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Abstract 

 

Unmanned Aerial Vehicle (UAV) significantly involved decision-making process through high 

resolution mapping in precision agriculture. To enable artificial intelligence in precision 

agricultural management using UAV, classification and recognition of features, precision 

application of pesticides, watering according to soil moisture content and object localization 

are very important for UAV system that built with smaller payload and limited battery life. The 

objectives of this research are first, to develop machine learning systems for recognizing the 

classifiers as spraying and nonspraying areas for precision application of fertilizer and 

pesticide; second, soil moisture distribution for precision irrigation management; and third, 

object localization to enable transportation logistics coordinated with UAV. To achieve the 

research objectives, the author developed the sensors networking system, Mutual Subspace 

Method (MSM) machine learning algorithm for recognizing the classifiers, data acquisition 

procedure from RGB and thermal cameras; and field reference data calibration procedures. The 

datasets were collected for the green onion, cabbage and carrots as regular winter crops for 

some randomly selected agricultural fields from Ibaraki prefecture. In addition, sensors data 

communication protocol also established between Electronic Platooning Vehicles (EPV) for 

coordination with UAV. 

 

The MSM machine learning system has implemented that has the advantage of high 

computational speed with good accuracy for recognizing spray and nonspray areas for 

application in UAV-based sprayers in agricultural fields and orchards. Two classifiers, one for 

agricultural croplands and one for orchard areas, based on the MSM machine learning system 

were trained and tested with datasets of images to enable an autonomous spraying system for 

UAV. The field experiments were conducted in different types of fields to train and test the 

system in the selection of croplands and orchards using a commercial UAV (DJI Phantom 3 

Pro) with an on-board 4K camera. The classifiers were sub-categorized to address spray and 

nonspray areas, and images were collected from low (5 m) and high (15 m) altitudes for 

croplands and orchards, respectively. The recognition system was divided into offline and 

online systems for recognition of classifiers. The offline recognition system shows the 

effectiveness of MSM systems for training and testing with datasets for croplands and orchards. 

In the offline recognition system, 70% accuracy was obtained for the cropland classifiers in 

recognizing spray and nonspray areas. In the case of orchards, the spray and nonspray 
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recognition accuracy was 77%. The online recognition system performance had higher 

recognition accuracy for low-altitude data (84%) than high-altitude data (68%). The 

computational time for the online recognition system was minimal, with an average of 0.004 s 

for classifiers reporting recognition of each of the frames. The high accuracy of the recognition 

system was obtained using the MSM and training and testing with datasets from three different 

types of selected agricultural fields. The developed machine learning system had a recognition 

accuracy of 70% using the classifiers, which can be implemented in an autonomous UAV spray 

system for recognizing spray and nonspray areas within the minimum computational 

requirements for real-time application. 

 

The soil moisture content was estimated at the topsoil surface using thermal images and 

proposed a method to measure field moisture based on the radiometric calibration from thermal 

camera images. Indoor and outdoor experiments were conducted to confirm the accuracy of 

soil moisture detection from top surfaces of soil from collected samples at the different 

moisture levels during the indoor experiments. The monolithic analysis was conducted to find 

the correlation of soil moisture and the digital numbers of thermal images. The higher accuracy 

was obtained in the indoor (R2=0.85) and outdoor (R2=0.79) experiments. To develop a soil 

moisture map from the thermal camera, mosaic was performed using two types of features: 

ORB (Oriented FAST and Rotated BRIEF) and SURF (Speeded-Up Robust Features). The 

mosaic performances of ORB features and SURF features were compared for thermal images. 

SURF features could easily detect the features from thermal images with high accuracy of 

matching. The mosaic was done for multiple thermal images with SURF features using 

Python2.7® and OpenCV®. The average mosaic accuracy for two adjacent thermal images 

was 61.4% for ORB and 89.7% for SURF features. 

 

The UAV-follower system was proposed with the autonomous EPV that could follow the UAV 

(map-based or target tracking). The experimental and simulation data were used to recognize 

ORB features using 3D RGB camera to reduce noise by eliminating the unnecessary features. 

Reducing unnecessary features are required to enable adaptive local navigation for UAV-EPV 

coordination. The simulation result showed that 36% of invalid features could be reduced using 

extended Kalman filter. In the navigation planer, the EPVs were in lined as leader-follower 

formation in road navigation to support transportation of agricultural products. The EPV 

platform was built to test recognition of features and 3D–based image acquisition, ORB 

features extraction from UAV had higher accuracy in edge detection for navigation planner. 
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Therefore, the core of this research contributed to develop the machine learning system for the 

classification to recognize features of spraying and nonspraying areas using MSM. Higher 

accuracy of recognition and robust computation time to recognize the spray and nonspray area 

could be implemented in the real time application of UAV-based autonomous sprayer. The 

calibration and mosaic of features for thermal images were conducted in indoor and outdoor 

experiments for soil moisture detection. Furthermore, the coordination between the UAV and 

EPV was proposed based on the ORB features for autonomous transportation logistics in the 

farm. 

Keywords: Precision Agriculture, Recognition System, Image Classifiers, Machine Learning 

System, Autonomous Navigation, UAV  
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Chapter 1  

Introduction 

 

Unmanned Aerial Vehicle (UAV) and Internet of Things (IoT) in agriculture got the 

importance last couple of years for information in agricultural decision-making process. The 

decision-making and its application work on the development sensors and communication 

protocols.     

 

1.1 Feature Recognition: In the vision system and analysis processes, feature recognition has 

been outlined by the researcher from computer science and pattern recognition. The challenges 

in the agricultural features, which vary in each stages of crop growths such as recognizing the 

land type, soil type, road edges, plant canopy’s and orchards, trees, structures, and semi-

structure areas. In the industrial application, features are constant compare to agriculture. In 

agriculture, it is open loop systems where as industrial production as a closed loop system, the 

feature recognition has the feedback. While conducting fieldwork for feature recognition, it is 

hard to outline the numbers and minimize the categories. Therefore, the key features are one 

of the potential solutions to minimize the features in the field. The features recognitions have 

been addressed through the machine learning system recently to add up with artificial 

intelligence. The machinery learning system helps in decision-making process. 

 

1.2 Machine Learning System: Machine learning is being implemented in the IoT platform 

to bring the decision with the confidences. The machine learning system could provide the 

decision according to the classifiers that we can train and test to get the accuracy while conducts 

operations. The UAV provides the images and frames continuously during operation. The 

recognition accuracy of classifiers needs computational flexibility with minimum time 

involvement.  

 

1.3 Mapping and Sensing Systems:  The feature recognition and machine learning system 

have further implication in the mapping system development using the different sensors 

platform. The reflectance-based sensors have the advantages of non-destructive measurement 

than compare to the resistance sensors. The reflectance sensors got the wide variety of Infrared 

application starting NIR and SWIR ranges. One of that is thermal camera, which comes the 
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Infrared filters to get the moisture information. The sensing system application is the 

challenging part for getting information using UAV and spray according to the information 

feature recognition, classifier identification of spray and non-spray areas.  

 

1.4 Application of Sensing System: The sensing system based on the feature recognitions, 

classifiers identifications and Simultaneous Localization and Mapping (SLAM) could help in 

spraying system, which is lack of presently. The autonomous application with enabling SLAM 

and UAV-based mosaic information, which identify the key features, classifiers of target 

spraying could help prescription application to minimize the pesticides, herbicides in the crop 

lands and orchards.  

 

1.5 Problem Statements 

The feature recognition in agricultural works in real-time using UAV is a challenging to 

employ the precision management through machine learning system. Unlimited features needs 

to classify and minimize for the robust application. Machine learning requires training of key 

features for robust application of spray and nonparty areas, determination of wet conditions, 

soil moisture distributions, coordination of robotic vehicle and UAV follower system to 

accomplishment multiples task in agricultural works. On the other hand, Japanese and 

worldwide agricultural labor forces are decreasing significantly. The labor forces need to 

replace through multiple coordinated robotic system, which have adaptive local mapping 

system to help the farm owner through multiple work accomplishments. As the UAV costs are 

drastically reduce, it has the potential to coordinate multi-task robot system in agricultural farm 

with lower cost. In the multi-task system, UAV-based leader requires to have robust training 

system and navigation planner. To accomplish a navigation planer, UAV-based transportation 

vehicle and small mounted sprayer could work out in combination with sensor distortions. 

 

1.6 Research Questions 

The feature recognition and real-time training system needs to work out to implement 

agricultural navigation planning scheme. It needs start from the very beginning while UAV 

used to map in the agricultural land for multiple crops. Different crop has the different features. 

Therefore, the proposed research requires designing as follows: 
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1. How to develop a robust agriculture feature recognition system using UAV from lower 

and higher altitudes for identification of nonspray area to enable precision fertilizer 

application in short time? 

2. What could be the possible way using UAV to detect soil moisture in the crop field for 

precision irrigation management? 

3. How to develop a vision based local navigation planer using UAV to complete the 

multiple tasks inside the farm such as spraying, transportation of products and scouting 

in the field?  

 

1.7 Research Objectives 

Therefore, the purpose of this research is illustrated on the basis of three above mentioned 

challenging research questions: robust feature recognition, machine learning system, mapping 

and sensing system and application of sensing system through a local navigation scheme. The 

objectives are as follows:  

 

1. To develop a machine learning system that has the advantage of high computational 

speed with good accuracy for recognizing spray and nonspray areas for application in 

UAV-based sprayers for precision application of fertilizer to crops and orchards. 

2. To detect soil moisture content information from thermal image features taking from 

UAV platform for precision application of irrigation management. 

3. To develop vision-based multi-task navigation planner system for target spraying, 

transportation of products using autonomous agricultural vehicle. 

 

1.8 Significance 

Agricultural operations have two major challenges to deal: first, the uncertainty and second, 

time specificity. The uncertainty deals with open loop agricultural system where feedback has 

not been established. The precision application of pesticides, irrigation is very much important 

according to the identification of features that can be recognized from the UAV images. The 

robust recognition and filtering are required in a real time application. The real-time application 

could be utilized in the arid land zone detection for precise application of irrigation to deal with 

water stress and spray herbicides in the spray area to minimize the weed infestation.  To 

recognize the spray and nonspray areas, a machine learning system is needed that requires 

minimum computational time with good accuracy to identify and nonspray areas to minimize 

the application and waste of herbicides. UAV along with autonomous small robot have the 
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advantages of multi-task robot application as the leader follower applications. This multi-task 

robot will help in accomplishment of tasks and aid in labor in the rural farms with adaptive 

local mapping and navigation planner. 

 

1.9 Outlines of Thesis Structure 

The thesis is organized into six chapters with cognitive summary and the list of contents. Each 

of the chapter is designed based on the objective, its significance, methods, results, discussion 

and summary. 

 

Chapter 1 is discussed the significance of the UAV application and machine learning system 

for the feature detection. The ORB feature and SURF feature classified. The importance’s of 

feature detection, accuracy assessments and finally UAV-based feature recognition system is 

outlined briefly to orient the thesis objective originality and significance of research. The 

objectives are noted to achieve the goal of this research. 

 

Chapter 2 is discussed on the reviews based on the feature detections process, some of the 

recent research contributions on feature recognition system, machine-learning system and map-

based sensing systems are reviewed. The application of this soil moisture distribution is been 

a long challenges in this part of the world.  

 

Chapter 3 briefly highlights the contemporary research focuses on the machine learning 

systems, deep learning about the training of and testing of the datasets for the for spraying and 

nonspray areas for the proposing a spraying control and minimizing the fertilizer application 

in the nonspray area from UAV or drone.  The UAV limitation about the flight duration and 

pay load still a challenge, therefore, a fast and robust system is required to accomplish the work 

in the field. An RGB camera was used to collect the images from low and high latitude to train 

and test the datasets. 

 

Chapter 4 reported on the thermal image processing system to detect the moisture content on 

the field based on the thermal features. In the thermal imagery compare to ORB, SURF feature 

are works well.  The ground calibration, thermal camera calibration and indoor and outdoor 

experiments are reported to fit the regression-based relation between the soil moisture contents 

and feature recognition. The SURF features are reported with better accuracy in the mosaic 

system. 
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Chapter 5 discussed vision-based system, which is adapted in the small vehicle robot with 

human guidance leader and robot-based follower. UAV guided multi-task robot could serve as 

the assisted marker of leader and autonomies of vehicle in future agriculture to aid in the labor 

force. The small sprayer system is scheduled to attach in our further researches. In addition, 

the feature-based recognition and mosaic information on RGB images are reported based on 

SLAM application, cany7s edge detection. 

 

Chapter 6 is designed to conclude overall research summary in a cognitive way. How this 

research helps in the scientific community. Specially UAV-based application in spray and non-

spray, thermal imagers-based sensing system for water stress area identification. The 

application efficiency can be expressed and small unit of leader follower-based system is 

reported about multiple robots. 

 

In the following sections, the details of problem statement, original research points and 

methods of conducting the research, results and discussion are presented. 
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Chapter 2 

Review of Literature 

The main purpose of this chapter is to provide a brief review of the past research works which 

are related to the present study. It is always beneficial for the researcher to consult available 

literature to assess the past stock of knowledge with the hope of receiving future guidelines 

for conducting further research in the particular area. The following section presents the most 

common and relevant studies which have been conducted in the past at home and abroad. 

Literature reviewed in this study is available from different libraries and websites. The following 

studies undertaken so far at home and abroad are reviewed in this chapter. 

 

2.1 Studies Related to Feature Recognition System from the Images Takes from UAV to 

Complete Agricultural Operations 

 

J. Torres-Sánchez et al., 2015 reviewed that in site-specific management in agriculture for 

detecting the vegetation in herbaceous crops at the early season is a first and important step 

prior to addressing counting plants for monitoring proper germination, or identification of 

weeds for early season site specific weed management. The present research work develops an 

innovative thresholding OBIA algorithm based on the Otsu’s method, and studies how the 

results of this algorithm are affected by the different segmentation parameters (scale, shape and 

compactness). The image segmentation scale parameters affected the histogram of the 

vegetation index, that had changes in the automatic estimation of the optimal threshold value 

for the vegetation indices. The other parameters also involved in the segmentation procedure 

and showed minor influence while conducting classification accuracy.  

 

TelmoAdão et al., 2017 reviewed that traditional imagery based on the RGB and/or NIR 

sensors. The RGB and NIR has the potential and applied in many agricultural forestry to 

researches.  In regards to application,  the spectral range spectral range and precision are 

required profile materials and organisms that only hyperspectral sensors can provide. 

Hyperspectral  imagery have gone the developments and consistently resulting in lighter and 

high spectral signature sensors that can currently be integrated in UAS for research and 

industrial application. The hyperspectral sensors’ ability for measuring hundreds of bands 
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raises complexity when considering the sheer quantity of acquired data, whose usefulness 

depends on both calibration and corrective tasks occurring in pre and post-flight stages (Figure 

2.1). With the goal of simplifying hyperspectral data processing—by isolating the common 

user from the processes’ mathematical complexity—several available toolboxes that allow a 

direct access to level-one hyperspectral data are presented.  

 

 

Figure 2.1. Spectrum representation including: (A) Multispectral example, with 5 wide 

bands; and (B) Hyperspectral example consisting of several narrow bands that, usually, 

extends to hundreds or thousands of them (image not drawn to scale) 

 

Hitoshi Sakano et al., 2005 proposed a new object recognition algorithm called the kernel 

mutual subspace method (KMSM). The authors theoretically derived a new object recognition 

algorithm called the kernel mutual subspace method by applying the kernel nonlinear principal 

component analysis, which is known as a powerful nonlinear principal component analysis 

method, to the mutual subspace method. When the proposed technique was applied to an 

individual identification problem based on facial images, it was apparent that the relationship 

between the degrees of freedom of the object motion and the subspace dimensionality 

indicating a high recognition rate. Moreover, this procedure could be consistently explained 

through experiments that used the proposed method, which did not differ significantly from 

the conventional method at the highest precision. They also showed that the proposed technique 

could be effective for large-scale recognition problems and that its recognition dictionary has 

a more compact structure.  
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J.M. Peña-Barragán et al., 2012 examined a list of color-infrared images captured from the 

new generation of remote platforms known as unmanned aerial vehicles (UAV), specifically a 

quadrotor, was tested for site-specific weed management applications. An object-based image 

analysis (OBIA) procedure was developed by combining several scenes, contextual, 

hierarchical and object-based features in a looping structure (Figure 2.2). The procedure 

integrates several features from the crop-field patterns: i) field structure, such as field limits 

and row length, ii) crop patterns, such as row orientation and inter-row distance, and iii) plant 

(crop and weeds) characteristics, such as spectral properties (NDVI values) and plant 

dimensions; as well as iv) hierarchical relationships based on different segmentation scales, 

and v) neighboring relationships based on distance, position and angle between objects.  

 

 

Figure 2.2. Field and crop features involved in the rule-set algorithm as affected by the image 

object scale 

 

S. Lagüela et al., 2011 explored that infrared thermography is generally used in energy 

efficiency studies moisture detection and building inspections studies for heat losses. Laser 

scanning technology can be an optimal complement for the thermographic measurement, 
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because it provides the metric information that allows the quantification of the thermal studies 

if the clouds of points are texturized with thermographies. In this paper a methodology for 

registering thermographies in clouds of points is explained, with the following steps: initially, 

processing the metric calibration of the thermal camera, secondly, register of thermographies 

in the cloud of points based on control points, and finally, processing the textured cloud of 

points to obtain rectified thermographies, with no optical distortions. 

 

2.2 Studies Related to Machine Learning System 

 

Calvin Hung et al., 2014 proposed an alternative learning-based approach using feature 

learning to minimize the manual effort required. Authors apply this system to the classification 

of invasive weed species. Small UAVs are suited to this application, as they can collect data at 

high spatial resolutions. Authors also apply feature learning to generate a bank of image filters 

that allows for the extraction of features that discriminate between the weeds of interest and 

background objects. They evaluated the approach to weed classification on three weeds of 

significance in Australia namely water hyacinth, tropical soda apple and serrated tussock. 

Results showed that collecting images at 5-10 m resulted in the highest classifier accuracy, 

indicated by F1 scores of up to 94%. 

 

2.3 Studies Related to Mapping and Sensing Systems 

 

D. González-Aguilera et al., 2012 described a new approach to multi-sensor registration of 

infrared images and 3D-laser scanner models, based on the extraction of common features in 

the IR image and the range image obtained from a laser-scanner 3D-point cloud. The workflow 

developed in this research allows the automatic registration of two different sensors with 

completely different characteristics, including fields of view, spatial resolution and spatial 

position (Figure 2.3).  
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Figure 2.3. Thermographic image-laser point cloud registration workflow 

 

2.4 Studies Related to Application of Sensing System 

 

Natraj et al. 2014 presented a new application of laser rangefinder sensing to agricultural 

spraying vehicles (Figure 2.4). The current generation of spraying vehicles uses automatic 

controllers to maintain the height of the sprayer booms above the crop.  

 

Figure 2.4. Control environment of the developed system 

Microcontroller 

Induction 

sensors 

Infrared sensors 

Bump sensors 

Spraying system 

Motor control 

LCD keypad interface 

Web interface 

Multi- sensor 

Acquisition

Multi- sensor Image 

Pre- processing 

Multi- sensor Image 

Matching

Multi- sensor Image 

Registration

Multi- sensor Hybrid 

Products

Range image

Resampled & 

improved range 

image

Radial distortion 

correction

Visible image

IR image

Interest points 

extraction

Multi- sensor 

image matching

Range image + 

Thermal IR 

image

Thermal 3D 

model

Thermal 

orthophoto

Thermal laser 

scanner

Thermal camera



11 
 

Adrian Carrio et al., 2017 examined that deep learning is recently showing outstanding results 

for solving a wide variety of robotic tasks in the areas of perception, planning, localization and 

control. Its excellent capabilities for learning representations from the complex data acquired 

in real environments make it extremely suitable for many kinds of autonomous robotic 

applications. In parallel, Unmanned Aerial Vehicles (UAVs) are currently being extensively 

applied for several types of civilian tasks in applications going from security, surveillance, and 

disaster rescue to parcel delivery or warehouse management. In this research, a thorough 

review has been performed on recent reported uses and applications of deep learning for UAVs, 

including the most relevant developments as well as their performances and limitations. In 

addition, a detailed explanation of the main deep learning techniques is provided.  

 

Alberto Tellaeche et al., 2008 explored an automatic computer vision-based decision support 

system for the detection and differential spraying of weeds in corn crops (Figure 2.5). The 

method is designed for post-emergence of herbicide applications. In this research, weeds and 

corn plants display were similar spectral signatures and the weeds appeared irregularly 

distributed within the crop’s field. The proposed strategy involves two processes namely image 

segmentation and decision making (Figure 2.6). Image segmentation combines basic suitable 

image processing techniques in order to extract cells from the image as the low-level units. 

Each cell is described by two area-based measuring relationships between crop and weeds. The 

decision making determines the cells to be sprayed based on the computation of a posterior 

probability under a Bayesian framework (Figure 2.7).  

 

 

Figure 2. 5. Visual processing and servo control system 
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Figure 2.6. Imaging geometry of target     

   

Where C: camera projection centre, f: focal length D0: actual diameter of MEC hi: distance 

between crop canopy and camera and Di: image diameter of MEC  

 

 

 

 

 

Olli Nevalainen et al., 2017 investigated the overall of a UAV-based photogrammetry and 

hyperspectral imaging system for individual tree detection and tree species classification in 

boreal forests (Figure 2.8). Eleven test sites were selected with 4151 reference trees 

representing various tree species and developmental stages were collected in June 2014 using 

a UAV-based onboard remote sensing platform. This system is equipped with a frame format 

with hyperspectral and a RGB camera. Dense point clouds were measured 

photogrammetrically using high resolution RGB images with a 5 cm point interval. Spectral 

features were obtained from the hyperspectral image blocks based on radiometric block 

adjustment with the help of in-flight irradiance observations. In this study a spectral and 3D 

point cloud features were used in the classification experiment. The best results were found at 

Random Forest and Multilayer Perceptron (MLP) model analysis with overall accuracies of 

95 % and an F-score value of 0.93. The accuracy of individual tree identification varies 40-
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95% depending on the characteristics of the area and cloud level. Results were promising, 

indicating that hyperspectral 3D remote sensing was operational from a UAV platform even in 

very difficult conditions (Figure 2.9).  

 

 

Figure 2.8. Vision- based segmentation scheme and decision process 

 

 

 

Figure 2.9. Workflow for individual detection and classification procedure  
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Jos´e Mart´ınez-Carranza et al., 2015 defined and experimented visual simultaneous 

localization and mapping (SLAM) system according to visual features. It has emerged as one 

of the best systems for estimating the 6D camera pose for building a 3D map of the observed 

scene. This method is well-known as ORB-SLAM system and one of the main features is to 

use the same visual binary descriptor called ORB.  Another task of ORB-SLAM combines 

local and graph based global bundle adjustment for enabling scalable map generation through 

real-time performance. The author examines an implementation of autonomous flight for a 

low-cost micro aerial vehicle (MAV), where ORB-SLAM is used as a visual positioning 

system that feeds a PD controller that controls pitch, roll and yaw. They found implementation 

has potential and could soon be implemented on a bigger aerial platform with more complex 

trajectories to be flown independently. 

 

2.5 Summary 

A careful review of the literature suggests that most of the studies had objectives not similar to 

those of the proposed study. The findings from the proposed research are expected to generate 

a set of meaningful and new research policy in the precision agricultural research. Shrinking 

by 22 percent in 2014, significant shortage of agricultural labor shortages is threatening the 

Japanese agricultural productivity. The circumstance highly motivates the automated smart 

transformation, which creates a high demand in the Japanese rural farms. To meet with the 

environmental standard and increasing productivity at Japanese agricultural farm aim at 

developing integrated autonomous system for crop plantation. The UAV-based features 

recognition to recognize spray non-spray area for precision application of fertilizer is one of 

the new approaches with Mutual Sub Space Method (MSM) machine learning system. 

Precision irrigation management requires the soil moisture information, wetness of canopy. In 

the proposed research, uses thermal imagery to find out the soil moisture information and 

ground reference data calibration have high impacts in agriculture. Furthermore, the features 

recognitions and UAV-based multi-task coordinated vehicle is one of the leading-edge 

concepts that is significantly differ from the previous contributions. In our best knowledge, this 

is the first attempt to coordinate multi-task robot simultaneous operation with UAV and 

electronic platonic vehicles for shared agricultural operations in the farm. In the following 

chapters, feature recognition system using MSM, soil moisture detection system and UAV-

based multi-task robots and navigation planner will be introduced.  
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Chapter 3 

Development of Recognition System for Spraying Area from UAV 

Using Machine Learning Approach 

3.1 Background 

With the development of UAV technologies, the use of UAV is rapidly expanded to different 

applications such aerial photography to monitor vegetation, surveying mapping and scouting 

with wireless networking (Zhang, Y.; Chen, D.; et al. 2018). UAVs have the potential in 

agricultural applications and have ideal solution to enable precision agriculture compare to 

aerial mapping and satellite remote sensing. Not only use of UAVs is more efficient, but also 

more cost-effective compare to areal or high-resolution commercial satellite data sets. It helps 

farmers to monitor crops in real-time and provides high-resolution images of field and canopy 

for crop growth and production. High resolution and machine vision images are used for 

identification of weeds and non-weeds areas using ground based conventional sprayers (Hung, 

C.; Xu, Z.; et al. 2014, Rebetez, J.; Hector F.; et al. 2016). In recent advancements, the sprayers 

are attached with the UAV system to spray in the field. However, as the pay load of the UAV 

with sprayer cannot make it heavier, therefore, it becomes difficult to fly with large quantities 

of liquid chemicals while flying in the field. The broadcasting of spray liquids needs to be very 

efficient in spraying to agricultural crops and stop spraying in the non-crop’s areas. In the 

similar way, the orchard spray system needs to fly in a higher altitude to spray chemical on the 

top of the canopy. Higher payloads of chemicals in the tank have also the problem. The larger 

tank size requires more power and safety concerns while flying. It is very important to 

recognize the spray area as well above the orchards and non-orchards area to ensure precision 

application of spray chemicals. For autonomies of UAV-based spraying system, the 

recognition of crop and orchards area is significantly important. A machine learning system is 

required prior to enable an autonomous spraying system to understand spraying spot and non- 

spraying spot from operational environments of UAV. The ground-based vehicle has the 

application of images processing system (Peteinatos, G.; et al. 2014, Lee, D. H.; Lee, Kyou S.; 

et al. 2012).  

Most of the researches have the datasets collection and machine-learning system were limited. 

Some of the research has reported the aerial application of spraying targets is reached only 50% 

from less than 1 m altitude (Pimentel, D. and Burgess M., 2011). In our best knowledge, the 

UAV-based sprayers introduced to the market and largely started to use in the mountains and 
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crop areas for enabling spray with precision. Most of the commercial UAVs with sprayers are 

operated with regulations in many countries. As the technology tends to be autonomous system 

onwards, it is likely to be UAV spray system must have high potentials for autonomous 

spraying applications. However, the UAV cannot fly for a long time due to limited power 

supply. To increase longer flight time, UAV manufacturer improves endurance by increasing 

battery capacity and reducing total weight of UAV. However, for reducing the weight, the 

higher payload was difficult.  In this regard, needs to improve the application efficiency of 

chemicals to the spray area from a distant altitude. The height of the operation greatly 

influences the systems; a faster coverage required using minimum time for croplands for the 

orchards. Therefore, to increase the efficiency in precision spraying, a robust machine learning 

system is required for recognizing crop field and orchard areas with good accuracy.  

Several machine learning systems have been introduced in the ground-based sprayers using 

deep learning, neural network and Bayesian classifiers (Carrio, A.; Sampedro, C.; et al. 2017, 

Majidi, B. and Bab-Hadiashar A., 2005, Tellaeche, A.; Xavier P.; et al. 2005). Most of the 

machine learning systems had higher complexity of data training and time requirements for 

real time application. While flying UAV, the time of flying is also very limited. Furthermore, 

the carrying liquid chemicals to the on-board UAV is also limited. To overcome this limitation, 

it is very important to introduce a machine learning system to recognize spraying and no 

spraying areas in real-time with good accuracy. In our previous research, we have experienced, 

the Mutual Subspace Method (MSM) has the higher potential to recognize features and actions 

of tracking with accuracy more than 80% in real time. Furthermore, MSM and KMSM along 

with Hankel matrix were implemented for machinery operator’s action recognition in 0.07 sec 

(Yan Z., Pengbo G., Tofael A., 2018). Mutual subspace method has been used for action 

recognition of human face tracking action recognition of vision recognition society (Maeda K., 

Watanabe S., 1985, Fukui, K. and Yamaguchi O., 2005, 13. Fukui, K. and Yamaguchi O., 

2007). Therefore, the MSM has the high capability in machine learning system to recognize 

the action and features in agricultural environments. In the spraying application from the on-

board UAV, the recognition of features with minimum time and high accuracy can be done 

using MSM. In this research, we attempted to minimize the spraying chemicals amount while 

spraying in the field with limited carrying capacity of agricultural chemical using in crop fields 

and orchards.  

 

Objective 
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To develop a machine learning system for recognizing the features of spraying and nonspraying 

areas for applying UAV-based sprayers in agricultural croplands and orchards. It is expected 

that MSM machine learning systems can be employed, offering advantages of low 

computational complexity and good accuracy in feature recognition systems for real-time 

applications. 

 

3.2 Materials and Methods 

3.2.1 Mutual Subspace Method (MSM)  

The MSM was introduced to the field of pattern recognition, a well-known method for object 

recognition based on image sets (Maeda K., Watanabe S. 1985). It is an extension of the  

Figure 3.1. Subspace method (SM) 

 

Subspace Method (SM) by classifying a set of input pattern vectors into several classes based 

on multiple canonical angles between the input subspace and class subspaces (Figure 3.1). The 

input subspace is generated from a set of input patterns as class (Watanabe, S. and Pakvasa N. 

1985). The SM has high performance in pattern recognition, it was developed independently 

named as CLAFIC and multiple similarity method (Iijima, T., et al. 1974) respectively. It 

classifies an input pattern vector into several classes based on the minimum distance or angle 

between the input pattern vector and each class subspace, where a class subspace corresponds 

to the distribution of pattern vectors of the class in high dimensional vector space (Fukui, K. 

and Yamaguchi, O. 2014).  We considered that the input vector P and m class subspaces belong 

to k–dimensional vector space, the similarity is defined by the length or the minimum angle 

between the input vector P and i-th class subspace, where the length of P is often normalized 

to 1.0. The angle-based similarity can be derived as follows: 

cos2 𝜃 = ∑
(𝑷∙𝝋𝒊)

2

‖𝑷‖2
𝑑
𝑖=1       (3.1) 



18 
 

where d is the dimension of the class subspace and  𝝋𝒊 is the i-th k–dimensional orthogonal 

normal vector (PCA). The kPCA is an extension of PCA using kernel method for nonlinear 

applications (Scholkopf B.; Smola A., et al., 1998). Firstly, the conventional PCA operates by 

diagonalizing the covariance matrix C from k feature vectors 𝑥j⃗⃗⃗   (a = 1, 2, …, k) in an n-

dimensional feature space ℛ𝑛,  

C =
1

𝑘
∑ (𝑥j⃗⃗⃗    ∙ 𝑥j⃗⃗⃗   𝑇)𝑘

𝑗=1        (3.2) 

 

 

Figure 3.2. Comparison between two sets of images using MSM 

 

it gives an eigen decomposition of the covariance matrix by PCA to obtain the principal 

components 𝜈𝑖 ⃗⃗⃗⃗ (𝑖 = 1,2, … , 𝑘) of the distribution: 

λ𝜈 = 𝐶𝜈       (3.3) 

However, we assume that all data here is calculated from the data centroid. This principal 

component describes the direction of the largest data variation under a linear approximation 

[15]. The above characteristic equation can be transformed as follows: 

λ𝑥 = [
1

𝑘
∑ (𝑥j⃗⃗⃗  ∙  𝑥j⃗⃗⃗   𝑇)𝑘

𝑗=1 ] 𝜈      (3.4) 

=
1

𝑘
∑ (𝑥j⃗⃗⃗  ∙  𝑥j⃗⃗⃗   𝑇)𝑘

j=1 𝜈 =
1

𝑘
∑ (𝑥j

⃗⃗⃗⃗  ⃗ ∙  𝜈 )𝑥j⃗⃗⃗  𝑘
j=1                           (3.5) 

Since 𝜈  is in {𝑥1, . . . , 𝑥𝑘  }, we obtain: 

λ(𝑥𝑎⃗⃗⃗⃗ ∙ 𝜈 ) = 𝑥𝑎⃗⃗⃗⃗ ∙ 𝐶𝜈       (3.6) 

To solve the problem of recognition rate falls substantially when the compared pattern 

distributions have a highly nonlinear structure, the kPCA was applied with MSM for improving 

the recognition performance. The MSM has compared the small variations of the training data 

and recognition target data, to obtain a powerful recognition technique when the data 



19 
 

distribution can be linearly approximated, which is applied when multiple data can be used as 

recognition target image inputs. In the subspace method, a subspace that has d-dimensional 

vectors is selected according to a criterion such as the cumulative contribution rate from the 

eigenvectors, which are obtained using Principal Component Analysis (PCA) on the entered 

images. Then, the similarity between subspaces is defined according to the angle θ of 

eigenvectors P = {𝜇i⃗⃗⃗  } registered as a dictionary and the eigenvectors Q = {νj⃗⃗ } obtained from 

the input data (Figure 3.2).  

According to the formula of (3.1), the angle θ between subspaces is given as the maximum 

eigenvalue: 

cos θ = max
μi⃗⃗⃗  ∈P

 max
νi⃗⃗ ∈Q

µ⃗⃗ 
T
 ν       (3.7) 

Where μ
i

⃗⃗⃗  
T
 μ

i
⃗⃗⃗  = νj⃗⃗ 

T
 νj⃗⃗ = 1, μ

i
⃗⃗⃗  

T
 µ

j
⃗⃗  ⃗ = νi⃗⃗ 

T
 νj⃗⃗ = 0, i ≠ j, 0 < i, j ≤ d, and d is the dimensionality 

of the subspace used for recognition. 

 

3.2.2 Research Design for Classifiers and MSM  

The classifiers are required to be established before the MSM application. The MSM research 

approach involves two steps: offline and online recognition systems. The offline recognition 

system was used to validate the model and the accuracy of the recognition of classifiers (Figure 

3.3). The online recognition system was proposed to understand the computational times to 

enable in the real-time system. In offline recognition, videos must be captured using the UAV 

and converted through a JPG converter. For offline recognition, selected images were taken for 

training and testing the classifiers from different datasets of crops and orchards. For online 

recognition, a new video stream was captured. From the stream video, 1 frame was chosen out 

of 20 frames from a new video stream. Considering the restricted computational time required 

by a real-time system, RGB images were converted to the gray scale. While testing using the 

online recognition system, a sliding window was used to obtain 4 consecutive frames, and PCA 

was applied using the subspace method. In the subspace method, multiple images were required, 

and we noted that 4 frames were optimal for use in the subspace method. 
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Figure 3.3. Research framework establishing the classifiers and the MSM 

In the following sections, details of field experiments for training and testing different datasets 

and the offline and online recognition systems are described. 

 

3.2.3 Field Experiment for Training and Testing with Datasets 

To implement the MSM for feature recognition, different crops, and orchards are required for 

training the subspace patterns and verifying the recognition accuracy. While selecting the 

datasets for training, image acquisition at close range is preferable for agricultural croplands. 

On the other hand, for orchards, a high altitude allows the canopy to be covered in a minimum 

time. Generally, close-range spraying can effectively reduce the drift and waste of chemicals. 

However, UAV sprayer payload and battery operational time are major concerns in enabling 

autonomous spraying. In this study, two working patterns are defined depending on the flying 

height. The corresponding work areas are described as follows: for cropland (i.e., carrot, 

cabbage, and onions), plant height was less than 5 m, and image acquisition was performed 

using a UAV from a height of 5 m. In the case of orchards or plantations (i.e., chestnut, 

persimmons, and tall trees). We considered the height of orchards to be less than 15 meters, 

and thus, the acquisition of images was conducted from a height of 15 m from the ground 

(Table 3.1). Two classifier datasets were collected for cropland spray area recognition: one 

dataset for spray areas (carrot, cabbage, onions) and another dataset for nonspray areas (inner 

farm roads, ridges, bare soil). Similarly, two classifier datasets (spray and nonspray areas) were 

also collected for orchards: one dataset for orchard areas (chestnuts and persimmon) and 
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another dataset for trees that included structured areas (farm houses, green house structure, 

farm buildings). The classifier datasets were captured using a commercial UAV (DJI Phantom 

3 Pro) with an onboard 4K camera with 1/2.3" CMOS and FOV 94° 20 mm f/2.8 lens. The 4K 

videos were collected and converted to images using a JPG converter at the preprocessing stage. 

The images were collected in the morning from 10 AM to 12 PM to ensure uniform lighting 

while the UAV flew over the croplands and orchards. Days with clear skies were generally 

chosen for collecting the videos by flying the UAV. The classifiers were segmented from the 

videos according to flight heights for croplands and orchards (Table 1). Three field experiments 

were conducted with the UAV in three randomly selected zones; a rural farm with a 

combination of croplands and orchards (L1), a farm with different croplands with orchards 

(L2) and a research farm with croplands and orchards (L3) (Figure 3.4). MATLAB 2015a® 

(MathWorks, California) was used to develop the user interface and training and testing 

datasets for offline and online recognition systems. 

 

Table 3.1. Training and testing with datasets classified into two categories for offline and 

online recognition systems 

Targets 

Data sets Training image numbers Testing image numbers 

Spray 
Nonspra

y 

Offline 

(Spray + 

Nonspray) 

Online 

(Spray + 

Nonspray) 

Offline 

(Spray + 

Nonspray) 

Online 

Carrot 120 120 
First half 

(60+60) 

All 

(120+120) 

Last half 

(60+60) 

New video 

(89) 

Cabbage 198 198 
First half 

(99+99) 

All 

(198+198) 

Last half 

(99+99) 

New video 

(298) 

Onion 107 107 
First half 

(53+53) 

All 

(107+107) 

Last half 

(54+54) 

New video 

(204) 

Chestnut 97 97 
First half 

(48+48) 
All (97+97) 

Last half 

(49+49) 

New video 

(180) 

Persimmon 94 94 
First half 

(47+47) 
All (94+94) 

Last half 

(47+47) 

New video 

(210) 

Trees and 

Structures 
118 118 

First half 

(59+59) 

All 

(118+118) 

Last half 

(59+59) 

New video 

(141) 
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(a) L1: Cropland: Carrot, Spray Area   (b) L1: Cropland: Nonspray Area 

 

(c) L1: Orchard: Chestnut, Spray Area         (d) L1: Orchard: Nonspray Area  

 

(a) L2: Cropland: Cabbage, Spray Area  (b) L2: Cropland: Nonspray Area 

 

(c) L2: Orchard: Persimmon, Spray Area        (d) L2: Orchard: Nonspray Area 
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(a) L3: Cropland: Onion, Spray Area  (b) L3: Cropland: Nonspray Area 

 

(c) L3: Orchard: Trees, Spray Area   (d) L3: Orchard: Nonspray Area 

Figure 3.4. Training and testing datasets for building the classifiers for recognizing spray 

areas and nonspray areas 

3.2.4 Offline Recognition System 

The offline recognition system consisted of learning and recognition phases. The learning 

phase was started by collecting training image datasets of each class 𝑚 ∈ {1,… ,𝑀}  and 

inputting them into the system. For offline experiments of each land type, we used one of the 

videos with the first half for training and the last half for testing. The recognition phase was 

confirmed to begin once the learning phases of the classifiers using scene sequences were 

completed (Figure 3.5). Then, PCA was applied to establish the linear subspace as a reference 

subspace for each class. The training phase was completed in three stages. First, all the 

collected testing images of 𝐼𝑗 ∈ {1,… , 𝐽} were input into the system, and each I had frames of 

{𝑓1, … , 𝑓𝑛} . Second, the PCA was applied to establish the linear subspace for testing the 

subspace for each class 𝐼𝑗. Finally, the canonical angles between the current testing subspace 

and each reference subspace were calculated. The current image was assigned to the class with 

whom it shared the smallest canonical angles, which indicated that it had the highest similarity 

when referenced to the training datasets. In an offline experiment setting, the UAV was flown 

in 5 m above the cropland. The first half of images for training (99 images, spray and 99 images, 

nonspray) and the last half of images for testing (99 images, spray and 99 images, nonspray) 

were selected for cabbage fields (Table 3.1). The first half of images for training (53 images, 

spray and 53 images nonspray) and the last half of images for testing (54 images, spray and 54 

images, nonspray) were selected for onion fields. Similarly, the first half of images for training 

(60 images, spray and 60 images nonspray) and the last half of images (60 images, spray and 

60 images, nonspray) were selected for testing carrot fields. A height of 15 m was chosen for 

flying over orchard areas to collect the first half of images for training (48 images, spray and 
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48 images, nonspray) and the last half of images for testing (49 images, spray and 49 images, 

nonspray) for chestnut trees. Again, the first half of images for training (47 images spray and 

47 images, nonspray) and the last half of images for testing (47 images, spray and 47 images, 

nonspray) were used in the case of persimmon fields. Finally, the first half of images for 

training (59 images, spray and 59 images, nonspray) and the last half of images for testing (59 

images, spray and 59 images, nonspray) were used for trees and structures. The accuracy 

analysis of offline recognition system was compared with the true positive and true negative 

values (Table 3.2). For further confirmation, the extended datasets were considered to check 

the recognition accuracy of classifiers using MSM. 

 

 

Figure 3.5. Image sets in classifier recognition in the learning and recognition phases for 

MSM application 

 

Table 3.2. Accuracy analysis for the offline recognition system 
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recognition phase) 

Spray True Positive False Positive Total Positive 

Nonspray False Negative True Negative Total Negative 

 
Accuracy  
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3.2.5 Online Recognition System 

The subspace patterns were trained during the offline recognition process. These patterns were 

used for the online recognition development of classifiers. A sliding window was used to select 

4 images that were converted to 4 vectors through resizing and reshaping. The gray scale 

images were resized to 8x8 and reshaped to 1 column vector using MATLAB®. A test 

subspace was generated using PCA for creating a matrix from the vectors. The online 

recognition progress was completed in the following stages. First, each video from each target 

crop or orchard was preprocessed, and one image was extracted from every 20 frames. Among 

the extracted images, there were several frames captured that did not belong to either class 

during takeoff and landing or that included other plants during entry and exit. Such images 

were marked as noise images and removed to improve recognition accuracy. In the experiment, 

two datasets were collected for each target land. For the online experiment, we used all of the 

frames (removed noise) from one of the videos as training, and we used another video for 

testing (the video was not directly read; rather, the video was extracted to image frames, and 

noise was removed). In the second step, we classified the set of sequential images using the 

MSM classifier. Finally, the spray areas were recognized based on the training datasets (Figure 

3.6). In the datasets, 198 images (spray) and 198 images (nonspray) were collected from a 5 m 

height for training, and a reference subspace was built for use in the online experiment for 

cabbage. In case of testing, a new video was taken where one frame was selected out of 20 

frames. There was a total of 298 frames used for testing for cabbage. Similarly, 107 images 

(spray) and 107 images (nonspray) were selected for training in online experiments.  The new 

video stream was used with a total of 204 images for onion. In the case of carrot, 120 images 

(spray) and 120 images (nonspray) were used for training, and a new video stream with 89 

images was used for testing the datasets. For orchard categories from a height of 15 m, two 

classifiers were trained using 97 images (spray) and 97 images (nonspray); 94 images (spray) 

and 94 images (nonspray); 118 images (spray) and 118 images (nonspray) for chestnut, 

persimmon and trees, respectively. For testing the datasets of each target, a new video stream 

was taken with a total of 180 images extracted for chestnut, 210 images for persimmon and 

141 images for trees. 



26 
 

 

Figure 3.6. Online recognition system for classification of spraying based on MSM classifiers 

 

3.3 Results 

3.3.1 Offline Recognition Performance 

In the offline recognition system, the accuracy was 80.5% in the cropland classifiers for spray 

and nonspray area recognition in the first experimental areas (L1). In the case of orchards, the 

spray and nonspray area recognition was 75% (Table 3.3). In the second experimental area 

(L2), the recognition accuracy was 70.4% and 86.1% for croplands and orchards, respectively. 

Finally, mixed crop and orchard areas (L3) were chosen for offline recognition by classifiers. 

The recognition accuracy was 72.3% and 70% for croplands and orchards, respectively. The 

overall accuracy was 74.3% (croplands) and 77% (orchards) for the L1, L2 and L3 locations, 

which had a combination of croplands and orchards (Table 3.3). Wide crop canopy or orchards 

had the advantage of higher recognition by classifiers. The high accuracy of the recognition 
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system was obtained using the MSM for training and testing the datasets from the three 

different types of experimental fields. 

Table 3.3. Offline classifier recognition and accuracy analysis 

 

  True condition (offline recognition) 

Location 

(Croplands, 

Orchards) 

Work patterns Cropland Orchard 

Classifiers Spray Nonspray Spray Nonspray 

Predicted 

condition 

(Tested by 

the 

recognition 

phase) 

L1 

Spray 74 21 35 9 

Nonspray 16 79 13 31 

Accuracy 80.5% 75% 

L2 

Spray 38 11 41 2 

Nonspray 18 31 10 33 

Accuracy 70.4% 86.1% 

L3 

Spray 56 0 37 18 

Nonspray 31 25 15 40 

Accuracy 72.3% 70% 

(L1: a farm with a combination of croplands and orchards, L2: a farm with different croplands 

with orchards, L3: a research farm with croplands and orchards) 

Table 3.4. Extended datasets for training and testing of classifiers using offline recognition 

system 

Croplands 

and 

Orchards 

Data sets 
Training image 

numbers 

Testing image 

numbers Accuracy 

Spray Nonspray Offline Offline 

Carrot  256 256 First half (128+128) Last half (128+128) 73.79% 

Cabbage 440 440 First half (220+220) Last half (220+220) 81.25% 

Onion 210 210 First half (105+105) Last half (105+105) 66.32% 

Chestnut 224 224 First half (112+112) Last half (112+112) 77.31% 

Persimmon 248 248 First half (124+124) Last half (124+124) 70.94% 

Trees and 

Structures 
216 216 First half (108+108) Last half (108+108) 64.58% 
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Further confirmation, frame numbers were increased for training and testing of datasets, 

whether there were significant differences in recognition accuracy of classifiers. Extended 

datasets confirmed the accuracy of MSM method did not change much even if the frames were 

increased to double for testing and training of datasets in offline recognition system (Table 

3.4).  

 

3.3.2 Online Recognition Performance 

The developed user interface had the advantage of online information that included the current 

cropped image, the tested image sets using a sliding window, the predicted category, the 

recognition rate (the correct classifications were known during the test), the computational time, 

and the similarity plot. For the cropland classifiers, the UAV was flown at a 5 m height, and 

the recognition rate was observed to be 65.5% for L1 experimental areas. The computational 

time was only 0.0031 s for classifier recognition (Figure 3.7a-c). The flying height was 15 m 

for orchard classification, and recognition was observed at 69.1% with a computation time of 

0.0031 s for each classifier. In the second experimental flying areas (L2), the recognition 

accuracy of classifiers for noted spray and nonspray areas was 60.8% and 82.2% for croplands 

and orchards, respectively. The computational time was only 0.0031 s for recognition by the 

classifiers, and orchard classifier recognition also required only 0.0031 s for each classifier 

(Figure 3.8a-c). In the third experimental location (L3), the online recognition rate by 

classifiers reached 69% in 0.0048 s for each classifier and 71.7% in 0.0031 s for each classifier 

in croplands and orchards, respectively. The online recognition system had an average accuracy 

of 65.1% and 75.1% for croplands and orchards, respectively, with a recognition time of 0.0031 

s (Table 3.5). 
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(a) Cropland: Carrot  

   

(b) Crop field: Cabbage 
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(c) Cropland: Onions 

Figure 3.7. Online recognition performance of a classifier of croplands from a 5 m height 
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 (a) Orchard: Chestnut 

 

(b) Orchard: Persimmon 

   

(c) Orchard: Trees and Structures 

Figure 3.8. Online recognition performance of a classifier of orchards from a 15 m height 
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Table 3.5. Online classifier recognition and accuracy analysis 

Crop/Land 
Flying Height 

(m) 

Accuracy 

(%) 

Recognition time of classifier 

(s) 

Carrot 5 65.51 0.0031  

Cabbage 5 60.88 0.0048  

Onion 5 69.00 0.0031  

Chestnut 15 69.10 0.0031  

Persimmon 15 82.21 0.0031 

Trees and 

Structures 
15 74.10 0.0031 

 

3.4 Discussion 

The field experiments were conducted in different types of fields to increase dataset variety for 

the selection of spray and nonspray areas inside the croplands and orchards. The offline 

recognition system shows the MSM effectiveness for training and testing the datasets for 

croplands and orchards. The classifiers were used for croplands and orchards and were limited 

to being trained and tested on datasets acquired in the late fall season. The MSM has the 

flexibility to increase the number of classifiers, which may increase the computational time 

requirement. As UAV spraying is performed at higher speeds, we tend to focus on minimizing 

the computation time to reduce the computational burden for decision making to recognize the 

spray and nonspray areas in croplands and orchards. UAVs operating at high speed with limited 

battery life and a small payload of liquid chemicals demand high computational speed and fast 

operation with good recognition accuracy. With this consideration, the online recognition 

system provided some advantages, although its accuracy was not as high as that of the offline 

recognition system. The system needs further training data to increase accuracy, especially for 

the identification of croplands less than 5 m high and orchard areas from 15 m high. In the 

online experiment setting, similar environments resulted in increased recognition, while adding 

different categories of orchards reduced recognition. It was very challenging to test the datasets 

from a fast UAV operating speed at a high altitude. Classifiers were trained and tested on 

datasets acquired from three different locations to confirm the recognition accuracy. However, 

complex canopy systems were not present in the features. This MSM system had a limitation 

in recognizing classifiers in complex canopies of crops or orchards. We could not collect 

images of complex canopy crops, and we assume that in such canopy systems, upward and 
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downward image acquisition is required to identify the spray and nonspray areas under 

different lighting conditions. Lighting is a key point that needs to be carefully considered, 

especially interception through the canopy. It would be ideal to train the UAV features of spray 

and nonspray areas on a large field to obtain higher accuracy in precision applications ranging 

from usual to complex canopies of crops. Further studies are required to deal with such 

complexity of canopies, very large datasets in different lightening conditions, the processing 

of images to remove noise using extended Kalman filters in onboard UAV systems.  

 

3.5 Conclusions 

A machine learning system was developed using MSM for images collected by a UAV in 

different types of farm fields and orchards. The machine learning system was developed to 

train and test two classifiers, one for agricultural croplands and one for orchard areas, on 

different datasets to distinguish spray and nonspray areas for the development of autonomous 

spraying systems in the future. Images were collected from low (5 m) and high altitude (15 m). 

The accuracy of the offline recognition system was found to be 74.4% and 77% for low- and 

high-altitude systems, respectively. On the other hand, the online recognition system 

performance had an average accuracy of 65.1% and 75.1% for low-altitude and high-altitude 

image acquisition systems, respectively. The computation time for online recognition systems 

was observed to have a minimum of 0.0031 s (on average) for reporting classifier recognition. 

The developed machine learning system for recognizing classifiers of spray and nonspray areas 

can be implemented in the autonomous UAV spray system in real time. In our future 

experiments, we will improve the training and testing system by incorporating an artificial 

neural network (ANN) and deep learning to develop a UAV-based autonomous spraying unit 

for croplands and orchards. 

 

3.6 Summary 

The machine learning system was developed using MSM for images collected by a UAV in 

different types of farm fields.  The machine learning system was developed to train and test the 

datasets for two classifies of agricultural croplands and orchard areas for enabling autonomous 

spraying system in future.  The classifiers were sub categorized as spray and non-spray areas. 

Datasets images were collected from low (5 m) and high altitude (15 m) respectively. The 

offline recognition system was noted as 70.4% and 80.5% for low and high-altitude systems 

respectively. On other hand, the online recognition system performance was reported with 

higher accuracy of 80% from low altitude and 71% from higher altitude image acquisition 
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systems. The computation time for online recognition system was observed minimum with an 

average 0.004 s for reporting recognition of each of the frame for classifiers. The developed 

machine learning system for recognizing the classifiers can be implemented in the autonomous 

UAV spray system for recognizing spray and non-spray within the minimum computation in 

real-time. In our future experiment, we will implement this machine learning system to develop 

autonomous spraying system for croplands and orchards Furthermore; precision irrigation is 

one major concern to save water and unnecessary clogging. To enable the precision irrigation 

management, this is very important to know the soil moisture information. In the following 

chapter, UAV-based soil moisture information system will be discussed along with g 

calibration system. 

 

 

  



35 
 

Chapter 4 

Thermal Images Acquisition with UAV for Soil Surface Moisture 

Monitoring 

4.1 Background 

Soil moisture detection including canopy water content assessment is necessary for any crops. 

This part of the research attempted to develop soil moisture detection using UAV imagery. In 

the UAV imagery for detecting the soil moisture, thermal imaging and thermal videos are most 

commonly chosen. The radiation in the long-infrared range of the electromagnetic spectrum 

(9–14 µm) are usually detected by thermal cameras and produce radiation images, which called 

thermograms. A thermal image or thermographic image is actually a visual display of the 

infrared energy emitted, transmitted and reflected by the object. (Figure 4.1).  

 

Figure 4.1. Thermal imagery to determine the soil moisture from infrared information 

 

The field could contain different infrared energy due to the difference of soil moisture contents. 

Soil moisture could be found by detecting infrared energy using thermal camera. The thermal 

IR imagery got importance in agricultural sector due to recognizing of surface temperature of 

soil and plant canopy. The moisture content information can be indirectly measure through the 

canopy feature analysis or soil features analysis. The features mosaic got significance 

importance in agricultural researches. UAV based thermal camera have the opportunity to 

sense the temperature and soil moisture information (Figure 4.2). 
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Figure 4.2. Typical example of images camera to RGB images and thermal imagery 

 

It is very important to measuring soil moisture in agricultural production process and can help 

farmers manage irrigation system more effectively. Understanding the soil moisture contents 

of field, farmers can not only reduce water consumption during grow crops, but also improve 

the yield and quality of crops by precision management of soil moisture during key plant 

growth stages. There kinds of methods to measure field moisture, such like using soil moisture 

sensors, satellite remote sensing method, thermal infrared analyzing method, and thermal 

camera with UAV method. Soil moisture sensors could achieve continuously and real-time 

detection with high accuracy. But it needed to spend a lot of labor force and resources for 

setting the sensors. It could estimate soil moisture using satellite microwave remote sensing 

due to the large difference of dielectric properties between the of wet and dry soil. But it could 

not provide real-time monitoring because of satellite limitation (Yang, et al., 2015). Thermal 

infrared remote sensing method could collect the data from LANDSAT or ASTER. The 

problems of this method are non-real time and low resolution. Thus, to collect high-resolution 

thermal imaging images for analyzing the soil moisture in real time using thermal camera from 

UAV becomes research hotspot. 

 

Objective 

In this part of thesis, it attempted to develop the way to measure field moisture using thermal 

image collected by UAV. To estimate of surface soil moisture from thermal images and 

proposed a method to measure field moisture using thermal images acquisition by UAV.  
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4.2 Introduction 

4.2.1 ORB Features Detection and Matching  

A feature is a property that can be measured, or an observed characteristic of a phenomenon 

was defined in machine learning and pattern recognition (Bishop, Christopher, 2006). The key 

step for effective algorithms in pattern recognition, classification and regression is to choose 

the features, which should be informative, discriminating and independent. Different from 

features of numeric, strings and graphs which belong to structural features are used in syntactic 

pattern recognition. The concept of "feature" is related to that of explanatory variable used in 

statistical techniques such as linear regression. In the study, different features were analyzed 

for the thermal images (ORB features and SURF features). Oriented FAST and rotated BRIEF 

(ORB) features is a fast-robust local feature detector. The ORB features could be applied for 

object recognition or 3D reconstruction in computer vision tasks, which is based on the 

Features from Accelerated Segment Test (FAST) keypoint detector and the visual descriptor 

Binary Robust Independent Elementary Features (BRIEF). It could provide a fast and efficient 

replacement compare to SIFT features (Rublee, E.; Rabaud, V., 2011).  

ORB Feature has the advantages of resistant to noise and rotation invariant and is capable of 

being used for performance in real-time. To improve the image-matching applications, to 

perform panorama stitching and patch tracking using low-power devices without GPU 

acceleration, and to reduce the time of standard PCs for detecting feature-based objects. 

Compare to SIFT this descriptor performs equally well on these tasks (and better than SURF). 

ORB uses the intensity centroid which simply measured corner orientation. It assumes that the 

intensity of the angle deviates from its center and that the vector can be used to estimate the 

direction. First, the moments of a patch are defined as: 

𝑚𝑝𝑞 = ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)𝑥,𝑦     (4.1) 

the centroid (the mass center of the patch) could be found: 

C = (
𝑚10

𝑚00
,
𝑚01

𝑚00
)     (4.2) 

From the corner’s center -O to the centroid could be constructed as a vector, OC⃗⃗⃗⃗  ⃗ . The 

orientation of the patch could be simplified as: 

  θ = atan2(𝑚01,𝑚10)     (4.3) 
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where atan2 is the quadrant-aware version of arctan. The descriptor that obtaining rotation 

invariance could be computed when calculated the orientation of the patch and rotate it to a 

canonical rotation. 

The BRIEF descriptor is a bit string description of an image patch constructed from a set of 

binary intensity tests. Assume that p is a smoothed image patch, a binary test τ is defined as: 

 τ(𝑝; 𝑥, 𝑦) ≔ {
1 ∶ 𝑝(𝑥) < 𝑝(𝑦)
0 ∶ 𝑝(𝑥) ≥ 𝑝(𝑦)

   (4.4) 

where p(x) and p(y) is the intensity of p at a point x or y. The feature is defined as a vector of n 

binary tests: 

𝑓𝑛(𝑝) =  ∑ 2𝑖−1𝜏(𝑝; 𝑥𝑖 , 𝑦𝑖)1≤𝑖≤𝑛    (4.5) 

Here a Gaussian distribution is applied around the center of the patch and the vector length n 

= 256. 

BRIEF is steered by the orientation of key points. For any feature set of n binary tests at location 

(xi, yi), a 2 × n matrix was defined as: 

   s = (𝑥1,⋯,𝑥𝑛
𝑦1,⋯,𝑦𝑛

)     (4.6) 

Depending on the patch orientation θ and the corresponding rotation matrix Rθ, the steered 

version Sθ of S could be constructed as: 

𝑆𝜃 = 𝑅𝜃𝑆     (4.7) 

The steered BRIEF operator changes into: 

𝑔𝑛(𝑝, 𝜃) ≔ 𝑓𝑛(𝑝)|(𝑥𝑖, 𝑦𝑖) ∈ 𝑆𝜃   (4.8) 

The correct set of points Sθ will be applied to compute its descriptor as long as the keypoint 

orientation θ is consistent across views. 

 

4.2.2 SURF Features Detection and Matching 

Speeded up robust features (SURF) commonly applied as local feature detector and descriptor 

that can be used for object recognition, 3D reconstruction or image registration, classification. 
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SURF uses an integer approximation of the determinant of Hessian blob detector to detect 

interest points. Its feature descriptor is depending on the sum of the Haar wavelet response 

around the interest point. It can be computed with 3 integer operations using a precomputed 

integral image. It is reported that the standard version of SURF is faster than SIFT and more 

robust against different image transformations than SIFT (Herbert B., Andreas E., Tinne T., 

2008). The square-shaped filters are used as an approximation of Gaussian smoothing for 

SURF. It is much faster for filtering the image with a square using the integral image: 

𝑆(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑦
𝑗=0

𝑥
𝑖=0     (4.9) 

Using the integral image could evaluated the sum of the original image within a rectangle 

quickly based on evaluations at the rectangle's four corners. A blob detector based on the 

Hessian matrix is applied to find interest points from SURF. It used the determinant of the 

Hessian matrix to measure the local change around the point which is chosen based on the 

maximal determinant. Assume that a point p= (x, y) in an image I, the Hessian Matrix H (p, σ) 

at point p and scale σ could be wrote as: 

  𝐻(𝑝, 𝜎) = (𝐿𝑥𝑥(𝑝,𝜎)

𝐿𝑦𝑥(𝑝,𝜎) 

 𝐿𝑥𝑦(𝑝,𝜎)

𝐿𝑦𝑦(𝑝,𝜎)
)    (4.10) 

where 𝐿𝑥𝑥(𝑝, 𝜎) , 𝐿𝑥𝑦(𝑝, 𝜎), 𝐿𝑦𝑥(𝑝, 𝜎) and 𝐿𝑦𝑥(𝑝, 𝜎) are the convolution of the second-order 

derivative of gaussian with the image I (x, y) at the point x. A 9×9 box filter of is similar to a 

Gaussian with σ=1.2 and corresponds the lowest level for blob-response maps. 

 

4.3 Materials and Methods 

For measuring field moisture content using thermal camera, soil samples were collected to 

analyses the digital data of thermal images to find out the relation with soil moisture. 

Monotectic analysis was chosen as the basic method. The image acquisition platform was 

designed to take the images from the UAV (Phantom3 Professional, DJI) (Figure 4.3). The 

UAV images were collected with thermal camera (FLIR Vue Pro 336) and on-board RGB 

camera (Flying height: 20m; Flying place: Tsukuba Plant Innovation Research Center T-PIRC).  

 

4.3.1 Image Mosaic and Feature Detection for Estimating Soil Moisture 
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Figure 4.3. Image mosaic and feature detection for estimating soil moisture 

 

The data of thermal images were 8-bit digital numbers about near-infrared wavelength. For 

recognizing the soil moisture from thermal images, firstly, the calibration for thermal camera 

to find out the relation about the soil moisture and thermal images. And then, a UAV equipped 

with thermal camera and RGB camera was used for datasets acquisition. At last, for showing 

the moisture distribution, we uploaded the data into the software of ArcGIS 10.3 for making 

soil moisture distribution map.  

 

4.3.2 Thermal Images Acquisition Platform 

The image acquisition platform was designed to capture the images from a commercial UAV 

(Phantom3 Professional, DJI). The UAV images were collected with thermal camera (FLIR 

Vue Pro 336) and on-board RGB camera (Flying height: 20m; Flying place: T-PIRC).  

 

4.3.3 Calibration Method  

4.3.3.1 Experiments of Testing Soil Moisture Using A Household Soil Moisture Detector  

For measuring field moisture content using thermal camera, soil samples were collected to 

analyses the digital data of thermal images to find out the relation with soil moisture. 

Monotectic analysis was chosen as the basic method. 16 cups of soil samples were divided into 
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4 groups, and added into different amount of water (0, 50, 100, 150ml, soil weight: 350g, a 

moisture sensor was chosen for detecting the soil moisture directly in the same experiment 

(Indoor humidity: 38%, indoor temperature: 32℃) (Figure 4.4).  

 

Figure 4.4. Indoors experiment 

(a: Soil samples; b: Moisture sensor; c: Thermal image) 

 

 

Figure 4.5. Outdoors experiments 

 

Figure 4.6. Outdoors field experiments,   

(a) Reference moisture sensor; (b) Thermal 

camera 

a b c 

a 

b 
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Again, 16 cups of soil samples were divided into 2 groups, and added into different amount of 

water (25, 50, 75, 100, 125, 150ml, soil weight: 350g), tested 5 times at similar environment 

(Outdoor humidity: 43%, Outdoor temperature: 34℃) (Figure 4.5). Finally, chose different 

fields to detect the soil moisture and captured thermal images for testing the calibration system 

(Figure 4.6). 

 

4.3.3.2 Soil Moisture Sensor Unit 

A new soil moisture sensor unit was designed based on the IoT technologies and micro 

controlling board (Figure 4.7). This soil moisture sensor unit were made up with a soil 

moisture sensor as the main part to test the moisture content; a digital temperature and humidity 

sensor module was used for collecting the information of environment; the GPS module was 

selected for recording the location when test in the field; a wireless transmission module was 

chosen to send the data to a laptop for saving and analyzing and the LCD display was used to 

show the data in real-time. 

 

Figure 4.7 Soil Moisture Sensor Unit 

 

4.3.3.3 Indoor Experiments with the Sensor Unit 

In order to test the relation of the soil moisture and thermal image value, 25 plastic cups of soil 

were randomly added different amounts of water. After keeping for two hours, a thermal image 
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was captured with the thermal camera (Flir VUE Pro 336) (Figure 4.8), as well as the soil 

moisture content were detected twice of each sample (Table 1).  

  

Figure 4.8. Soil Samples and Thermal Image 

 

Table 1. Data of Indoor Soil Moisture Detecting Using Sensor Unit 

Soil M GPS LUN GPS LAT GPS TIME AIR Temperature AIR Humidity Soil Temperature 

3365 3607.1593 14005.7007 12:12:00 8.7 24.5 14.2 

3365 3607.1591 14005.7004 12:12:00 9.1 24.9 

3267 3607.1552 14005.6963 12:12:00 10.4 0.7 12.9 

3266 3607.1551 14005.6962 12:13:00 10.4 0.7 

 

3049 3607.156 14005.6952 12:13:00 10.3 0.7 12.4 

3049 3607.1561 14005.6952 12:13:00 10.3 0.7 

 

2962 3607.1561 14005.6932 12:13:00 10 0.6 12.4 

2962 3607.1562 14005.6929 12:13:00 10 0.6 

 

2249 3607.1529 14005.6897 12:14:00 10.1 0.8 12.1 

2250 3607.1526 14005.6896 12:14:00 9.9 0.6 

 

1829 3607.1517 14005.6889 12:14:00 10.7 1.5 11.8 

1822 3607.1517 14005.6888 12:14:00 10.7 1.5 

 

3104 3607.1516 14005.6883 12:14:00 9.9 0.9 13.3 
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3104 3607.1517 14005.6883 12:14:00 9.9 0.9 

 

1822 3607.1521 14005.6885 12:15:00 9.6 0.7 12.2 

1817 3607.1521 14005.6885 12:15:00 9.5 0.6 

 

2600 3607.1524 14005.6887 12:15:00 9.8 1.1 12.1 

2600 3607.1525 14005.6886 12:15:00 9.8 1.1 

 

2809 3607.1532 14005.6887 12:15:00 9.5 0.9 12 

2802 3607.1532 14005.6888 12:15:00 9.4 0.9 

 

2590 3607.154 14005.6883 12:16:00 9.6 1.4 11.6 

2590 3607.1543 14005.6882 12:16:00 9.6 1.4 

 

2893 3607.1552 14005.6854 12:16:00 9.2 1.1 11.9 

2894 3607.1547 14005.6852 12:16:00 9.3 1.2 

 

2445 3607.1544 14005.6833 12:17:00 9.4 1.5 12 

2445 3607.1544 14005.6833 12:17:00 9.4 1.5 

 

2793 3607.1535 14005.6836 12:17:00 9.6 1.8 12.1 

2792 3607.1535 14005.6838 12:17:00 9.3 1.6 

 

2935 3607.1524 14005.6846 12:17:00 8.9 1.3 11.8 

2933 3607.1522 14005.6847 12:17:00 8.7 1.2 

 

2889 3607.1527 14005.6853 12:18:00 9 1.6 11.8 

2889 3607.1527 14005.6853 12:18:00 9 1.6 

 

2728 3607.1535 14005.6864 12:18:00 7.9 0.6 11.6 

2723 3607.1535 14005.6865 12:18:00 7.8 0.6 

 

2949 3607.1535 14005.6876 12:19:00 7.6 0.5 12.2 

2950 3607.1534 14005.6875 12:19:00 7.4 0.3 

 

3255 3607.1526 14005.6878 12:19:00 7.6 0.6 15.1 

3265 3607.1523 14005.6877 12:19:00 7.6 0.6 

 

3139 3607.1518 14005.6879 12:19:00 6.9 25.5 11.6 
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3140 3607.1518 14005.688 12:19:00 6.8 25.5 

 

2454 3607.1508 14005.6895 12:20:00 6.4 25.1 11.8 

2448 3607.1505 14005.6897 12:20:00 6.5 25.2 

 

1763 3607.1488 14005.6911 12:20:00 6.5 25.2 11.9 

1763 3607.1487 14005.6917 12:20:00 6.7 25.4 

 

2523 3607.1486 14005.6935 12:20:00 7 0.1 12 

2523 3607.1491 14005.6941 12:20:00 7 0.1 

 

2775 3607.1549 14005.6952 12:21:00 7.5 0.7 11.3 

2775 3607.1551 14005.6951 12:21:00 7.5 0.7 

 

2111 3607.1555 14005.6924 12:21:00 7.3 0.5 10.9 

2111 3607.1555 14005.6922 12:21:00 7.3 0.5 

 

1751 3607.1479 14005.6863 12:22:00 8.1 1.7 Water 

1755 3607.148 14005.6865 12:22:00 8.1 1.8 

3464 3607.1492 14005.6878 12:22:00 7.5 2.1 Air 

3465 3607.1497 14005.6882 12:22:00 7.2 1.9 

 

4.3.3.4 Soil Moisture Change Monitoring 

In order to monitor the changing of soil moisture and test the relation, a 35 cm height flowerpot 

of soil sample was set and added water until saturated. The soil moisture content was collected, 

and a thermal image was captured automatically every 10 minutes (Figure 4.9).  
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Figure 4.9. Soil Moisture Change Monitoring System and Thermal Images 

4.3.3.5 Field Experiments 

 

Figure 4.10. Landmark and Images Acquisition System 

Daytime Vision 

Night Vision 
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In order to test the calibration method, the field experiments were designed (Figure 4.10). At 

beginning, 16 landmarks were set up on the field and three times of soil moisture content were 

detected inside of the marks and recorded with the sensor unit. The UAV with thermal camera 

flied at the altitude of 5 m to capture the RGB images and thermal images and saved the data 

at TF cards (Figure 4.11). 

 

 

Figure 4.11. RGB Image and Thermal Image Captured by UAV 

 

4.3.4 Thermal Images Mosaicking with ORB Features   

The mosaicking system was tested with ORB features for multiple thermal images. It was 

programming in Python2.7® and OpenCV. The work progress was followed: Firstly, to 

identify the ORB features of each thermal images; and then matching the same ORB features 

of each images for recognizing the same area; and reduced the matching errors through Kalman 

filter; finally, clipping the overlap area and stitching images for a new image.  

 

4.3.5 Thermal Images Mosaicking with SURF Features   

The mosaicking system was developed with SURF features for multiple thermal images. The 

work progress was followed: Firstly, to identify the SURF features of each thermal images; 

and then matching the same SURF features of each images for recognizing the same area; and 

reduced the matching errors through Kalman filter; finally, clipping the overlap area and 

stitching images for a new image.  
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4.3.6 Soil Moisture Distribution Map 

The soil moisture distribution map was created by the software of ArcGIS 10.3 (Esri, USA). 

The mosaicking images with multiple thermal images were georeferenced based, that contained 

the GPS information by setting up landmarks. After calibrated with the calibration method of 

soil moisture, we uploaded the image into the system and analyzing with spatial analysis 

interpolation and inverse distance weighting (IDW).  

 

4.4 Results 

4.4.1 Soil Moisture Detection  

4.4.1.1 The Relation Detected by Household Moisture Detector 

Soil moisture content had negative correlation with thermal energy (Figure 4.12 and Figure 

4.13).  

 

 
Figure 4.12. Relation of soil moisture and digital number of thermal imageries indoors 

experiment 
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Figure 4.13. Relation of soil moisture and digital number of thermal imagery outdoors 

experiment 

 

4.4.1.2 The Relation of Soil Moisture and Thermal Image Value 

 

Figure 4.14. The Relation of Soil Moisture and Thermal Image Value 
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In this part, the ORB features were tested recognition for thermal images (Figure 4.15). One 

image could recognize 104 ORB features and 53 could be useful for matching after selected by 

extend Kalman filter (EKF) for reducing the noise; the other image could recognize 111 

features and 57 could work for matching. Finally, 44 features could match, and 27 features 

were matching correctly, the matching accuracy was just 61.7% (Table 4.2 and Table 4.3). 

 

Figure 4.15. ORB features matching of thermal images (Features matching errors, 320x240) 

 

Table 4.2. ORB features recognition  

  
Number of ORB 

Features 
Selected ORB Features 

(EKF, k=2) 

Thermal Camera 
Image1 104 53 

Image2 111 57 

Table 4.3. ORB features matching accuracy 

 
Matching 

Features 

Matching 

Correctly 

Matching 

Accuracy 

Thermal Camera 44 27 61.4% 

 

SURF features recognition for thermal images (Figure 4.16) could be recognized 481 SURF 

features and 249 could be useful for matching after selected by extend Kalman filter (EKF) for 

reducing the noise; the other image could recognize 524 features and 216 could work for 

matching. Finally, 186 features could match, and 167 features were matching correctly, the 

matching accuracy was 89.7% (Table 4.4 and Table 4.5). 



51 
 

Compare with the results of ORB features and SURF features, we found that the SURF features 

could work well for thermal images for features recognition and matching with multiple 

thermal images.  

 

Figure 4.16. SURF features matching of thermal images 

Table 4.4. SURF features recognition  

  
Number of SURF 

Features 

Selected SURF 

Features 
(EKF, k=2) 

Thermal Camera 
Image1 481 249 

Image2 524 216 

 

Table 4.5. SURF features matching accuracy  

 

4.4.3 Mosaicking of Thermal Images Using SURF Features 

The results of thermal images mosaicking with multiple images using ORB features (Figure 

4.17). The mosaicking results influenced by the matching error with ORB features for thermal 

images, it occurred chaotic image. The results of thermal images mosaicking with multiple 

images using SURF features could find from Figure 4.18 and Figure 4.19. It could achieve 

 
Matching 

Features 

Matching 

Correctly 
Matching Accuracy 

Thermal Camera 186 167 89.7% 



52 
 

the ability of mosaicking multiple thermal images. Some problems were found when did the 

mosaicking image distortion caused by image channels changing (Thermal image - Grayscale 

image – RGB image) (Figure 4.19). And, drop frame and image radial distortion when 

mosaiced with more than 16 thermal images. Further research is needed to focus on dropping 

frames and mosaicking with multiple images and confirmation of estimating moistures from 

thermal images. 

 

 

16 images 

Figure 4.17. Mosaic of features in thermal imagery 

 

 

Figure 4.18. Mosaic of features in thermal imagery 
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Figure 4.19. Multiple thermal images mosaicking using surf features 

 

4.4.4 Mosaicking of RGB Images and Thermal Images of the Field 

 
Figure 4.20. Mosaicking of RGB Images of the Field 

 

 
Figure 4.21. Mosaicking of Thermal Images of the Field 
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4.5 Discussion 

The study aims to measure field moisture content using thermal image processing for precision 

agricultural management. Developed the calibration method for detecting soil moisture with 

thermal images. UAV images were collected with thermal camera. The mosaic was conducted 

for 16 images for thermal images. Imagery from each sensor was geo-referenced and 

mosaicked with a combination open source software open drone map. An algorithm was 

developed based on the surf. Soil moisture from ground reference direct measurement needs to 

correlate with thermal images digital numbers using the regression model with more accuracy. 

Soil moisture measurement using thermal imagery from UAV needs further confirmation. 

Mosaicking with multiple thermal images had the problems of dropping frames and image 

radial distortion. Dropping frames and mosaicking with multiple images need to be focused on. 

 

4.6 Summary 

The main purpose of this part of research is aimed to measure field moisture content using 

thermal image processing for precision agricultural management for helping farmers manage 

their irrigation systems more effectively with a small amount of water. Also, to improve the 

yield and quality of crops by improving the management of soil moisture during key plant 

growth stages. Developed the way estimated of surface soil moisture from thermal images 

using the calibration method. Soil samples were collected and added different amount of water 

for measuring the moisture percentage using a moisture sensor, as well, the thermal images 

were captured using a thermal camera, monotectic analysis method was chosen for recognizing 

the relation of soil moisture and the digital numbers of thermal images. Soil moisture 

measurement using thermal imagery from UAV needs further confirmation. Compered the 

performances of ORB features and SURF features for thermal images mosaicking. SURF 

features could easily detect from thermal images with high accuracy of matching. Developed 

a method of mosaicking multiple thermal images with SURF features using Python2.7® and 

OpenCV®. Dropping frames and mosaicking with multiple images need to be focused on. 

Further experiment will be conducted using wireless sensor network for confirmation of soil 

moisture information to train and test the datasets using machine learning approaches. In the 

applications of spray and nonspray area, including soil moisture information, would require a 

multi task robot platform. In the multi-task robot platform, UAV-based coordination has the 

high potential to lead the task for developing a navigation planner. In the following chapter, 

UAV-based navigation planner will be introduced with multi-task robot platform using 
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autonomous electrical platonic vehicle. In the multi-task system, feature recognition, edge 

detection and navigation planner system will be discussed. In the navigation planner, GIS 

mapping will be incorporated along mosaicking the ORB RGB image features for the large 

farms. 
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Chapter 5 

Development of UAV-Follower based Multi-task Robots System 

Using Features Recognition and Navigation Planner 

5.1 Background 

With the reduction of new agricultural labor force and ageing intensifies, this creates inevitable 

problems of labor shortages in agricultural production. It reported that agricultural employment 

population decreased each year, and nearly half of labors over the age of 65 in Japan. More 

than 400 thousand ha. farmland was abandoned (Figure 5.1). Japanese Government has 

published a New Robot Strategy, which aims to achieve for implementation of automatic 

driving tractors to actual field until 2020 (New Robot Strategy, The Headquarters for Japan’s 

Economic Revitalization, 2015).  

 

 

Figure 5.1. Statistics of employed person by agriculture and forestry of Japan 

 

It is still a challenging subject for mobile robots operating in agricultural environments because 

of the changes in weather conditions and variations of the nature of the terrain and vegetation. 

Study of agricultural autonomous vehicle keeps popular for long time. Autonomous navigation 

systems could work for different tasks, such as planting, weeding, spraying, fertilizing, 

inspection, cultivating, harvesting and transportation. The visual sensors such as cameras have 

been widely used in robotic navigation system due to the cost effectiveness and capability to 

provide huge information. The using of mechanical sprayers, especially in conventional 

agriculture is the most common form of pesticide applications. It reported that over 98% of 
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insecticides sprayed and 95% of herbicides reach a destination other than their target species, 

because of sprayed or spread across entire farmlands. Nowadays, it is widely recognized that 

the abuse of agricultural chemicals is harmful to our environment. To reduce the use of 

pesticides and improve the efficiency, spray technology has become got importance topic in 

the field of precision agriculture. In the previous chapter, we have focused the potential of 

UAV in agricultural sensing system and application.  

UAVs have the potential in agricultural applications and have ideal solution to enable precision 

agriculture compare to aerial mapping and satellite remote sensing. Not only use of UAVs is 

more efficient, but also more cost-effective compare to areal or high-resolution commercial 

satellite data sets. It helps farmers to monitor crops in real-time and provides high-resolution 

images of field and canopy for crop growth and production. For example, some researchers 

tried to create accuracy maps using the HD images acquisition with UAV for precision 

agricultural to monitor the crops growing and guided autonomous agricultural robotics for 

target operations (spraying, harvest transporting and weeding control). It could effectively 

improve the operational efficiency, guide the transportation vehicle and reduce dependence on 

agricultural labor force by collaborative work for autonomous agricultural robots with UAV. 

 

Objectives 

The aim of this part of research is to develop a UAV-follower based autonomous spray system 

using feature recognition for target spraying for precision agricultural practices. Further, 

coordination of UAV-follower vehicle. It is expected that the autonomous electrical vehicle 

with spraying system could follow the UAV (map-based or target tracking) for spraying inside 

the target field. 

 

 Figure 5.2. UAV-Follower based autonomous spray system 
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Figure 5.3. UAV-Follower based autonomous transportation system 

 

 

Figure 5.4. Flowchart to integrate UAV image and Electronic Platonic Vehicle (EPV) 

through Navigation Planner 
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5.2 Materials and Materials 

5.2.1 ORB-SLAM 

ORB-SLAM (Simultaneous Localization and Mapping) is a versatile and accurate SLAM 

solution for monocular, stereo and RGB-depth cameras. ORB-SLAM is based on the Oriented 

FAST and rotated BRIEF (ORB) features which is a fast-robust local feature detector, it is 

rotation invariant and resistant to noise, less affected by image noise, and is capable of being 

used for real-time performance. It operates in real time, in small and large, indoor and outdoor 

environments.  

The ORB-SLAM use the same features (ORB) for all tasks (Figure 5.5): tracking, mapping, 

relocalization and loop closing. It makes the system more efficient, simple and reliable 

compare to the other SLAM systems.  

 

 

Figure 5.5. Overview of ORB – SLAM system  

 

5.2.2 Image Edge Detection 

Edge detection is a basic tool for image processing, computer vision and machine vision, 

especially in the areas of detection and extraction features. Edge detection includes various 
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changes in brightness or more formal discontinuities. The point at which the brightness of the 
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image changes drastically is usually organized into a set of curved segments called edges. 

(Raman Maini, etc., 2009). Detecting sharp changes in image brightness is to capture changes 

in important events and world properties. It can be shown that under fairly general assumptions 

about the image forming model, the discontinuity of image brightness may correspond to: 

discontinuity in surface orientation, discontinuity in depth, changes in material properties, and 

changes in scene illumination. Commonly, it divided into two categories for most of the edge 

detection methods, search-based and zero-crossing based. The search-based method detects the 

edge by first calculating a measure of the edge strength, typically a first derivative expression, 

such as a gradient magnitude, and then uses the calculated estimate of the local direction to 

search for the local direction maximum of the gradient magnitude. The edge, usually the 

gradient direction. The zero-crossing method searches for a zero-crossing in the second-order 

derivative expression computed from the image to find the edge, usually the zero-crossing of 

the nonlinear difference expression or the zero-crossing of the Laplacian operator. 

 

5.2.2.1 Sobel operator 

It can be applied to estimate image gradients from the input image by using different gradient 

operators. Using central differences is the simplest approach, it could be found as: 

     

 𝐿𝑥(𝑥, 𝑦) = −
1

2
𝐿(𝑥 − 1, 𝑦) + 0 ∙ 𝐿(𝑥, 𝑦) +

1

2
∙ 𝐿(𝑥 + 1, 𝑦)    (5.9) 

𝐿𝑦(𝑥, 𝑦) = −
1

2
𝐿(𝑥, 𝑦 − 1) + 0 ∙ 𝐿(𝑥, 𝑦) +

1

2
∙ 𝐿(𝑥, 𝑦 + 1)  (5.10) 

 

The following filter mask is applied to the image data: 

𝐿𝑥 = [−1/2   0  1/2]     (5.11) 

 

𝐿𝑦 = [
+1/2

0
−1/2

]      (5.12) 

 

    

The Sobel operator is based on the filters as following: 

 

  𝐿𝑥 = [
−1  0 + 1
−2  0 + 2
−1  0 + 1

]     (5.13) 
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𝐿𝑦 = [
+1 + 2 + 1
0       0      0
−1 − 2 − 1

]     (5.14) 

 

Given this estimate of the first-order image derivative, the gradient magnitude is then 

calculated as: 

|∇L| = √𝐿𝑥
2 + 𝐿𝑦

2      (5.15) 

 

where the gradient orientation is estimated like: θ = atan2(𝐿𝑦, 𝐿𝑥)  

 

5.2.2.2 Robert’s cross operator 

The Roberts Cross operator performs simple, fast-calculated two-dimensional spatial gradient 

measurements on the image. It represents the estimated absolute magnitude of the spatial 

gradient of the input image of pixel value at each point in the output. The operator with a pair 

of 2×2 convolution kernels: 

 

    [
+1 0
0 −1

] and [
0 +1

−1 0
]    (5.16) 

 

One kernel is simply another core rotated by 90°. Gradient magnitude is calculated as: 

𝛻𝐼(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2   (5.17) 

 

where the gradient orientation can be estimated as:  

θ = arctan (
𝐺𝑦

𝐺𝑦
−

3π

4
)    (5.18) 

 

5.2.2.3 Canny Edge Detector 

Canny edge detection is a technique for extracting useful structural information from different 

visual objects and significantly reducing the amount of data to be processed. (John C., 1986). 

The Canny edge detection algorithm contains 5 different steps: Apply a Gaussian filter to 

smooth the image to eliminate noise; find the intensity gradient of the image; apply non-

maximum suppression to eliminate spurious responses to edge detection; apply double 

thresholds to determine potential edges; track the edges by hysteresis: edge detection is 
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ultimately determined by suppressing all other edges that are weak and not connected to strong 

edges. 

 

5.2.2.4 Gaussian filter  

Since all edge detection results are susceptible to image noise, noise must be filtered out to 

prevent false detections caused by noise. The Gaussian filter is applied to the image 

convolution to smooth the image. This step will make the image slightly smoother to reduce 

the effect of significant noise on the edge detector. The equation of the Gaussian filter kernel 

of size (2k + 1) × (2k + 1) is given by: 

𝐻𝑖𝑗 =
1

2𝜋𝜎2 exp (−
(𝑖−(𝑘+1))

2
+(𝑗−(𝑘+1))

2

2𝜎2 ) ; 1 ≤ 𝑖, 𝑗 ≤ (2𝑘 + 1) (5.17) 

Here is an example of a Gaussian filter with the size of 5×5 for creating the adjacent image, 

with σ = 1.4 (The asterisk indicates convolution operation).  
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∗ 𝐴     (5.18) 

The size of the selected Gaussian kernel will affect the performance of the detector. The larger 

the size, the lower the sensitivity of the detector to noise. Edge detection operators (such as 

Roberts, Prewitt, or Sobel) return the values of the first derivative of the horizontal (Gx) and 

vertical (Gy) directions. Thus, the edge gradient and direction can be determined:  

G = √𝐺𝑥
2 + 𝐺𝑦

2     (5.19) 

Θ = atan2(𝐺𝑥 , 𝐺𝑦)     (5.20) 

Where G can be calculated using the Hypot function, atan2 is an arctangent function with two 

parameters. 

 

5.2.2.5 Edge Tracking by Hysteresis 

Some edge pixels are still caused by noise and color changes. To account for these spurious 

responses, edge pixels with weak gradient values must be filtered out and edge pixels with high 

gradient values must be preserved. This is achieved by selecting a high threshold and a low 

threshold. If the gradient value of the edge pixel is above the high threshold, it is marked as a 

strong edge pixel. If the gradient value of the edge pixel is less than the high threshold and 

greater than the low threshold, it is marked as a weak edge pixel. If the value of the edge pixel 
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is less than the low threshold, it is suppressed. The two thresholds are determined empirically, 

and their definition will depend on the content of a given input image. 

 

5.2.3 Development of the Navigation System 

In this study, we chose a 3D (ZED) camera for navigation. ZED camera is a 3D camera that 

that provides depth sensing, position tracking and 3D graphics for any application. It could be 

used for robotics, VR (virtual reality) and 3D analytics. It contains dual 4MP camera for 

capturing 3D videos with high-resolution and high frame-rate. It could capture 110° wide-angle 

video and depth perception indoors and outdoors at up to 20m (0.5m-20m). The function of 

creating 3D dense map using Octomap was added to the system, because the ORB-SLAM 

generated sparse point clouds which is limitation for navigation and leaded to tracking lost 

easily. The Octomap was used for creating 3D dense map has little impact on real-time 

performance compared to sparse point clouds. And we send the motion and attitude signal [V, 

a, α, δ] to the autonomous vehicle for guiding and navigation (Figure 5.6). The Octomap is 

projected on the GIS environment for mapping in the global positioning points. In case remote 

assisted autonomy of multiple coordinated UAV-based robot system GIS based navigation, 

planner is required. 

 

 

Figure 5.6. Create 3D dense map using Octomap 
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5.2.4 Development of Autonomous Electrical Vehicle  

Two DC motors were installed in the autonomous electrical vehicle, one for driving and the 

other for steering. The DC motors was controlled by micro controller, it could execute moving 

and steering commands from the navigation system. One encoder was connected with the 

steering unit for monitoring the steering angle of vehicle. The other two encoders were 

equipped with the rear wheels for calculating the speed. The data was collected by an Arduino 

UNO. Again, a   IMU sensor was used for detecting the attitude of the autonomous vehicle and 

feedbacking to the navigation for correcting controlling error. The IMU sensor (MPU – 6050 

Module) is made with a 3-axis gyroscope and a 3-axis accelerometer on the same silicon die, 

which designed for the low power and cost, and high-performance requirements (Figure 5.7). 

 

5.2.5 Development of Autonomous Spraying System 

Spraying system contains two main parts, the main body and spraying actuator module. DC 

pump was for supporting presser of spraying and flowmeter was selected for controlling the 

amount of spray. The spraying actuator module contained 5 nozzles (Figure 5.8). 

 

 

Figure 5.7. Development of autonomous electrical vehicle 
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Figure 5.8. Development of Autonomous Spraying System 

 

5.2.6 Choice of Work Patterns 

1. Continuous Spraying 

 L/V < TT      (5.21) 

2. Interval（target）Spraying 

 L/V > TT      (5.22) 

Minimum operation time is less than moving time to adjacent plants, continuous spraying 

control strategy is adopted. Otherwise，target spraying control strategy will be used. 

3. Mixed pattern 

Including two work patterns above, judged by different plants spacing. Where, L is Adjacent 

plants spacing, V is the Velocity of spraying robot and TT is the Minimum operation time 

(threshold) (Figure 5.9). 

 

Figure 5.9. Choice of work patterns 

 

L 

V 
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5.2.7 Plants Edge Detection Using Canny Edge Detector 

To achieve tart spraying, the position and size of plans should be detected. A plants edge 

detection system was developed using Canny edge detector, and Kalman filter was used for 

noise reduction, the k value for filtering was changeable for analyzing the best detecting results. 

 

5.2.8 Images Mosaicking for Local Mapping 

An open source software OpenDroneMap was selected for mosaicking aerial drone imagery. 

A typical drone uses a simple point-and-shoot camera, so images from drones, from different 

perspectives, are like any photos taken from a point-and-shoot camera, such as drones, balloons, 

kites and street view data. OpenDroneMap converts these simple images into 3D geographic 

data that can be used in conjunction with other geographic datasets. It uses ORB-SLAM to 

render texture meshes from video. 

 

5.3 Results 

5.3.1 ORB Features Extraction and Matching 

 

 

Figure 5.10. ORB features extraction without selected using EKF 
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Figure 5.11. ORB features extraction and selected using EKF 

 

Table 5.1. ORB features extraction and selected using EKF 

 
Number of ORB 

Features 

Selected ORB 

Features  

(EKF, k=2) 

Reduction 

rate 

RGB Camera 

83961 53482 36.3% 

92767 58658 36.8% 

 

5.3.2 ORB-SLAM Simulation  

Large numbers of ORB features were extracted by the system, and many were invalid features 

(Figure 5.11, Table 5.1). In order to decrease the noise of images and increase calculating 

speed, EKF (Extended Kalman filter, k=2) was used for selecting good matching points at first 

step. The invalid features could reduce more than 36% after using EKF for selecting the ORB 

features (Table 5.1). The trajectory planning is shown while the large numbers of features are 

detected, and key features were selected for path generation (Figure 5.11).  

 

5.3.3 Edge Detection Using Canny Edge Detector 

Canny edge detector was used to detect the edge, soil and plants, which find the edge of the 

features; the edge of the features could help in navigation system as a map-based references 
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(Figure 5.12). In this case we, have used canny used detector for the EPV and UAV both to 

find out the edges of the features. 

 

 

Figure 5.12. Road edge detection using Canny edge detector using EPV 

 

 

 

Figure 5.13. ORB features detected by ORB-SLAM system using ZED camera to navigate 

the EPV 
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Figure 5.14. Simulation experiment results for navigation using ORB-SLAM using ZED 

camera system to navigate the EPV 

 

5.3.4 UAV Features Mapping for Developing Navigation Planner 

The UAV images system for crop plant growth and field condition was mapped to mosaic 

multiple images taken by the UAV at the T-PIRC farm. Total 81 images were taken with 30% 

overlap to develop the mosaic map for field 1 with crops (Figure 5.15) and 96 images were 

taken to develop the mosaic with same overlap percentage for field 2 (Figure 5.16). The GIS-

based navigation planner map will be developed in our further research using ArcGIS and local 

ground trothing points. 

 

Figure 5.15. Images mosaicking for local mapping 



70 
 

 

 

Figure 5.16. Images mosaicking of agricultural fields 

 

5.4 Discussion 

The coordination navigation system was the aim of the subjects. The coordination-based 

navigation could help in agricultural work to reduce with remote assistance for autonomous 

application of multiple robots. In this part of the research the attempts were taken to join feature 

recognition system for further application with aided in EPB and UAV. The UAV was 

considered as the leader of the multiple coordinated mobile robots. In the further research, field 

worked will be conducted based on the navigation planer with UAV leader for EPV vehicles. 

 

5.5 Summary 

This research was conducted to develop UAV-follower based multi-task robot’s system using 

features recognition and navigation planner for working in the farm. In the present scenario, 

Japanese agricultural labor declining situation, multi-task robot planner is needed which is 

smaller in size and can work in rural farms. With this reason, this part of the research attempted 

to add navigation planer concept, some of the experimental and simulation data using ORB 

features. ORB features were collected from the UAV and mosaic map was developed to add in 

the navigation planer. In the navigation planer, the EPV robots-based operations are in lined 

for road navigation, transpiration of products, and target spraying. This chapter will be reported 

further after completion of the experiments for UAV-follower system. The EPV platform is 

built to test with feature recognition system. 3D–based image acquisition, ORB features 

extraction is completed along with edge detection. In further research, vision based EPV 
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mobile robots’ experiments will be conducted to follow the UAV with the aid of navigation 

planner to complete multi-task inside the farm. 
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Chapter 6 

Conclusions and Further Research 

The research was aimed to develop a machine learning system to recognize the features from 

UAV platform for precision agricultural management. In the precision agricultural 

management, one of the targets about the spray and nonspray area recognition, moisture 

content information for irrigation and small-scale robot application to work in the field. The 

following major contributions are made to achieve the goal of this proposed research. 

Furthermore, the additional researches are also proposed in continuation of this thesis. 

 

6.1 Development of a Machine Learning System with High Computational Speed for 

Agricultural Recognizing Features 

The machine learning system was developed using MSM for images collected by a UAV in 

different types of farm fields.  The machine learning system was developed to train and test the 

datasets for two classifies of agricultural croplands and orchard areas for enabling autonomous 

spraying system in future.  The classifiers were sub categorized as spray and non-spray areas. 

Datasets images were collected from low (5 m) and high altitude (15 m) respectively. The 

offline recognition system was noted as 70.4% and 80.5% for low and high-altitude systems 

respectively. On other hand, the online recognition system performance was reported with 

higher accuracy of 80% from low altitude and 71% from higher altitude image acquisition 

systems. The computation time for online recognition system was observed minimum with an 

average 0.004 s for reporting recognition of each of the frame for classifiers. The developed 

machine learning system for recognizing the classifiers can be implemented in the autonomous 

UAV spray system for recognizing spray and non-spray within the minimum computation in 

real-time.  

 

6.2 Detection Soil Moisture Content from Thermal Images  

The study aims to measure field moisture content using thermal image processing for precision 

agricultural management. Developed the calibration method for detecting soil moisture with 

thermal images. UAV images were collected with thermal camera. Soil moisture from ground 

reference was directly measured to correlate with thermal images digital numbers using the 

regression model. For measuring field moisture content using thermal camera, we have 
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collected soil samples to analyses the digital data of thermal images to find out the relation 

with soil moisture. Monotectic analysis was conducted to confirm the relation between soil 

moisture content information and thermal imagery. An algorithm was developed based on the 

ORB and SURF features for mosaicking images. The matching accuracy was just noted 61.7% 

for ORB features and 89% was observed using SURF features.  Extended Kalman filter (EKF) 

was used for reducing the noise. SURF featured had better performance using thermal images. 

Soil moisture measurement using thermal imagery from UAV needs further confirmation.  

 

6.3 Vision based Multi-task Robot System for Agricultural Farm 

This research was conducted to develop vision system and integrate feature recognition 

procedure through UAV-based leader follower system. The Simultaneous Localization and 

Mapping (SLAM) approach are used to simulate the path planer for an autonomous spray 

system. This part of this research has the target to utilize the RGB image maps, which are 

targeted to develop the map-based system from drone image to navigate and apply chemical 

inside the field. While working inside the field it was also necessary to detect the road running 

and field edge detection. Canny edge detection was utilized to reduce the feature and identify 

the key features from ORB features. Further research will be conducted to map-based 

navigation system for UAV leading multi-task robot system to spray on the targeted areas, 

transportation of products and scouting in the field. 

 

6.4 Further Research 

To accomplish the goal and further application of this research, the following key areas will be 

conducted to work in leader follower system for UAV and autonomous small-sprayer. 

 

6.4.1 Automated Field Moisture Determination using Wireless Sensor Network (WSN) 

Cloud-based machine learning system will be developed for automated field moisture 

determination using WSN. UAV thermal imagery and WSN will be utilized for train the 

datasets for developing automated soil moisture information. Ground reference soil moisture 

sensors will be used to train the datasets. The soil moisture information from field and canopy 

moisture content information could help in understanding of irrigation management and leaf 

wetness or humidity. 
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6.4.2 UAV and Multi-robot SWARM Application 

In the Japanese agricultural environment, the small-scale robot has the more opportunity in 

related safety points to utilize in the farm. In our future research, developed featured map from 

UAV and multi-robot application scenario will be developed. The cloud-based operation 

system and remote assistance simulation will be proposed for future application.  

 

6.5 Outlook of Future Agriculture 

The problem of aging population and insufficient agricultural labor force has become 

increasingly prominent, so that a large number of high-quality fields are abandoned. 

Particularly serious, these problems can lead to food safety and serious social problems. 

Urgently needed advanced technology to solve this problem. It urgently needed advanced 

technology to solve this problem, such like the agricultural applications of robotic, IoT 

technologies, ICT, remoting management skills, etc. Nowadays, with the development of 

computer sciences and sensors, it would be able to achieve autonomously working with the 

driverless tractors or agricultural autonomous machinery within 10 years. However, the 

autonomous tractors or autonomous agricultural machinery still appears to be insufficient for 

the whole agricultural production process from farmland preparation to harvesting and finally 

arriving at the table of the diners. This requires coordination of multiple technologies. For 

example, UAV would be used for cruise monitoring of the farmland or plantations, the IoT 

system could achieve precision management during crops growth, and the robotics would be 

used for target management and autonomous harvesting for realize the unmanned and smart 

management of whole agricultural production.  
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