (Aurrecoechea et al, 2009; trichdb.org/trichdb/), and ApiLoc (Woodcroft et al, 498 

2011; apiloc.biochem.unimelb.edu.au/apiloc/apiloc). Although these databases 499 

sometimes annotate mitochondrial or MRO proteins based on computational prediction, 500 

I used only those proteins whose localization was confirmed experimentally (e.g., 501 

Westernbloting, immunoblotting, or fluorescence microscope analysis) to mitochondria 502 

or MROs by investigating the literature. Then, I applied protein sequence redundancy 503 

reduction by using the BLASTClust program from the NCBI BLAST packages 504 

(Altschul et al, 1990). I adopted the criteria of being redundant at > 95% sequence 505 

identity. Finally, I prepared 392 positive mitochondrial or MRO protein sequences and 506 

3,739 negative sequences. I classified the entire dataset into mitochondrial and MRO 507 

datasets, Mit and MRO. Then, I created a predictor for each dataset; one is the predictor 508 

for the mitochondrial protein trained with the mitochondrial proteins of 7 non-model 509 

organismal taxonomic groups (Mit Predictor), whereas the other is the predictor for the 510 

MRO protein trained with the MRO proteins of three non-model organismal taxonomic 511 

groups that possess MRO (groups marked with asterisks in Table 3-1) (MRO Predictor), 512 

because these two datasets were expected to be apparently different in the N-terminal 513 

sequence features of the mitochondrial/MRO protein sequences. The N-terminal 514 

sequence features of the MRO proteins are generally considered to be extremely 515 

divergent from those of the mitochondrial proteins.  516 
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Table 3-1: Entire dataset used for training and test. If the taxonomic group 

corresponds exactly to the genus, the name of the genus is represented in italic form. 

“Stramenopiles” is not a formal taxonomic rank but is generally used for the name of 

the group. The “Positive samples” column lists the number of sequences of the 

mitochondrial or MRO proteins. The “Negative samples” column lists the number of 

sequences of the non-mitochondrial or non-MRO proteins. The groups that possess 

MRO are represented with asterisks. 
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3.2.3. Feature extraction 519 

For the extraction of features, I used the method described in Fukazawa et al. (2015). 520 

The feature of each protein was extracted to create a 920-dimensional feature vector. 521 

Extracted features and its details are shown in Table 3-2. 522 

  523 
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 524 

Feature category Number of 

features 

Features Description 

Frequencies of 

amino acids 

820 Monopeptide: X1 

Dipeptide: X1X2 

Skip-two dipeptides: 

X1xxX2 

Normalized frequencies for each of the possible combinations of the 

standard 20 amino acids in 30 N-terminal residues of the input sequences. 

Xi (i = 1,2) and small x represents standard 20 amino acids, A C D E F G 

H I K L M N P Q R S T V W Y. 

Physicochemical 

propensities 

77 Segment scores 

Whole score 

90 N-terminal residues of the input sequence are divided into six 

segments. Segment scores are calculated for each of the six segments.  

The total score is the sum of the segment scores. 

Each score is computed for: 

the mean of 1) hydrophobicity, 2) α-helical, or 3) β-strand periodicity, 

or the density of 4) positive charge, 5) negative charge, 6) serine, 7) 

threonine, 8) proline, 9) glycine, 10) amphiphilic, or 11) aromatic 

residues. 

Signal peptide 

features 

5 SP scores Each score is computed in the putative signal peptide region defined by a 

sliding widow method search within 90 N-terminal residues for: 

the density of 1) positive charge, 2,3) two kinds of the density of negative 

charge, 

or the mean of 4) hydrophobicity, and 5) cleavage site preference 

residues. 

Table 3-2: List of features. For more details, refer to Mitofates (Fukasawa et al., 2015).   
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Amphiphilic 

alpha helix 

1 
PA score: 

𝜇𝐻−𝜇𝐶𝑟 cos𝐴

𝑛
 

For 30 N-terminal residues of the input sequence, the segments between 

10 and 20 residues are generated by the sliding window method. For each 

segment, the score is computed from 𝜇𝐻 (magnitude of a hydrophobic 

moment vector) and 𝜇𝐶 (magnitude of a charge moment vector) by a 

formula as shown in the left column, and the best segment score is picked 

up as the PA score. n is the size of the window, r is the ratio parameter 

between 𝜇𝐻 and 𝜇𝐶, and A is the angle between the two vectors.  

Hexamer motifs  15 Motif scores: 

− log10(𝑝) 

Total score 

Motifs are the 14 hexamer motifs that are significantly and frequently 

observed in the mitochondrial proteins compared to the non-

mitochondrial ones (p < 10−5.)  

The total score is the sum of each motif score. 

Cleavage site 

features 

2 Cleavage scores For 100 N-terminal residues of the input sequence, 10 residue segments 

are generated by the sliding window method. For each segment, the 

cleavage score is calculated as the sum of position weighted matrix 

(PWM) scores for 10 residues, and the best and the second-best cleavage 

scores are picked up. The PWM is a given matrix in the Mitofates 

program. 

 525 
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3.2.4. Training and prediction method 526 

I adopted GBM, one of the ensemble learning algorithms, and created predictors using 527 

xgboost (Chen & Guestrin, 2016) package in R (R Core Team, 2018) for the Mit and 528 

MRO datasets (Mit Predictor and MRO predictor). GBM reconstructs the unknown 529 

functional dependence 𝑥
𝑓
→ 𝑦 with estimate 𝑓(𝑥); 𝑥 is the explanatory input 530 

variables, 𝑦 is the corresponding label. The scheme of the algorithm is shown in Figure 531 

3-3 (based on Natekin & Knoll, 2013). Xgboost choices decision tree as the base-532 

learner. 533 

 534 

 535 

 I searched for optimal values of logical variables employed in the xgboost 536 

algorithm. Parameters for tree boosting, learning rate (eta), maximum depth of a tree 537 

(max_depth), minimum sum of instance weight (min_child_weight), maximum delta 538 

step (max_delta_step), and gamma were tuned with grid search, and finally I determined 539 

to set the default values for these variables. In addition, I optimized the parameter of the 540 

Figure 3-3: The scheme of the algorithm of GBM. 
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number of trees to the model by cross-validation. For other parameters, I used the 541 

default value.  542 

3.2.5. Performance measures 543 

To evaluate the performances of both the NommPred predictors—Mit Predictor and 544 

MRO Predictor—a receiver operating characteristics (ROC) curve and a ROC area 545 

under the curve (AUC) (Bradley, 1997) were used. In the R system, the ROC curve was 546 

drawn by plotting the true positive rate (y-axis) against the false positive rate (x-axis) 547 

for different cut-off values, and the ROC AUC was drawn based on the ROC curve. 548 

To evaluate the robustness of the ROC AUC measures, I randomly divided the 549 

Mit or MRO dataset into three subsets (three-fold cross-validation), and I used two of 550 

them for the training data, and the other for the test data. This process was repeated 100 551 

times (Figure 3-4). 552 

 To compare NommPred with a previous predictor, Mitofates, I used the same 553 

test data as that of NommPred for Mitofates to evaluate its performance. In this 554 

performance comparison, I carried out the paired t test and Wilcoxon signed rank test to 555 

evaluate the difference between the means of these 100 paired ROC AUC scores.  556 
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   559 

Figure 3-4: The scheme of the three-fold cross validation. 
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3.3. Results 560 

3.3.1. Performance comparison analysis 561 

Prediction of mitochondrial proteins 562 

I carried out the performance comparison analysis between NommPred and a previous 563 

method, Mitofates. A dataset including the mitochondrial and non-mitochondrial 564 

proteins of seven non-model organismal taxonomic groups was used for the preparation 565 

of the training and test datasets (as described in the Materials and Methods section), 566 

resulting in the creation of Mit Predictor. Performance measure scores are listed in Table 567 

3-3 and shown by boxplot in Figure 3-5.  568 
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 574 

 575 

Table 3-3: Comparison of the mean ROC AUC scores between NommPred and 

Mitofates. In NommPred mitochondrial proteins were predicted by Mit Predictor, 

while MRO proteins were by MRO Predictor. 100 randomly generated datasets (n = 

100) of mitochondrial or MRO proteins were used for cross-validation (see Materials 

and Methods). 
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 577 
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Figure 3-5: Boxplots showing the performance of the predictors of the mitochondrial 

and MRO proteins. The ROC AUC scores of 100 randomly generated datasets (y-

axis) of the two predictors are plotted for, NommPred (Mit Predictor or/and MRO 

Predictor) in NommPred, and Mitofates (x-axis), are plotted. Lines within the 

boxplot indicate the median, the lower/higher quartile (Q1/Q3), and lower/higher 

whiskers. 
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For the mean ROC AUC scores (sample size n = 100), Mitofates achieved 0.9080, 579 

whereas the performance of Mit Predictor of NommPred was superior with a value of 580 

0.9463 (Table 3-3). Moreover, the difference between the two mean ROC AUC scores 581 

was significant (paired t test: p value = 1.618 × 10-42, Wilcoxon signed rank test: p value 582 

= ~ 0). 583 

Generally, the ROC AUC score ranging between 0.5 and 0.7 is regarded as less 584 

accurate, between 0.7 and 0.9 as moderately accurate, and more than 0.9 as highly 585 

accurate (Fischer et al., 2003). Based on these criteria, Mitofates still showed sufficient 586 

accuracy in the prediction of the mitochondrial proteins derived from non-model 587 

organisms. However, for the prediction of those proteins, Mit Predictor with a higher 588 

ROC AUC score was preferred. 589 

Prediction of MRO proteins 590 

As described in the Materials and Methods section, I classified the entire dataset into 591 

two—Mit and MRO (Table 3-1). The MRO dataset including the MRO and non-MRO 592 

proteins of three non-model organismal groups was used for the preparation of the 593 

training and test datasets (described in the Materials and Methods section), resulting in 594 

the creation of MRO Predictor. I carried out a similar comparison analysis between the 595 

performance of MRO Predictor and that of Mitofates for the prediction of the MRO 596 

proteins. The performance measure scores are listed in Table 3-3. 597 

 Mitofates achieved a mean ROC AUC score (sample size n = 100) of 0.8021, 598 

whereas the performance of the MRO predictor of NommPred was far better with a 599 

mean value of 0.9041 (paired t test: p value = 6.855 × 10-40, Wilcoxon signed rank test: 600 

p value = ~ 0) (Table 3-3). Based on these results, MRO Predictor of NommPred is 601 

suitable for the MRO proteins.  602 
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3.4. Discussions 603 

I succeeded in developing NommPred, the predictors for the mitochondrial and MRO 604 

proteins derived from diverse non-model organisms, except for those belonging to 605 

Metazoa, Embryophyta and Fungi. Previously, the protein sequence data derived from 606 

non-model organisms were subjected to the predictor trained only by using the data 607 

from model organisms. NommPred could resolve the problem resulted from such 608 

inconsistency between the origins of the training data (model organisms) and the input 609 

data (non-model organisms). 610 

3.4.1. Performance comparison analysis 611 

The results of the statistical analysis (Table 3-3) clearly supported the superiority of 612 

NommPred in the performance of predicting the mitochondrial proteins of non-model 613 

organisms when compared to the existing best method, Mitofates. In particular, 614 

NommPred is the first software that is expected to be used for predicting the MRO 615 

proteins. NommPred would be useful for the prediction of metabolic pathways relating 616 

to the mitochondria/MROs from non-model organisms, the NGS data of which can be 617 

available. Since there is no other predictor suitable for the prediction of MRO proteins, 618 

MRO predictor in NommPred is useful tool to search for putative MRO proteins.  619 

In this study, I retrieved almost all protein sequence data whose cellular 620 

localization were experimentally verified to mitochondria/MROs from various sequence 621 

databases. However, the origins of the sequence data of mitochondrial/MRO proteins in 622 

the entire dataset (Table 3-1) are biased for those of the parasitic organisms. Therefore, 623 

taxon sampling of our dataset is still very sparse. The accumulation of more data of the 624 

mitochondrial/MRO proteins of non-model organisms, especially from the free-living 625 

ones whose localization was confirmed experimentally, is essential to further improve 626 
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the predictors presented in this work. I should continuously make efforts toward 627 

updating the dataset to provide more accurate predictors. Although NommPred may still 628 

have some problems that need to be improved in the future, I hope it will be helpful for 629 

the prediction of the mitochondrial/MRO proteins of non-model organisms. 630 

  631 
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