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Abstract

This dissertation handles difficulty of accurately modeling stochastic data
patterns based on discrete data samples. In particular, we investigate the
multi-armed bandit (MAB) problem which consists of a collection of random
variables called arms, each with unknown probability distribution. The core
task is to design optimal strategy of quickly exploring the best arm, i.e. the
one of the maximum expected value, meanwhile maintaining a minimized
loss, or regret, commonly computed as the difference between the sum of
sampled rewards and the sum of rewards under ideal strategy. Simple as
the problem might seem, numerous efforts from research community have
been devoted to improving its learning strategies due to its generalizability
to a wide range of problems involving resource allocation such as clinical
trials, adaptive routing, online ads, etc. Mostly notably, it leads to crucial
implication for how stepwise decision making can be optimized in the sense
that the MAB setting is essentially a one-state Markov decision process, a
simplified scenario that in practice many more complicated reinforcement
learning problems get broken down to. In this thesis, we start with recap of
commonly used classical approaches of solving the MAB problem and then
investigate some details of Gaussian regression based methods from previous
study which achieves decent asymptotical regret bounds. Next to literature
study, we propose our new solution to the MAB problem under stochastic
environment setting. Concretely, we design a novel graphical model from
the perspective of Bayesian machine learning where samples collected from
arms are used as training data and the set of choosable arms are treated
as action space the model is expected to predict within. Our solution also
provides a new sampling technique based on Thompson sampling, a classical
heuristic that autonomously balances the exploration-exploitation trade-off
in decision-making problems with uncertainty. Experimental study reveals
that given graphical model inference and proper hyperparameter tuning, the
Thompson sampling variation delivers more satisfactory overall prediction
compared to conventional Bayesian posterior sampling methods. The main
contribution of this work is a system of problem independent learning tech-
niques applicable to all scenarios where solution to the MAB problem is
desired.
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Chapter 1

Introduction

The stochastic multi-armed bandit (MAB) problem is a sequential decision-
making problem and essential for solving subparts of many more complex
stochastic decision problems in practice. The problem has a simple statement
that given a collections of random variables with absolutely no prior knowl-
edge about their probability distribution, solution is desired to find the best
of them, i.e., the one with maximum expected value. Intuitively, a primary
option of solving this problem resorts to sampling-based statistical modeling
which persists in collecting data from the given random variables until ei-
ther enough knowledge is acquired to reconstruct their true distributions (in
case of parametric inference) or at least statistically significant differences
are discovered among random variables (in case of hypothesis testing). In
whichever case we step towards gaining confidence to evidently account for
why some random variable has a larger mean above the others. Unfortu-
nately, sampling from practical data sources faces complex constraints which
frequently prohibit large scale data collection process in real life scenarios.
Consider a clinical trial involving a list of experimental treatments with the
objective of figuring out the most effective treatment method, i.e., treatment
with the highest rate of success. Underoptimized tests in this scenario eas-
ily lead to unwanted victims who would suffer from inappropriate treatment
which in extreme cases indicates loss of human lives and such fatal failure
could have been avoided with proper strategy of conducting experiments.
Apparently, for this particular problem the number of patients who get im-
proper treatment shall in the highest priority be minimized while the most
reliable treatment is still to be accurately determined. The MAB setting typ-
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ically applies to this problem in such a way that candidate therapies/drugs
constitute the collection of unknown random variables whose probability dis-
tributions are yet to be inferred; in this case the probability refers to suc-
cess rate of achieving medical effectiveness. The critical resource is without
doubt the patients involved in this experiment. In general a MAB problem
is all about making optimization concerning the cost of critical resource and
accuracy of probability inference. An ideally optimal strategy is expected
to quickly find out the best random variable at minimum cost required to
achieve that. In the clinical trial example, we intend to come to correct
conclusion on which type of candidate treatment is the best with the fewest
possible subject patients involved in this experiment. Similar optimization
problems with resource constraints are also seen in various other applications
such as adaptive routing where a router dynamically forwards data packets
through several different candidate routes trying to find the route that max-
imizes network throughput. Another much more viable example is online
advertisement recommendation under fixed marketing budget that tries to
decide which one out of all the candidate ads attracts the most attention
from customers.

Statistical hypothesis testing is a category of commonly used classical ap-
proaches of comparing the “quality” of unknown random variables. By evenly
collecting data referred to as “evidence” from random variables, it computes
some statistics called P -value based on evidence and compares P -value to
some predefined significance level to infer which variable is better. Statis-
tical hypothesis testing fits well in applications without hard constraints on
laxity of conclusion. For instance, in order to conduct the hypothesis test
whether an ad post attracts more visitors with its refreshed design, statis-
tics of user responses to both the old and new versions need to be collected
within some frame of time intervals. A noticeable problem is that such an
experiment makes no valid conclusion until it finishes collecting all the nec-
essary data to decide whether or not the hypothesis is to be rejected. In
many use cases we hope to extract partial information during data collection
process instead of analyzing everything afterwards, i.e., an online approach
is requested so that we are able to perform incremental update to our knowl-
edge as data collection is going on. The major benefit of online approaches is
that immediate action can be taken to reduce the loss caused by suboptimal
decisions during data collection process. In the example of redesigned ad, if
traffic gets increasingly redirected to the more popular version of ad as soon
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as we acquire some amount of data, overall losses of potential visitors can be
reduced compared to evenly distributing traffic to both versions throughout
the experiment. A fundamental approach of making serial updates to statis-
tical metrics on the fly is Bayesian paradigm which replaces the conceptually
frequentist P -value with likelihood computed from currently available data
and updates the posteriors on the fly as new data gets collected. While
Bayesian analysis does satisfy the online characteristic it still fails to answer
one of the most difficult questions in stochastic comparison - the exploration-
exploitation dilemma. The problem basically focuses on strategy of how data
gets sampled during Bayesian analysis. As for the ad example again, given
fixed budget of displaying ads, the optimal strategy of allocating traffic to
different ads can be hard to figure out. Naive Bayesian analysis tends to
greedily trust current posteriors and this easily leads to incorrect inference
if data sampled at early stage tends to favor the less popular candidate ad.
It is a typical pure “exploitation” case in which we choose to trust whatever
knowledge we have at current moment with no interest in discovering bet-
ter alternatives. Oppositely, in a typical pure “exploration” case, uniformly
random sampling is performed so that both ads share the same probability
of getting displayed. Pure exploration completely ignores knowledge from
data and in general produces unoptimized overall loss. There exists abun-
dant literature studying the trade-off between exploitation and exploration
in Bayesian data analysis with similar purpose of making optimal decisions
at minimal cost. This thesis takes comprehensive study on the MAB problem
as a game of “guessing” the best random variable, as a high-level abstraction
of lots of real world decision-making problems.

The thesis consists of three primary partitions. The first partition is re-
sponsible for systematic background introduction on various aspects of the-
oretical foundation based on which this research is derived. In addition to
preliminary introduction to the problem definition starting with a simplified
two-armed scenario, a few typical classical methods are introduced. It also
comes with discussion on asymptotic regret characteristics under different
methods and illustration on how regret bounds are proved. In particular it
also reviews how Gaussian process was used for achieving novel convergence
rates of regret in previous works and in which way this research is inspired
from them. Aside from the bandit problem itself, the background introduc-
tion incorporates considerable coverage on basics of probabilistic graphical
models, a category of graph-based predictive models with wide deployment
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in machine learning applications; how graphical models are defined to in-
terpret stochastic processes and get connected to real-world problems; and
brief description on common graphical inference algorithms. The second pri-
mary partition of this thesis is definition of the proposed model in full detail
as the core part of the research. Our contribution includes a general infer-
ence model of predicting reward patterns in the MAB problem assuming a
collection of possibly correlated arms. The proposed solution considers the
candidate arms as an output sequence from a “black-box” function pending
for global optimization as opposed to isolated subjects in hypothesis testing,
so that interpolation can be applied to learn such a function through samples
as training data. The third partition covers experimental design for evaluat-
ing different strategies of drawing data samples from the black-box function
and provides some numerical guidelines on analyzing posterior distribution
of rewards in order to efficiently achieve balance between exploration and
exploration.

In the concluding chapter, insight of the MAB problem towards general
decision-making process and reinforcement learning is briefly discussed. We
believe that this work brings an alternative perspective of a classic prob-
lem that has no perfect solution, whose intuition is so simple that not only
computers but also humans are facing it everyday whenever it comes to un-
certainty. According to Christian [1] – What should we do, and leave undone,
in a day or in a decade? What degree of mess should we embrace - and how
much order is excessive? What balance between new experience and favored
ones makes for the most fulfilling life?
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Chapter 2

Background and Theoretics

All background study on existing works and theoretics of interest for
this research are organized in this chapter. The MAB problem came to
existence out of many occasions where hypothesis tests such as A/B tests
are poorly applicable. Formal definition of the problem nature is given along
with typical classical solutions. We put emphasis on regret bound analysis
to illustrate that how strategy on exploration-exploitation trade-off brings
significant impact on asymptotic behavior of regret and why even minor
optimization makes a difference. Then we make at-length introduction on
some previous state-of-the-art approach called GP-UCB which is based on
Gaussian process regression, and its improved upper bound of regret. Next
to the MAB problem, an introductory section is prepared for quick review on
probabilistic graphical models, their declarative representation and graphical
inference algorithms.

2.1 Two-armed Bandit and A/B Testing

A particular case of the MAB problem is the two-armed bandit, which
states that a slot machine has two arms for gamblers to play with and pulling
each arm delivers random rewards of distinct pattern. The simplest analogy
is a coin tossing game. Suppose two biased coins are present and we are inter-
ested in knowing which of the two coins tends to be further biased towards
heads standing for reward 1 as opposed to tails for reward 0. Assuming
coin 1 gets tossed for n1 trials and coin 2 for n2 trials, we know that the
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total rewards from both coins are in binomial distribution of B(n1, p1) and
B(n2, p2), where p1 and p2 are unknown probabilities of heads. In an at-
tempt to test out whether p1 and p2 are significantly different from each
other, the t-test can effectively be applied because long term p1 and p2 are
asymptotically Gaussian [2], an assumption held by the t-test. The following
null hypothesis is proposed.

H0 : p1 = p2

The relevant alternative hypothesis is listed as rival to H0.

H1 : p1 < p2 or p1 > p2

The t-test calculates what is called t-statistic as T for metrics of deciding
whether null hypothesis is significantly true or false;

T =
E[X1]− E[X2]√

s2p
n1

+
s2p
n2

where E[X1] and E[X2] are empirical values of head probability that are
in practice computed as ratio of observed heads to total tosses on a coin.
Additionally pooled variance sp is requested for two-sample t-tests and is
easily accessible as below.

sp =

√∑n1

i=1(X
(i)
1 − E[X1])2 +

∑n2

i=1(X
(i)
2 − E[X2])2

n1 + n2 − 2

where X
(i)
1 = 1 denotes a head at the ith trial on coin 1 and X

(i)
1 = 0

otherwise. We reject the null hypothesis H0 if |T | > tn1+n2−2(
α
2
) where α

is a preselected significance level with common values of 0.05 or 0.01 and
tn1+n2−2(

α
2
) is a threshold beyond which one-tailed cumulative density of t-

distribution exceeds α
2
. As t-distribution is symmetric and resembles normal

distribution except for that it has only one parameter called degree of freedom
given as constant n1 + n2 − 2 in our example, |T | > tn1+n2−2(

α
2
) indicates

that the empirical t-statistic falls within either of the two tails the sum of
whose cumulative density is below the significance level α. Hence it is highly
unlikely that p1 and p2 are the same. Given that H0 is rejected, we further
accept the alternative hypothesis that p1 < p2 if T < −tn1+n2−2(

α
2
) or p1 > p2
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if T > tn1+n2−2(
α
2
). Conclusion 1 on hypothesis testing does not reveal the

absolute truth of candidate random variables but only tells whether we are
confident enough to reject some proposed hypothesis at confidence level of
1− α with the data we collected so far.

It is clear that the testing process described above does not come to any
conclusion until it finishes all the trials on both coins. If we intend to accu-
mulate knowledge as the coin tossing experiment goes on or for any practical
reason data sizes n1 and n2 cannot be determined in advance, sequential
analysis is needed. Bayesian estimation is a quick and simple fix to the prob-
lem of sequential A/B testing. Let a biased coin have head probability p and
x = {x1, x2, ...xi, ...} be the list of trials where xi = 1 for head and xi = 0
for tail. Our task is to figure out the most probable p based on observations
we are able to collect. Following Bayesian paradigm we set up the likelihood
function L(x, p) given events and parameter p.

L(x, p) = Pr(x)Pr(p|x) = Pr(p)Pr(x|p)

Since a single of toss a coin is a Bernoulli trial, the event likelihood Pr(x|p) is
product of independent Bernoulli probability. The marginal likelihood Pr(x)
is independent of parametric hypothesis so it is the same for any observation
and will be treated as normalizing constant.

Pr(p|x) = Pr(p)Pr(x|p)
Pr(x)

∝ Pr(p)
N∏
i=1

pxi(1− p)1−xi

The conjugate prior of Bernoulli probability is Beta distribution of density
function [2] f(x).

f(x) =
Γ(α + β)

Γ(α) + Γ(β)
xα−1(1− x)β−1, 0 < x < 1

Now replace the parameter prior Pr(p) with Beta density ignoring constant
parts.

Pr(p|x) ∝ pα−1(1− p)β−1

N∏
i=1

pxi(1− p)1−xi

1In a majority of cases the terminology ”P -value” refers to the probability of obtaining
a test statistic that is equal to or more extreme than actual observation, which in our
case equals 2

∫ +∞
T

fn1+n2+1(x)dx, fn1+n2+1(x) being probability density function of t-
distribution. But many literatures refer to P -value with alternative definitions making its
precise meaning controversial so this thesis avoids usage of this terminology.
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∝ pα+
∑N

i=1 xi−1(1− p)β−1+N−
∑N

i=1 xi

It turns out that given observations x, the posterior distribution of parameter
p is in the form of Beta distribution. Therefore the maximum likelihood
estimation of posterior is the Beta mean as predictive p̂.

p̂ =
α +

∑N
i=1 xi

α +
∑N

i=1 xi + β +N −
∑N

i=1 xi
=
α +

∑N
i=1 xi

α + β +N
(2.1)

In practice Beta parameters α and β are both initialized with 1. Equation 2.1
shows that only the total count of heads and number of trials N at test time is
required to estimate head probability of a biased coin. It is reasonable to see
that p̂ = 0.5 before any test starts as N = 0 since by default we assume a coin
has equal head/tail probability without observation. In the two-coin scenario
we directly compare posterior predictive to decide which coin delivers higher
rewards and such comparison is continuously available during the process of
drawing samples because p̂ is sequentially updated. However problems still
exist for practical implementation with Bayesian A/B testing.

The above experiment setup fails to answer several crucial questions -
when do we stop our experiment? While N does not have to be defined in
advance we need explicit criteria as stop signals. Early stopping may lead
to overconfidence in biased samples. Over-experimenting leads to unneces-
sarily redundant waiting; extra cost can be another problem if playing the
“game” of tossing coins is not free, which is unfortunately true in a lot of
real-life cases. Moreover, it is an interesting question whether there exist bet-
ter options than uniformly sampling among multiple random variables. To
be specific, in the two-coin test we believe that it is helpful to make decisions
on which coin to toss based on posterior p̂ instead of taking turns tossing one
and the other for subsequent trials. These questions bring forward typical
thoughts on the aforementioned exploitation-exploration trade-off. In par-
ticular we are only willing to play minimized trials of tosses that are just
enough to determine the head probability for every coin.

Coin tossing games are a simplified analogy to a lot of real-world appli-
cations that require Bayesian optimization such as regression analysis and
sometimes parameter tuning for machine learning models. Perhaps the most
commonly discussed application is online advertising where a user decides
whether or not to click an ad. A one-time user response is a Bernoulli trial
so that the number of user clicks an ad receives forms binomial distributions.
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Typically more than two ”coins” are being tossed in online advertising so we
need much more sophisticated algorithm to predict how many clicks each ad
is going to attract. Since marketing cost is charged for deploying ads, we also
demand that the algorithm allow for additional budget constraint. Making
such optimization brings forward the MAB problem with budget limits, the
core problem this thesis focuses on solving.

2.2 The Multi-armed Bandit Problem

This section defines the MAB problem, discusses some of its classical algo-
rithms and makes analytical discussion on how and why policy optimization
affects regret bounds. It focuses on two types of reward pattern: Bernoulli
and normally distributed rewards.

2.2.1 Problem Definition

Formal definition of the stochastic multi-armed bandit problem can be
formulated as a sequential optimization problem consisting ofK random vari-
ables ⟨X1, X2, ..., XK⟩ with associated means ⟨µ1, µ2, ..., µK⟩ and variances
⟨σ2

1, σ
2
2, ..., σ

2
K⟩. For historical reasons random variables are called arms as

the value ofXi is conventionally interpreted as the reward from a slot machine
when its ith arm is pulled. A player is allowed to make gambling decisions
through a sequence of turns and may choose any of the given arms with free
will at turn t = 1, 2, 3, .... The player is motivated to find out the arm of
the highest mean through sequential attempts while collecting a maximized
amount of reward during the process. Bandit algorithms are used to design
optimal strategies for such a goal.

The most common metric of evaluating bandit algorithms is expected
cumulative regret. For any total T turns, the expected cumulative regret
under policy π is defined as RT

RT = Tµ∗ −
T∑
t=1

µπ(t)

where µ∗ = maxiµi and π(t) is the index of choice at time t subject to
policy π. The expected cumulative regret basically tells us how much loss
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is caused by policy π after T turns of bandit trials due to failure in finding
the optimal strategy. An optimal strategy is an ideal policy that is aware of
the true distribution of arm rewards so that the best arm is guaranteed to
get selected at every turn. Thereby the cumulated expected reward from an
optimal strategy is Tµ∗. In contrast realistic strategy has expected reward∑T

t=1 µπ(t) and in suboptimal cases µπ(t) < µ∗. An alternative form [3] of RT

can be expressed as:

RT = E
[ T∑
t=1

µ∗ − µπ(t)
]
=

K∑
k=1

(µ∗ − µπ(t))E
[
Nk(T )

]
where Nk(T ) denotes the number of trials on arm k during the total T turns.
A classical conclusion by Lai & Robbins [4] states that under any uniformly
good policy2, Nk(T ) satisfies the following asymptotic lower bound.

lim
T→∞

E[Nk(T )]

log(T )
≥ 1

DKL(xk, x∗)
(µk ̸= µ∗) (2.2)

is true for k such that µk < µ∗, where DKL denotes Kullback-Leibler diver-
gence.

DKL(xk, x∗) =

∫
xk ln

xk
x∗

Since DKL(xk, x∗) measures the difference from the distribution of a subopti-
mal arm k to the distribution of the optimal arm, the lower bound of Nk(T )
implies that a good policy with no assumption on parameters of arms tends
to better favor suboptimal arms with distributions closer to the optimal arm
than those farther away. An intuitive explanation is that the closer a subop-
timal distribution xk is to x∗, the more data is required to gain confidence
on verifying that x∗ is indeed better than xk.

The conclusion in 2.2 thus bounds the expected cumulative regret RT as
well. Simply put, a uniformly good strategy in general MAB setting has its
regret growth at least logarithmically, or E[RT ] ∼ Ω(log(T )). A policy π is
said to efficiently solve the MAB problem if it achieves such a logarithmic
lower bound, or E[RT ] ∼ O(log(T )).

The MAB problems in general do not make assumption on distribution
categories of candidate arms ⟨X1, X2, ..., XK⟩. Drawing reward samples re-
peatedly from the same arm Xi generates an i.i.d sequence distributed under

2Policy π is said to be ”uniformly good” if E[Nk(T )] = o(Tn) for n > 0 and µk ̸= µ∗

holds independently from problem setting.
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mysterious distribution. However discussion in a majority of literature is
focused on Bernoulli rewards restricting every Xi in support {0, 1}. But
this thesis puts emphasis on rewards in normal distribution with an effort of
groping a wider range of application with bandit algorithms. The remaining
parts of this section discusses typical classical approaches of solving the MAB
problem of both Bernoulli and normally distributed rewards.

2.2.2 Useful Theorems

A few propositions are listed in this subsection as auxiliary for analyzing
regret bounds of bandit algorithms to be discussed in subsequent parts of this
section. The listed propositions will be directly used as theorems without
proof in this thesis.

Theorem 2.2.1. (Chernoff-Hoeffding Bound) Let X1, X2, ..., XK be indepen-
dent random variables with support in [0, 1] and µ = E

[
1
K

∑K
i=1Xi

]
. Let Sn

be the empirical sum of Xi so Sn =
∑K

i=1Xi. Then for a > 0

Pr
{
Sn ≥ Kµ+ a

}
≤ exp−2a2/n

Pr
{
Sn ≤ Kµ− a

}
≤ exp−2a2/n

(2.3)

Chernoff-Hoeffding Bound states that the probability that the empirical
mean of random variables deviates from the expected value is bounded by
exponential decay which depends on the deviation.

Theorem 2.2.2. 3 (Bernstein Inequality) [5] Let X1, X2, ..., XK be indepen-
dent random variables with zero means and variances σ2

1, σ
2
2, ..., σ

2
K such that

for all integers n > 2,

E|Xi|n ≤ n!Rn−2σ2
i /2 for all i ∈ [K]

for some constants R > 0. Then for all t > 0

Pr
{∣∣ K∑

i=1

Xi

∣∣ ≥ a
}
≤ 2exp

{
− a2/2

σ2 +Rt

}
(2.4)

where σ2 =
∑K

i=1 σ
2
i .

3Throughout this thesis, for convenience of notation [K] denotes for a consecutive
positive integer list from 1 to K inclusively.
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Similar to Chernoff-Hoeffding Bound, Bernstein Inequality bounds the
empirical mean of zero-mean random variables within exponential decaying
probability relative to their variances.

Lemma 2.2.3. For κ ̸= 0, the following inequality is true.

∞∑
t=x+1

e−κt ≤ 1

κ
e−κx (2.5)

As continuous integral of
∫∞
x+1

e−κtdt = 1
κ
e−k(x+1) ≤ 1

κ
e−kx and similar

conclusion holds for discrete cases as well.

2.2.3 Classical Approaches – Bernoulli Rewards

On top of problem definition in Section 2.2.1, we require that the given
list of random variables ⟨X1, X2, ..., XK⟩ be Bernoulli trials with parameters
⟨θ1, θ2, ..., θK⟩. Drawing reward samples from Xi is now equivalent to tossing
the ith coin of head (Xi = 1) probability θi.

Naive Epsilon-greedy Algorithm

The ϵ-greedy [6] is the simplest yet widely used heuristic [7] [8] in the
MAB problem class due to its ease of implementation. Given K random
variables, raw policy of ϵ-greedy uniformly randomly selects Xi from the
candidate list with a typically small probability ϵ otherwise it selects the one
with the highest empirical mean, so that at time step t, the probability of
Xi being chosen is pt(i).

pt(i) =

{
ϵ/K + 1− ϵ, if µ̂i(t− 1) = maxiµ̂i(t− 1)

ϵ/K, otherwise
(2.6)

where µ̂i(t) denotes the empirical mean of Xi at time t. At t = 0, when no
random variable is selected yet, empirical means ⟨µ̂1(0), µ̂2(0), ..., µ̂K(0)⟩ are
often initialized as 0.

The ϵ-greedy has only one parameter ϵ ∈ [0, 1] and it needs to be preset
before the algorithm is used. Since ϵ is responsible for weighing the balance
between exploration and exploitation, correct choice of ϵ value is key to
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performance of the algorithm. A large ϵ brings more randomness to decision
and ϵ = 1 coerces the algorithm into pure exploration (random guessing).
Conversely, ϵ = 0 makes the algorithm constrict to conservative actions only
with pure exploitation. If pure exploitation starts at t = 0, the maxiµ̂i(0)
will always be picked up first and later decisions solely depend on empirical
means computed from data. An apparent drawback of ϵ-greedy with constant
ϵ is the problem of infinite exploration. Suppose at time t = T and T is large
enough so that enough amount of data has been collected; empirical means
⟨µ̂1(T ), µ̂2(T ), ..., µ̂K(T )⟩ are so close to the true means ⟨µ1, µ2, ..., µk⟩ that
maxiµ̂i(T ) = maxiµi. Whereas the optimal is revealed, exploration is no
longer beneficial. Yet ϵ-greedy does not stop here because there exists a
fixed amount of exploration probability.

Lemma 2.2.4. The ϵ-greedy with a fixed ϵ has a non-sublinear expected cu-
mulative regret: E[RT ] ∼ Θ(T ).

Proof. For convenience of notation, we let X1 be the optimal arm by µ1 =
µ∗ without loss of generality. Assume t is getting sufficiently large so that
empirical means are close enough to true means for every arm. Then at a
time step t, ϵ-greedy policy has expected regret of E

[
ϵ(µ∗ − µ̂i ̸=1(t)) + (1 −

ϵ)(µ∗ − µ̂i=1(t))
]
. Then the expected cumulative regret is

RT = E
[ T∑
t=1

ϵ(µ∗ − µ̂i ̸=1(t)) + (1− ϵ)(µ∗ − µ̂i=1(t))
]

= ϵE
[ T∑
t=1

(µ∗ − µ̂i ̸=1(t))
]
+ (1− ϵ)

T∑
t=1

E
[
µ∗ − µ̂i=1(t))

]
= ϵE

[ T∑
t=1

(µ∗ − µ̂i ̸=1(t))
]
+ (1− ϵ)

T∑
t=1

[E
[
µ∗]− E

[
µ̂i=1(t))

]
]

(2.7)

By the above assumption µ1 = µ∗, E
[
µ∗]−E[µ̂i=1(t))

]
= 0. Then let Xsubmax

be the second optimal arm so that µsubmax ≥ µi ̸=1. Also let ∆ = µ∗−µsubmax
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as a constant for any particular collection of arms.

RT = ϵE
[ T∑
t=1

(µ∗ − µ̂i ̸=1(t))
]

= ϵ
T∑
t=1

E
[
(µ∗ − µ̂i ̸=1(t))

]
= ϵ

T∑
t=1

(µ∗ − µi ̸=1)
]

≥ ϵ

T∑
t=1

(µ∗ − µsubmax)
]
= Tϵ∆ (∆ is constant)

(2.8)

Formula 2.8 shows that given constant ϵ cumulated expected reward grows
at least in linear order, or E[RT ] ∼ Θ(T ), thus proving Lemma 2.2.4.

Epsilon-greedy Algorithm with Adaptive Rate

Auer et al. [9] proposed an improved policy based on ϵ-greedy by applying
adaptive rules to parameter ϵ. The basic idea is to introduce decay of the
order 1

t
so as to turn ϵ into a function of time t instead of a constant. Auer et

al. proved that the adaptive rate of exploration delivers sublinear expected
cumulative regret for k-armed bandit problems with Bernoulli rewards for
k > 1. Their improved ϵ-greedy, namely ϵn-greedy policy sets ϵ = ϵt for time
steps t = 1, 2, ... by

ϵt = min
{
1,
cK

d2t

}
where parameters c > 0 and 0 < d < 1. Let It be the index of the chosen
arm and [K] is the set of consecutive integers 1...K. At time t, It is randomly
governed by ϵt.

It =

{
argmaxi∈[K]

{
µ̂i(t− 1)

}
with probability 1− ϵt

i ∈ random from [K] with probability ϵt
(2.9)
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The decision making policy is pretty much the same as non-adaptive ϵ-
greedy except that exploration factor gradually diminishes as time t goes by.
As t gets large enough ϵn-greedy policy eventually sticks to the arm with
maximum empirical mean. This is a reasonable heuristic as we tend to trust
our observation with increasing confidence when enough data is collected.

Theorem 2.2.5. The ϵn-greedy policy delivers a sublinear cumulative regret
of order RT ∼ o(T ) for distributions ⟨X1, X2, ..., XK⟩ with support in [0, 1],
if lower bound of µ∗ − µk is known for k ∈ [K].

Proof. Recall that Nk(t) is the number of plays on arm k at the point of time
t and µ̂k(t) is the empirical mean at arm k by time t. Also define NR

k (t) to
be the number of plays on arm k only because Xk was randomly chosen. Let
µ̂∗(t) be empirical mean from the optimal arm after time t. The algorithm
has no awareness of which arm µ̂∗(t) comes from. Then probability that arm
k is chosen is Pr(It = k). Define x0 =

1
K

∑T
t=1 ϵt.

Pr(It = k) = Pr
{
It = k ∩ µ̂k(t− 1) ≥ µ∗}+ Pr

{
It = k ∩ µ̂k(t− 1) < µ∗}

= Pr
{
It = k | µ̂k(t− 1) ≥ µ∗}Pr{µ̂k(t− 1) ≥ µ∗}

+ Pr
{
It = k | µ̂k(t− 1) < µ∗}Pr{µ̂k(t− 1) < µ∗}

(2.10)

Formula 2.6 gives conditional probability of arm k being chosen when Xk

is either optimal or not. For the purpose of long term regret bounds, we may
assume t is large enough so that µ̂∗(t) = maxiµ̂i(t). With ϵ replaced with ϵt
we plug both parts into Formula 2.10 so Pr(It = k) gets simplified as

Pr(It = k) = (1− ϵt +
ϵt
K

)Pr
{
µ̂k(t− 1) ≥ µ̂∗(t− 1)

}
+
ϵt
K

(1− Pr
{
µ̂k(t− 1) ≥ µ̂∗(t− 1)

}
)

=
ϵt
K

+ (1− ϵt)Pr
{
µ̂k(t− 1) ≥ µ̂∗(t− 1)

} (2.11)

Empirical means µ̂k(t−1) and µ̂∗(t−1) in the following formula and 2.12 are
represented as µ̂k and µ̂∗ for convenience of notation. Define ∆k = µ∗ − µk.
We now start to seek for an upper bound on Pr(It = k).

Pr(It = k) ≤ ϵt
K

+ (1− ϵt)Pr
{
µ̂k ≥ µ̂∗}
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and

Pr
{
µ̂k ≥ µ̂∗} ≤ Pr(µ̂k ≥ µk +

∆k

2
∪ µ∗ ≤ µ̂∗ − ∆k

2
)

≤ Pr(µ̂k ≥ µk +
∆k

2
) + Pr(µ∗ ≤ µ̂∗ − ∆k

2
)

(2.12)

since µ̂k ≥ µk +
∆k

2
or µ∗ ≤ µ̂∗ − ∆k

2
is a necessary condition for µ̂k ≥ µ̂∗.

The two terms on the right side of Formula 2.12 are not necessarily equal
because distributions vary among arms. However, later steps will show that
they share the same upper bound. Starting with the first term, at some time
T we have

Pr
{
µ̂k(T ) ≥ µk +

∆k

2

}
=

T∑
t=1

Pr
{
Nk(T ) = t ∩ µ̂k(T ) ≥ µk +

∆k

2

}
=

T∑
t=1

Pr
{
Nk(T ) = t | µ̂k(T ) ≥ µk +

∆k

2

}
Pr

{
µ̂k(T ) ≥ µk +

∆k

2

}
(2.13)

Chernoff-Hoeffding Bound says

Pr
{
µ̂k(T ) ≥ µk +

∆k

2

}
≤ e−∆2

kNk(T )/2
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Continue with Formula 2.13.

Pr
{
µ̂k(T ) ≥ µk +

∆k

2

}
≤

T∑
t=1

Pr
{
Nk(T ) = t | µ̂k(T ) ≥ µk +

∆k

2

}
e−∆2

kt/2

≤
⌊x0⌋∑
t=1

Pr
{
Nk(T ) = t | µ̂k(t) ≥ µk +

∆k

2

}
e−∆2

kt/2 +
T∑

t=⌊x0⌋+1

e−∆2
kt/2

≤
⌊x0⌋∑
t=1

Pr
{
Nk(T ) = t | µ̂k(t) ≥ µk +

∆k

2

}
e−∆2

kt/2 +
∞∑

t=⌊x0⌋+1

e−∆2
kt/2

≤
⌊x0⌋∑
t=1

Pr
{
Nk(T ) = t | µ̂k(t) ≥ µk +

∆k

2

}
+

∞∑
t=⌊x0⌋+1

e−∆2
kt/2

By Lemma 2.2.3 (Formula 2.5), the second summation gets bounded.

(2.14)

Pr
{
µ̂k(T ) ≥ µk +

∆k

2

}
≤

⌊x0⌋∑
t=1

Pr
{
Nk(T ) = t | µ̂k(t) ≥ µk +

∆k

2

}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

≤
⌊x0⌋∑
t=1

Pr
{
Nk(T ) = t

}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

As NR
k (T ) ≤ t is necessary condition for Nk(T ) = t

≤
⌊x0⌋∑
t=1

Pr
{
NR
k (T ) ≤ t

}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

≤ x0Pr
{
NR
k (T ) ≤ x0

}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

(2.15)

NR
k (t) is essential a sum of Bernoulli trials during t steps considering Xk to

be explored rather than exploited. Then

E
[
NR
k (T )

]
=

1

K

T∑
t=1

ϵt = 2x0
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and the sum of variances

V ar
[
NR
k (T )

]
=

T∑
t=1

ϵt
K

(1− ϵt
K

) ≤ 1

K

T∑
t=1

ϵt = 2x0

Pr
{
µ̂k(T ) ≥ µk +

∆k

2

}
≤ x0Pr

{
NR
k (T )− 2x0 ≤ −x0

}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

≤ x0Pr
{
|NR

k (T )− 2x0| ≥ x0
}
+

2

∆2
k

e−∆2
k⌊x0⌋/2

≤ x0e
−x0/5 +

2

∆2
k

e−∆2
k⌊x0⌋/2

(2.16)

Bernstein Inequality (Theorem 2.4) is applicable here since NR
k (T ) − 2x0

has a zero mean. The only remaining work for this proof is to lower bound
x0. Recall that ϵt = min

{
1, cK

d2t

}
so only when t ≤ cK/d2, ϵt ≥ 1. Let

T ′ = cK/d2.

x0 =
1

2K

T ′∑
t=1

ϵt +
1

2K

T∑
t=T ′+1

ϵt

=
1

2K
T ′ +

1

2K

T∑
t=T ′+1

ϵt

≥ T ′

2K
+

c

d2
ln
T

T ′

≥ c

d2
ln
{
(exp{1

2

T ′d2

cK
}) T
T ′

}
≥ c

d2
ln
{
exp{1

2

T ′d2

cK
} T
T ′

}
(note

T ′d2

cK
≥ 1)

≥ c

d2
ln
{Td2
cK

e1/2
}

(2.17)

Back to Formula 2.11 we are trying to bound for this proof, with 2.17
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and 2.16

Pr(It = k) ≤ ϵt−1

K
+ (1− ϵt−1)Pr

{
µ̂k(t− 1) ≥ µ̂∗}

≤ ϵt−1

K
+ 2x0e

−x0/5 +
4

∆2
k

e−∆2
k⌊x0⌋/2

≤ c

td2
+

2c

d2
(ln

(t− 1)d2e1/2

cK
)(

2c

(t− 1)d2e−1/2
)c/5d

2

+
4

∆2
k

(
cK

(t− 1)d2
√
e
)
c∆2

k
2d2

(2.18)

The last term in Formula 2.18 differs from the original conclusion given by
Auer et al. since we impose no further assumption on d as their original
proof did. For the last three terms in Formula 2.18, the first indicates a clear
bound of order O(1/t) and the second is o(1/t) for c > 5. For the third
term to be in o(1/t), a exponential larger than 1 is required, i.e., c∆2

k > 2d2,
or equivalently a lower bound on ∆k is known. In this case the maximum
probability of choosing a suboptimal arm under ϵn-policy after t− 1 trials in
its worst case is O(1/t) so expected cumulative regret is bounded by O(log(t))
thereby Theorem 2.2.5 is proved.

Upper Confidence Bound (UCB1)

Another classical policy worth examining is called UCB1 proposed by the
same authors [9] of ϵn-greedy. As a simplistic yet popularly adopted MAB
policy, it differs from ϵ-greedy approaches which introduces randomness for
balancing exploration factor against exploitation. UCB1 is an “optimism”
based tradeoff algorithm instead of explicitly manipulating stepwise decisions
during the MAB experiment. The algorithm requires no input parameter but
measures how optimistic we are for the expected reward from every arm with
some metric called upper confidence bound (hence the acronym UCB). The
intuition about upper confidence bound is our uncertainty of the true mean
of some distribution. The more data we collect from a specific arm, the less
optimistic (or more confident) we are about its reward upper bound because
an increasing amount of data reinforces our certainty on its empirical mean.
To apply UCB1 policy to theK-armed bandit problem, we sequentially select
every arm once as initialization step. Starting from time t = K + 1, UCB1
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always acts on arm Xj such that

j = argmax
j∈[K]

{
µ̂j(t− 1) +

2 ln t

Nk(t− 1)

}
For arms that are rarely selected, Nk(t−1) has a small value so a larger con-
fidence interval could compensate its empirical mean. The design of UCB1
mainly encourages actions on arms that are not often explored. Uncondi-
tionally, UCB1 policy has a O(lnT ) expected cumulative regret bound.

Theorem 2.2.6. The worst case expected cumulative regret under UCB1
policy is logarithmic for distributions ⟨X1, X2, ..., XK⟩ with support in [0, 1].
RT ∼ O(lnT ).

Proof. Let ∆k = µ∗ − µk. Define c(t, n) =
√

2 ln t/n and 1
[
event

]
as an

indicator function for an event. 1
[
event

]
= 1 only if the event is true other-

wise 0. As previously defined It is the index of chosen arm at time t. If the
expected number of plays on Xk up to time t is E[Nk(t)], then the expected
cmumulative regret can be bounded with

∑
k∆kE[Nk(t)]. So the proof is

equivalent to finding the worst case E[Nk(t)]. Since for the first K rounds
every arm gets selected for once, by definition,

Nk(T ) = 1 +
T∑

t=K+1

1
[
It = k

]
Let ℓ be some positive integer, then

Nk(T ) ≤ ℓ+
T∑

t=K+1

1
[
It = k ∩Nk(t− 1) ≥ ℓ

]
Then

Nk(T ) ≤ ℓ+
T∑

t=K+1

1
[
It = k ∩Nk(t− 1) ≥ ℓ

]
= ℓ+

T∑
t=K+1

1
[
µk(t− 1) + c(t− 1, Nk(t− 1)) ≥

µ∗(t− 1) + c(t− 1, N∗(t− 1)) ∩Nk(t− 1) ≥ ℓ
]

(2.19)
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For µ̂k(t− 1)+ c(t− 1, Nk(t− 1)) ≥ µ̂∗(t− 1)+ c(t− 1, N∗(t− 1)) to be true
at time t, the following necessary condition must be met.

min0<t0<t

[
µ̂∗(t−1)+c(t−1, N∗(t0−1))

]
≤ max0<t1<t

[
µ̂k(t−1)+c(t−1, Nk(t1−1))

]
for some t0, t1. If Nk(t− 1) ≥ ℓ is further required,

min0<t0<t

[
µ̂∗(t−1)+c(t−1, N∗(t0−1))

]
≤ maxℓ≤t1<t

[
µ̂k(t−1)+c(t−1, Nk(t1−1))

]
has to be true. Then a crude relaxation can be imposed to the inequality 2.19.

Nk(T ) ≤ ℓ+
T∑

t=K+1

1
[
min0<t0<t

[
µ̂∗(t− 1) + c(t− 1, N∗(t− 1))

]
≤

maxℓ<t1<t
[
µ̂k(t− 1) + c(t− 1, Nk(t1 − 1))

]]
≤

T∑
t=1

t−1∑
t0=1

t−1∑
t1=ℓ

1
[
µ̂∗(t− 1) + c(t− 1, N∗(t0 − 1)) ≤

µ̂k(t− 1) + c(t− 1, Nk(t1 − 1))
]

≤
∞∑
t=1

t−1∑
t0=1

t−1∑
t1=ℓ

1
[
µ̂∗(t) + c(t, N∗(t0 − 1)) ≤ µ̂k(t) + c(t, Nk(t1 − 1))

]
(2.20)

In order that µ̂∗(t) + c(t, N∗(t0 − 1)) ≤ µ̂k(t) + c(t, Nk(t1 − 1)), at least one
of the following three claims has to be true.

µ̂∗(t) ≤ µ∗ − c(t, N∗(t0 − 1)) (2.21)

µ̂k(t) ≥ µk + c(t, Nk(t1 − 1)) (2.22)

µ∗ − µk < 2c(t, Nk(t1 − 1)) (2.23)

It is easy to show that if all the above three claims were false,

2c(t, Nk(t1 − 1)) ≤ µ∗ − µk

< µ̂∗(t)− µ̂k(t) + c(t− 1, Nk(t1 − 1) + c(t, N∗(t0 − 1))

Then
µ̂∗(t)− µ̂k(t) > c(t− 1, Nk(t1 − 1)− c(t, N∗(t0 − 1))

contradicting to the event of premise.

26



We apply Chernoff-Hoeffding bound to Claim 2.21 and 2.22.

Pr
{
µ̂∗(t) ≤ µ∗−c(t, N∗(t0−1))

}
≤ exp

{
−4 ln

t

N∗(t0 − 1)
N∗(t0−1)

}
= t−4

Pr
{
µ̂k(t) ≥ µk+c(t, Nk(t1−1))

}
≤ exp

{
−4 ln

t

N∗(t1 − 1)
N∗(t1−1)

}
= t−4

Setting ℓ = ⌈8 ln t
∆2

i
⌉ makes Claim 2.23 constantly false because 2.19 requires

Nk(t1 − 1) ≥ ℓ which yields

µ∗ − µk − 2c(t, Nk(t1 − 1)) = µ∗ − µk − 2

√
2 ln t

Nk(t1 − 1)
≥ µ∗ − µk −∆k = 0

So Claim 2.23 always fails. Apply union bound to Formula 2.20.

E
[
Nk(t)

]
= E

[
Nk(T )

]
≤ ⌈8 ln t

∆2
i

⌉+
∞∑
t=1

t−1∑
t0=1

t−1∑
t1=ℓ(

Pr
{
µ̂∗(t) ≤ µ∗ − c(t, N∗(t0 − 1))

}
+ Pr

{
µ̂k(t) ≥ µk + c(t, Nk(t1 − 1))

})
≤ ⌈8 ln t

∆2
i

⌉+
∞∑
t=1

t∑
t0=1

t∑
t1=1

(
t−4 + t−4

)
≤ 8 ln t

∆2
i

+ 1 +
π

3
(2.24)

We thus conclude the proof.

2.2.4 Classical Approaches – Gaussian Rewards

There exists a variant of UCB1 named UCB1-NORMAL proposed in the
same paper [9] and it proves to hold a O(lnT ) expected cumulative regret
for bandit problems with normally distributed rewards. More recent works
provide more general modified versions of UCB such as Bayes-UCB [3] which
is designed to more efficiently deal with normal rewards; UCB-V [10] which
does not assume distribution category of rewards with bounded support;
and GP-UCB that is specially optimized for Gaussian process and assumes
no support bounds. The next section will make in-depth discussion on GP-
UCB and its relation to our proposed model. For the final part of this section,
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we instead introduce a non-UCB based simple approach called Thompson
sampling commonly used as a dithering technique for optimizing bandits
with normally distributed rewards.

Thompson Sampling

Back to the general K-armed bandit problem setting in Section 2.2.1,
assume bandit reward Xk has normal distribution and the reward list rk =
⟨r(1)k , r

(2)
k , ..., r

(n)
k ⟩ contains all the observations collected from Xk so far. We

are interested in discovering the underlying reward distribution Pr(µk | rk)
based on currently available data using Bayesian paradigm.

Pr(µk | rk) ∝ Pr(rk | µk)Pr(µk)

As the conjugate prior of normal distribution is normal as well given pre-
assumed variance, we expect the prior probability Pr(µk) ∼ N (µ′

k, 1/τ
′
k).

Let τk = 1/σk be the precision of normal distribution of Xk, we have the
following posterior distribution.

Pr(µk | rk)

∝
[∑

i

1√
2π/τk

exp
{
− τk

2
(µk − r(i)k )2

}] 1√
2π/τ ′k

exp
{
− τk

2
(µk − µ′

k)
2
}

∝ exp
{
− τ ′k +

∑
i τk

2
µ2
k + (τk

∑
i

r
(i)
k + τ ′kµ

′
k)µk + C

}
∝ exp

{
− τ ′k + nτk

2

[
µk −

τk
∑

i r
(i)
k + τ ′kµ

′
k

τ ′k + nτk

]2}
(2.25)

After dropping constants irrelevant to µk, Formula 2.25 describes the pos-
terior distribution of single-arm rewards. In practice, τk, τ

′
k are commonly

initialized as 1 and µ′
k starts with 0. If we prefer to make greedy actions by

choosing the arm with the maximum mean of posterior distribution resem-
bling the Bayesian A/B test illustrated in Section 2.1 we may simply stick
to Formula 2.25 for computing the means. Greedy actions can practically be
problematic because it fails to account for candidate arms with high uncer-
tainty (variance). Consequently the sequential decision process gets inclined
to exploit more certain candidate distributions and refuse to explore truly
the optimal action.
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Thompson sampling [11] addresses the greedy issue by perturbing es-
timated parameters with randomness. We know from Formula 2.25 that
posterior probability of µk with observations is normal.

Pr(µk | rk) ∼ N (
τk

∑
i r

(i)
k + τ ′kµ

′
k

τ ′k + nτk
,

1

τ ′k + nτk
) (2.26)

For every arm we sample an empirical parameter µ̂k from Pr(µk | rk) and
play the arm indexed I with the largest sample.

I = argmax
k∈[K]

µ̂k ∼ Pr(µk | rk)

Effectiveness of Thompson sampling comes from uncertainty of less played
arms because such distributions are more likely to produce samples surpass-
ing arms that were exhaustively explored. Initialization of τ ′k and τk in ( 2.26)
can be overridden to alternative values to adjust how fast uncertainty of an
arm decreases as its observation count n grows. More in-depth study of
Thompson sampling will be discussed with experiments in later chapters.

2.3 Gaussian Process Regression

This section concisely elaborates Gaussian Process regression, a non-
parametric supervised learning model and thoroughly discusses GP-UCB [12],
a GP based Bayesian optimization method for stochastic bandit problems
with sublinear regret bounds and the optimal action guaranteed, since the
proposed model in this thesis is closely bonded with the core idea of GP-UCB,
as is shown in the next chapter.

2.3.1 Introduction to Gaussian Process Regression

A Gaussian Process can simplistically be defined as a collection of corre-
lated random variables, any finite subset of which has a multivariate Gaus-
sian distribution [13]. A Gaussian process is completely specified by a mean
function µ(x) and a covariance/kernel function k(x, x′) as GP(µ(x), k(x, x′))
where x ∈ D. D is the index space Rd and can be in one or higher dimensions
(d ≥ 1).

µ(x) = E[f(x)]
k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]

(2.27)
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In 2.27, f : D → R is a stochastic function such that f(x) for any x ∈ D
is a random variable of normal distribution. In machine learning context, f
is the objective function we try to optimize and expect E[f(x)] to predict
“ground truth” at location x. Hence a Gaussian process is often interpreted
as a Gaussian distribution over functions.

f(x) ∼ GP(µ(x), k(x, x′))

Supervised Learning with Gaussian Process

Let x = [x1, ..., xn] be the list of available features in training data and
y = [y1, ..., yn] be training labels. Features of the test data is denoted as
x∗ = [x∗1, ..., x

∗
n]. Define random variable lists f = [f(x1), ..., f(xn)]

T and
f∗ = [f(x∗1), ..., f(x

∗
n)]

T . For simplicity, the means of prior distributions are
assumed to be 0 so that f combined with f∗ has a joint Gaussian prior.[

f
f∗

]
∼ N

(
0,

[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

] )
K(x,x) is the n×n covariance matrix calculated from the training data. The
submatrices K(x,x∗) and K(x∗,x) are n×n∗ and n∗×n covariance matrices
whose entries Kij, Kji express k(xi, x

∗
j) and k(x

∗
j , xi). As kernel functions k

are in most cases symmetric, Kij = Kji is true. Similarly K(x∗,x∗) is a
n∗ × n∗ square matrix representing test data covariance.

Given training data x, training labels y and test features x∗, prediction
on x∗ is given by the following posterior distribution.

Pr(f∗ | x∗,x,y) ∼
N
(
K(x∗,x)K(x,x)−1y, K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗)

) (2.28)

In real world applications, it is more practical to estimate some noise in
the training data, i.e., labels y are not necessarily the ”ground truth” values
of f but yi = f(xi) + ϵ where ϵ ∼ N (0, σ2). Assuming noise ϵ is i.i.d for
i = 1, ..., n the prior distribution of the stacked random vector now becomes[

f
f∗

]
∼ N

(
0,

[
K(x,x) + σ2I K(x,x∗)
K(x∗,x) K(x∗,x∗)

] )
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Prediction given by noisy Gaussian process regression follows distribution
below.

Pr(f∗ | x∗,x,y) ∼ N
(
µ(f∗), cov(f∗)

)
where µ(f∗) = K(x∗,x)[K(x,x) + σ2I]−1y

cov(f∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2I]−1K(x,x∗)

(2.29)

There are situations where it is necessary to assume training data is noise free
even if ϵ exists. For example, when estimating a uniform hyperparameter σ2

from training data is difficult and ϵ is significantly small, noise free regression
can still produce satisfactory prediction.

2.3.2 GP-UCB Algorithm
– Regression Under Bandit Setting

Section 2.3.1 defines a general Gaussian process in what is called the
“function space view” because all the random variables are considered sam-
ples from a black box function f : D → R. Placed under bandit problem
setting, a Gaussian process can be reformulated into a sequential optimiza-
tion problem. In each round t we make a decision at location xt ∈ D as
candidate arms are indexed by action space D. For every sample xt we col-
lected, the posterior of GP is updated. Here two goals are of our concern.
First we want to minimize the total regret RT during the process as typical
required by MAB problems. RT =

∑T
t=1 f(x

∗) − f(xt) and x∗ locates the
global maxima of f . Second true value of x∗ can be eventually found such
that an algorithm possesses the property limT→∞RT/T = 0.

Srinivas et al. [12] proposed a variant of upper confidence bound algo-
rithm, Gaussian process upper confidence bound (GP-UCB) which holds the
asymptotically zero-regret property and provably achieves novel bounds of
cumulative regret. GP-UCB follows a very straightforward rule by choosing
xt at every step meanwhile collecting a new data sample yt.

Decision xt relies on both current GP status sigma, µ and appropriate
constants βt. Noise ϵ has to be estimated as some i.i.d of N (0, σ) before any
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Algorithm 1 GP-UCB [12]

init GP prior µ, σ, K
for t in step 1...T do

choose xt = argmaxx∈D µt−1(x) +
√
βtσt−1(x)

sample yt = f(xt) + ϵ
update GP posterior

end for

experiments. In this thesis we focus on βt defined as below.4

βt = 2 ln
[ |D|t2π2

6δ

]
where constant δ ∈ (0, 1).

GP-UCB appears to be less intuitive than UCB1 whereas βt does not
depend on locations x. As a result less explored locations do not secure
fairness of being chosen with higher probability even though they are likely
to be highly uncertain (large variances). From a high level view it is because
that GP-UCB intends more quickly discover the optimal local x∗ by avoiding
globally exploring the action space; and that for the sake of maximizing
f(x) a lot of redundant exploration in UCB1 could have been removed. The
improvement of GP-UCB lies within its less greedy decision strategy whose
regret bound is bounded by what is called maximum information gain during
T rounds.

2.3.3 GP-UCB – Information Gain and Regret Bounds

Information Gain of GP regression

Information gain(IG) [14] is used to describe the amount of mutual infor-
mation shared between two probability distributions. High information gain
generally indicates that revealing one distribution X fortifies our confidence

4In the original works, Srinivas et al. proposed three different rules depending on
context. The first rule discusses general finite discrete space D. The second rule applies to
compact and convex space with assumption on kernels. The third warrants regret bound
given that f lies within Hilbert space. Only the first rule is mentioned here because latter
cases are not closely relevant to the core problem of this thesis.
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in the other Y . IG from Y to X is defined as the drop of entropy after Y is
revealed: I(X;Y ) = H(X)−H(X | Y ). It is easy to show that

H(X)−H(X | Y ) = H(Y )−H(Y | X) =
∑
x,y

Pr(X = x, Y = y)

Pr(X = x)Pr(Y = y)

so I(X;Y ) = I(Y ;X) is true. Back to the Gaussian process, regression is
essentially reducing the entropy of the ground truth f in our belief through
sequentially collecting yt = f(xt) + ϵ. To quantify the additional amount of
useful information a training set ⟨xA,yA⟩ of size |A| delivers, we define the
IG of the training set as

I(fA;yA) = H(fA)−H(fA | yA)

where A ⊂ D and fA = [f(x)]x∈A which are ground truth values the algo-
rithm has no access to. Alternatively,

I(fA;yA) = I(yA;fA) = H(yA)−H(yA | fA) (2.30)

For multivariate Gaussian, H(N (µ,Σ)) = 1
2
ln |2πeΣ|. As yA ∼ N (µA,KA+

σ2I), where KA is the kernal matrix of entries k(x, x′)x,x′∈A and µA does not
matter, H(yA) =

1
2
ln |2πe(KA + σ2I)|. Similarly, if fA were to be revealed,

the only uncertainty on yA remains as noise so H(yA | fA) = 1
2
ln |2πeσ2I|.

Rewriting Formula 2.30 computes information gain by training data ⟨xA,yA⟩.

I(fA;yA) =
1

2
ln |I + σ−2KA| (2.31)

Formula 2.30 makes it tempting for us to figure out a set A ⊂ D, sequen-
tially and additively formed by a training set ⟨xA,yA⟩ such that information
gain towards fA is maximized. Unfortunately finding the IG maximizer sub-
ject to T steps (A ⊂ D, |A| ≤ T ) is NP-complete according to Krause &
Guestrin [15], who further proposed an approximation algorithm that simply
selects data xt in addition to At−1 with maximized marginal increase of IG
at every step. Let I(fA;yA) = F (A) then

xt = argmax
x∈D

[
F (At−1 ∪ {xt})− F (At−1)

]
The subset A selected by this greedy approach after T steps guarantees [15]
a constant fraction of optimal IG granted by a truly optimal A.

F (AT ) ≥ (1− 1/e) max
A⊂D,|A|≤T

F (A)
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It is because F (A) satisfies “diminishing return”” property called submodu-
larity so that marginal increase of A is non-increasing.

F (A ∪ x)− F (A) ≥ F (A′ ∪ x)− F (A′)

holds for all A ⊂ A′ ⊂ D, x ̸= A. It is proved by Nemhauser et al. [16] that
greedy approximation is at most a constant factor worse than the optimal
answer. In the case of Gaussian process regression, this approximation is
equivalent to picking xt with the largest variance.

xt = argmax
x∈D

σt−1(x)

As previously mentioned, GP-UCB algorithm tends to stay more conservative
against global exploration than greedy approximation, yet able to achieve
total regret bounded by the maximum information gain which does not need
to be precisely quantified in its algorithm.

Regret Bound of GP-UCB

With the problem setting in Section 2.3.2 running GP-UCB for T rounds
makes up a sample set A of size T . If A is an optimal set that maximizes
I(fA;yA) then the IG it achieved is defined as γT = maxA⊂D,|A|=T I(fA;yA).
Without finding such A, GP-UCB obtains a total regret bounded by γT .

Theorem 2.3.1. Running GP-UCB for a sample f with 0 GP mean and co-
variance function k(x, x′) ≤ 1, the sum of regret RT is bounded by O∗(TγT ln|D|)
with high probability. Precisely,

Pr
{
RT ≤

√
C1TβTγT ∀T ≥ 1

}
≥ 1− δ

where C1 = 8/log(1 + σ−2) and δ ∈ (0, 1).

Srinivas et al. provided four lemmas listed below in order to prove The-
orem 2.3.1 and those lemmas also give sound explanation to the βt value of
choice.

Lemma 2.3.2. Pr
{
|f(x)− µt−1(x)| ≤

√
βtσt−1(x)

}
≥ 1− δ, ∀x ∈ D ∀t ≥ 1

holds for δ ∈ (0, 1) and βt = 2 ln(|D|πt/δ) if
∑∞

t 1/πt = 1
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Proof. Since f(x) is the sample function from a GP, f(x) ∼ N (µt−1(x), σt−1(x)).
Let r = (f(x) − µt−1(x))/(σt−1(x)) making r standard normal distribution.
Pick c > 0 and Pr{r > c} =

∫∞
c
φ(r)dr; φ(r) is standard normal density.

Pr{r > c} = 1√
2π

∫
c

exp[−r
2

2
]dr = exp[

c2

2
]

1√
2π

∫
c

exp[
c2 − r2

2
]dr

= exp[
−c2

2
]

1√
2π

∫
c

exp[−(r − c)2/2] exp[−c(r − c)]dr

for 0 < c < r, exp[−c(r − c)] < 1

Pr{r > c} ≤ exp[
−c2

2
]

1√
2π

∫
c

exp[−(r − c)2/2]dr

= exp[
−c2

2
]

1√
2π

∫
0

exp[−r2/2]dr

= exp[
−c2

2
]Pr{r > 0} = 1

2
exp[

c2

2
]

(2.32)

The two-tail probability is Pr{|r| > c} ≤ exp(− c2

2
). Now plug in r value and

let c =
√
βt.

Pr{|(f(x)− µt−1(x))

σt−1(x)
| >

√
βt} ≤ exp(−βt/2)

⇒Pr{|f(x)− µt−1(x)| > σt−1(x)
√
βt} ≤ exp(−βt/2)

(2.33)

Apply (2.33) to all x ∈ D,

Pr{|f(x)− µt−1(x)| ≤ σt−1(x)
√
βt, ∀x ∈ D} ≥ 1− |D| exp(−βt/2) = 1− σ

πt

A wise choice of πt is π2t2/6 because this makes
∑∞

t=1 1/πt = 1 and

βt = 2 ln |D|π2t2

6δ
, which explains the selected value of appropriate constant

used in GP-UCB.

Lemma 2.3.3. For t ≥ 1, |f(x)−µt−1(x)| ≤
√
βtσt−1(x)⇒ rt ≤ 2

√
βtσt−1(xt)

where rt is instantaneous regret at step t.

Proof. By definition rt = f(x∗) − f(xt) with maxima of f at x∗. For xt
to get selected by GP-UCB, it is required that µt−1(xt) +

√
βtσt−1(xt) ≥
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µt−1(x
∗) +
√
βtσt−1(x

∗) and µt−1(x
∗) +
√
βtσt−1(x

∗) ≥ f(x∗). Then

rt = f(x∗)− f(xt) ≤ µt−1(xt) +
√
βtσt−1(xt)− f(xt) ≤ 2

√
βtσt−1(x)

Lemma 2.3.4. Define fT = [f(xt)]t∈1...T . Information gain of data set at
step T can be expressed as

I(fT ;yT ) =
1

2

T∑
t=1

ln[1 + σ−2σ2
t−1(xt)]

Proof. Following the same paradigm with Formula 2.30 and 2.31, I(fT ;yT ) =
H(yT ) − H(yT | fT ) = H(yT ) − 1/2 ln |2πeσ2I|. Also by the chain rule of
conditional entropy,

I(fT ;yT ) = H(yT−1) +H(yT | yT−1)− 1/2 ln |2πeσ2I|

Knowing yT−1 marginalizes the entropy of joint Gaussian yT into the entropy
of yT alone, so H(yT | yT−1) = ln[2πe(σ2 + σ2

t−1(xt))].

I(fT ;yT ) = H(yT−1) +
1

2
ln[2πe(σ2 + σ2

t−1(xt))]−
1

2
ln |2πeσ2I|

= H(yT−1) +
1

2
ln[1 + σ2σ

2
t−1(xt)]

By induction towards T = 1 and H(y0) = 0

=
1

2

T∑
t=1

ln[1 + σ2σ
2
t−1(xt)]

(2.34)

Lemma 2.3.5. With δ and βt defined as in Lemma 2.3.2, the following event
holds with probability of at least 1− δ.

T∑
t=1

r2t ≤ βTC1I(yT ;fT ) ≤ C1βTγT ∀T ≥ 1, C1 =
8

log(1 + σ−2)

Proof. By Lemma 2.3.2 and 2.3.3 the event
{
rt ≤ 2

√
βtσt−1(xt)

}
=

{
r2t ≤

4βtσ
2
t−1(xt)

}
holds with probability ≥ 1 − δ. Let s = σ−1σt−1(xt) then we

have the fact below.

ln(1 + σ−2)

σ−2
≤ ln(1 + s2)

s2
for s ≤ σ−1
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This is because ln(1 + t)/t is a decreasing function to t. We know s2 =
σ−2k(xt, xt) ≤ σ−2 since the kernel function is restricted within 1. So we
bound s2 by

s2 ≤ σ−2 ln(1 + s2)

ln(1 + σ−2)

The upper bound of r2t then gets written into

r2t ≤ 4βtσ
2σ−2σ2

t−1(xt) = 4βtσ
2s2 ≤ 4βt

ln(1 + s2)

ln(1 + σ−2)
(2.35)

Sum up (2.35) along t = 1...T using Lemma 2.3.4.

T∑
t=1

r2t ≤
4βT

ln(1 + σ−2)

T∑
t=1

ln[1 + σ−1σt−1(xt)]

(βt is non-decreasing)

=
4βT

ln(1 + σ−2)
2I(fT ;yT )

≤ 8βT
ln(1 + σ−2)

γT = C1βTγT

(2.36)

By Cauchy–Schwarz inequality,

R2
T = (

T∑
t=1

rt)
2 ≤

T∑
t=1

1
T∑
t=1

r2t = T
T∑
t=1

r2t ≤ TC1βTγT

⇒ Pr(RT ≤
√
TC1βTγT ) ≥ 1− δ

(2.37)

hereby the statement in Theorem 2.3.1 gets proved. Finally βT = 2 ln |D|π2t2

6δ

needs to be plugged into (2.37) to show the bound of regret sum.

TC1βTγT = C1TγT2 ln |D|+ C1TγT2 ln
π2T 2

6δ

Thereby conclusion is that GP-UCB give a sum of regret squares bounded
by O(TγT ln |D| + TγT lnT ) = O∗(TγT ln |D|) thus completing the proof of
Theorem 2.3.1.
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According to Srinivas et al., bounds of the maximum information gain
γT vary depending on the choice of kernel function k. For the interest of
this thesis, we only focus on squared exponential kernel under which γT ∼
O((lnT )d+1). This implies strictly sublinear growth of cumulated expected
regret by GP-UCB algorithm.

2.4 Probabilistic Graphical Models

In this last section of Chapter 2, we make introductory review on prin-
ciples of probabilistic graphical models, a rich framework of general statis-
tical models based on graph representations. Probabilistic graphical models
are powerful toolkits for analyzing ubiquitous uncertainty through structured
pattern of reasoning causal and correlation in various machine learning prob-
lems. A compelling reason of applying graphical models to probability in-
ference is its compactness of encoding knowledge into proper independence
assumption. Consider a highly abstract representation of the world as a
joint distribution X = {Xi} = {X1, X2, ..., Xn}. With |Xi| as the size of
range of a random variable, querying by brute force the arbitrary joint prob-
ability Pr(X1 = x1, X2 = x2, ..., Xn = xn) requires an estimation of all
Πi|Xi| ∼ O(en) individual parameter combinations and full storage of a size
O(en) lookup table, which even at small scale makes a majority of prob-
lems computationally intractable. Probabilistic graphical models introduce
the concept of factors, which are essentially non-negative functions ϕ with
fixed subsets of random variables X1,X2, ...,Xm ⊂X as inputs. Instead of
directly inferring full joint distribution Pr(X) = Pr(X1, X2..., Xn), Pr(X)
are represented in graphical models as a product of factors so that

Pr(X) =
Πiϕi(Xi)

Z
, Z =

∑
x∈V al(X)

Πiϕi(Xi) (2.38)

with Z as normalizing constant or partition function. The purpose of Z is to
make Pr(X) a true probability distribution because

∑
x∈V al(X) Pr(x) = 1.

Computing Pr(X) is now of complexity O(em) and in a properly designed
graphical model m is far below n. Furthermore, clever inference algorithm
can significantly reduce that cost achieving much more efficient ways of query-
ing joint probability.

Another reason that probabilistic graphical models are helpful is their
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intuitive declaration of conditional probability. Dependence among random
variables are self-explanatory by graph structures and such representation is
isolated from the algorithm used to query the posterior probability. The rest
of this section introduces two types of graphical models based on directed
and undirected graphs, both of which are used in this thesis, followed by
review on some common inference algorithms.

2.4.1 Directed Models - Bayesian Network

Bayesian networks are effective graph-based representation to compactly
encode conditional probability among a large number of dependent random
variables. A Bayesian network is a directed acyclic graph G with each of
its nodes X standing for a random variable and its edges E specifying di-
rectional probability dependence. Every Bayesian network G(X,E) satisfies
local independence property that for any node Xi ∈ X given all its parents
Par(Xi) it is conditionally independent from its non-descendants.

Xi ⊥⊥ nondescendantXi
| Par(Xi) for Xi ∈X (2.39)

Reasoning Pattern

The local independence property is derived from reasoning pattern, se-
mantics on how probability of nodes influences each other. As previously
mentioned the most noticeable advantage of a Bayesian network is its intu-
itive way of interpreting dependence/independence assumptions among ran-
dom variables.

� �

�

� �

Figure 2.1: Bayesian network example

Figure 2.1 is a simple example of a Bayesian network describing joint prob-
ability distribution Pr(A,B,C,D,E). Directed edges are straight forward
enough to express the conditional probability Pr(D|C), Pr(E|C), Pr(C|A)
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and Pr(C|B). When it comes to reasoning pattern, we are more interested
in how random variables influence other parts of the graph beyond its imme-
diate neighbors. Figure 2.1 contains 4 important substructures (“trails”) in a
typical Bayesian network and each substructure represents a unique scenario
of reasoning pattern.

• A → C → D : A influences D if and only if C is not observed. Given
no evidence about C, change of probability of A apparently affects C
and further flows to D. But an observed C has ascertained value state
which blocks influence from A because D in this case is dependent on
C only. This pattern is called causal reasoning.

• E ← C ← B : E influences B if and only if C is not observed. It makes
sense to say that event E reflects its immediate cause C which further
implies confidence on B. Such backward chains of tracing event causes
is called evidential reasoning.

• D ← C → E : D influences E if and only if C is not observed. Since
both D and E share the common cause, high probability of event D
reasonably implies likelihood of event E. However, if C is observed the
trail from D to E is blocked as knowing C is sufficient to determining
the distribution of E even when event D occurs out of coincidence. Such
a pattern is called inter-causal reasoning on common cause.

• A → C ← B : This is a funky case in Bayesian network semantics,
referred to as ”v-structure” in some literature [17]. A influences B
if and only if C is observed. Counterintuitive as it might seem, no
rationale exists for belief on event A to propagate to B simply because
they share the same effect C, unless C is known. An intuitive example
is when A and B are uniform binary random variables A,B ∈ {0, 1}
and C is the xor sum C = A ·¬B+¬A ·B. Without presence of precise
value of C, Pr(A = 0 | B) = Pr(A = 1) = 0.5 and Pr(B = 0 | A) =
Pr(B = 1) = 0.5. In other words knowing either A or B does not help
determine the state of the other variable. However such independence
breaks if C = 0 is observed because A = B is necessary condition and
likewise A ̸= B is necessary for C = 1. This “v-structure” semantic is
called inter-causal reasoning on common effect.

With basic reasoning patterns above, we are able to detect which part of
the graph a node may influence in a Bayesian network by traversing those four
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different types of “trails”. A more formal notation of describing such flow of
probability influence is called d-separation(direction-dependent separation).

Definition. Let X1, X2 and Z be three non-overlapping subsets of nodes in
the same Bayesian network. Then X1, X2 are said to be d-separated by Z
if for ∀X1 ∈X1 and ∀X2 ∈X2, X1 ⊥⊥ X2 | Z.

In other words, when Z d -separates X1 and X2, knowing X1 does not
provide additional information about X2 once Z gets observed. The local
independence property can be formally restated such that any node in a
Bayesian network is d -separated from all its non-descendants by its parents,
for the obvious reason that any active trail to non-descendants is blocked by
its parents.

Factorization and I-map

The likelihood of a general Bayesian networkG consisting of nodesX1, ..., Xn

is computed as L(G) =
∏n

i Pr[Xi|par(Xi)]. L(G) is guaranteed to be a legal
distribution without need of normalizing constant.∑

val(X)

L(G) =
∑

x1∈val(X1),...,xn∈val(Xn)

n∏
i

Pr[Xi = xi|par(Xi)] = 1 (2.40)

This is because Bayesian network is a directed acyclic graph so a valid
topological sorted order must exist. Without loss of generality, assume
X1, X2, ..., Xn is topologically sorted. For simplicity x1 ∈ val(X1)...xn ∈
val(Xn) is written as Xn

1 . Then a very simple proof can be constructed as∑
Xn

1

n∏
i

Pr[Xi = xi|par(Xi)]

=
∑
Xn−1

1

{ n−1∏
i

Pr[Xi = xi|par(Xi)]
∑
Xn

Pr[Xn = xn|par(Xn)]
}

=
∑
Xn−1

1

{ n−1∏
i

Pr[Xi = xi|par(Xi)]
}

because Xn is the last node in topological order and it does not serve as a
parent for any other nodes. The summation factored out is marginalized on
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val(Xn) so it is 1. The conclusion follows by induction. However, L(G) being
legal is not sufficient for a Bayesian network to accurately represent a general
joint distribution Pr(X1, X2, ..., Xn), unless Pr(X1, X2, ..., Xn) factorizes the
graph G.

Definition. A joint distribution Pr(X1, X2, ..., Xn) is said to factorize a
Bayesian network G if the following condition is satisfied.

Pr(X1, X2, ..., Xn) = L(G) =
n∏
i

Pr[Xi|par(Xi)]

In practice we are more interested in knowing under which condition
Pr(X1, X2, ..., Xn) factorizes G given its Bayesian structure. The answer is
that G has to be an I-map of Pr(X1, X2, ..., Xn).

Definition. Let I(P ) be the set of all the conditional independencies that
hold in distribution P ∼ Pr(X1, X2, ..., Xn) and I(G) be the set of all the
d-separations in its structure. Then G is said to be an I-map of P if I(G) ⊆
I(P ).

Then we may come to the following conclusion.

Theorem 2.4.1. G is an I-map of distribution P ⇒ P factorizes G.

Proof. By the chain rule of conditional probability, for general distribution
P ∼ Pr(X1, X2, ..., Xn)

Pr(X1, X2, ...Xn) = Pr(Xn|X1, ..., Xn−1)Pr(Xn−1|X1, ..., Xn−1)...P (X1)

= Pr(X1)
n∏
i=2

Pr(Xi|X1, ..., Xi−1)

Again w.l.o.g., assume X1, ...Xn is in topological order so that any parent
must have a lower index i than its descendants including children. For any
Xi, i > 1, the list of nodes X1, ...Xi−1 covers all its non-descendants including
par(Xi). Moreover, no descendants of Xi could be possibly in X1, ...Xi−1. If
we annotate Zi as the non-descendants of Xi excluding par(Xi), the factor
Pr(Xi|X1, ..., Xi−1) can be written as Pr[Xi|par(Xi)∪Zi]. Then by property

42



of local independence in (2.39), Pr[Xi|par(Xi) ∪Zi] = Pr[Xi|par(Xi)].

Pr(X1, X2, ...Xn) = Pr(X1)
n∏
i=2

Pr[Xi|par(Xi) ∪Zi]

= Pr(X1)
n∏
i=2

Pr[Xi|par(Xi)] =
n∏
i=1

Pr[Xi|par(Xi)]

As the premise of the theorem states that G is an I-map of P, Pr[Xi|par(Xi)∪
Zi] = Pr[Xi|par(Xi)] not only holds in the graph but also for the actual
distribution P . We may conclude that

P ∼ Pr(X1, X2, ..., Xn) =
n∏
i=1

Pr[Xi|par(Xi)] = L(G)

Therefore G factorizes P .

Plate Notation

In a lot of practical problems rapid growth of complexity of Bayesian net-
work structure makes it difficult to symbolize the graph due to an increasing
number of factors and parameters that are necessary for many learning tasks.
A great proportion of such complexity comes from repetitive patterns of sim-
ilar objects that share the same reasoning functionality such as a collection of
observations in the same space of joint distribution. Conventionally plate no-
tation is used as a template based language that describes complex Bayesian
network structures in compact diagrams, where recursive substructures in
the same graph are represented by indexable plates. We discuss two differ-
ent categories of learning models for classification as motivating examples of
using plate nation.

Consider a classification task which requests prediction on objective class
C based on observation list X1, ..., XM . Generative models directly learn
a joint distribution Pr(C,X1, ..., XM) while discriminative models are only
interested in learning Pr(C|X1, ..., XM). For binary classification problems
arguably the most simplified generative model falls within naive Bayes clas-
sifiers which hold strong assumption that observations are mutually indepen-
dent conditioning on class label C. Figure 2.2(a) displays the plate notation
of a typical naive Bayes classifier in the case of M observations indexed by
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(c) Max Entropy Classi-
fier (Discriminative)

Figure 2.2: Generative Model vs. Discriminative Model

the same plate. Hence by likelihood of Bayesian networks we verify that

L(G) = Pr(C,X1, ..., XM) = Pr(C)
M∏
i

Pr(Xi|C)

corresponds to the common semantics of naive Bayes probability. In contrast,
for discriminative models, directly sampling Pr(C|X1, ..., XM) from observa-
tions is difficult because observations are no longer independent given C as
indicated by the plate notation in Figure 2.2(b). A parameterized solution
helps solve the problem by introducing hidden nodes θ. Note that each θi
and Xi are not independent either. So the graph likelihood takes the form of

Pr(C|X1, ..., XM ; θ) = Pr(C|X;θ)

where X and θ are vectors of Xi and θi. A commonly used discriminative
approach of materializing Pr(C|X;θ) is the sigmoid function to reformulate
the graph likelihood into

Pr(C|X;θ) =
1

1 + exp[−θTX]

leading to the familiar logistic regression probability.

The logistic regression model in Figure 2.2(b) can be generalized to multi-
class classification by templating C into multiple targets C1, ..., CK . For each
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Ck its conditional distribution is Pr(Ck|X;θk) ∝ exp[−θTkX]. Normalizing
Pr(Ck|X;θk) gives us a maximum entropy (softmax) probability.

Pr(Ck|X;θk) =
exp[−θTkX]∑K
k=1 exp[−θTkX]

The nested plates in Figure 2.2(c) reveal its difference from logistic regression
since for every target Ck a set of different parameter list θk is required.
Therefore it contains a total of KM parameters.

2.4.2 Undirected Models - Markov random field

At the beginning of this section we mentioned the notion of factors in the
context of graphical models. As factors alone do not necessarily pertain to
any conditional probability distribution like Bayesian networks, undirected
graphs can be more naturally interpretable models for problems that do
not intrinsically bear directionality of probability dependence among random
variables. In fact, a joint distribution P ∼ Pr(X) is called Gibbs distribution
if Pr(X) ∝ Πiϕi(Xi), Xi ⊂ X. Markov random fields can be used for
directly representing Gibbs distributions in general.

A Markov random field (Markov network) is an undirected graphG(X, E),
each of whose edges (i, j) ∈ E stands for probability dependence between two
nodes (Xi and Xj). In other words, trails of probability influence may tra-
verse along edges until observed nodes. This leads to Markov property as
listed below.

• Local Markov property: a node is conditionally independent from all
the other nodes given all its neighbors.

Xi ⊥⊥ Xj /∈adj(i) | {Xk|k ∈ adj(i)}

• Pairwise Markov property: given all the other nodes, two nodes must
be conditionally independent unless they are neighbors.

Xi ⊥⊥ Xj | {Xk|k ̸= i, k ̸= j} if (i, j) /∈ E

• Global Markov property: two non-overlapping node subsets are con-
ditionally independent given a third node subset if nodes in the third
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subset blocks all the trails from between the previous two.

X1 ⊥⊥X2 |X3 where every path between X1 and X2 passes X3

The global Markov property is generalization of pairwise and local prop-
erty. Based on simplicity of Markov property, it is reasonable to say that rea-
soning pattern in a Markov network is typically simpler compared to Bayesian
networks due to its undirected nature.

Factorization and I-map

For a general Markov network G consisting of nodes X1, ..., Xn, the graph
likelihood L(G) can be computed in a product of factors.

L(G) = Πiϕi(Xi)

Z
,Xi ⊂ {Xi}

where Z is the same normalizing constant as defined in (2.38). For every
factor ϕi(Xi), its input Xi has to form a clique in the graph. A clique is
any fully connnected subgraph of G. So factors ϕi(Xi) are also called clique
potentials forming ϕi(Xi) as clique factorization. Note that cliques in fac-
torization do not have to be maximal cliques with respect to G, meaning
that Xi does not have to cover the largest possible fully connected sub-
set of nodes. For the Markov network in Figure 2.3 as an example, both
L(G) ∝ ϕ(A,B,D)ϕ(A,C) and L(G) ∝ ϕ(A,B)ϕ(A,D)ϕ(B,D)ϕ(A,C) are
valid expressions even though A,B,D is the largest fully connected subcom-
ponent. For a Markov network to hold valid representation of some Gibbs
distribution, it is required that the Gibbs distribution factorizes over the
graph.

��

� �

Figure 2.3: Markov network example
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Definition. A Gibbs distribution P ∼ Pr(X1, X2, ..., Xn) ∝ Πiϕi(Xi) is said
to factorize the Markov network G if ∀i,Xi is a clique in G.

This definition is equivalent to saying that the structure of the undirected
graph can inspected against every factor in a Gibbs distribution to verify
whether a Markov network represents the designated distribution. This is
because when a Gibbs distribution P factorizes the G, G is an I-map of P .

Definition. Let I(P ) be the set of conditional dependencies that hold in the
Gibbs distribution P ∼ Pr(X1, X2, ..., Xn) = Πiϕi(Xi) and I(G) be the set of
all conditional dependencies according to Markov property. Then G is said
to be an I-map of P if I(G) ⊆ I(P ).

The effect is that if Gibbs distribution P factorizes a Markov network G,
then factors in P satisfy local, pairwise and global Markov property. So we
have the theorem as follows.

Theorem 2.4.2. If P is a Gibbs distribution factorizing the Markov network
G, G is an I-map of P .

Proof. Let X1,X2,Z be any three disjoint subsets of graph nodes {Xi} and
Z blocks all trails between X1 and X2. We discuss two cases based on
X1∪X2∪Z = {Xi} and X1∪X2∪Z ⊂ {Xi}. First assume X1∪X2∪Z =
{Xi}. Since P factorizes G, no factor in P could possibly contain nodes from
both X1 and X2 because that violates the rule of cliques on factors. Then
P can be written as a Pr(Xi) ∝ Πiϕi(X1)Πjϕj(X2) where X1 ∈ X1 ∪ Z,
X2 ∈X2 ∪Z. Then the factors can be categorized into two larger terms so
that Pr(Xi) ∝ Φ1(X1,Z)Φ2(X2,Z). So Pr(Xi|Z) ∝ Φ1(X1)Φ2(X2) with
Z marginalized out. This proves that Pr(Xi) satisfies any such independence
consumption X1 ⊥⊥X2 | Z in G.

Next consider the case X1 ∪ X2 ∪ Z ⊂ {Xi}. Still no factor possibly
contains nodes from both X1 and X2. Let X1 ∪ X2 ∪ Y ∪ Z = {Xi}
and Y does not intersect with the other three sets. This time P can be
written as a Pr(Xi) ∝ Πiϕi(X1)Πjϕj(X2) where X1 ∈ X1 ∪ Y ∪ Z, X2 ∈
X2 ∪Y ∪Z. Then Pr(Xi) ∝ Φ1(X1,Y ,Z)Φ2(X2,Y ,Z). Marginalizing Z
gives Pr(Xi|Z) ∝ Φ1(X1,Y )Φ2(X2,Y ). This proves that Pr(Xi) satisfies
X1,Y ⊥⊥ X2,Y | Z. By decomposition of conditional probability [17] this
is equivalent to X1 ⊥⊥X2 | Z. Thereby the proof is completed.
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Interestingly the inverse of the above theorem is truth as well, i.e., I-
map leads to factorization of a Markov network, which is known as the
Hammersley–Clifford theorem[18].

A particular case of Markov networks is pairwise Markov network, which
satisfies all Markov property in general except that the likelihood is computed
based on connected pairs of nodes. In the case of G(X, E),

L(G) = Π(i,j)∈Eϕ(Xi, Xj)/Z

This expression is attractive in practice as a connected pair of nodes is guar-
anteed to form a valid clique and no sophisticated graph traversal algorithm
is needed due to such simplification. Consider the worst case scenario that
a pairwise Markov network of n nodes is fully connected and each node has
m discrete possible states. For each of the n(n − 1)/2 edges there are m2

states so that the parameter space for estimating the distribution is O(n2m2).
This is far below the size of parameter space O(mn) required for raw joint
distribution of Pr(X1, ..., Xn) without introducing a graphical model.

Gaussian Markov Random Field

Gaussian Markov Random Field (GMRF) is another specialization of
Markov networks. A Markov network G(X, E) is a GMRF if the vector
(X1, X2, ..., Xn)

T is in multivariate normal distribution. The density Pr(Xi)
correspond to typical multivariate normal probability.

Pr(X1, X2, ..., Xn) = (2π)−n/2|Q|1/2 exp{−1

2
(X − µ)TQ(X − µ)}

where µ are the list of means and Q is the precision matrix computed as
the inverse of covariance matrix Σ and must satisfy Qij > 0 if and only if
(i, j) ∈ E. For single Xi it is normally distributed when marginalized on the
rest of the graph. The marginalized distribution of Xi can be estimated as

E(Xi|{Xj ̸=i}) = µi −
1

Qii

∑
j:(i,j)/∈E

Qij(Xj − µj)

Prec(Xi|{Xi ̸=i}) = Qii

Corr(Xi, Xj|{Xk ̸=i,k ̸=j}) = −
Qij

QiiQij

=
Σij√
ΣiiΣjj

, i ̸= j

Cov(Xi, Xj) = Q−1
ij = Σij
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Interpreting marginalized distributions from Q is difficult because the co-
variance term Σij depends on every term in Q. However, constructing Q is
straightforward as it can be quickly retrieved by an adjacency table. In case
of densely connected graph, Q is mostly positive so computing Q−1 is rec-
ommended. Moreover, sophisticated sampling approaches are needed for nu-
merically simulating the graph distribution from data because E(Xi|{Xj ̸=i})
does not explicitly specifies how Xj are quantified. Moreover, for graphical
models to learn from data we also need concrete inference algorithms for
determining posterior distribution.

2.4.3 Inference Algorithms

Section 2.4.1 and 2.4.2 make declarative statements on the semantics of
several different types probabilistic graphical models, namely how joint prob-
ability is represented in the form of a structured set of random variables. But
no explanation is explicitly given on how probability is numerically computed
through those models. The process of computing numerical probability sub-
ject to a well-defined graph is called inference, which in the context of graph-
ical models is conventionally formulated as a query task. Given a graphical
model standing for Pr(X1, ..., Xn) we query the graph by asking the ques-
tion what the exact value Pr(X1 = x1, ..., Xn = xn) is for an arbitrary vector
[x1, ..., xn]

T . Such a query is called exact inference because we are interested
in knowing the true joint probability of Pr(X1, ..., Xn). More frequently, we
tend to query for Pr(Xi|{X} −Xi),Xi ⊂ {X} and in this case the node
set {X}−Xi is often treated as evidence because we are asking for marginal
distribution on some nodes used as condition, or Pr(X|E) referred to as
conditional probability query. An even more particular case is about query-
ing the reduced probability Pr(X|E = e) where e is known observation of
evidence nodes.

There exist two common categories of inference tasks: conditional prob-
ability query commonly addressed by variable elimination algorithms and
MAP inference often solved as a parameter optimization problem. Variable
elimination includes a class of algorithms that compute the target distribu-
tion through a sequence of summation or reduction operations on variables.
Optimization algorithms directly construct a posterior distribution with min-
imized distance (e.g. KL divergence) to the target distribution specified by
graph semantics. Exact inference in probabilistic graphical models, in worst
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cases are always NP-hard problems due to inference complexity that is expo-
nential to scale of the graph [19]. Even approximate inference is of prohibitive
complexity because estimating probability of a given state with bounded er-
ror – finding ρ subject to |Pr(X = x|E = e) − ρ| ≤ ϵ for some fixed and
small ϵ is NP-hard as well [17]. Fortunately, however, in real-world applica-
tions graphical models do not necessarily end with the worst scenario and
almost always graph structures can be designed or refactored in a clever way
so that inference can be much more efficiently performed. Despite of large
literature regarding this topic, this thesis only introduces fundamental ideas
how those two categories of inference methods work through a few simple
examples and some important procedures that are relevant to subsequent
chapters.

Variable Elimination

We begin discussion of variable elimination algorithm by a simple toy
example consisting of nodes A,B,C,D, all fully connected. Therefore the
corresponding graph supports the following product of factors for joint prob-
ability so that no assumption on directionality of the graph is needed.

Pr(A,B,C,D) =
1

Z
ϕ(A,B)ϕ(A,C)ϕ(A,D)ϕ(B,C)ϕ(B,D)ϕ(C,D)

For a query task on Pr(D), variable elimination computes
∑

a,b,c Pr(D|a, b, c)Pr(a, b, c)
as an answer. Starting with A, it performs a sequence of what is called sum-
product elimination.

P (D) =
∑
a,b,c

Pr(D|a, b, c)Pr(a, b, c)

∝
∑
a,b,c

ϕ(a, b)ϕ(a, c)ϕ(a,D)ϕ(b, c)ϕ(b,D)ϕ(c,D)

=
∑
b,c

ϕ(b, c)ϕ(b,D)ϕ(c,D)
∑
a

ϕ(a, b)ϕ(a, c)ϕ(a,D)

(2.41)

If every factor has d assigned states so that summing up ϕ(A,B)ϕ(A,C)ϕ(A,D)
on A requires tabular lookup of O(d3) total entries. Similar elimination goes
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for B and C.

P (D) ∝
∑
b,c

ϕ(b, c)ϕ(b,D)ϕ(c,D)ϕ′(b, c,D)

=
∑
c

ϕ(c,D)
∑
b

ϕ(b, c)ϕ(b,D)ϕ′(b, c,D)

=
∑
c

ϕ(c,D)ϕ′′(c,D) =
∑
c

ϕ′′′(c,D)

(2.42)

The overall complexity O(d3) is dominated by eliminating A and B as the
last two steps only involve two variables. Likewise, a graph of n fully con-
nected nodes has unavoidable inference complexity of O(dn−1) where d is
typically quadratic to the number of node states. However, most use cases
do not compose any fully connected structure and in many cases the graph
can be highly sparse if independence assumption is sufficiently and properly
asserted. Consider instead of a fully connected graph but a simple linear
structure A − B − C − D. The reduction chain now turns into an ordered
list of arithmetic operations

∑
a ϕ(a,B),

∑
b ϕ(b, C),

∑
c ϕ(c,D) each taking

O(d) entry lookups. This results in O(nd) complexity for computing the dis-
tribution table of Pr(D), a significantly reduced cost compared to O(dn−1)
in the fully connected case.

Now it remains to discuss the particular case of reasoning conditional
distribution when evidence is available, or the query task of computing
Pr(D|E = e). For the same example structure of A-B-C-D, a trivial case
is that E = {A,B,C} and e = [a, b, c]T . As every random variable except
D is in the evidence(observation) set, querying Pr(D|A = a,B = b, C = c)
does not involve variable elimination and Pr(D|A = a,B = b, C = c) can
simply be written as Pr(D|a, b, c) ∝ ϕ(a, b)ϕ(b, c)ϕ(c,D) = ϕ′(D). A bit
more generalized case can be partial evidence so that E = {B} and e = [b]T .
Expanding the factor expression for Pr(D|E = e) gives

Pr(D|B = b) ∝
∑
A,C,D

ϕ(A, b)ϕ(b, C)ϕ(C,D) =
∑
A,C

ϕ′(A)ϕ′(C)ϕ(C,D)

=
∑
C

ϕ′(C)ϕ(C,D)
∑
A

ϕ′(A)

∝
∑
C

ϕ′(C)ϕ(C,D) ∝ ϕ′′(D)

As it turns out, any random variable in the evidence set automatically falls
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off the elimination list({A,C,D}) because they are now constants. Factors
that contain evidence can be reduced into a new factor with respect to unob-
served variables only. In a more summarized way, this type of sum-product
elimination algorithm can be concluded as Algorithm 2 with evidence taken
into consideration.

Algorithm 2 Sum Product Variable Elimination [17]

1: init the factor list ϕ1, ...ϕm ∈ Φ, evidence set E = e
2: if E ̸= ∅ then replace each ϕi ∈ Φ with ϕi(E = e)
3: end if
4: set up initial product ϕ(X1, ...Xn)←

∏m
i ϕi,∀Xi, Xi /∈ E

5: for i in node 1...n-1 do
6: ϕ′ ← sum-product-eliminate ϕk from Φ on Xi if Xi ∈ scope(ϕk)
7: Φ← Φ ∪ ϕ′

8: ϕ(Xi+1, ...Xn)←
∏

ψ∈Φ ψ
9: end for

10: return ϕ(Xn)

The only problem yet remaining to be solved for exact inference using
variable elimination algorithm is the partition function Z specified in (2.38).
For Bayesian networks, no partition function is required if every such fac-
tor ϕ(X ∪ par(X)) is computed according to Bayesian semantics such as
Pr[X|par(X)]Pr[par(x)], because their graph likelihood is a legal distribu-
tion as proved in (2.40) so Z = 1. However, for Markov networks clique
factors do not directly constitute conditional probability distributions. Sim-
ilar techniques as variable elimination can be used for Z with modification,
known as “bucket elimination”, or elim-bel [20] summarized as Algorithm 3.

The main difference between calculating the partition function and con-
ditional probability query is that every variable in the graph is eliminated
so that elim-bel algorithm returns a constant instead of a distribution table
at completion, in the form of a factor with empty scope ϕ(∅), as is de-
sired. Without any optimization, Algorithm 3 runs at the worst complexity
of O(nemaxi{|adj(Xi)|}) where |adj(Xi)| is the number of nodes adjacent to Xi

in the graph. This is because the most expensive elimination step occurs at
the node with the highest neighbor count so a maximized number of factors
get involved in computing the sum of products. In a fully connected graph
this complexity is equivalent to O(nen). In practice looking for an optimal
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Algorithm 3 Bucket Elimination (elim-bel) [20]

1: init the factor list ϕ1, ...ϕm ∈ Φ, elimination order X1, ..., Xn

2: set up initial product ϕ(X1, ...Xn)←
∏m

i ϕi,∀Xi, Xi /∈ E
3: for i in node 1...n do
4: create bucket Bi ← {ϕ | ϕ ∈ Φ, Xi ∈ scope(ϕ)}
5: ϕ′(scope(Bi)\Xi)←

∑
xi∈Xi

∏
ψ∈Bi

ψ
6: Φ← Φ\Bi ∪ ϕ′

7: ϕ(Xi+1, ...Xn)←
∏

ψ∈Φ ψ
8: end for
9: assert Φ = ∅

10: return Z = ϕ(∅)

elimination order is helpful to find minimized induced graph to save compu-
tational cost. Unfortunately finding an exactly optimal order is generally an
NP-hard problem as well. A lot of existing research is focused on efficient
but greedy algorithms looking for suboptimal solutions such as relying on
newly filled edge counts as a cost function or minimized induced width of
cliques [21].

MAP Inference

Unlike conditional probability queries which estimates the objective dis-
tribution table through node sequences, maximum a posterior (MAP) in-
ference as a different task attempts to find assignment that maximizes the
likelihood of the a graphical model. It addresses probability queries by di-
rectly assigning the most probable state to a joint distribution, under the
constraint of evidence if any. For a graph of X = X1, ..., Xn, an MAP infer-
ence task can simply be defined as finding x subject to

x = argmax
x

Pr(X = x)

In case of some evidence set E available, we look for y such that

y = argmax
y

Pr(Y = y | E = e),Y = X\E

In terms of factor product,

x = argmax
x

∏
k

ϕk(Dk) = argmax
x

∑
k

lnϕk(Dk), Dk is scope(ϕk) (2.43)
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Since looking for globally optimal assignment for MAP is difficult due to
large joint probability space, techniques similar to variable elimination can be
applied so that factors can sequentially get optimized. The good news is that
Formula 2.43 provides us a recipe of maximizing a sum of log factors instead
of a product of factors, which makes remarkable contribution to simplifying
variable elimination operations. Consider again the toy example of A−B −
C − D for Pr(A,B,C,D) ∝ ϕ(A,B)ϕ(B,C)ϕ(C,D). For an assignment
[a, b, c, d]T to maximize its likelihood,

maxa,b,c,d ln[ϕ(a, b)ϕ(b, c)ϕ(c, d)]

=maxa,b,c,d[lnϕ(b, c) + lnϕ(c, d) +maxa lnϕ(a, b)] ← a is found and eliminated

=maxa,b,c,d[lnϕ(b, c) + lnϕ(c, d) +maxaϕ
′(b)]

The step of finding a is called max-product elimination because it max-
imizes ϕ(a, b) subject to a unlike what we did in sum-product elimination
which sums up factor outputs based on distinct a values. Following similar
steps we are able to discover b, c, d until eventually maximum of ln[ϕ(A,B)ϕ(B,C)ϕ(C,D)]
is computed. In more general cases, this type of max-product elimination
techniques can be summarized into the elim-map algorithm [20], as listed in
Algorithm 4.

Algorithm 4 Bucket Elimination (elim-map) [20]

1: init the factor list ϕ1, ...ϕm ∈ Φ, evidence set E = e
2: if E ̸= ∅ then replace each ϕi ∈ Φ with ϕi(E = e)
3: end if
4: set up initial product ϕ(X1, ...Xn)←

∏m
i ϕi,∀Xi, Xi /∈ E

5: for i in node 1...n do
6: create bucket Bi ← {ϕ | ϕ ∈ Φ, Xi ∈ scope(ϕ)}
7: ϕ′(scope(Bi)\Xi)← maxxi∈Xi

∏
ψ∈Bi

ψ
8: Φ← Φ\Bi ∪ ϕ′

9: add xi = argmaxxi
∏

ψ∈Bi
ψ to results

10: ϕ(Xi+1, ...Xn)←
∏

ψ∈Φ ψ
11: end for
12: return [x1, ..., xn]

T

Instead of max-product elimination, this thesis adopts somewhat different
strategy of MAP inference from existing approaches for solving the MAB
problem, as is explained in detail by subsequent chapters.
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Chapter 3

Optimizing Bandit Problems
with Graphical Models

This chapter starts discussion on the first partition of contribution from
this research - a novel predictive model that learns stochastic functions given
a limited set of data samples. Interpolation algorithms are commonly seen in
supervised learning applications for function approximation by constructing
models generalizable to unseen data. However, parametric models such as
regression and linear SVMs are limited to functions in the form of predefined
algebraic expressions and are thus unsuitable for arbitrary functions with-
out finite number of parameters. Although properly trained neural networks
are indeed capable of computing universal functions, the amount of required
training data can be prohibitively large in some practical scenarios such as
online recommendation. The proposed model addresses both problems based
on a semi-parametric graphical model that approximates function outputs
with limited data samples through Bayesian optimization. Definition of the
graphical model consists of three stages. First, declarative representation of
a graphical model is its semantics of how probability gets encoded into the
graph structure. Second, to interpret the encoded probability distribution we
need to query the graph by inference to compute numerical outputs. Lastly,
learning from external data reinforces the model towards better approxima-
tion of patterns in data. This chapter covers purely declarative representation
and the next two stages are left to subsequent chapters.
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3.1 Introduction on Contribution

The proposed graphical model addresses the problem of making optimal
decisions subject to unknown environment, defined as an unknown function
without pre-assumed closed-form expression. A typical application where it
becomes an imperative optimization task is a recommendation system at cold
start. With no prior knowledge as for popularity of its candidate items like
online ads, a recommendation engine is expected to quickly grasp an accurate
model discriminating between favored and unpopular candidates [22] [23].
Click-through rate (CTR), the ratio of valid user responses and number of
viewers (or impression) upon an item, is a common metric of item popu-
larity and it can be interpreted as probability that an item achieves user
acquisition. Given that CTRs of in-list items are considered as stochastic
function outputs, a predictive model can adaptively be applied to learn the
unknown environment, whose the location of global optimum is of our best
interest. Parametric learning models such as regression do not properly fit
this problem because no rigid parameterized assumption is allowed in our
problem setting. Neural networks have practically been known to be pow-
erful universal function approximators but as data hungry solutions they
require large amount of training data towards predictive functionality. For
marketing strategy prediction, acquiring large amount of training data can
be prohibitively expensive due to unbounded advertising fees or opportunity
cost. It is financially demanded that a recommendation system discover op-
timal strategy within fewest possible data samples so as to minimize overall
marketing cost. This research models this initialization problem as reward
optimization with exploration-exploitation trade-off under the paradigm of
the multi-armed bandit (MAB) problems [24] [25] [26] in which an agent
always seeks for the candidate of the highest CTR. For every decision step,
collected reward is sampled and used as feedback to improve future decisions.
This online setup is a snapshot of optimal policy search at a single step in
typical reinforcement learning scenarios, compared to which MAB considers
no state change caused by actions. In addition, budget constraint is imposed
on the learning process. In this paper, budget is defined as the total count
of recommendation deliveries. Reward is defined as the count of valid user
responses (clicks) assuming pay-per-click advertising model.

As one primary component of the two-fold solution contributed by this
research, the graphical model that learns from limited CTR samples and
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performs inference on stochastic environment through maximum a posteri-
ori (MAP) estimate. The graphical approach refers to candidate items by
discrete indices and depicts CTRs of every item into random variables in
such a way that item indices are expected to be multivariable to allow for
multi-dimensional environment. Rigorous proof is given that the proposed
graph complies with fundamental property of a Gaussian Markov random
field (GMRF) [27], so that inference can be performed based on multivariate
Gaussian covariance between variables. One major advantage of such design
is that the model size is constrained by the number of graph nodes as de-
termined by item counts in practice and does not grow with training data,
in contrast to traditional Bayesian regression [28] which memorizes all data
samples, thus significantly reducing computational complexity particularly
when the item count is much smaller than the number of data samples.

The second primary component of our solution is sampling-based deci-
sion making policies. As graphical model inference provides the posterior of
item rewards, determining the best candidate item break down to a multi-
armed bandit problem. The proposed decision making policy is a variation
of Thompson sampling [29] [30] that iterates cumulative density across items
and selects one that maximizes the expectation that CTR of the sampled
item exceeds all the rest. The adapted Thompson sampling method is tested
in comparison with traditional meta-approaches on exploration-exploitation
trade-off including acquisition functions and the naive epsilon greedy method.
Tests reveal that Thompson sampling as decision making policy gives the best
outcome in terms of cumulative regret.

The rest of this thesis is structured as follows. In this chapter and the
next, the graphical model is defined along with the inference process with
proof on its GMRF property and correctness of probability computation. The
chapter after the next introduces learning process as sets of decision making
policies. In the experiment chapter, the complete framework of graphical
model is evaluated against online algorithms in which decision making and
model adjustments take place in parallel. The algorithms are experimented
on both synthetic environment and real CTR test benches. Using the pro-
posed Bayesian model and online learning algorithm, a real world example is
also experimented to showcase effectiveness of our solution on CTR improve-
ment on real data sets. Discussion of experiment results comes right before
conclusion.
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3.2 Model Declaration

3.2.1 Problem Nature

Consider the problem of global optimization as follows. Given a set of
data samples {(i, ri) | ri = f(i) + ϵ(i)} where f is a reward function repre-
senting environment, we attempt to learn from the reward samples a model
f̂ mimicking f so that for any i ∈ Rd, f̂(i) ≈ f(i). Sampling noise ϵ is i.i.d
Gaussian noise for all i ∈ Rd in this paper. Consequently ri stands for a
random variable subject to some distribution specific to i. The sample set in
this paper is defined as S.

S = {(i, ri) | ri = f(i) + ϵ(i), i ∈ Dd} (3.1)

Here Dd is some finite discrete space and Dd ⊂ Rd. Learning a global
approximation of f(i) overkills the key problem in this paper since it only
aims at the optimum index i based on S so that argmaxi f̂(i) = argmaxi f(i).
Therefore the optimization goal of our interest becomes i∗ = argmaxi∈Dd ri.
It is important to beware that sampling (i, ri) from environment incurs extra
cost and

∣∣S∣∣ is thereby to be minimized.

3.2.2 Graphical Representation

This section describes detailed probability interpretation and inference
process of the proposed graphical model, a hybrid graph with similar property
from a Markov random field and its subcomponents structured as Bayesian
networks.

Markov property

Graph construction starts with Markov property among nodes yi as pre-
sented in the example Markov random field by Figure 3.1, where every yi
stands for a hidden node or target node that infers probability distribution of
ri defined in (3.1). For problems in this paper, we appreciate local Markov
property held in a Markov random field. Probability of hidden node yv is
independent from any non-adjacent node given all its neighbors Jv.

yv ⊥⊥ yu/∈Jv
∣∣{yu′∈Jv}
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In other words, belief of a hidden node does not propagate beyond adjacent
nodes when all its neighbors are certain. The field probability distribution
is then computed in clique factorization where a clique is defined as a fully
connected subgraph. In this paper cliques are counted based on connected
pairwise nodes. The clique joint probability is defined using a Gaussian
function p(yi, yi+1|γy) = exp[−γy

2
(yi+1 − yi)2].

Here γy constrains the bonding strength between neighbors. Joint density
over the field can be a product from all the cliques with y standing for the
target node list.

p(y|γy) =
n−1∏
i=1

exp(−γy
2
(yi+1 − yi)2)

=
∏
i,j∈E

exp(−γy
2
(yi − yj)2)

(3.2)

In general cases, graph nodes yi are not necessarily linearly connected as in
the particular example of Figure 3.1. A more comprehensive expression of
Markov joint density is expressed as (3.2) in clique factors from a pairwise
Markov network with E being the edge set.

r1 r2 rn

yn
γy γy

γ γ γ γ

y1 y2

r3

y3
!"##$%&

'(#$)

*$+,-#)

Figure 3.1: Markov property

59



!

· · ·

γ γ γ

yi

r
1

i
r
2

i

!"#$%&"

'!()*!+!$#&,-.
γ

α
γ0

y
y

µ̃

)/,012*$

$3-!01*$"4$

α

γ0

#
$

%&
#
'

!

"
γ

(

"

Figure 3.2: Bayesian property

Bayesian property

Setup of the Markov network in Figure 3.1 oversimplifies reward pat-
terns by assuming that every hidden node has only one reward sample whose
value is certain. In practice, rewards ri are sampled as a list during learning
process and certainty of yi is under impact from multiple samples. So in
addition to joint density over hidden nodes, we introduce Bayesian property
by modifying subcomponents under yi to take care of belief propagation from
reward samples to hidden nodes. Figure 3.2 denotes the Bayesian network
that expresses such property. Under Bayesian assumption, every target node
yi is conditioned on some prior α with bonding strength γ0. The reward list
of yi is represented as nodes ri separately indexed from 1 to mi. Reward
nodes ri are mutually conditionally independent given their hidden node yi.
Similar to the Markov network, bonding coefficient γ is assigned between
an observed node ri and its target node yi. Plate notation of the Bayesian
network is also provided such that for one target node there are m samples
under the parent.

Factorization property of a Bayesian network says the joint distribution
of a target node yi and its children r

(i)
j are defined below.

p(r(i), yi|γ, γ0, α) = p(yi|γ0, α)
mi∏
j=1

p(r
(i)
j |γ, yi) (3.3)

In (3.3), r(i) is the reward list of yi and r
(i)
j is the jth sample. Reward list

sizes mi are expected to vary among target nodes. Computing the product
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of likelihood over observations using (3.3) gets increasingly expensive as sizes
of reward lists grow. Since we are more interested in the distribution of the
list r(i) than individual reward samples r

(i)
j , we approximate every r

(i)
j into

the mean µi of r
(i) so as to eliminate child indices of yi.

p(r(i), yi|γ, γ0, α) = p(yi|γ0, α)[p(µi|γ, yi)]mi

= exp[−1

2
γ0(yi − α)2] exp[−

mi

2
γ(yi − µi)2]

where µi = (

mi∑
j=1

r
(i)
j )/mi

(3.4)

Similar to (3.2), joint density between connected nodes are modeled with
Gaussian functions subject to bonding strength γ0, γ in (3.4). We further
work on (3.4) by expanding all the terms in the exponential part.

p(r(i), yi|γ, γ0, α)

= exp

{
−1

2
[miγ(yi − µi)2 + γ0(yi − α)2]

}
= exp

{
−1

2
[(miγ + γ0)y

2
i − (2γmiµi + 2γ0α)yi + γ0α

2 +miγµ
2
i ]

}
= exp

{
−1

2
(miγ + γ0)[y

2
i −

2γmiµi + 2γ0α

miγ + γ0
yi +

γ0α
2 +miγµ

2
i

γ0 +miγ
]

}
= exp

{
−1

2
(miγ + γ0)[y

2
i −

2γmiµi + 2γ0α

miγ + γ0
yi + C]

}
(3.5)

Expression (3.5) indicates that the constant C can easily be scaled so
that the exponential term can be rewritten into a perfect square of difference
with respect to yi.

p(r(i), yi|γ, γ0, α) = exp

{
−1

2
γ̃i(yi − µ̃i)2 + C ′

}
= exp {C ′} exp

{
−1

2
γ̃i(yi − µ̃i)2

}
where γ̃i = miγ + γ0 and µ̃i =

γmiµi + γ0α

miγ + γ0

(3.6)

Expression (3.6) proves that the complete Bayesian network can be remodeled
with only one edge parameter γ̃i and interpolated sample mean µ̃i, whose
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Figure 3.3: Final Graphical Model - Gaussian Markov Random Field

values are µi rescaled by γ, γ0 and α. Also notice that γ̃i differs from constant
γ since it depends on reward list sizes as given in (3.6). The finally simplified
Bayesian network is also displayed in Figure 3.2.

Final representation

The final graphical model as Figure 3.3 is a consolidated graph with every
hidden node component in Figure 3.1 replaced by the simplified Bayesian
representation in Figure 3.2. The plate notation shows an example of n
hidden nodes that are bonded with γy, so that the final graphical model
is composed of n Bayesian structures in recurrent pattern. This graph is
used to infer distinct distributions of every hidden node yi based on interpo-
lated means µ̃i calculated from samples on yi, meanwhile modeling covariance
among yi as Gaussian kernels. This is equivalent to saying that random vec-
tor y = ⟨y1, y2, . . . , yn⟩ is in multivariable Gaussian distribution. Therefore
node set {yi} constitutes a Gaussian Markov Random Field (GMRF). Total
joint probability p(y, r|α, γy, γ0, γ) of the final graph is computed as product
of Bayesian probability in (3.6) on target nodes and Markov joint density
counting every edge using (3.2).

p(y, r|α, γy, γ0, γ) = p(y|γy)
∏
i

[
p(r(i), yi|γ, γ0, α)

]
(3.7)
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To make (3.7) explicit, we now plug in both probability factors from (3.6)
and (3.2) ignoring the constant factor.

p(y, r|α, γy, γ0, γ) ∝{∏
i

exp

[
−1

2
γ̃i(yi − µ̃i)2

]}{ ∏
i,j∈E

exp
[
−γy

2
(yi − yj)2

]} (3.8)

In (3.8) i, j refers to an edge connecting yi, yj given the edge set E and indices
i, j ∈ Dd as indicated in (3.1). A typical GMRF node yi has an increasing
count of neighbors as dimension d goes up as is shown in Figure 3.3. For
instance there are 4 neighbors for non-edge nodes in a 2-dimensional graph
and 6 in 3-dimensional case. To continue working on (3.8), we take the log
likelihood of joint probability p(y, r|α, γy, γ0, γ) as final interpretation of the
graph likelihood.

ln p(y, r|α, γy, γ0, γ) ∝∑
i

{
−1

2
γ̃i(yi − µ̃i)2

}
+

∑
i,j∈E

{
−γy

2
(yi − yj)2

}
(3.9)
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Chapter 4

Graphical Inference

4.1 Parameter Estimation

This section discusses, on top of the proposed graphical model, how infer-
ence is conducted. The parametric model as is declared in Chapter 3 allows
for probability inference through parameter estimation. This research adopts
optimization based inference, or maximum a posteriori probability (MAP),
as one of the two major classes of inference algorithm introduced in Chapter
2 for computing the joint probability distribution. In addition to detailed
constructive process of developing a closed-form graph likelihood function,
several lemmas are proved for verifying optimality of the solved posterior
distribution by the likelihood function.

Now that (3.9) gives a compact representation of model likelihood, infer-
ence is now equivalent to maximizing this likelihood with optimal yi values
ŷi, or a target vector ŷ, subject to currently available reward lists r. Hy-
perparameters α, γy, γ0, γ are initialized with dimension specific values to
be stated in experiments. Next we show that a closed-form solution ŷ exists
for maximizing the model likelihood. Let E(y) = −2 ln p(y, r|α, γy, γ0, γ)
dropping any constant term.

E(y) =
∑
i

{
γ̃i(yi − µ̃i)2

}
+

∑
i,j∈E

{
γy(yi − yj)2

}
(4.1)

The optimal ŷ minimizes E(y), which can be efficiently computed using
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matrix multiplication. Given a graph of n hidden nodes, let B be an n× n
diagonal matrix whose diagonal terms are given by γ̃i in the list γ̃ so that
B = γ̃In. Let K be an n × n adjacency matrix in which kij and kji is
γy if node yi and yj are adjacent otherwise 0. In case of high dimensions
(d ≥ 2), graph node indices are flattened before matrix construction so that
target nodes are indexable with a 1-dimensional array of size n. In this
way, kij = kji so K is a symmetric matrix whose diagonal terms are set to
0. Furthermore, we define k as a length-n vector consisting of row/column
sums of K. So kx =

∑
jKxj =

∑
iKix. Alternatively, kx can be treated as

the neighbor count of the xth node. Define matrix A = B −K + γydiag(k)
where diag(k) is the diagonal matrix with kx as its xth diagonal element.

A = B −K + γydiag(k)

=



γyk1 + γ̃1 −γy · · · −γy · · ·
−γy γyk2 + γ̃2 · · · · · · −γy
...

...
. . .

−γy
...

. . .

−γy
. . .

· · · γykn + γ̃n


(4.2)

B =


γ̃1 0 · · · O
0 γ̃2
...

. . .

O γ̃n


Lemma 4.1.1. The following scalar produced by the product of nested ma-
trices is equivalent to E(y).(

y⊤µ̃⊤)( A −B
−B B

)(
y
µ̃

)
(4.3)

= y⊤Ay − µ̃⊤By − y⊤Bµ̃+ µ̃⊤Bµ̃ (4.4)

Proof. According to (4.1), E(y) =
∑

i {γ̃(yi − µ̃i)2}+
∑

i,j∈E {γy(yi − yj)2},
let E ′(y) be the declared matrix product.

E ′(y) =
(
y⊤µ̃⊤)( A −B

−B B

)(
y
µ̃

)
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Our task is to prove E ′(y) is just an alternative expression to E(y), or
E(y) = E ′(y) is true.

B = γ̃In ⇒ µ̃⊤By = y⊤Bµ̃ =
n∑
i=1

γ̃iyiµ̃i

B = γ̃In ⇒ B =
n∑
i=1

γ̃iµ̃i
2

A is symmetric

⇒ y⊤Ay =
n∑
i=1

y2i (γyki + γ̃i) +
∑
i,j∈E

(−γyyiyj) +
∑
i,j∈E

(−γyyjyi)

⇒ y⊤Ay =
n∑
i=1

y2i γyki +
n∑
i=1

y2i γ̃i − 2γy
∑
i,j∈E

(yiyj)

⇒ E ′(y) =
n∑
i=1

y2i γyki +
n∑
i=1

y2i γ̃i − 2γy
∑
i,j∈E

(yiyj)− 2
n∑
i=1

γ̃iyiµ̃i +
n∑
i=1

γ̃iµ̃i
2

⇒ E ′(y) =
n∑
i=1

y2i γyki − 2γy
∑
i,j∈E

(yiyj) +
n∑
i=1

γ̃i(y
2
i − 2yiµ̃i + µ̃i

2)

⇒ E ′(y) =
n∑
i=1

y2i γyki − 2γy
∑
i,j∈E

(yiyj) +
n∑
i=1

γ̃i(yi − µ̃i)2

⇒ E ′(y) = γy(
n∑
i=1

y2i ki − 2
∑
i,j∈E

(yiyj)) +
n∑
i=1

γ̃i(yi − µ̃i)2

(4.5)

Recall that the setup of matrix A requires that kx be the neighbor count
of the target node at index x.

∑n
i=1 y

2
i ki is literally for every node its value

squared times its neighbor count which is the number of edges it connects.
From the edge perspective every edge (yi, yj) is counted twice respectively
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by yi and yj. So we have

n∑
i=1

y2i ki =
∑
i,j∈E

y2i +
∑
i,j∈E

y2j

⇒ E ′(y) = γy(
∑
i,j∈E

y2i − 2
∑
i,j∈E

(yiyj) +
∑
i,j∈E

y2j ) +
n∑
i=1

γ̃i(yi − µ̃i)2

⇒ E ′(y) =
∑
i,j∈E

γy(yi − yj)2 +
n∑
i=1

γ̃i(yi − µ̃i)2

⇒ E ′(y) =
∑
i

γ̃i(yi − µ̃i)2 +
∑
i,j∈E

γy(yi − yj)2

(4.6)

Therefore E(y) = E ′(y) is true.

With Lemma 4.1.1, we are able to compute the negative log likelihood
E(y) directly from matrix A and B. Recall that y is the target node list
and µ̃ is the interpolated sample means of target nodes.

(
y⊤µ̃⊤) stands for

horizontal concatenation of vectors y⊤ and µ̃⊤ and similarly y and µ̃ can be
vertically concatenated as well. Hence Formula (4.3) produces a product of
three matrices of sizes 1× 2n, 2n× 2n and 2n× 1. In order to maximize the
graph likelihood, we need to find the optimal value ŷ that minimizes E(y)
and equivalently maximizes the model likelihood. Solving ŷ depends on the
following lemma.

Lemma 4.1.2. Emin = E(ŷ) = µ̃⊤(B −BA−1B)µ̃ and ŷ = A−1Bµ̃.

Proof. For this proof, we assume A is positive definite, which as another
lemma will get proved later. A positive definite A has a unique Cholesky
decomposition D⊤D and A = D⊤D. Also define z = Dy. The objective
is to prove that a closed-form solution exists to minimize E(y) below.

E(y) = z⊤z − µ̃⊤BD−1z − z⊤D−1⊤Bµ̃+ µ̃⊤Bµ̃

subject to
Emin = µ̃⊤(B −BA−1B)µ̃

As B is effectively a diagonal matrix with diagonal elements from γ̃ it is
symmetric as well. With regard to the expression above, E(y) can be written
as factorization plus some remainder irrelevant to z.
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E(y) = z⊤(z −D−1⊤Bµ̃)− µ̃⊤BD−1z + µ̃⊤Bµ̃

= z⊤(z −D−1⊤Bµ̃)− µ̃⊤BD(z −D−1⊤Bµ̃)− µ̃⊤BD−1D−1⊤Bµ̃+ µ̃⊤Bµ̃

= (z⊤ − µ̃⊤BD−1)(z −D−1⊤Bµ̃) + µ̃⊤Bµ̃− µ̃⊤BD−1D−1⊤Bµ̃

= (y⊤D⊤ − µ̃⊤BD−1)(Dy −D−1⊤Bµ̃) + µ̃⊤(B −BA−1B)µ̃

= (y⊤ − µ̃⊤BD−1D⊤−1
)D⊤D(y −D−1D−1⊤Bµ̃) + µ̃⊤(B −BA−1B)µ̃

= (y⊤ − µ̃⊤BA−1)D⊤D(y −A−1Bµ̃) + µ̃⊤(B −BA−1B)µ̃

(4.7)

In the above expression the transpose matrix of µ̃⊤BA−1 is A−1⊤B⊤µ̃.
As A is symmetric A−1 is symmetric as well. Therefore A−1⊤B⊤µ̃ =
A−1Bµ̃.

Now it is easy for us to have [(y⊤−µ̃⊤BA−1)D⊤]⊤ = D(y⊤−µ̃⊤BA−1)⊤ =
D(y − A−1Bµ̃), which indicates a dot product of the same vector, or the
L2-norm of vector D(y −A−1Bµ̃).

E(y) = [D(y −A−1Bµ̃)]2 + µ̃⊤(B −BA−1B)µ̃

Minimizing E(y) requires that (y − A−1Bµ̃) = 0. Now we are ready for
ŷ = A−1Bµ̃ and Emin = µ̃⊤(B − BA−1B)µ̃ thus completing proof of
lemma 4.1.2.

lemma 4.1.2 assumes positive definiteness on A, a necessary condition
for A to possess unique Cholesky decomposition in the form of D⊤D. This
assumption is proved below.

Lemma 4.1.3. A is positive definite.

Definition. A symmetric n × n matrix A is positive definite if the scalar
v⊤Av is strictly positive for arbitrary non-zero vector v.

v⊤Av > 0 where v ∈ Rn and ∃vi ̸= 0

Proof. Let v be a size-n non-zero real vector. Based on how A is constructed
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in (4.2), v⊤Av can be expanded as follows.

v⊤Av =
n∑
i=1

v2i (γyki + γ̃i) +
∑
i,j∈E

(−γyvivj) +
∑
i,j∈E

(−γyvjvi)

=
n∑
i=1

v2i γyki +
n∑
i=1

v2i γ̃i − 2
∑
i,j∈E

γyvivj (E is the edge set)

(4.8)

As defined by (3.6) γ̃i = miγ + γ0. mi is the sample size of target node
yi. As hyperparameters γ and γ0 are always set to be positive and ∃vi ̸= 0,
we prove that

∑n
i=1 v

2
i γ̃i > 0. Applying the similar trick used in the proof

of Lemma 4.1.1, we know
∑n

i=1 v
2
i γyki iterates all target nodes in the graph

and sums up v2i γy times neighbor count of node yi. Again from an edge
perspective, every edge i, j ∈ E is counted twice so that

∑n
i=1 v

2
i γyki =∑

i,j∈E v
2
i γy +

∑
i,j∈E v

2
jγy.

n∑
i=1

v2i γyki − 2
∑
i,j∈E

γyvivj =
∑
i,j∈E

v2i γy +
∑
i,j∈E

v2jγy − 2
∑
i,j∈E

γyvivj

⇒
n∑
i=1

v2i γyki − 2
∑
i,j∈E

γyvivj =
∑
i,j∈E

γy(vi − vj)2

⇒ v⊤Av >
n∑
i=1

v2i γyki − 2
∑
i,j∈E

γyvivj =
∑
i,j∈E

γy(vi − vj)2 ≥ 0

(4.9)

Therefore v⊤Av > 0 is true. A is positive definite.

With lemma 4.1.1, 4.1.2 and 4.1.3 we now strictly prove that ŷ is the op-
timal parameter values to define the posterior distribution by the desginated
graphical reresentation.

ŷ = argmax
y

[log p(r,y|γy, γ, γ0, α)] (4.10)

= A−1Bµ̃ and σ2
ŷ = diag(A−1) (4.11)

Here σ2
ŷ is the posterior variance of ŷ taken from diagonal terms of A−1.

Given y = A−1Bµ̃, E(y) = Emin = µ̃⊤(B − BA−1B)µ̃. Let Λ = B −
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BA−1B. The model probability distribution is expected to be

p(r,y|γ, γy, γ0, α) ∝ exp

(
−1

2
µ̃⊤Λµ̃

)
(4.12)

Formula (4.12) proves that the final graph in Figure 3.3 conforms to GMRF
property with multivariate Gaussian distribution such that p(y) ∼ N (µ̃,Λ−1).
Λ serves as the precision matrix.

Lastly, computing A defined in (4.2) requires sums of rows in K. This
leads to context overhead every time the model gets updated. We found
that approximating A with A′ greatly improves computational efficiency in
practice.

A′ = B −K + 2dγyIn

=



2dγy + γ̃1 −γy · · · −γy · · ·
−γy 2dγy + γ̃2 · · · · · · −γy
...

...
. . .

−γy
...

. . .

−γy
. . .

· · · 2dγy + γ̃n


(4.13)

A′ replaces neighbor counts kx on the diagonal with constant 2d. This
in effect avoids counting neighbors by assuming that every d-dimensional
GMRF node has 2d neighbors, an assumption true for all except edge nodes.
Therefore we call approximation with A′ an edge normalization method be-
cause edge nodes are treated as if they were non-edge nodes.

To summarize, the following closed-form solution is adopted as model
inference for later experiments in this thesis.

ŷ = argmax
y

(log p(r,y|γy, γ, γ0, α)) = A′−1Bµ̃ (4.14)

σ2
ŷ = diag(A′−1) (4.15)

ŷ is model prediction with uncertainty measured by the variance list σ2
ŷ.
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4.2 Relevance to the Bandit Problem

The multi-armed bandit (MAB) problem as the core problem of this thesis
has been systematically introduced in Chapter 2. The nature of MAB is
widely studied and applied to many decision making problems [31] [32] [33]
associated with environment reward. This section only briefly reviews the
problem description and how the graphical model designed in this research
can be of benefit for solving the MAB problem from Bayesian perspective.

Given a list of discrete random variables called “arms” {Yi} whose values
represent sample rewards. In general, {Yi} are not of i.i.d, which leads to the
problem nature how to select the arm of maximum expected reward. Given
T rounds of attempts, an ideal policy collects maximized reward from the
best arm. The loss due to failure in collecting optimal reward is measured in
regret. MAB is formally defined as follows.

Given a random variable list {Yi} and µi as mean of Yi, a policy decides

the index π(t) of the chosen arm at the tth step and r
(t)
i is the sample reward

observed on the ith arm at step t. Under policy π(t), the total regret after T

rounds of observation is defined as RT = Tµ∗−
∑T

t=1 r
(t)
π(t) and µ

∗ = maxk µk.
True values of mean µi in MAB are never accessible so µ∗ can only be approx-
imated through inference. This paper models Yi as ri defined in (3.1). We as-
sume {Yi} ∼ N (µ̃,Λ−1) which the proposed graph conforms to. With graph
node yi corresponding to belief in ri, the goal of optimization mentioned in
Section 3.2.1 can be redefined under the bandit setting as minimizing the
regret sum

∑T
t=1 ri∗ − rπ(t) over T iterations.
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Chapter 5

Graphical Learning

Regulating learning tasks for a probabilistic graphical model is the last
stage of defining an intact predictive model after declarative representation
and inference mentioned in Chapter 3. It is of prioritized concern to clearly
state our goal of learning tasks first before we decide upon choice of learning
methods which may vary depending on learning tasks. For the key point of
this thesis, we have to focus on tuning the graphical model that best possibly
fit the criteria of solution to the MAB problem.

There are two primary approaches of learning graphical models. The
first attempts to acquire a model with optimal network structure and is thus
referred to as “structural learning” in some literature. Constructing a proper
graphical model practically requires training on a large scale of data to learn a
distribution of candidate network structures from which the model that is the
most likely to be optimal is selected. In most use cases it consumes high loads
of expert knowledge even to build a candidate model collection of moderate
size. Therefore in this research we restrict our graphical model to a fixed
structure given a well defined problem and every node complies with one-to-
one mapping to a candidate arm. In this way we exclude structural learning
from trainable consideration so as to avoid violation of budget constraint
governed by bandit problems.

The second learning approach learns model parameters assuming a fixed
structure. This learning approach is often associated with two different pre-
diction tasks. The first prediction task is expected to learn from a training
set r to approximate a joint distribution P (y, r), where y are the train-
able model parameters corresponding to the distributions of candidate arms.
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This learning process is known as “generative training” because the joint
distribution is directly taken as the prediction objective, which is typically
achieved by generative models mentioned in preceding discussion in Sec-
tion 2.4.1. The second prediction task involves “discriminative training”,
which enables the model to grasp a close approximation of Pr(y|r). Typical
discriminative models such as those discussed in Section 2.4.1 often separately
encode all the necessary conditional probability distributions represented by
a Bayesian network. For the proposed graph representation (Figure 3.3) we
adopt a variation to generative training by taking all the Bayesian substruc-
tures into consideration and working on maximizing the joint probability
Pr(y, r) in (4.14).

Apart from clarifying the goal of learning task, we further need to consider
additional functional requirements particular to the MAB problem. First, to
minimize the size of training set we favor online learning due to its adap-
tiveness mentioned in Section 2.1. It allows for stepwise model adjustment
as reward sampling goes on, so that graph inference updates itself based
on (4.14) whenever new information about the reward list r is available.
This calls for the need in decision making policy that decides the index of
node/arm to sample from at every step. Second, to come up with a uniformly
good (refer to Section 2.2.1) policy the exploration-exploitation trade-off has
to be weighed with caution to ensure a problem independently effective so-
lution. In this chapter, we introduce several different versions of decision
making policy used for learning and optimizing the graphical model.

5.1 Decision Making Policy

Decision making policy serves as rules necessary to regulate which action
to take at every step, hopefully in order to achieve optimal sequential actions.
Concretely, given model inference ŷ(t), σ

(t)
ŷ by Formula (4.14) (4.15) at time t,

policy is needed to produce π(t), a decision index at which the next sampling
takes place. It now resorts to solving an n-armed bandit problem at every
step t in the sense that there are n target nodes in the graph of Figure 3.3 to
choose from. A decision index π(t) either exploits current model inference by
trusting the largest node in ŷ(t) or put more emphasis on exploring further
rewards from nodes with higher uncertainty based on variance list σ

(t)
ŷ . This

research covers three suites (meta-policy) of decision making policy as listed
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below. Later experiments are designed to verify which policy achieves the
most satisfactory regret evaluation.

5.1.1 Acquisition Function

Constructing an acquisition function (ACQ) is a common approach in
Bayesian optimization to determine the next optimal index to sample at. An
acquisition function is usually an inexpensive utility function that commen-
surates posterior distributions and measures the desirability of each distribu-
tion. Commonly used acquisition functions include probability of improve-
ment [34] (PI), expected improvement [35][36] (EI) and upper confidence
bound [37] (UCB). Let a(ŷ,σŷ) be the generic stereotype of an acquisition
function that performs element-wise operation on input vectors and returns a
vector of the same size so that policy produces π ← argmaxi a(ŷ,σŷ). Below
is parameter setting for the three acquisition functions used in this paper.

• probability of improvement

aPI(ŷ,σŷ) = Φ(
ŷ − rbest − ξ

σŷ

)

where rbest is current best (largest) sample reward across all the nodes so far.
Φ is the standard Gaussian cumulative density. The quantity of probability
of improvement aPI(ŷ, σŷ) is essentially the probability that ŷ is greater than
the best of all the samples currently observed because it is easy to show that
Φ[(ŷ− rbest− ξ)/σŷ] = Pr(ŷ > rbest+ ξ). Restricting the constant bias ξ to a
small value can be of minor impact on the confidence of desirability. In this
research, we persist in ξ = 0.01.

• expected improvement

aEI(ŷ,σŷ) = zσŷΦ(z) + σŷϕ(z)

where z = (ŷ−rbest− ξ)/σŷ and ϕ is the standard Gaussian probability den-
sity. For σŷ = 0, aEI(ŷ, σŷ) = 0. Much less straightforward as its expression
appears, EI shares similar semantics with PI and is also based on the met-
rics of how likely a given sample surpluses currently the best record. With
σŷϕ(z) adding to the acquisition measure, nodes that are more frequently
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sampled tend to have lower variance thus yielding next sampling opportu-
nity to uncertain nodes and securing the exploration side of the trade-off
balance.

• Gaussian process - upper confidence bound

aGP−UCB(ŷ,σŷ) = ŷ +
√
β(x)σŷ

where x is total number of current observations and β(x) = 2log(dx2π2/6δ) [12].
d is dimension of node indices and δ = 0.9. This acquisition function is
exactly the same as the one used by the GP-UCB algorithm proposed by
Srinivas et al. thoroughly introduced in Section 2.3.2 and 2.3.3. Although
GP-UCB is considered a common option for Gaussian process regression, this
research tentatively takes it for comparative experiments to verify how well
it applies to GMRF based models since this work shared the same problem
nature with works from Srinivas et al.

5.1.2 Epsilon Greedy

The same naive classical approach introduced in Section 2.2.3, Epsilon
greedy (EPS) is a classical and naive exploration-exploitation trade-off heuris-
tic that allocates a probability 1− ϵ for exploitation behavior and ϵ for else.
In this research ϵ = 0.2.

π ←

{
argmaxi ŷ, with probability 1− ϵ
random i ∈ Dd, with probability ϵ

(5.1)

5.1.3 Thompson Sampling

The general form of Thompson Sampling (TS) as a classical heuristic has
been introduced in Section 2.2.4. For the particular case of our graphical in-
ference, it is as simple as generating random numbers based on the estimated
model parameters. As a result, Thompson Sampling tends to trust posterior
distribution of parameters and from every node yi takes a random sample
based on N (ŷi, σi). Greedy as the algorithm might seem, such pure sampling
is very effective to less explored arms due to larger standard deviation.

π ← argmax
i
{yi|yi ∼ N (ŷi, σi)}
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In this research we also design a more sophisticated variation of Thompson
sampling dedicated to further adapt the policy for application in practical
CTR optimization. Details are discussed along with experiment setup in the
next chapter.
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Chapter 6

Experiments and Evaluation

Incorporating full functionality of the completely defined GMRF based
graphical model, we are ready to deploy this model into solving general multi-
armed bandit problems. To testify how well this model works in terms of
expected cumulative regret it achieves, three suites of experiments are con-
ducted for separate evaluation. The first batch of experiments are purely
based on the original MAB problem setting, for which some theoretical
“black-box” function are synthesized as hidden ground truth environment
we expect the model to predict. For tests on synthesized functions, envi-
ronment of 1-d, 2-d and 3-d is separately experimented to illustrate how
resilient our predictive model is against higher-dimensional sparse data sam-
ples. Evaluations on these tests compare between meta-policies defined in
Chapter 5 to show how fast each policy reaches convergence of cumulative
regret.

The second batch of experiments takes advantage of experiment design
on synthesized functions and generalizes the bandit setting to CTR optimiza-
tion for online advertising. Concretely, using the same predictive model and
similar experiment setup, an ad recommendation algorithm is designed specif-
ically for traffic scheduling so that the candidate ad with the highest CTR
may receive the largest share of recommendation (impression). Successful
traffic rescheduling is expected to significantly improve the total number of
user clicks given that CTRs of candidate ads are correctly predicted. A test-
bench that simulates real-world clicking behavior is used in these experiments
and CTR logs generated by the testbench serve as training samples. Similar
to experiments on synthesized environment, the recommendation algorithm
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is tested on environment of 1-d, 2-d and 3-d supported by the testbench.
Still, comparative evaluations between different policies are conducted after
modification to these policies.

The third batch of experiments turn to real-world dataset which is col-
lected from click logs from a large number of content distributors. The pur-
pose of real data experiments is to showcase the possibility of practical in-
stallation of all the works involved in this research despite existing limitation
that needs to be addressed.

Lastly, we make more detailed elaboration on the modified version of
Thompson sampling used in ad recommendation algorithm concerning two
aspects. First, unoptimized full-spectrum sampling requires repetitive cal-
culation of integrals on a large number of transcendental functions, which
suffers from prohibitively high computational cost, because the major modi-
fication we made to the original sampling algorithm (Section 5.1.3) is to turn
the index based procedure into a listwise sampling approach. We thereby an-
alyze the complexity of the modified Thompson sampling and propose more
realistic numeric approximation for satisfying similar analytic purpose. The
second point involves simple tricks of improving numerical stability on top
of illustration on numeric approximation.

6.1 Experiment Setup

6.1.1 Hyperparameter Tuning

The four hyperparameters α, γy, γ0, γ are manually tuned through pre-
liminary tests based on synthesized functions separate from those used in our
experiments to ensure effective learning capability of the graphical model. As
α is no more than some prior conventionally installed in Bayesian networks,
we found during tuning process that setting α = 0 does not significantly
impact model inference but we preferred some tiny value of α. Based on
Formula (3.6) it is clear that γ0 and γ serve as smoothing parameters for
interpolated means µ̃i so we want γ0 to be much smaller than γ to avoid
over-scaling µi. Since magnitude of γ is responsible of connection strength
γ̃i we experimented on γ with several different orders including 0.01, 0.1,
1.0 and found that γ = 0.01 achieves satisfactory inference in reconstruct-
ing unknown functions in one-dimensional cases. Furthermore µ̃i essentially
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specifies the precision of the Gaussian function in (3.6) so it controls how
much confidence hidden nodes gain from observations. Increasing γ makes
the Gaussian function skinnier with respect to yi so that the graph is less
confident on observations because likelihood drops faster as yi deviates from
the µ̃i. This is typically desired when the environment dimension goes up
because we intend the model to request slightly more observations to deal
with sparsity of the index space caused by higher dimensions. Therefore we
decide γ = 0.02d, γ0 = 0.01γ to be dimension dependent hyperparameters
where d is the dimension count.

We also found that γy is the most sensitive hyperparameter to the pro-
posed graph. Intuitively it affects correlation among target nodes and pretty
much resembles the scale parameter in radial-basis kernel function in Gaus-
sian process. We opted for γy = 0.01 in this paper as we found that large γy
cripples inter-node belief propagation, which is to be avoided when adjacent
nodes are expected to be correlated arms; oppositely too small γy grants too
much correlation to the Markov random field and this makes the graphical
model inclined to make incorrect inference on the truly optimal arm whose
neighbors are of low rewards. In extreme cases, huge γy completely prevents
a target node from influencing neighborhood and tiny γy allows confidence
to flow freely due to too much correlation.

6.1.2 Experiment 1 - Learning Synthetic Functions

Wrapping up the learning model and meta-policies, we present our first
complete online algorithm as Algorithm 5 in which unknown environment is
learnt through incremental reward sampling. For each iteration, the policy
decides upon graphical inference the location to sample at, so that the sam-
pled reward as a training datum helps update model inference which in turn
improves decision making in upcoming iterations. The similar process goes
on for a few dozens of iterations before the model parameters come close
enough for approximating the environment by predicting the optimal index
to achieve regret convergence.

The four hyperparameters mentioned in Section 3.2 require initialization
before any learning takes place. Throughout this thesis unless otherwise
stated, α = 0.001, γy = 0.01, γ = 0.02d, γ0 = 0.01γ, d representing index
dimension, i.e., dimension of environment as previously stated. Algorithm 5
is repeated on three different dimensions of environment so that d = 1, 2, 3.
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Algorithm 5 Synthetic Function Learning

1: Initialize hyperparameters γ, γy, γ0, α
2: Random ŷ, σŷ ← N (0, σ2)
3: Average regret R̄t ← 0 ▷ evaluation only
4: for t in iteration 1...T do
5: π(t) ← from policy ▷ ACQ/EPS/TS
6: Sample reward at index π(t) as rπ(t)(t)← f(π(t))
7: Update graph likelihood ŷ, σŷ ← p(r,y|γ, γy, γ0, α)
8: Current regret Rt ← maxif(i)− rπ(t)(t) ▷ evaluation only
9: Update R̄t ← R̄t

t−1
t

+Rt
1
t

▷ evaluation only
10: end for

For each case, node index i ∈ Dd. Prior distributions of all nodes are initial-
ized as standard Gaussian. During every iteration, the policy is responsible
for the current index of sampling the next reward and this policy comes from
one of the three meta-policies in Section 5.1. For evaluation purpose only,
Algorithm 5 also keeps track of regret in every iteration and computes the
cumulative average from iteration 1 to t as R̄t (Line 3, 8, 9). Ideally average
regret converges to 0 after enough rounds of iterations passed. Experiment
1 is practically designed to compare different performance among policies in
terms of minimum average regret and how fast this final average regret is
achieved. The synthesized function f used as environment varies depending
on d and settings are respectively given below.

• 1D Environment

f(i) = ϕ(i;µ1, σ
2
1) + ϕ(i;µ2, σ

2
2) + ϕ(i;µ3, σ

2
3) + ϵ

µ1 = −3, µ2 = −1, µ3 = 3

σ2
1 = 0.15, σ2

2 = 1.5, σ2
3 = 0.7

• 2D Environment

f(i) = ϕ(i;µ1,Σ1) + ϕ(i;µ2,Σ2) + ϕ(i;µ3,Σ3) + ϵ

µ1 =

(
−3
3

)
,µ2 =

(
0
0

)
,µ3 =

(
3
−3

)
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Σ1 =

(
0.025 0
0 0.025

)
,Σ2 =

(
2.25 0
0 2.25

)
,Σ3 =

(
0.25 0
0 0.25

)
• 3D Environment

f(i) = 3.0[ϕ(i;µ1,Σ1) + ϕ(i;µ2,Σ2) + ϕ(i;µ3,Σ3)] + ϵ

µ1 =

 3
3
3

 ,µ2 =

 −2−2
−2

 ,µ3 =

 0
0
0


Σ1 =

3 0 0
0 3 0
0 0 3

 ,Σ2 =

0.5 0 0
0 0.5 0
0 0 0.5

 ,Σ3 =

2 0 0
0 2 0
0 0 2


Environment f(i) is the sum of three Gaussian density functions with

independent means and variances. Sampling noise ϵ ∼ N (0, 0.025) and is
applied to all types of environment used in experiments to introduce ran-
domness to f(i). The above setting of f(i) leads to three maxima and the
tested algorithm is challenged to discover the global maxima µ1, µ1 and
µ2 in 1D, 2D and 3D environment, where multivariate Gaussian density is
administered in composition of higher dimensions.

For environment of each dimension, index space Dd is selected as discrete
linear grid on the interval X = [−5.0, 5.0] so that |Dd| is close to 1000. For
example when d = 1 the grid increment is 0.01. For d = 2, 3 node indices
are formed by X × X and X × X × X with larger grid increments. As for
iteration numbers T as budget, Experiments for 1D and 2D environment has
T = 1150 and T = 1075 iterations for 3D.

6.1.3 Experiment 2
- Learning Recommendation Scheduling

Experiments on synthesized environment shows how a theoretical func-
tion can be learnt from scratch through reward sampling. Nevertheless, such
experiment design faces considerable limitation when it comes to predicting
click rates. In practical use cases, decisions are not necessarily sequentially
performed as in original MAB problem setting, such that content distribution
occurs in parallel among multiple ads and collecting only one CTR sample
at every iteration is a huge waste of potential clicks. For operational content
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Algorithm 6 Learning Recommendation Scheduling

1: Initialize hyperparameters γ, γy, γ0, α
2: Random ŷ, σŷ ← N (0, σ2)

3: Impression weights w
(0)
i ← 1/n

4: Average regret R̄t ← 0 ▷ evaluation only
5: for t in iteration 1...T do
6: {w(t)

i } ← from modified policy ▷ ACQ/EPS/TS

7: Collect #clicks {C(t)
i |C

(t)
i = χ(f̃(i), Nw

(t)
i )} from test bench χ ▷

online
8: {r(t)i } ← calculate CTRs C

(t)
i /Nw

(t)
i

9: for i in index 1...n do ▷ offline
10: Sample reward at node index i as r

(t)
i

11: Update ŷ, σŷ ← p(r,y|γ, γy, γ0, α)
12: end for
13: Current regret Rt ← Nmaxif̃(i)−

∑
iC

(t)
i ▷ evaluation only

14: Update R̄t ← R̄t
t−1
t

+Rt
1
t

▷ evaluation only
15: end for

distribution algorithm thereof, an efficient way of scheduling recommenda-
tion traffic is to collect CTR samples from every candidate ad and have the
predictive model analyze the statistics offline. Instead of a single decision in-
dex, we prefer to develop some policy that produces a weight list standing for
the proportions of total traffic to get assigned to candidate ads. Knowing the
CTR posteriors of all the candidate items, the model predicts a weight list
to redirect larger share of traffic to ads with high predictions. This scenario
can concretely be described as finding optimal solution of assigning wiN im-
pressions for every item i to collect maximized user clicks. Algorithm 6 is
presented in testbench experiments as a modified version of Algorithm 5.
Regarding the experiments, N = 100, 000 in analogy to 100,000 ads as avail-
able budget. Algorithm 6 differs from Algorithm 5 mainly in such a way that
it isolates sampling, an online activity from inference, an offline activity as
noted in Line 9. We expect Algorithm 6 to assign wiN ad deliveries on item
yi given n candidate items represented by n graph nodes. In every iteration,
the offline inference does not incur any advertising cost once online sampling
is done.

The way a weight list wi gets constructed depends on which type of meta-
policy (ACQ/EPS/TS) is used as is defined in each case below.

82



Weights from Acquisition Function

{
wi|wπ = 1.0, wi ̸=π = 0

}
, π = argmax

i
a(ŷ,σŷ)

wi is essentially a one-hot vector set at optimal index given by the acquisition
function.

Weights from Epsilon Greedy

{
wi|wπ = 1− ϵ, wi ̸=π = ϵ/(n− 1)

}
, π = argmax

i
{yi|yi ∈ ŷ}

The above weight assignment is a direct interpretation of the probability that
a node is selected when a single decision index is to be made under classical
ϵ-greedy policy. It is fairly easy to see that

∑
iwi = 1.0.

Weights from Modified Thompson Sampling

As posterior distributions ŷ,σŷ in fact deliver more information than
plain prediction on means values y, from which Thompson sampling can
be improved through maximized expectation estimation. Suppose a reward
sample from node yi = ŷi. The probability of node i being the largest in the
graph p(ŷi >= yj ̸=i) =

∏
j ̸=i p(ŷi >= yj). Note that covariance among nodes

is not considered at sampling time. Let Φj be Gaussian cumulative density
of node yj so that Φj(ŷi) = p(ŷi >= yj). Then p(ŷi >= yj ̸=i) is computed as
below.

p(ŷi >= yj ̸=i) =
∏
j ̸=i

Φj(ŷi) (6.1)

Formula (6.1) is an approximation of de facto reward distributions which
are not independent among nodes. With such approximation, we are able to
compute expectation of p(ŷi >= yj ̸=i) as follows.

E[p(yi >= yj ̸=i)] =

∫ ∞

−∞
p(ŷi >= yj ̸=i) dŷi (6.2)

=

∫ ∞

−∞

∏
j ̸=i

Φj(ŷi) dŷi (6.3)
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Therefore weights wi are a proportion list by expectation in (6.2).{
wi/

∑
k

wk|wi = E[p(yi >= yj ̸=i)]
}

The above weights assign impression traffic based on expected probability
of each node being optimal, such that for a single click the assigned node is
multinomially distributed as is specified by those weights.

The CTR test bench χ used in Experiment 2 simulates real life Web ad-
vertising environment by generating random user clicks in the following way.
For candidate item yi, given its assigned impression Nwi and click probability
f̃(i) (Line 7), a recommendation attempt either receives valid user response
or not, as a Bernoulli trial. Consequently the number of clicks Ci on item
yi is in binomial distribution of B(Nwi, f̃(i)), where f̃ is the 1-0 max-min
scaled version of function f over its discrete domain. Environment f used for
the test bench is the same to those defined in Section 6.1.2. Hyperparameters
are initialized with the same values in Algorithm 5. Interval increment X
used in Experiment 2 is adjusted so that |Dd| ≈ 100 instead of 1,000 as in
former experiments. This raises environment sparsity to make it harder for
the model to pick accurate CTR estimation.

6.2 Evaluation

6.2.1 Synthetic Data Evaluation

Figure 6.1, 6.2 and 6.3 demonstrate cumulative regrets from experiments
in all three cases of distinct d. For each case, 30 repeated trials are con-
ducted and averaged for statistically significant evaluation. It is revealed
that Thompson sampling wins final R̄T for all three cases. Some policies fail
to locate the global maximum by getting stuck at local minima (as caused
by larger variances), such as acquisition function PI for all three cases and
EI for d = 3.

In case of policy failure, exploration simply ceases before global maximum
is located in testing environment. In such cases, the policy leads to linear
total regret as is expressed cumulative average regret staying constant.
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Figure 6.1: 1D Test - Synthesized Environment
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Figure 6.2: 2D Test - Synthesized Environment
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Figure 6.3: 3D Test - Synthesized Environment

6.2.2 Testbench Data Evaluation

Similar to Experiment 1, environment in different dimensions are respec-
tively tested and evaluation is averaged across 30 trials. Figure 6.4, 6.5
and 6.6 display average missing clicks as regrets under different policies.
Since Algorithm 6 performs sampling across all graph nodes, it draws much
faster regret convergence so every experiment trial is set as T = 100 itera-
tions. Evaluation shows that acquisition functions are prone to huge loss from
devoting all impressions to wrong indices in higher dimensions, where early-
stage prediction error is much more likely to occur. The modified Thompson
sampling method of Formula 6.2 stands out as optimal policy in predict-
ing ground truth CTRs. Such a sampling method features the flexibility of
exploring potentially optimal nodes with low probability even if such nodes
are among those with the lowest posterior means, making all-at-once decision
mistakes much less likely compared to simpler heuristics of the other policies.
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Figure 6.4: 1D Test - Test Bench Environment
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Figure 6.5: 2D Test - Test Bench Environment
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Figure 6.6: 3D Test - Test Bench Environment

6.3 Real-life Dataset

The real-life dataset used in this research is a sample of data logs on page
views and clicks observed on Websites from different content publishers in
the United States during two weeks’ time interval. The complete dataset
is composed of over 87 million records of page views each of which is in
either clicked or unclicked state. All of the logged page views are attributed
to 4174 advertisers. For testing the proposed solution in this research, the
learning task is designed as a MAB problem of predicting the CTR of content
per advertiser. Among the 4174 advertisers the top 100 advertisers with
the highest number of page views (impression) are picked up as arms for
experiments. These 100 advertisers contribute to more than 37 million page
views for the entire dataset.

Figure 6.7 plots the ground truth environment based on the average CTR
of the top 1000 advertisers. This environment is treated as a 1D function
the predictive model is supposed to learn from. There are two ways this
real data environment gets distinguished from testbench environment used
in Section 6.1.3. First, the average CTRs in general are much lower than
those used in the testbench, which is natural phenomenon as real world ads
rarely achieves click likelihood close to 1. Second, distributions of noise vary
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among nodes unlike the i.i.d Gaussian noise manually imposed on synthetic
environment in Section 6.1.2. The optimal arm as the figure tells has ex-
pected CTR close to 0.25. If the proposed solution, without awareness of
the environment, discovers this arm by learning over time the CTR statics
purely from the dataset, then the solution succeeds in predicting the optimal
advertiser.

The experiment on the real dataset follows virtually the same pattern
as in Algorithm 6, except that CTR is collected once every day from the
dataset instead of being generated by testbench simulation. Upon the end
of a day, the click statistics of all advertisers are collected to compute node
CTRs, which are used as sample rewards to fit the predictive model. Again
the total budget is set at 100,000 impressions and regret on each day is
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Figure 6.8: Click Loss by Days

computed as click loss compared to choosing the optimal advertiser at CTR
of 0.25. Since the time series click logs have a two-week span, the experiment
naturally runs 13 iterations so that decisions are always made on the next
day after sampling. The same set of decision-making policy applies here.
Successful policy is expected to locate the highest CTR and stop exploration
after it is discovered. Only in this way does the recommendation traffic get
best optimized toward zero regret.

Regret evaluation on the dataset by days is shown in Figure 6.8. Previ-
ously evaluated meta-policies present roughly equivalent performance except
for naive ϵ-greedy which has a constant exploration factor. Slight fluctuation
can be observed on average regret after day 6 and it can be explained by
the aforementioned discrepancy of variance among different nodes. As far as
the experimented dataset is concerned, data noise is well enough below the
tolerant level for the model to finally achieve regret convergence. Still, due
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to inconsistency of sample noise among nodes, the modified Thompson sam-
pling technique from Section 6.1.3 takes less advantage of what it assumes
to be stationery distributions. Another possible reason of equivalent regret
convergence for non-trivial policies is that adjacent nodes of high CTRs are
not so well correlated as in the testbench, due to lack of structural learning
mentioned at the beginning of Chapter 5. Pre-learning an optimal graph
structure is commonly expected for these types of problems GMRF applies
to.

Additionally, it is worth noting that in testbench experiments the envi-
ronment functions of choice are intentionally crafted to have steep global and
local optima to make it harder for predictive models to figure out the best
index, so that we may rely on the absolute possession of the ground truth f
for cumulated regret to be computed bias free. On the contrary, estimating
ground truth in real-world application remains an open problem as f cannot
be grasped easily. Two common approaches of simulating ”golden standard”
CTRs include simply averaging [38] CTRs of an ad i as the function value
f(i) and excluding rarely clicked items [39] from practical datasets. How-
ever, regret calculated from such metrics is prone to underestimation when
an action leads to a reward higher than its estimated optimal value in case
of extremely noisy environment. For the purpose of this research we focus
on verification of model efficacy and consider data wrangling in application
dependent scenarios as future work. Therefore ground truth CTRs in the
dataset are simplified as average per advertiser.

6.4 Further Discussion

6.4.1 Sampling Complexity

Through definition by (6.2) this research adopts a novel approach of
drawing parameter samples from posterior distributions by following the
same semantics of Thompson sampling introduced in Section 5.1.3. How-
ever, directly integrating the transcendental function in (6.2) is difficult.
The following recipe provides a sequence of more feasible steps of estimating
E[p(yi >= yj ̸=i)].
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E[p(yi >= yj ̸=i)] =

∫ ∞

−∞

∏
j ̸=i

Φj(ŷi) dŷi (6.4)

=
∑
ŷi

exp[
∑
j ̸=i

lnΦj(ŷi)] (6.5)

The inner summation above replaces the product of cumulative density
with its exponential equivalent because Φj(ŷi) are typically small enough for
arithmetic underflow to occur when their product is directly calculated. As
for range selection of ŷi, a confidence interval of 0.95 is recommended for
accurate enough approximation of integral (6.4). Let Φi(ŷi|0.025) = 0.025 and
Φi(ŷi|0.975) = 0.975. The numerical estimation of the expected probability of
having yi as an optimal arm out of n arms is expressed as

E[p(yi >= yj ̸=i)] =

ŷi|0.975∑
ŷi|0.005

exp[
∑
j∈[n]\i

lnΦj(ŷi)] (6.6)

Henceforth the multinomial weight list {wi} is finally computed as

wi =

∑ŷi|0.975
ŷi|0.005 exp[

∑
j∈[n]\i lnΦj(ŷi)]∑n

k=1

∑ŷk|0.975
ŷk|0.005 exp[

∑
j∈[n]\k lnΦj(ŷk)]

(6.7)

Computing {wi} as defined above has cost of O(kn2) where k is number
of integration steps. Experiments in this research takes 0.001 as increment
for numerical integration so k is roughly 1000.

6.4.2 Numerical Stability

In Experiment 2, computing the integral in (6.2) can potentially lead to
numerically unstable issues due to posteriors yi having a small distribution
range (0, 1). This boundary is explained by CTR reward observations ri (Line
8 in Algorithm 6) because CTR is strictly within (0, 1). Instead of directly
sampling observed CTR as ri we found that Thompson sampling delivers a
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much more stable impression weight list if we apply some mapping: [0, 1]→ R
to observations with a logit function so that

ri = κlogit(ŷi) = ln
[ ŷi
1− ŷi

]
(6.8)

The evaluations in Figure 6.4, 6.5 and 6.6 are all conducted using the mapped
ri to update the graphical model.

While both Algorithm 5 and 6 are designed to be fully capable of online
learning, real-time sampling may not always be achievable for some perfor-
mance critical applications such as latency estimation in adaptive routing.
Therefore no hard deadline is mandatory in data collection. Specifically, Line
8 in Algorithm 6 can be performed in a sporadic pattern without affecting
model inference even if CTR computation is not available during some in-
terval. The test bench used in Experiment 2 only assumes periodic CTR
updates because laxity in data stream is irrelevant to the MAB problem
itself.

The role of κ is a rectifier that increases linearity of the logit function
within a subset of its domain enclosing some distance from 0.5. In this re-
search κ can be neglected since every experiment mentioned in this thesis
takes κ = 1.0. The setup of (6.8) accommodates cases where reward distri-
butions are close enough to make Thompson sampling difficult to distinguish
the optimal and suboptimal arms, due to distribution overlap as explained by
(2.2). The low KL-divergence is caused by relatively small derivative of the
logit function around 0.5. Choosing a large value of κ helps boost the slope
of the mapping function near 0.5 and consequently enlarges KL-divergence
even when means of two distributions are extremely close to each other.
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Chapter 7

Concluding Chapter

The overall purpose of designing the proposed solution is to alleviate
the cubic complexity O(m3) nonparametric Gaussian process(GP) suffers
from [40] [33] with a training set of size m and such complexity exponen-
tially depends on the dimension of the domain the environment function is
defined over. Existing works with similar intention include improving GP
performance in high-dimensional spaces with low rank matrix approxima-
tion [41] and parallelizable experiment design [42] of bandit optimization
under GP setting. Our work differs from existing works by modeling bandit
problems with normally distributed rewards from a graphical perspective in-
stead of extending techniques in GP regression. Similar to GP, the proposed
model predicts unseen distributions based on seen samples that are collected
with certain noise. But our model notably differs from GP by adhering to
discrete space instead of continuous function domain. This is because fully
interpolating a continuous function generally overkills the bandit problem
in case of a finite number of arms. Consequently, we restrict the compu-
tational cost of inferring posterior distributions to O(n3) with a graph of n
nodes independent from the size of training samples. The proposed model is
thus free from penalty of increasing complexity as the observation set grows.
Comprehensive performance comparison between the graphical model and
GP model is listed in Table 7.1.

As previously stated no rigid parametric assumption is made when our
predictive model learns the ”black box” function. However we do suggest
that at least some degree of smoothness be granted so that the precision
matrix can be best potentiated. As with most stochastic bandit problems
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GP GMRF

Sampling Space continuous discrete
Model Size Complexity O(m) O(1)

Time Complexity
(Inference)

O(m3) O(n3)

Scalability poor to training data
fine to training data

poor to feature space size

Table 7.1: Pros and Cons between GP and GMRF

this paper assumes stationery environment only subject to certain noise and
considers that the ground truth is never mutated by actions that have been
taken, which otherwise constitutes a full interactive reinforcement learning
problem. Since the proposed model is merely an abstraction that is applica-
ble to any finite discrete space of random variables, it does not theoretically
precludes contextual bandit setting. Still, in this work we do not expect
any generalization to contextual bandits due to exploding action space, typ-
ically defined by the cross product of the function index space and context
space. Efficiently retrieving optimal rewards in contextual bandit problems
has been persistently studied. The major difficulty lies within the complexity
of interpreting contextual information. Commonly used approaches include
directly clustering context vectors [43], using hierarchical context feature rep-
resentation [44] for efficient exploration and combining solutions to the MAB
problem with similarity based ranking algorithm to select subsets [45] within
item-context space.

7.1 The Bandit Problem and Markov Deci-

sion Process

AMarkov decision process (MDP) is a stochastic discrete decision-making
problem over a non-empty finite set of states. A MDP problem [46] is formu-
lated as a triplet of (S,A,P), standing for a state set, action set and transition
probability kernel. Transition probability P ∈ P assigns a state-action pair
(s, a), s ∈ S, a ∈ A a probability distribution table in which P(s, a, s′) is the
probability of transitioning state s into s′ after action a is taken. For every
transition (s, a, s′) there is corresponding immediate reward Rs,a,s′ . Then a
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reward function r : S× A→ R can be defined as

r(s, a) =
∑
s′

P(s′|a, s)Rs,a,s′

where
∑

s′ P(s′|a, s) = 1. The MAB problem is essentially a particular case
of MDP. In stochastic bandit setting, only one state is available S = {S0} and
S0 is constantly considered as the terminal state. Notion of state transition
P is then naturally stripped off turning the reward function into a much
simplified form r(a), because any every action determinately leads to the
terminal state.

The probability distributions behind the simplified reward function r(a)
are the exact list of arm rewards [X1, X2, ...Xk] where a ∈ [k]. This implies
that solutions to the MAB problem can be useful to local optimization in
MDP given that r(s, a) has stationery distribution.

7.2 The Bandit Problem and Reinforcement

Learning

A reinforcement learning (RL) problem models unknown environment in
which MDP takes place. The agency, who is responsible for making decisions
trying to collect a maximum amount of rewards is expected to learn envi-
ronment property without prior knowledge purely through experience, in a
similar pattern to the MAB problem. It usually takes two steps for a MAB
problem to get generalized to a full-feature reinforcement learning problem.
First, consider introducing a state space S the MAB problem and extending
its reward r(a) into r(s, a). In this way, one-step rewards not only depend on
choice of arms a but also get affected by the current state. In other words,
the MAB problem is not turned into a contextual multi-armed bandit problem
which states that given some context s ∈ S and action space A, the agency
is expected to learn and predict which action maximizes the reward under
given context. Table 7.2 lists some high-level difference between the MAB
the CMAB problem in terms of how reward is measured. Since context is the
only extra parameter introduced to CMAB reward function, learning CMAB
policy can break down to state specific decision making, i.e., an optimal arm
is to be found separately for every possible state s ∈ S.
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states policy reward action-state impact

MAB (stateless) π,π ∈ A r(a) 7

CMAB S π(s),s ∈ S r(s, a) 7

RL S π(a|s),s ∈ S, a ∈ A
∫
s′
r(s, a)ds′ 3

Table 7.2: Bandit and Reinforcement Learning Problems

Both MAB and CMAB problems come with considerably strong assump-
tion that no environment feedback is received after an action is taken, com-
pared to a RL problem in which an action may alter the state of the agency.
Such impact by action requires redefinition of immediate reward because re-
ward is no longer bound to specific state-action pair when state transition is
considered. The expected immediate reward listed in Table 7.2 is one com-
monly used approach of estimating immediate reward, known asMonte Carlo
method because it averages immediate rewards over random transitions. The
learning objective also differs in RL problems. In bandit problems, policy
produces an index that is either a scalar or a parameterized integer indi-
cating the optimal arm. Learning optimal policy in a RL problem is much
more complicated because a deterministic policy function is hardly sufficient
for maximizing the long term reward. Instead an agent in RL environment
commonly learns a distribution of actions for individual states, as is reflected
in Table 7.2.

Most policy learning algorithms in RL problems fall into two categories:
model-based methods that attempt to estimate transition details of MDP
from environment and model-free methods that ignore MDP and directly
approximate an long term reward function (return function). Regardless
of which category is applied, a RL agent relies on estimation of immediate
rewards to achieve global policy that is long term optimal. Hereby solv-
ing bandit problems is helpful to improving local correctness of immediate
rewards, which are crucial to solving many RL problems.

7.3 Summary

This dissertation reviews nature of the multi-armed bandit problem, sum-
marizes a few typical existing solutions and proposes a novel abstract model
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for solving this problem in a cost-aware approach. The proposed model is
based upon Gaussian Markov random field for learning from sparse data
samples and predicting reward distributions as function outputs at discrete
indices. Predictions optimize the multi-armed bandit problem at best achiev-
able cost under a variant of Thompson sampling as decision making policy.
Experiments illustrate that the designated algorithm helps reduce online cost
and achieves satisfactory loss convergence under budget constraint in both
synthetic Gaussian environment and real-life scenarios of binomial click pat-
terns. Therefore our solution is applicable to profit improvement for recom-
mendation engines as well as other online marketing scenarios that demand
seeking for optimum from unknown environment. Future works include more
in-depth study on more efficient computation of graphical inference and scal-
ability issues towards more practical use cases including contextual bandit
problems.
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