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Abstract 

Benign prostatic hyperplasia (BPH) is one of the most common chronic urological 

diseases among elderly men. Proliferation of the prostate and contraction of 

prostate and urethral smooth muscles cause bladder outlet obstruction (BOO) and 

lower urinary tract symptoms (LUTS). Current pharmacotherapies such as alpha1-

adrenoceptor antagonists (α1-blockers), steroid 5α-reductase inhibitors, and type 5 

phosphodiesterase inhibitors for alleviating BOO, LUTS, particularly bladder 

storage symptoms, and prostate stromal cell proliferation are in need of 

improvement. 

Lysophosphatidic acid (LPA) is a simple phospholipid with diverse 

biological actions. However, the role of LPA and LPA receptors in the lower 

urinary tract remain poorly understood. This study investigated the role of LPA 

and the type 1 LPA receptor (LPA1), the most abundantly expressed LPA receptor 

subtype, in the regulation of the lower urinary tract using ASP6432 (potassium 1-

(2-{[3,5-dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl}-1,3-

thiazole-4-carbonyl)-3-ethyl-2,2-dioxo-2λ6-diazathian-1-ide), a novel LPA1 

antagonist. 

ASP6432 exhibited potent and selective antagonistic activity against LPA1. 

ASP6432 dose-dependently inhibited LPA-induced urethral and prostate 

contractions. In anesthetized rats, ASP6432 decreased the urethral perfusion 

pressure (UPP) in the absence of exogenous LPA stimulation more potently than 

the α1-blocker tamsulosin. ASP6432 also suppressed LPA-induced human prostate 

stroma cell proliferation. These results suggest a pivotal role for LPA1 in the 

regulation of urethral tonus and prostate cell proliferation. 
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Because the reduction in UPP by ASP6432 suggests the importance of LPA1 

in maintaining urethral tonus, the effect of ASP6432 on UPP at the bladder filling 

phase (UPPbase) and the minimum UPP at the urine voiding phase (UPPnadir) was 

measured in anesthetized rats to evaluate the role of LPA1 during urine voiding. 

ASP6432 dose-dependently decreased UPPbase and UPPnadir. While tamsulosin 

reduced UPPbase, it did not change UPPnadir. To further investigate the potential of 

an LPA1 antagonist during voiding, the effect of ASP6432 on voiding dysfunction 

induced by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester (L-

NAME) was evaluated. ASP6432 dose-dependently suppressed the L-NAME-

induced increase in post-void residual urine (PVR) and the decreased voiding 

efficiency (VE), neither of which were altered by tamsulosin. These results 

suggest that LPA1 may play a significant role in regulating urethral tonus during 

urine voiding, and that ASP6432 has the potential to improve voiding dysfunction. 

One significant unmet need of current pharmacotherapies for BPH is in the 

improvement of urine storage symptoms. As the role of LPA and LPA1 in the 

regulation of bladder function is unknown in vivo, the effect of LPA and ASP6432 

on the micturition reflex was investigated. Intravenous infusion of LPA caused 

urinary frequency characterized by decreases in the micturition interval (MI) and 

threshold pressure (TP). ASP6432 dose-dependently inhibited the LPA-induced 

decrease in MI. To explore the potential of improving urinary frequency by 

suppressing LPA1, the effect of ASP6432 on urinary frequency induced by L-

NAME was evaluated. ASP6432 reversed the L-NAME-induced decrease in MI. 

These findings suggest that LPA is capable of modulating urinary frequency in 

vivo via LPA1, and that LPA1 antagonists can improve urinary frequency. 
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The present study indicates that ASP6432 had potent and selective 

antagonistic activity against LPA1, and suppressed not only LPA-induced urethral 

contractions but also urethral pressure in the absence of external LPA stimulation 

to a greater extent than tamsulosin. In addition, ASP6432 suppressed urethral 

pressure during urine voiding and L-NAME-induced voiding dysfunction, neither 

of which were affected by tamsulosin. Moreover, ASP6432 inhibited the LPA-

induced proliferation of human prostate stromal cells. Further, ASP6432 improved 

both LPA- and L-NAME-induced urinary frequency. These findings demonstrate 

for the first time a significant role for LPA1 in the regulation of the lower urinary 

tract, and the potential of ASP6432 as a novel therapy for the treatment of BPH by 

relaxing the urethra, ameliorating bladder overactivity, and suppressing prostate 

stromal cell proliferation.  
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Abbreviations 

AUC  area under the curve 

BOO  benign outlet obstruction 

BP  baseline pressure 

BPE  benign prostatic enlargement 

BPH  benign prostatic hyperplasia 

BSA  bovine serum albumin 

CMG  cystometry 

HFOs  high frequency oscillations 

IUP  intraurethral pressure 

iv  intravenous 

IVP  intravesical pressure 

L-NAME Nω-nitro-L-arginine methyl ester 

LPA  lysophosphatidic acid 

LPA1  type 1 lysophosphatidic acid receptor 

LUTS  lower urinary tract symptoms 

max IVP maximum intravesical pressure 

MI  micturition interval 

NO  nitric oxide 

NOS  nitric oxide synthase 

PDE  phosphodiesterase 

PPAR  peroxisome proliferator activated receptor 

PVR  post-void residual urine 

TP  threshold pressure 
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TRP  transient receptor potential 

UAB  underactive bladder 

UPP  urethral perfusion pressure 

UPPbase  urethral perfusion pressure at the bladder filling phase 

UPPnadir the minimum urethral perfusion pressure at the urine voiding 

phase 

VE  voiding efficiency 
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General introduction 

While few people pay attention to maintaining continence and urinating at the 

appropriate time and in a controlled manner, these functions are fundamental for 

leading a normal daily life. The storage and periodic elimination of urine are 

coordinated between the bladder and a bladder outlet component such as the 

prostate or urethra. The reciprocal functional relationship between these 

components is controlled by a complex neural system (de Groat et al., 2015). During 

bladder filling, the sympathetic pathway releases noradrenaline and activates 1-

adrenoceptors to contract the proximal part of the urethra. Noradrenaline also 

activates 3-adrenoceptors expressed in the bladder to relax the detrusor smooth 

muscle for proper reservoir function of the bladder. When voiding urine, the 

parasympathetic pathway is activated to contract the bladder and relax the urethra 

by releasing acetylcholine and nitric oxide (NO), respectively, and adrenergic 

excitatory inputs are removed (Fowler et al., 2008).  

The continuing increase in average life expectancy and aging population in 

a growing number of countries is being accompanied by an increasing number of 

patients with urological disorders that affect their quality of life. Benign prostatic 

hyperplasia (BPH) is one of the most common chronic urological diseases among 

elderly men, with histological BPH being detected in 60% to 70% of men over 70 

years of age (Berry et al., 1984). Although the exact pathogenesis of histological 

BPH remains poorly understood, its clinical pathology is characterized by a 

hypertrophic nodule comprised of proliferative prostate epithelial cells and 

stromal cells around the prostatic part of the urethra (benign prostatic 

enlargement; BPE), mechanical and functional constriction of the prostate and 
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urethra causing bladder outlet obstruction (BOO), and lower urinary tract 

symptoms (LUTS). LUTS can be divided into two subgroups, voiding symptoms 

(problems in voiding urine) such as slow stream, straining, hesitancy, and terminal 

dribbling, and storage symptoms (problems in storing urine) such as urgency, 

daytime urinary frequency, and nocturia (Roehrborn, 2008). Although the 

traditional concept of BPH included all three of these elements, in many cases 

LUTS is not always correlated with clear evidence of BPE or BOO. Research 

suggests that functional abnormality of the prostate and urethra due to excess 

sympathetic inputs (McVary et al., 2005) and/or impaired nitrergic inputs (Klotz et 

al., 1999) may be involved in the voiding symptoms of LUTS. Meanwhile, 

dysregulation of bladder function is thought to contribute to storage symptoms 

(Chapple and Roehrborn, 2006), in addition to a decrease in functional bladder 

capacity due to post-void residual (PVR) urine resulting from BOO. 

Since it is generally assumed that the clinical manifestations of BPH are the 

result of BOO, pharmacological treatment strategy has been directed toward 

reducing BOO (McNicholas, 2012). α1-adrenoceptor antagonists (α1-blockers) are 

prescribed as the first-line pharmacotherapy for LUTS associated with BPH 

(LUTS/BPH). α1-blockers improve BOO by suppressing prostate and urethral 

smooth muscle contractions induced by norepinephrine released from sympathetic 

nerves (McNicholas, 2012). However, α1-blockers only moderately improve 

clinical symptoms (40% to 60%) compared to surgical intervention (60% to 80%) 

(Speakman, 2001), suggesting that further reduction of the obstruction can lead to 

further improvements in symptoms. In addition, the efficacy of α1-blockers on 

storage symptoms, which are sometimes considered more bothersome than 
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voiding symptoms (Chapple et al., 2014), is not always satisfactory (van 

Kerrebroeck et al., 2013). Furthermore, α1-blockers have little effect on prostate 

hyperplasia itself (Roehrborn, 2006), indicating its ineffectiveness for treating a 

fundamental component of BPH. Steroid 5α-reductase inhibitors, another class of 

pharmacotherapies, reduce the size of the enlarged prostate and improve 

symptoms caused by mechanical obstruction. However, 5α-reductase inhibitors 

have a slower onset of efficacy and are slightly less effective at improving LUTS 

than α1-blockers (Djavan, 2003). In addition, 5α-reductase inhibitors have little 

effect on stromal cell hyperplasia(Marks et al., 1997), a key component of human 

BPH (Bartsch et al., 1979). The type 5 phosphodiesterase (PDE5) inhibitor 

tadalafil has recently become clinically available for the treatment of LUTS 

associated with BPH, and has demonstrated additional potential benefits such as 

improving blood flow, anti-inflammatory effects, and afferent inhibitory effects 

(Andersson et al., 2011) . However, their positions in the treatment algorithm has 

not been fully established. Therefore, the unmet needs of current 

pharmacotherapies for BPH are as follows: i) potent relaxation of the bladder 

outlet component (prostate and urethra), ii) further improvement in storage 

symptoms, and iii) suppression of stromal cell proliferation. An agent that induces 

more potent urethral relaxation during voiding, suppresses stromal hyperplasia, 

and/or further improves bladder dysfunction is expected to improve treatment for 

LUTS/BPH patients. 

Lysophosphatidic acid (LPA) is a simple glycerophospholipid produced in 

various parts of the body with diverse biological actions, including smooth muscle 

contraction, cell proliferation, and afferent nerve stimulation (Aikawa et al., 2015; 
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Yung et al., 2015). In the lower urinary tract, LPA and autotaxin, an LPA 

synthesizing enzyme, are present in the seminal plasma (Tanaka et al., 2004). 

Acylglycerol kinase, another LPA synthesizing enzyme, is overexpressed in the 

hyperplastic prostate nodule (Zeng et al., 2009). LPA reportedly induces urethral 

smooth muscle contraction (Saga et al., 2014) and cell proliferation, such as that 

of prostatic smooth muscle cells isolated from BPH patients (Adolfsson et al., 

2002). In the bladder, LPA induces contraction of isolated detrusor smooth muscle 

cells (Kropp et al., 1999). These known functions of LPA suggest that it may play 

a physiological and pathophysiological role in mechanical (hyperplasia) and 

functional (contraction) BOO as well as bladder dysfunction (storage symptoms) 

observed in BPH. Therefore, suppressing LPA may contribute to improving 

LUTS/BPH, although its exact role in the lower urinary tract and its receptor 

subtype have not been fully elucidated.  

The effects of LPA are mediated by at least six G protein-coupled receptors, 

LPA receptors 1 to 6 (LPA1-6). Although these LPA receptors are broadly 

expressed, they vary significantly in their tissue distribution, and appear to have 

both distinct and overlapping biological roles (Choi et al., 2010). The type 1 LPA 

receptor (LPA1) was the first identified LPA receptor subtype. LPA1 couples with 

Gi/o, Gq/11, and G12/13 to initiate downstream signaling cascades through 

phospholipase C, mitogen-activated protein kinase (MAPK), Akt, and RhoA. 

LPA1 activation induces a range of cellular responses, including cell proliferation, 

cell migration and cytoskeletal changes, Ca2+ mobilization, and adenylyl cyclase 

inhibition (Yung et al., 2014). Prior studies using human samples have 

demonstrated more abundant expression of LPA1 than other LPA receptor 
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subtypes in the prostate with increased expression in the hyperplastic stroma 

compared to surrounding benign glands (Zeng et al., 2009) and in cultured bladder 

smooth muscle cells (Kawashima et al., 2015) with increased expression in 

muscle-invasive bladder cancer specimens (Kataoka et al., 2015). LPA1 mediates 

LPA-induced upregulation of CYR61 (Wu et al., 2014), which is overexpressed in 

BPH and is possibly linked to its progression (Sakamoto et al., 2004), suggesting 

that LPA1 may be associated with BPH. A recent study demonstrated that LPA1 

antagonists modulate urethral pressure (Terakado et al., 2016). In addition, a study 

suggested that LPA may be involved in stretch-induced cellular activation, 

possibly via LPA1 (Kawashima et al., 2015). These published findings suggest that 

LPA1 may have roles in the functional regulation of the lower urinary tract. 

However, the integrated functional role of LPA1 in the lower urinary tract has not 

been fully clarified. 

In this study, I investigated the functional role of LPA and LPA1 in the 

regulation of the lower urinary tract and the therapeutic potential of LPA1 

antagonism in the treatment of LUTS/BPH using ASP6432 (potassium 1-(2-{[3,5-

dimethoxy-4-methyl-N-(3-phenylpropyl)benzamido]methyl}-1,3-thiazole-4-

carbonyl)-3-ethyl-2,2-dioxo-2λ6-diazathian-1-ide; Figure 1-1), a novel LPA1 

antagonist discovered by Astellas Pharma Inc. In Chapter 1, the aim was to 

understand the function of LPA and LPA1 in the urethra and prostate by 

investigating the effects of LPA and ASP6432 on urethral and prostatic contractile 

function and prostate stromal cell proliferation. In Chapter 2, the role of LPA1 in 

the regulation of urethral tonus during urine voiding was pharmacologically 

examined by evaluating the effects of ASP6432 and tamsulosin, an 1-
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adrenoceptor antagonist, on urethral perfusion pressure (UPP) at the filling and 

voiding phases in anesthetized rats and on voiding dysfunction induced by Nω-

nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, in conscious 

rats. In Chapter 3, the effects of LPA and LPA1 on bladder functions were studied 

in conscious rats using continuous cystometry. In addition, the effect of ASP6432 

on urinary frequency induced by L-NAME was assessed in conscious rats. 
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Chapter 1: Effect of ASP6432, a Novel Type 1 Lysophosphatidic 

Acid Receptor Antagonist, on Urethral Function and Prostate Cell 

Proliferation 

 

Introduction 

BPH is one of the most common chronic urological diseases among elderly men. 

The proliferation of periurethral prostate stromal cells and contraction of prostate 

and urethral smooth muscles contribute to the development of BOO and LUTS 

(Roehrborn, 2008). Alpha1-blockers are prescribed as the first-line 

pharmacotherapy for LUTS associated with BPH (LUTS/BPH). Alpha1-blockers 

improve BOO by suppressing prostate and urethral smooth muscle contractions 

induced by norepinephrine released from sympathetic nerves. However, 

improvement of clinical symptoms with α1-blockers is moderate (40% to 60%) 

compared to surgical intervention (60% to 80%) (Speakman, 2001). In addition, 

α1-blockers are suggested to have little effect on prostate hyperplasia itself 

(Roehrborn, 2006). Steroid 5α-reductase inhibitors, another class of 

pharmacotherapies, reduce the size of the enlarged prostate and improve 

symptoms caused by mechanical obstruction. However, 5α-reductase inhibitors 

have a slower onset of efficacy and are slightly less effective at improving LUTS 

than α1-blockers (Djavan, 2003). In addition, 5α-reductase inhibitors have little 

effect on stromal cell hyperplasia (Marks et al., 1997), a key component of human 

BPH (Bartsch et al., 1979). Therefore, an agent that induces more potent urethral 
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relaxation and suppression of stromal hyperplasia would improve treatment for 

LUTS/BPH patients. 

LPA is a simple glycerophospholipid produced in various parts of the body. 

In the lower urinary tract, LPA and autotaxin, an LPA synthesizing enzyme, are 

present in the seminal plasma (Tanaka et al., 2004). In the hyperplastic prostate 

nodule, acylglycerol kinase, another LPA synthesizing enzyme, is overexpressed 

(Zeng et al., 2009). LPA has diverse biological effects including smooth muscle 

contraction (Tokumura et al., 1980), as shown by its induction of urethral smooth 

muscle contraction (Saga et al., 2014), and cell proliferation (Daaka, 2002), such as 

of prostatic smooth muscle cells isolated from BPH patients. These functions 

suggest that LPA may play a physiological and pathophysiological role in the 

mechanical and functional BOO observed in BPH.  

The functional roles of LPA are mediated by at least six G protein-coupled 

receptors (LPA1-6). Although these LPA receptors are broadly expressed, they vary 

significantly in their tissue distribution, and appear to have both distinct and 

overlapping biological roles(Choi et al., 2010). LPA receptors modulate various 

intracellular signaling pathways by activating multiple heterotrimeric G proteins. 

LPA1 was the first identified LPA receptor subtype. LPA1 couples with Gi/o, Gq/11, 

and G12/13 to initiate downstream signaling cascades through phospholipase C, 

mitogen-activated protein kinase, Akt, and RhoA. LPA1 activation induces a range 

of cellular responses, including cell proliferation, cell migration and cytoskeletal 

changes, Ca2+ mobilization, and adenylyl cyclase inhibition (Yung et al., 2014). An 

investigation using surgically-obtained human prostate tissue samples 

demonstrated LPA1 expression in both the stroma and epithelia, and increased 
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expression in the stroma of hyperplastic glands compared to that in surrounding 

benign glands (Zeng et al., 2009). LPA1 mediates LPA-induced induction of CYR61 

(Wu et al., 2014), a molecule overexpressed in BPH and possibly linked to its 

progression (Sakamoto et al., 2004), suggesting that LPA1 may be associated with 

BPH. A recent study demonstrated that LPA1 antagonists modulate urethral pressure 

(Terakado et al., 2016), suggesting that LPA1 may also have a role in urethral 

contraction. However, the integrated role of LPA1 in urethral and prostate function 

has not been fully clarified. 

ASP6432 (Figure 1-1) is a novel LPA1 antagonist discovered by Astellas 

Pharma Inc. To elucidate the function of LPA and LPA1 in the urethra and prostate, 

I investigated the effect of ASP6432 on urethral and prostatic contractile function 

and prostate stromal cell proliferation. 
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Materials and Methods 

Test substances 

LPA was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA), Enzo 

Life Sciences International Inc. (Plymouth Meeting, PA, USA) and Cayman 

Chemical (Ann Arbor, MI, USA). Based on published literature (Saga et al., 

2014), 1-linolenoyl LPA was used for tissue contraction experiments, while 1-

oleoyl LPA, the most commonly used form of LPA(Castilla-Ortega et al., 2014), 

was used for all other studies. ASP6432 and tamsulosin were synthesized at 

Astellas Pharma Inc. (Tokyo, Japan). Concentrations were calculated using the 

molecular weight of the free form. 

 
Cells/recombinant expression 

Cells expressing LPA receptors were generated according to a previously reported 

method (Murai et al., 2017). Human and rat LPA1, human LPA2, and human LPA5 

were stably expressed in Chinese hamster ovary (CHO) cells and cultured in 

Minimum Essential Medium-alpha containing 10% heat-inactivated fetal bovine 

serum (FBS), 1% penicillin/streptomycin, and 100 nmol/L methotrexate. Human 

LPA3 was stably expressed in hepatoma tissue culture-4 (HTC4) cells and cultured 

in Dulbecco's Modified Eagle Medium (DMEM) containing 10% heat-inactivated 

FBS, 1% penicillin/streptomycin, and 70 μmol/L ZeocinTM. Human LPA4 was 

stably expressed in human embryonic kidney (HEK) cells and cultured in DMEM 

containing 10% FBS and 0.4 mg/mL G418.  
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Measurement of intracellular Ca2+ concentration 

The antagonistic effect of ASP6432 on human and rat LPA1 and its selectivity for 

human LPA1 over human LPA2 to human LPA4 were evaluated using Ca2+ flux 

assays previously used to investigate another LPA1 antagonist (Swaney et al., 2010), 

with some modifications. Briefly, cells were seeded at a density of 15,000 (LPA1 

and LPA2) or 20,000 (LPA3) cells per well in 96-well plates and incubated in culture 

medium containing 1% FBS for one day. HEK 293 cells expressing human LPA4 

were seeded at a density of 15,000 cells per well in 384-well plates and incubated 

in culture medium for one day.  

On the day the measurements were to be taken, the cells were loaded with 

Fluo-4-AM dissolved in assay buffer [Hank’s Balanced Salt Solution containing 

20 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.4), 0.05% 

bovine serum albumin (BSA), and 2.5 mmol/L probenecid] for LPA1 to LPA3 or 

using the Fluo-4 NW Calcium Assay Kit (Invitrogen, Carlsbad, CA, USA) for LPA4, 

and incubated for 3 hours at room temperature (LPA1, LPA2, and LPA3) or 

30 minutes at 37°C (LPA4). The cells were incubated with test compounds for 2 

(LPA1) or 4 (LPA2 and LPA3) minutes after washing or 30 (LPA4) minutes without 

washing, and LPA at a final concentration of 100 (LPA1), 30 (LPA2) or 

800 (LPA3) nmol/L was added. The final concentration of LPA was determined for 

each cell line to produce a submaximal reaction. After LPA treatment, the change 

in fluorescence (excitation wavelength: 470-495 nm, emission wavelength: 515-

575 nm) was monitored using the fluorometric imaging plate reader FLIPR 

TETRA® (Molecular Devices Corporation Japan, Tokyo, Japan). For LPA4, 

2.8 µmol/L of LPA was used, and the change in fluorescence was measured using 
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the fluorometric imaging plate reader FLEX STATION-III (Molecular Devices, CA, 

USA) at an excitation wavelength of 494 nm and emission wavelength of 516 nm. 

 
Measurement of intracellular cyclic AMP 

The effect of ASP6432 on LPA-induced cyclic AMP (cAMP) production in cells 

expressing human LPA5 was evaluated using a previously described method (Murai 

et al., 2017). Briefly, CHO cells expressing human LPA5 were seeded at a density 

of 15,000 cells per well and cultured in 96-well plates. On the day the measurements 

were to be taken, ASP6432 or vehicle (dimethylsulfoxide: DMSO) was added to 

the cells with 1.3 mmol/L 3-isobutyl-1-methylxanthine (IBMX) and incubated for 

6 minutes. LPA (final concentration: 1 μmol/L) was subsequently added and the 

cells were incubated for 20 minutes at room temperature. After incubation, 1.2% 

Triton X-100 solution was added to stop the reaction. The amount of cAMP in the 

cell lysate was determined by the homogenous time resolved fluorescence (HTRF) 

assay using a cAMP kit (cAMP femto 2 bulk kit, Cisbio, Codolet, France).  

 

Measurement of isolated smooth muscle contraction 

All animal experimental procedures were approved by the Institutional Animal Care 

and Use Committee of Astellas Pharma Inc.  

Male Wistar rats (Charles River Laboratories Japan Inc., Kanagawa, Japan) 

were sacrificed by exsanguination under pentobarbital anesthesia. The ventral lobes 

of the prostate were immediately removed and divided into four longitudinal strips 

approximately 5 mm in length and 2 mm in width. The urethra located next to the 

bladder neck was cut open in a circular orientation to form a rectangular strip 
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approximately 5 mm in length and 2 mm in width. The tissue strips were suspended 

in 10 mL organ baths at 37°C containing Krebs-Henseleit solution consisting of the 

following (mmol/L): NaCl, 118.4; KCl, 4.7; KH2PO4, 1.2; MgSO4, 1.2; CaCl2, 2.5; 

NaHCO3, 25.0; and glucose, 11.1. Each bath was gassed with a mixture of 95% O2 

and 5% CO2. After loading with 0.5 g of initial resting tension, the force was 

measured using an isometric force displacement transducer (TB-611T, Nihon 

Kohden, Tokyo, Japan), a pressure amplifier (AP-621G, Nihon Kohden) and a 

recorder (SR6211, SR6221 or SR6335; Graphtec Corporation, Kanagawa, Japan). 

Each tissue strip was repeatedly contracted with 60 mmol/L KCl until a stable 

response was obtained. Subsequently, 100 μmol/L LPA was applied and the 

maximum contractile response was recorded as the initial LPA response. The 

concentration of LPA was selected according to a previous study (Saga et al., 2014) 

and our preliminary study in which we aimed to generate the maximum contraction 

under experimentally feasible conditions. In our preliminary study, LPA-induced 

contraction was observed from 1 μmol/L but did not reach maximum even at 

100 μmol/L (Figure 1-2). However, at 300 μmol/L, the solution became cloudy, 

making it difficult to continue with the experiment (data not shown). We therefore 

selected 100 μmol/L LPA as the test concentration.  

After washing, the strip was incubated with ASP6432 (0.01 to 10 μmol/L for 

urethra, 0.001 to 10 μmol/L for prostate) or vehicle (DMSO, 0.1%) for 30 minutes 

before the addition of LPA (100 μmol/L). The LPA-induced contractile response 

following treatment with ASP6432 or vehicle was recorded and expressed as a 

percentage of the initial LPA response (pre-value). For urethral strips, multiple 

concentrations (0.01 to 10 μmol/L) of ASP6432 were tested in an incremental 
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manner on the same strip because repeated treatment with DMSO and LPA did not 

affect the amplitude of the contractile response (data not shown). In contrast, only 

one concentration of ASP6432 was tested on each prostate strip due to the 

attenuation of LPA-induced contractile responses after multiple treatments (data not 

shown). 

 

Measurement of intraurethral pressure (IUP) in rats 

Male Wistar rats (Charles River Laboratories Japan Inc.) were anesthetized with an 

intraperitoneal administration of urethane (1.2 g/kg). A midline incision was made 

in the abdominal wall, and a 3.5 F sensor-tip transducer catheter (SPR-524, Millar 

Instruments. Inc., Houston, TX, USA) was inserted into the urethra through a small 

incision at the superior aspect of the bladder. IUP was measured using a pressure 

amplifier (AP-601G, Nihon Kohden) and analyzed using a digital acquisition and 

analysis system (PowerLab 8/30, AD Instruments, Colorado Springs, CO, USA). 

For intravenous (iv) administration, a polyethylene catheter (PE-50) filled with 

physiological saline containing sodium heparin was inserted into the jugular vein. 

Following a stabilization period of at least 30 minutes, vehicle (physiological saline 

with 5% dimethylformamide) or ASP6432 (0.03, 0.1, 0.3, and 1 mg/kg with 

incremental dosing at 15-minute intervals) was intravenously injected through the 

catheter. LPA (3 mg/kg iv) was administered 5 minutes after vehicle or ASP6432 

administration. The dose of LPA that induced an IUP increase comparable to that 

induced by the α1-blocker phenylephrine (30 μg/kg iv) reported in another study 

(Akiyama et al., 1999) was used to evaluate the effect of ASP6432. The area under 

the curve (AUC) of IUP at one minute before vehicle injection was defined as the 
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pre-value. The change in IUP induced by LPA following either vehicle or ASP6432 

treatment was defined by the AUC at one minute after LPA injection. 

 

Measurement of urethral perfusion pressure (UPP) 

UPP was measured according to a previously described method(Kurihara et al., 

2016). Briefly, female Wistar rats (Charles River Laboratories Japan Inc.) were 

anesthetized with an intraperitoneal injection of urethane (1.2 g/kg) and fixed in the 

supine position. For drug administration, a polyethylene catheter (PE-50) was 

inserted into the left femoral vein. For measurement of UPP, a midline incision was 

made in the abdominal wall and a double-lumen polyethylene catheter (PE-190 and 

PE-50) was inserted through a small incision at the bladder apex, and the tip was 

ligated to the bladder neck. Female rats were used because it was easier and less 

invasive to fix the position of the tip of the catheter at the bladder neck compared 

to that in male rats as there is no need to remove the ventral lobe of the prostate. 

Physiological saline was perfused into the urethra through the outer lumen of the 

catheter using an infusion pump (TE-331, Terumo, Tokyo, Japan) at 4.5 mL/h. UPP 

was recorded through the inner lumen of the catheter, which was connected to a 

pressure transducer with an amplifier (AP-601G or AP-621G, Nihon Kohden) and 

recorder (WT-688G, Nihon Kohden).  

After a stabilization period of over 30 minutes, rats with a UPP lower than 

10 mmHg were excluded from further evaluation. Vehicle (physiological saline for 

tamsulosin, physiological saline with 5% dimethylformamide for ASP6432), 

tamsulosin (0.003, 0.01, and 0.03 mg/kg) or ASP6432 (0.1, 0.3, 1 and 3 mg/kg) was 

administered intravenously, and the change in UPP was measured for 15 minutes. 
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The change between UPP before administration (UPPpre) and the minimum UPP 

during the observation period (UPPmin) was calculated as follows: 

UPP (% change from pre): -100×(UPPpre - UPPmin)/UPPpre 

 

Cell proliferation assay 

Primary cultured normal human prostate stroma cells (Lonza Walkersville Inc., 

Walkersville, MD, USA) were cultured in Stromal Cell Growth Medium (SCGM; 

Lonza Walkersville Inc.). Cells were suspended in SCGM diluted 10 times with 

stromal cell basal medium (Lonza Walkersville Inc.) containing 0.1% BSA, seeded 

at a density of 5,000 cells per well in 96-well plates and incubated overnight. 

ASP6432 (final concentration: 0.1 to 10 μmol/L) and LPA (final concentration: 

10 μmol/L) were added the next day and incubated for 24 hours. The final 

concentration of LPA was selected according to a previous study (Adolfsson et al., 

2002). Incorporation of bromodeoxyuridine (BrdU) into cells was measured using 

an ELISA kit (Cell Proliferation ELISA, BrdU (colorimetric), Roche Diagnostics 

GmbH, Mannheim, Germany). Optical densities at 450 nm and 690 nm were 

measured using a spectrophotometer (Spectramax M2, Molecular Devices Japan 

KK, Tokyo, Japan) and the difference in values at these wavelengths was used to 

indicate the extent of BrdU incorporation. The result was expressed as a percentage 

of the normal (LPA non-treated, DMSO-treated) group.  

 

Data analysis 

The results are presented as mean ± standard error of the mean (SEM). Half 

maximal inhibitory concentration (IC50) values were calculated using sigmoid-
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Emax non-linear regression analysis and expressed as the geometric mean with 

95% confidence interval for LPA1. In the tissue contraction study, Williams’ 

multiple comparisons test was used, and a probability value (p value) less than 

0.025 indicated statistical significance. In the in vivo studies, Dunnett’s multiple 

comparisons test and Student’s t-test were used, and p<0.05 was considered 

statistically significant. In the cell proliferation assay, paired t-test and Williams’ 

multiple comparisons test were used, and p<0.05 and p<0.025 were considered 

statistically significant, respectively.  
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Results 

Antagonistic effect of ASP6432 on the LPA1 receptor and its receptor subtype 

selectivity 

The potency of ASP6432 for LPA1 and selectivity for the different LPA receptors 

was determined by Ca2+ flux assays (for LPA1 to LPA4) and a cAMP assay (for 

LPA5) using cells over-expressing human LPA1 to LPA5. ASP6432 concentration-

dependently inhibited the LPA-stimulated increase in intracellular calcium ion 

concentration ([Ca2+]i) in cells expressing human LPA1 with an IC50 (95% 

confidence interval) value of 11 (6.8 to 18) nmol/L. ASP6432 also inhibited the 

LPA-induced [Ca2+]i increase in cells expressing rat LPA1 with an IC50 of 30 (19 to 

45) nmol/L. ASP6432 inhibited the LPA-induced [Ca2+]i increase in cells 

expressing human LPA4 with an IC50 of 114 nmol/L. In contrast, ASP6432 at 

concentrations up to 10,000 nmol/L did not inhibit the LPA-induced increase in 

[Ca2+]i by 50% or more in cells expressing human LPA2 or LPA3. Likewise, 

ASP6432 at concentrations up to 30,000 nmol/L did not affect the LPA-induced 

increase in cAMP in cells expressing human LPA5. These results are summarized 

in Table 1-1. 

The affinity of ASP6432 for a total of 57 receptors, ion-channels, transporters, 

and enzymes were also evaluated. ASP6432 at 10,000 nmol/L did not exhibit 

significant (>50%) effects on any of the targets examined, except for the human 

neurokinin 1 receptor with a Ki value of 1400 nmol/L (data not shown). 

 

Inhibition of LPA-induced contractions of urethral and prostate strips isolated 
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from rats by ASP6432 

Application of LPA (0.1 to 100 µmol/L) induced contractions in urethral and 

prostate tissue strips (N=5-7) (Figure 1-2). Pretreatment with ASP6432 (0.001 or 

0.01 to 10 µmol/L) inhibited these LPA (100 µmol/L)-induced contractions in both 

tissues in a concentration-dependent manner (N=5). This effect was statistically 

significant at ASP6432 concentrations of 0.1 µmol/L and above, with almost 

complete inhibition observed at 10 μmol/L (Figure 1-3).  

 

Inhibition of LPA-induced IUP elevation in anesthetized rats by ASP6432 

Intravenous administration of LPA (3 mg/kg iv) increased the IUP (Figure 1-3) by 

759 mmHg·min (17.2 cmH2O·sec). This was comparable to the effects of 

phenylephrine shown in a previous study (approximately 12 cmH2O at 30 μg/kg iv 

in rats with no urethral ligation) (Akiyama et al., 1999). ASP6432 (0.03 to 1 mg/kg 

iv) dose-dependently inhibited the LPA-induced IUP elevation (N=6). This effect 

was statistically significant at ASP6432 doses of 0.3 mg/kg and above, with almost 

complete inhibition observed at 1 mg/kg (Figure 1-4). The mean plasma 

concentration of ASP6432 in rats at 6 and 30 minutes after single intravenous 

administration at 1 mg/kg was 477.28 and 77.65 ng/mL (851.24 and 138.49 nmol/L, 

calculated from the free form molecular weight of 560.69), respectively (N=3) 

(Table 1-2).  

 

Decrease in UPP by tamsulosin and ASP6432 in anesthetized rats 

Intravenous administration of tamsulosin (0.003 to 0.03 mg/kg) decreased the UPP 

(N=7 to 15). This effect was statistically significant at a dose of 0.01 mg/kg iv, 
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maximally decreasing the UPP by 21.6% from baseline (Figure 1-5A). Intravenous 

administration of ASP6432 (0.1 to 3 mg/kg) decreased the UPP in a dose-dependent 

manner (N=10). This effect was statistically significant at ASP6432 doses of 

0.3 mg/kg iv and above. The decrease in UPP with ASP6432 reached a maximum 

of 42.5% at 3 mg/kg iv (Figure 1-5B). 

 

Effect of ASP6432 on LPA-induced proliferation of primary cultured human 

prostate stromal cells 

LPA (10 μmol/L) significantly enhanced the incorporation of BrdU into human 

prostate stromal cells (172.7% of the normal group). Treatment with ASP6432 (0.1 

to 10 µmol/L) suppressed LPA-induced BrdU incorporation in a concentration-

dependent manner. This effect was statistically significant at ASP6432 

concentrations of 0.3 μmol/L and above, with almost complete suppression 

observed at 10 μmol/L (Figure 1-6). 
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Discussion 

In this chapter, I showed that ASP6432 had potent and selective antagonistic 

activity against LPA1, and suppressed not only LPA-induced urethral and prostatic 

contractions but also urethral pressure in the absence of external LPA stimulation. 

These results suggest that LPA1 activation plays an important role in the 

physiological regulation of urethral tonus. In addition, ASP6432 inhibited the LPA-

induced proliferation of human prostate stromal cells. To my knowledge, this is the 

first study to demonstrate that an LPA1 antagonist can modulate both LPA-induced 

urethral tonus and prostate stromal cell proliferation.  

In the in vitro studies, ASP6432 exhibited a potent antagonistic effect against 

LPA1, and was more selective for LPA1 by more than ten-fold over all other LPA 

receptor subtypes (Table 1-1) and other receptors, ion-channels, transporters, and 

enzymes tested. Although ASP6432 showed some antagonistic activity against 

LPA4 and its effect on LPA6 was not investigated, ASP6432 appears to be one of 

the most potent LPA1 antagonists among currently reported LPA receptor 

modulators (Llona-Minguez et al., 2015). 

LPA was previously reported to induce contractions in rat urethral tissue strips 

at a magnitude comparable to that of phenylephrine, an α1-adrenoceptor agonist 

(Saga et al., 2014). However, the receptor subtype responsible for this effect was 

not identified. I showed that LPA induced contractions in rat urethral and prostate 

strips (Figure 1-2) and ASP6432 concentration/dose-dependently inhibited LPA-

induced contractions (Figure 1-3) and IUP elevation in anesthetized rats (Figure 1-

4) with near-complete inhibition at the highest concentration/dose tested. These 

results indicate that LPA1 regulates LPA-induced urethra and prostate contractions. 
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One notable finding in this study was that ASP6432 not only inhibited LPA-

induced contractions, but also reduced the UPP in the absence of exogenous LPA 

stimulation in anesthetized rats (Figure 1-5B). ASP6432 maximally decreased the 

UPP by 42.5% from baseline, which is more pronounced than that induced by 

tamsulosin in this study (maximum 21.6% decrease, Figure 1-5A) at doses 

sufficient to inhibit phenylephrine-induced urethral pressure elevation (Ohtake et 

al., 2006). Female rats were used in our study because of the similar efficacy of 

tamslosin when compared to male rats, the experimental benefit, and the potentially 

limited advantage of male rats as a model for urethral tonus in humans from an 

anatomical point of view. The tamsulosin-induced suppression of the UPP was 

similar to that demonstrated in a previous study in male rats (around 20% decrease) 

(Saga et al., 2014). Tamsulosin decreased the urethral pressure in male and female 

dogs at a similar dose range(Ohtake et al., 2004; Sudoh et al., 1996), and in healthy 

women at a dose approved for men with BPH (0.4 mg) (Reitz et al., 2004). These 

findings support the notion that the sympathetic nervous system and α1-

adrenoceptors contribute to regulating physiological urethral tonus (Fry et al., 2010) 

in both males and females. Another reason for using female animals was the 

experimental benefit for evaluating the perfusion pressure. In female rats, access to 

the bladder neck and subsequent securing of the catheter tip at the intended position 

was much easier and less invasive than that in male rats, which helped ensure stable 

pressure measurements. Further, the use of male rats might not significantly 

increase the clinical relevance of the UPP compared with that of female rats, 

because the rat prostate is anatomically different from the human prostate in that it 

does not completely surround the urethra, and therefore may not cause the 
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mechanical and/or functional urethral obstruction like the prostate of a BPH patient 

does. These points indicate that the experimental conditions of this study were 

appropriate for examining the effect of a drug that potentially modulates the urethral 

contraction in vivo compared with a drug acting on the sympathetic nervous system. 

LPA induced contraction of urethral strips at 1 mol/L and above in a 

previous study (Saga et al., 2014) and in the present study (Figure 1-2). The fact 

that the rat plasma LPA concentration reported in the previous study was in the 

micromolar order (around 1 mol/L) (Saga et al., 2014) suggests that LPA induces 

urethral contraction at a concentration similar to the endogenous concentration. In 

addition, previous studies have demonstrated that an inhibitor of autotaxin and 

another LPA1 antagonist decrease the IUP in the absence of exogenous LPA 

stimulation in rats (Saga et al., 2014; Terakado et al., 2016) to a similar extent to 

that observed with ASP6432 in this study. Moreover, pharmacokinetics data of 

ASP6432 in rats (Table 1-2) support my hypothesis that ASP6432 reduces UPP by 

suppressing LPA1. The plasma concentration of ASP6432 at the efficacious dose 

for urethral pressure (0.3 mg/kg iv, Figure 1-5) is estimated to be around 40 to 

250 nmol/L, which is comparable to the IC50 value of ASP6432 on rat LPA1 

(30 nmol/L, Table 1-1). Taken together, the results of this study suggest that 

endogenous LPA constantly activates LPA1 and plays a significant role in the 

regulation of urethral tonus, which is suppressed by ASP6432, at least in rats. 

LPA induces proliferation of human prostate stromal cells, similar to that 

observed for cells isolated from BPH patients(Adolfsson et al., 2002). ASP6432 

suppressed this proliferation (Figure 1-6). These results suggest that LPA, in 

addition to its role in inducing urethral and prostate contractions, also regulates 
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stromal cell proliferation via LPA1 and contributes to the development of the two 

major components, mechanical and functional obstruction, of BOO. Because there 

is currently no pharmacotherapy that is simultaneously efficacious for both of these 

components, the present findings indicate that LPA1 antagonists may represent a 

novel therapy with dual mechanisms for improving BOO. A similar concept was 

proposed using inhibitors of Rac, a small monomeric GTPase (Wang et al., 2015). 

Given that LPA1 may also potentially activate Rac (Van Leeuwen et al., 2003), it 

would be interesting to determine the relationship between LPA1 and Rac in lower 

urinary tract functions. 

Since autotaxin is one of the primary enzymes responsible for LPA production, 

autotaxin inhibitors may theoretically have similar efficacy to LPA1 antagonists, 

such as in reducing the IUP as shown in a previous study(Saga et al., 2014). Various 

autotaxin inhibitors have been studied and some are in clinical development. While 

inhibition of LPA production may efficiently suppress the LPA-LPA receptor 

signaling axis, the risk of toxicity may be high due to the suppression of functions 

mediated by other LPA receptor subtypes. Indeed, autotaxin knockout mice show a 

more severe phenotype (lethal around embryonic day 10.5 due to defects in blood 

vessel formation) than LPA receptor knock-out mice(Tanaka et al., 2006). Therefore, 

specific targeting of LPA1 may be more suitable for the treatment of non-life-

threatening diseases like BPH, which require a high safety profile. 

The present study results provide various insights for further investigations 

into the role of LPA and LPA1. The physiological and pathophysiological role of the 

LPA-LPA1 signaling axis in the modulation of urethral pressure has not been 

extensively investigated. Currently, no study has directly measured the tissue 
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concentration of LPA in the urethra or prostate, even though the presence of LPA in 

seminal plasma (Tanaka et al., 2004)(Tanaka et al., 2004) and LPA-producing 

enzymes in the prostate (Zeng et al., 2009) suggest that it may be produced locally 

in these organs. The mechanism underlying LPA1 activation-induced urethral and 

prostate smooth muscle contractions has not been fully clarified. In mouse aorta, 

LPA1-mediated thromboxane A2 release has been suggested as a potential 

mechanism underlying smooth muscle contraction(Dancs et al., 2017). However, 

studies showing that an autotaxin inhibitor (Saga et al., 2014) and LPA1 antagonist 

(Terakado et al., 2016) decrease the urethral pressure without affecting blood 

pressure suggest the presence of an alternative mechanism for regulating urethral 

smooth muscle contraction. Further studies are required to unravel the mechanistic 

details. In addition, the role of LPA1 on urethral pressure during urine voiding needs 

to be determined. Since the sympathetic and parasympathetic nervous system 

regulate the on-off of the bladder and the urethral outlet functions in an antagonistic 

fashion for proper urine storage and voiding(Fowler et al., 2008), it would be 

worthwhile to investigate how the activity of LPA1 is regulated at bladder filling 

and urine voiding. The effect of LPA1 on bladder function represents another area 

of interest. While the effect on pathological prostate proliferation should ideally be 

assessed using in vivo models, fully validated animal models for stromal 

proliferation are currently lacking. Future studies on these aspects will allow for a 

more extensive characterization of the therapeutic potential of LPA1 antagonists in 

the treatment of BPH and associated LUTS.  

In conclusion, I demonstrated the roles of LPA and LPA1 in urethral and prostate 

contraction and prostate stromal cell proliferation using ASP6432, a selective 
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LPA1 antagonist. ASP6432 induced potent urethral relaxation compared to 

tamsulosin and inhibited prostate stromal cell growth, indicating the potential of 

an LPA1 antagonist as a novel therapy for LUTS/BPH. 
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Table 1-1. Antagonistic activity of ASP6432 on lysophosphatidic acid (LPA)-

induced cellular responses in cells expressing LPA1 to LPA5 receptors 

 
LPA1 

(Human) 
LPA1 
(Rat) 

LPA2 

(Human) 
LPA3 

(Human) 
LPA4 

(Human) 
LPA5 

(Human) 
IC50 

(nmol/L) 
11 30 >10,000 >10,000 114 >30,000 

  

Effects of ASP6432 on the LPA-induced increase in intracellular Ca2+ (LPA1 to 

LPA4) or cyclic AMP (LPA5) were measured, and IC50 values were calculated using 

sigmoid-Emax non-linear regression analysis and expressed as the geometric mean 

of two to four independent experiments.  

  



35 
 

 

Table 1-2. Plasma concentrations of ASP6432 in rats after single intravenous 

(1 mg/kg) administration 

Time 
after 

dosing 
(h) 

Plasma concentration (ng/mL) 

0.1 0.25 0.5 1 2 4 

Mean 477.28 168.84 77.65 40.18 22.41 10.49 
SD 41.85 5.04 5.33 6.77 2.68 1.74 

 

Male F344/DuCrlCrlj rats (7 weeks) were used. ASP6432 was dissolved in a 

polyethylene glycol 400/water (1:1, v/v) solution and administered intravenously 

(1 mg/mL/kg). 

Plasma samples were collected, and plasma concentration was determined using 

liquid chromatography-tandem mass spectrometry. Results were expressed as the 

mean and standard deviation (SD) of three animals. 
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Figure 1-1. Chemical structure of ASP6432 (potassium 1-(2-{[3,5-dimethoxy-

4-methyl-N-(3-phenylpropyl)benzamido]methyl}-1,3-thiazole-4-carbonyl)-3-

ethyl-2,2-dioxo-2λ6-diazathian-1-ide) 
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Figure 1-2. Contractile effects of lysophosphatidic acid (LPA) on isolated rat 
urethra (A) and prostate (B) tissue strips 
Tissue strips were treated with 0.1 to 100 μmol/L LPA to elicit contractile responses. 
Each point represents the mean ± SEM of seven (urethra) or five to six (prostate) 
strips. 
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A Urethra 

 
 

B Prostate 

 

Figure 1-3. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced 
contractions in isolated rat urethra (A) and prostate (B) 
For the urethra (A), tissue strips were incubated with vehicle or various 
concentrations of ASP6432 for 30 minutes before 100 μmol/L LPA was added to 
elicit a contractile response. Each column represents the mean ± SEM of five strips. 
Pre: initial LPA-induced contraction response. *p<0.025 vs. pre (initial LPA 
contraction) (Williams’ multiple comparisons test using within-subject error). 
For the prostate (B), tissue strips were incubated with ASP6432 or vehicle (DMSO) 
for 30 minutes before 100 μmol/L LPA was added to elicit a contractile response. 
Each column represents the mean ± SEM of five strips. *p<0.025 vs. vehicle 
(Williams’ multiple comparisons test). 
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Figure 1-4. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced 
intraurethral pressure (IUP) elevation in anesthetized rats  
IUP was measured in male Wistar rats under urethane anesthesia. LPA (3 mg/kg iv) 
was administered five minutes after treatment with vehicle or ASP6432 (0.03 to 
1 mg/kg iv), and the area under the curve (AUC) of IUP was recorded for one 
minute. The AUC at one minute before vehicle injection is represented as Pre-value. 
Each column represents the mean ± SEM of six animals. 
**p<0.01 vs. vehicle (Dunnett’s multiple comparisons test).  
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A Tamsulosin 

 

 

B ASP6432 

 
Figure 1-5. Effect of tamsulosin (A) and ASP6432 (B) on the urethral 
perfusion pressure (UPP) in anesthetized rats 
UPP was measured in female Wistar rats under urethane anesthesia. Vehicle, 
tamsulosin (0.003 to 0.03 mg/kg iv) or ASP6432 (0.1 to 3 mg/kg iv) was 
administered, and the UPP was recorded for 15 minutes. The maximum change in 
UPP from baseline (%) was calculated for each animal. Each column represents the 
mean ± SEM of 7 to 15 animals.  
Veh: vehicle, Tam: tamsulosin (0.01 mg/kg iv). ##p<0.01 vs. vehicle (Student’s t-
test); *p<0.05, **p<0.01 vs. vehicle (Dunnett’s multiple comparisons test). 
  

Veh 0.003 0.01 0.03

-50

-40

-30

-20

-10

0

Tamsulosin (mg/kg iv)



41 
 

 

 
Figure 1-6. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced 
bromodeoxyuridine incorporation into primary cultured human prostate 
stromal cells 
The incorporation of bromodeoxyuridine (BrdU) into cells was measured in 
primary cultured normal human prostate stromal cells. The extent of BrdU 
incorporation was expressed as a percentage of that of the normal group (non LPA-
treated). Each experiment was conducted in triplicate and each column represents 
the mean ± SEM of four experiments.  
N: normal (non LPA-treated), C: control (treated with LPA and vehicle). #p<0.05 
vs. normal (paired t-test), *p<0.025 vs. control (William’s multiple comparisons 
test using within-subject error). 
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Chapter 2: Effect of ASP6432 on Urethral Function during Urine 

Voiding and Voiding Dysfunction 

 
Introduction 

The storage and periodic elimination of urine require coordination between the 

bladder and a bladder outlet component such as the urethra. The neural pathways 

controlling this coordination are organized as simple on-off circuits to maintain a 

reciprocal relationship. Throughout bladder filling, the sympathetic pathway 

releases noradrenaline, activates 1-adrenoceptors, and contracts the proximal 

urethra. At the urine voiding phase, the parasympathetic pathway is activated to 

contract the bladder, and the urethra is relaxed by the release of nitric oxide (NO) 

and removal of adrenergic excitatory inputs (Fowler et al., 2008).  

Functional dysregulation between the bladder and urethra causes voiding 

dysfunctions. Increased urethral tonus during voiding due to excessive sympathetic 

inputs (McVary et al., 2005) or impaired nitrergic inputs (Klotz et al., 1999) leads 

to incomplete bladder emptying and LUTS. Although pharmacotherapies for 

reducing urethral tonus such as 1-adrenoceptor antagonists (1 blockers) are 

available for LUTS with BPH, their efficacy for other types of voiding dysfunctions 

such as female LUTS has not been established (Bae et al., 2005). Therefore, an 

agent that potently relaxes the urethra could improve treatment for voiding 

dysfunction and LUTS associated with BPH or other urology diseases.  

LPA is a small ubiquitous glycerophospholipid found in vertebrate organisms 

that mediates diverse biological actions (Yung et al., 2014). The functional roles of 

LPA are primarily mediated by at least six G protein-coupled receptors, LPA1–6. 
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Although these LPA receptors are broadly expressed, they vary significantly in their 

tissue distribution and appear to have both distinct and overlapping biological roles 

(Choi et al., 2010). LPA1 was the first identified LPA receptor subtype. LPA1 is 

broadly expressed in various tissues, including the normal and hyperplasic prostate 

(Zeng et al., 2009). LPA1 activation induces a range of biological responses such as 

smooth muscle contraction and cell proliferation. Recent studies using 

pharmacological tools demonstrate that LPA and LPA1 are involved in contraction 

of the urethra in rats (Saga et al., 2014; Terakado et al., 2016). 

In Chapter 1, I demonstrated that ASP6432, a novel compound discovered by 

our group, demonstrated potent antagonistic activity against LPA1 

(IC50=11 nmol/L) and was more than 10-fold selective for LPA1 over other LPA 

receptor subtypes and other receptors, ion channels, transporters, and enzymes 

tested. ASP6432 suppressed not only LPA-induced urethral and prostatic 

contractions but also urethral perfusion pressure (UPP) in the absence of external 

LPA stimulation in rats, as shown in Chapter 1. However, whether and to what 

extent an LPA1 antagonist can decrease the UPP at the voiding phase and improve 

voiding dysfunction has not been examined. 

In this chapter, to elucidate the role of LPA1 in the regulation of urethral tonus 

during urine voiding, I investigated the effects of ASP6432 and tamsulosin, an 1 

blocker, on UPP at the filling and voiding phases in anesthetized rats. In addition, 

the effects of ASP6432 and tamsulosin on voiding dysfunction induced by Nω-nitro-

L-arginine methyl ester (L-NAME), an NO synthase inhibitor, was evaluated in 

conscious rats. 
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Materials and Methods 

Test reagents 

ASP6432 (Figure 1-1) and tamsulosin were synthesized at Astellas Pharma Inc. 

(Tokyo, Japan). For the study in anesthetized rats, ASP6432 and tamsulosin were 

dissolved and diluted in saline with 5% (v/v) dimethylformamide. For the 

experiment in conscious rats, tamsulosin was dissolved in distilled water and 

diluted with saline, and ASP6432 was dissolved and diluted in saline with 20% 

N,N-dimethylacetamide and 10% (v/v) Cremophor EL. The amount of these 

organic solvents and detergents used in this study was either below the clinical 

concentration, comparable to that used in a previous study, or much lower than the 

toxic exposure level. Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME 

hydrochloride) (Sigma-Aldrich, St. Louis, MO, USA) was dissolved and diluted 

in saline. 

 

Experimental animals 

In total, 32 male and 40 female animals were used. Female Wistar rats were 

purchased from Charles River Laboratories Japan Inc. (Kanagawa, Japan). Male 

Sprague-Dawley rats were purchased from Japan SLC Co. Ltd. (Shizuoka, Japan). 

The number of animals per group was determined based on the expected effect size 

and standard deviation estimated from preliminary experiments. For the effect of 

tamsulosin on the L-NAME-induced model, the above estimation was not feasible 

since preliminary experiment showed that tamsulosin had no effect. Therefore, I 

terminated the experiment when we observed the same trend as that in our 

preliminary experiment, to keep the number of animals minimum. All animal 
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experimental procedures including the number of animals were approved by the 

Institutional Animal Care and Use Committee of Astellas Pharma Inc. Furthermore, 

Astellas Pharma Inc. Tsukuba Research Center was awarded Accreditation Status 

by the AAALAC International. 

Recording of UPP in anesthetized rats under isovolumetric conditions  

UPP was measured according to a previously described method (Jung et al., 1999) 

with some modifications. Female Wistar rats were anesthetized with an 

intraperitoneal injection of urethane (1.0 g/kg) and fixed in the supine position. For 

drug administration, a polyethylene catheter (PE-50) was inserted into the left 

femoral vein. A midline incision was made in the abdominal wall, and a double-

lumen polyethylene catheter (PE-160 and PE-50) was inserted through a small 

incision at the bladder apex, and the tip was positioned at the bladder neck. Two 

other polyethylene catheters (PE-50) were inserted into the bladder to measure 

intravesical pressure (IVP) and drain saline. Saline was perfused into the bladder 

dome through a catheter using an infusion pump (STC-525 or TE-331, Terumo, 

Tokyo, Japan; KDS100, Muromachi Kikai Co. Ltd., Tokyo, Japan or Neuroscience 

Inc., Tokyo, Japan) at 4.5 mL/h to induce isovolumetric rhythmic bladder 

contractions. Saline was also perfused into the urethra through the outer lumen of 

the double lumen-catheter at 4.5 mL/h to measure UPP. IVP and UPP were 

measured using a pressure transducer (TP-400T, Nihon Kohden, Tokyo, Japan) 

connected to a pressure amplifier (AP-601G or AP-621G, Nihon Kohden).  

After a stabilization period, vehicle (1 mL/kg), tamsulosin (0.01 mg/kg), or 

ASP6432 (0.1, 0.3, and 1 mg/kg) was administered intravenously (iv). The dose of 

tamsulosin used in this study (0.01 mg/kg iv) induced a maximum decrease in UPP 
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in the previous chapter. After drug administration, UPP at the bladder filling phase 

(UPPbase), the minimum UPP at the urine voiding phase (UPPnadir), the duration of 

urethral relaxation, the duration of high frequency oscillations (HFOs) reflecting 

external urethral sphincter muscle contraction (Bennett et al., 1995) (Figure 1A) for 

15 min, and maximum changes from baseline were recorded as % change from 

baseline. 

 

Voiding dysfunction model induced by L-NAME in conscious rats 

Voiding dysfunction, characterized by an increase in post-void residual urine (PVR) 

and a decrease in voiding efficiency (VE), was induced in conscious rats by 

intravenous administration of L-NAME (10 mg/kg). The dose of L-NAME was 

determined according to the preliminary experiment (data not shown).  

Voiding parameters were measured according to the method descried by 

Kurihara et al. (Kurihara et al., 2016) in male Sprague-Dawley rats. Under 

isoflurane anesthesia, a PE-160 catheter was inserted into the bladder through an 

abdominal incision and a small incision at the center of the ventral side of the 

bladder. The other end of the catheter was exited through the abdominal incision in 

a vertical direction to infuse saline and collect residual urine. A PE-50 catheter was 

inserted into the jugular vein for drug administration. After surgery, the rat was 

placed in a Ballman cage (Natsume Seisakusho, Tokyo, Japan) and allowed to 

recover from anesthesia for at least 1 hour. The bladder catheter (PE-160) was 

connected to a pressure transducer (DX-100; Nihon Kohden) and an infusion pump 

(TE-331S, STC-525 or STC-528; Terumo) via a three-way stopcock. Intravesical 

pressure was monitored using an amplifier (AP-601G; Nihon Kohden) connected 
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to a pressure transducer.  

Voiding parameters were measured by running single cystometry (CMG) twice 

(Figure 3A). The first CMG was to collect baseline values. Saline was infused into 

the bladder at 4.2 mL/h. The infusion was stopped immediately after initiation of 

the voiding reflex, and urine voided from the urethral orifice and PVR were 

collected and weighed using an electronic balance (GX-200; A and D, Tokyo, 

Japan). After the first series of CMGs, vehicle (1 mL/kg iv), ASP6432 (0.3, 1 or 

3 mg/kg, iv), or tamsulosin (0.003 or 0.01 mg/kg iv) was administered. L-NAME 

was administered 5 min after drug administration. The second CMG was started 

5 min after L-NAME administration, and the voided urine and PVR were measured 

after voiding, and changes in PVR (mL) and VE (%) from the respective baseline 

values were calculated. A weight of 1 g of urine was considered to be equivalent to 

a volume of 1 mL of urine. Voiding efficiency (VE) was calculated using the 

following formula:  

VE (%)=100×(voided volume [mL])/(voided volume [mL]+PVR [mL])  

Data analysis 

PowerLab and LabChart (ADInstruments Japan, Aichi, Japan) were used to 

collect data. Statistical analyses were performed using SAS software (SAS 

Institute Japan, Tokyo, Japan) or Prism (GraphPad Software, San Diego, CA, 

USA). Results are presented as mean±SEM. Student's t-test, paired t-test, one-way 

analysis of variance (ANOVA), or ANOVA followed by Dunnett’s multiple 

comparisons test was used, and p<0.05 was considered statistically significant.  
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Results 

ASP6432 but not tamsulosin decreased UPP during voiding in anesthetized 

rats under isovolumetric conditions 

Under isovolumetric conditions, the bladder and urethra produced simultaneous and 

periodic contractions and relaxations (Figure 2-1A and 2-1B). There were no 

significant differences in baseline UPPbase, UPPnadir, duration of urethral relaxation, 

or duration of HFOs at the voiding phase between groups (Table 2-1).  

Intravenous administration of tamsulosin (0.01 mg/kg) significantly decreased 

the UPPbase compared to the vehicle-treated group, but did not significantly alter the 

UPPnadir (Figure 2-1C, Figure 2-2A and 2B). Intravenous administration of 

ASP6432 (0.1 to 1 mg/kg) dose-dependently and statistically significantly 

decreased the UPPbase and UPPnadir at 1 mg/kg iv and 0.3 mg/kg iv and above, 

respectively (Figure 2-1D, Figure 2-2A and 2B). Neither tamsulosin nor ASP6432 

significantly changed the duration of HFOs or urethral relaxation at the urine 

voiding phase (Figure 2-1C and 1D, Figure 2C and 2D).  

 

ASP6432 but not tamsulosin improved L-NAME-induced voiding dysfunction 

in conscious rats 

Mean baseline values for PVR and VE were 0.04 to 0.06 mL and 94.1% to 96.2%, 

respectively (Table 2-2). No significant differences were observed between groups. 

In vehicle-treated groups, intravenous administration of L-NAME (10 mg/kg) 

increased PVR by 0.27 to 0.31 mL and decreased VE by 21.7% to 22.7%, with no 

significant changes in the time to voiding or maximum IVP (Figure 2-3B).  

Treatment with tamsulosin (0.003 and 0.01 mg/kg iv) did not affect either the 
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increase in PVR or the decrease in VE induced by L-NAME (Figure 2-4A). On the 

other hand, ASP6432 significantly prevented the increase in PVR and decrease in 

VE elicited by L-NAME at 1 mg/kg iv and above compared to the vehicle-treated 

group (Figure 2-4B). Neither tamsulosin nor ASP6432 significantly changed the 

time to voiding or maximum IVP (data not shown). 
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Discussion 

In this chapter, I demonstrated that the LPA1 antagonist ASP6432 decreased 

UPPnadir, while tamsulosin had no effect. ASP6432 also suppressed the increase in 

PVR and decrease in VE induced by L-NAME, while tamsulosin likewise had no 

effect. Although recent reports (Terakado et al., 2016) and the results in Chapter 1 

have demonstrated a significant role for LPA1 in maintaining urethral contraction, 

it has remained unclear whether LPA1 antagonism decreases urethral pressure at the 

voiding phase and if it actually affects urine voiding. To my knowledge, this is the 

first study to show that an LPA1 antagonist decreases urethral tonus during urine 

voiding and improves voiding dysfunction. 

In anesthetized rats under isovolumetric conditions, both ASP6432 and 

tamsulosin reduced UPPbase (Figure 2-2A), as shown in Chapter 1. Interestingly, 

ASP6432 also decreased UPPnadir, which was not significantly affected by 

tamsulosin (Figure 2-2B). The decrease in UPPnadir by ASP6432 suggests that 

activated LPA1 contributes to the regulation of urethral tonus at the voiding phase, 

in contrast to the notion that the sympathetic nervous system is not active at the 

voiding phase (Fowler et al., 2008). The decrease in UPPbase but not UPPnadir by 

tamsulosin is also consistent with this notion and prior findings that 1 blockers 

decrease the baseline UPP (Conley et al., 2001) but not UPP at the voiding phase 

(Bae et al., 2005). ASP6432 demonstrated high selectivity in an off-target assay that 

included 1-adrenceptors (Chapter 1, data not shown). To my knowledge, no study 

has shown a direct relationship between LPA1 and 1-adrenceptors. Comparison of 

the present study results with the above-mentioned studies suggests that inhibition 
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of LPA1 activation decreases urethral tonus at the voiding phase via a mechanism 

that is not directly related to 1-adrenoceptor antagonism. However, detailed studies 

are needed to determine whether there is any crosstalk between the LPA-LPA1 

signaling axis and the adrenergic system. 

To examine the benefit of decreasing UPPnadir on voiding dysfunction, I 

investigated the effect of ASP6432 and tamsulosin in a L-NAME-induced voiding 

dysfunction model in conscious rats. I used this approach instead of the 

measurement of UPPnadir in anesthetized rats under isovolumetric conditions, 

because in the preliminary experiment L-NAME frequently eliminated reflex 

urethral relaxation, which was also observed using another NOS inhibitor (Bennett 

et al., 1995), making it difficult to evaluate the effect of drugs on impaired urethral 

relaxation induced by L-NAME. Single CMG showed that L-NAME increased 

PVR and decreased VE without significantly altering bladder parameters (Figure 2-

3B), consistent with a prior study demonstrating that L-NAME primarily inhibits 

urethral relaxation at the voiding phase and increases PVR (Persson et al., 1992). 

ASP6432 prevented the L-NAME-induced decrease in VE and increase in PVR 

(Figure 2-4B). Given that ASP6432 decreased the UPPnadir (Figure 2-2B), it is 

reasonable to assume that ASP6432 prevented voiding dysfunction by decreasing 

urethral tonus during urine voiding via LPA1 antagonism, thereby functionally 

counteracting the impaired urethral relaxation induced by L-NAME. However, 

whether ASP6432 and L-NAME act independently or if there is interplay between 

them remains to be clarified. To my knowledge, only one study has investigated the 

relationship between LPA and NO-related signaling in smooth muscle tissue (the 

lower esophageal sphincter of cats) (Lee et al., 2011). While ASP6432 had no effect 
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on the duration of urethral relaxation and HFOs (Figure 2-2C and 2-2D), the non-

selective phosphodiesterase inhibitor zaprinast and NO donors reportedly enhance 

the duration of urethral relaxation (Jung et al., 1999; Wibberley et al., 2002), 

suggesting that ASP6432 may modulate urethral functions differently to drugs that 

act on the nitrergic pathway. More research is needed to elucidate the relationship 

between the LPA1 and nitrergic pathways.  

Tamsulosin did not affect the L-NAME-induced voiding dysfunction (Figure 

2-4A), even though the 1 blocker prazosin was previously shown to potentiate the 

relaxation effect of NO released from nerve endings in isolated rabbit urethra strips 

(Seshita et al., 2000). The effect of 1-blockers on NO-mediated urethral relaxation 

may be limited, or differ across experimental settings or species. Tadalafil, the only 

approved PDE5 inhibitor for the treatment of LUTS associated with BPH (Gacci et 

al., 2016), may suppress the effects of L-NAME. However, the effect of tadalafil 

was not evaluated in this study, because the L-NAME-induced model is not 

appropriate to compare the efficacy of the drug acting on the nitrergic pathway with 

those mainly acting on other pathways. In addition, PDE5 inhibitors enhance 

relaxation of the bladder (Filippi et al., 2007; Oger et al., 2010; Ribeiro et al., 2014) 

and tadalafil did not significantly improve maximum urine flow or PVR in the 

majority of clinical studies (Hatzimouratidis, 2014), suggesting that PDE5 

inhibition may not be an ideal approach for improving uroflowmetric parameters 

such as PVR and VE. 

The present study results provide various insights for further investigation into 

the role of LPA and LPA1. Given that this study suggests that the effect of ASP6432 

on urethral tonus is not directly related to 1-adrenoceptor antagonism, I expect that 
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ASP6432 will at least have an additive effect when combined with tamsulosin. 

However, further investigations into potential interactions between LPA1 and the 

adrenergic and nitrergic pathways are required to clarify the potential clinical 

benefit of the combined use of ASP6432 and 1 blockers or PDE5 inhibitors, as 

well as the physiological role of LPA1 in the lower urinary tract. The effects of LPA 

and LPA1 in the regulation of bladder function should also be investigated to 

elucidate their overall roles in the lower urinary tract. When studying the effect of 

LPA on bladder functions, it should be noted that LPA binds and directly activates 

molecular targets other than LPA receptors such as transient receptor potential 

(TRP) channel TRPV1 (Nieto-Posadas et al., 2011), TRPA1 (Kittaka et al., 2017), 

and peroxisome proliferator-activated receptor  (PPAR) (McIntyre et al., 2003), 

since TRPV1 and TRPA1 play important roles as sensors of stretch or chemical 

irritation to activate bladder sensory signaling (Skryma et al., 2011). However, for 

urethral functions, it is unlikely that these molecules are responsible for LPA-

induced urethral smooth muscle contractions, because other LPA1 antagonists have 

been shown to inhibit LPA-induced contractions (Terakado et al., 2017; Terakado 

et al., 2016) and TRPA1 agonists inhibit the contraction of isolated human urethral 

strips in cooperation with TRPV1-mediated signals (Weinhold et al., 2010). Further, 

it is unlikely that relatively rapid biological responses like smooth muscle 

contraction can be explained by transactivation of nuclear receptors like PPAR. 

The finding that ASP6432 significantly reduced the UPPnadir and suppressed L-

NAME-induced voiding dysfunction, while tamsulosin did not, suggests that 

ASP6432 has the potential to improve voiding dysfunctions that are refractory to 

current pharmacotherapies in humans. Hypofunction of NO mechanisms and 
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urethral dysfunction in aged rats (Kimura et al., 2018), impaired NO synthesis with 

increasing age in humans (Schulze et al., 2005; Yoshida et al., 2003), and voiding 

dysfunction in mice deficient of neuronal NO synthase (Burnett et al., 1997) suggest 

that patients with age-related urethral dysfunction may benefit from treatment 

withASP6432. Underactive bladder (UAB), a recently proposed disease entity 

(Chapple et al., 2018), may be another potential target indication given that 

treatments that solely target the bladder have been reported to be ineffective 

(Barendrecht et al., 2007), suggesting the need for alternative approaches (Deruyver 

et al., 2018). ASP6432 may be effective for improving bladder emptying by 

potently relaxing the urethra during voiding and correcting the relative imbalance 

between bladder contraction and urethral relaxation. 

Before investigating the therapeutic potential for ASP6432 in a clinical setting, 

extensive nonclinical profiling for pharmacokinetics and safety must be completed. 

Although the detailed data were not shown here, pharmacokinetic studies in rats 

and dogs demonstrated that the absolute bioavailability of ASP6432 ranged from 

34.7% to 76.7%, and that oral administration of ASP6432 showed no effect on 

blood pressure, heart rate, or electrocardiogram findings in dogs at up to 100 mg/kg. 

Although it was not feasible to evaluate the effect of ASP6432 on urethral functions 

after oral administration due to technical limitations, comparison of these results 

with the effective dose after intravenous administration (0.3 to 1 mg/kg; Figure 2-2 

and Figure 2-4) suggests that ASP6432 will have favorable oral absorption with 

expected efficacy after oral administration, and a low risk of cardiovascular side 

effects. Regarding toxicity, theoretical side effects assumed from findings in LPA1-

deficient mice, such as abnormalities in fetal development (Contos et al., 2000), 
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should be carefully assessed. However, the clinical study results of LPA1 

antagonists (Allanore et al., 2018; Palmer et al., 2018) suggest a low risk of 

mechanism-based serious toxicity precluding clinical application. Future studies on 

these aspects will provide a more extensive characterization of the therapeutic 

potential of ASP6432 in the treatment of voiding dysfunction. 

In conclusion, I demonstrated that ASP6432 but not tamsulosin decreased 

urethral pressure during urine voiding and improved L-NAME-induced voiding 

dysfunction. The results in this chapter suggest that LPA1 has a significant role in 

regulating urethral tonus during urine voiding, and highlight the potential of 

ASP6432 for improving voiding dysfunctions and LUTS associated with BPH and 

other lower urinary tract diseases. 
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Table 2-1. Baseline urethral perfusion pressure (UPP) parameters under 

isovolumetric conditions. 

Parameter Vehicle 
ASP6432 
(mg/kg iv) 

Tamsulosin 
(mg/kg iv) 

0.1 0.3 1 0.01 
UPPbase 
(mmHg) 

23.23 
±2.31 

24.57 
±2.59 

27.40 
±2.45 

26.13 
±2.06 

23.23 
±2.31 

UPPnadir 
(mmHg) 

9.51 
±0.97 

10.36 
±1.75 

10.22 
±1.19 

8.88 
±0.96 

9.09 
±1.09 

Urethral 
relaxation (s) 

26.5 
±4.9 

35.6 
±4.2 

36.9 
±2.3 

29.3 
±5.7 

31.4 
±5.3 

HFOs(s) 13.8 
±2.1 

14.7 
±2.0 

13.2 
±1.7 

15.6 
±3.2 

14.9 
±1.7 

 

UPPbase, baseline UPP at the bladder filling phase; UPPnadir, minimum UPP at the 

urine voiding phase; HFOs, high frequency oscillations. Values indicate the 

mean±SEM of eight animals. There were no statistical differences in any 

parameters between groups (one-way ANOVA). 
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Table 2-2. Baseline cystometric parameters of each treatment group. 

Parameter 
ASP6432 (mg/kg iv) Tamsulosin (mg/kg iv) 

Veh. 0.3 1 3 Veh. 0.003 0.01 

PVR 
(mL) 

0.05 
±0.02 

0.06 
±0.01 

0.04 
±0.01 

0.06 
±0.03 

0.05 
±0.01 

0.05 
±0.02 

0.04 
±0.01 

VE 
(%) 

94.8 
±1.7 

94.1 
±1.2 

95.2 
±1.4 

95.6 
±1.5 

95.1 
±1.2 

96.2 
±1.3 

95.4 
±0.9 

Time to 
voiding 
(min) 

10.2 
±2.4 

11.8 
±1.3 

10.8 
±1.2 

12.2 
±2.2 

11.0 
±0.8 

10.6 
±2.4 

9.2 
±1.7 

Maximum 
IVP 

(mmHg) 

26.6 
±2.2 

30.0 
±2.1 

25.4 
±0.7 

25.6 
±1.5 

26.8 
±0.7 

29.8 
±3.2 

26.8 
±4.1 

 

Veh., vehicle; PVR, post-void residual urine; VE, voiding efficiency; IVP, 

intravesical pressure. Values indicate the mean±SEM of five (ASP6432) or four 

(tamsulosin) animals. There were no statistical differences in any parameters 

between groups (one-way ANOVA). 
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Figure 2-1. Representative traces of urethral perfusion pressure (UPP) in 
anesthetized rats under isovolumetric conditions (A) and changes after 
treatment with vehicle (B), tamsulosin (0.01 mg/kg iv) (C), and ASP6432 (1 
mg/kg iv) (D). 
UPP was measured under urethane anesthesia and isovolumetric conditions. 
Intravesical pressure (IVP) was monitored to confirm that reflex bladder 
contractions and urethral relaxations occur in a synchronized manner. Drugs were 
administered intravenously. Down arrows indicate the timing of administration. 
UPPbase, UPP at the bladder filling phase; UPPnadir, the minimum UPP at the urine 
voiding phase; HFOs, high frequency oscillations. 
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Figure 2-2. Effect of ASP6432 and tamsulosin on urethral perfusion pressure 
(UPP)-related parameters in anesthetized rats under isovolumetric 
conditions. 
The maximum change in UPP at the bladder filling phase (UPPbase) (A), the 
minimum UPP at the urine voiding phase (UPPnadir) (B), the duration of urethral 
relaxation at the urine voiding phase (C), and the duration of high frequency 
oscillations (HFOs) (D) in 15 min after treatment with vehicle (Veh), ASP6432 (0.1 
to 1 mg/kg iv), or tamsulosin (Tam) (0.01 mg/kg iv) were calculated for each animal. 
Each column represents the mean±SEM of eight animals.  
#p<0.05 compared with vehicle (Student’s t-test); *p<0.05, **p<0.01 compared 
with vehicle (Dunnett's test using within subject error). 
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Figure 2-3. Schematic diagram of the experimental protocol (A) and changes 
in cystometric parameters after Nω-nitro-L-arginine methyl ester (L-NAME) 
treatment (B) in conscious rats. 
In (B), changes in post-void residual urine (PVR), voiding efficiency (VE), time to 
voiding, and maximum intravesical pressure (IVP) from baseline after L-NAME 
treatment were calculated for each animal. Each column represents the mean±SEM 
of five (Vehicle for ASP6432) or four (Vehicle for tamsulosin) animals. *p<0.05, 
**p<0.01 compared with baseline (paired t-test). CMG, cystometry; NS, not 
significant; Veh, vehicle.  
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Figure 2-4. Effect of tamsulosin (A) and ASP6432 (B) on voiding dysfunctions 
induced by Nω-nitro-L-arginine methyl ester (L-NAME). 
Changes in post-void residual urine (PVR), voiding efficiency (VE), time to voiding, 
and maximum intravesical pressure (IVP) from baseline after treatment with 
vehicle, ASP6432 (0.3 to 3 mg/kg iv), or tamsulosin (0.003 to 0.01 mg/kg iv) were 
calculated for each animal. Each column represents the mean±SEM of five 
(ASP6432) or four (tamsulosin) animals.  
**p<0.01 compared with vehicle (Dunnett's test using within subject error). 
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Chapter 3: Effect of Lysophosphatidic Acid (LPA) and the Type 1 

LPA Receptor Antagonist ASP6432 on Urinary Frequency: 

Potential for LPA1 antagonism in the Treatment of Bladder 

Overactivity 

 

Introduction 

Maintenance of continence and control of the timing of urination by proper storage 

of urine in the bladder are fundamental to leading a normal personal and social life. 

The micturition center located in the pons and the autonomic nervous system 

cooperatively regulate the normal reservoir function of the bladder. Noradrenaline 

released from sympathetic nerve endings activates 3-adrenoceptors expressed in 

the bladder to distend the detrusor smooth muscle and 1-adrenoceptors to contract 

the urethral smooth muscle (de Groat et al., 2015). 

Dysregulation of bladder urine storage function causes storage symptoms, 

characterized by urgency, urinary frequency, nocturia, or incontinence (Abrams et 

al., 2002). Storage symptoms are commonly observed in patients with LUTS 

associated with BPH. Although patients typically find storage symptoms the most 

bothersome (Chapple et al., 2014), treatment of LUTS associated with BPH tends 

to focus on improving voiding symptoms (slow stream hesitancy, incomplete 

bladder emptying, and terminal dribbling). Alpha1-blockers, currently first-choice 

pharmacotherapies, primarily relax the contractions of the prostatic part of the 

urethra and improve BOO, but do not always sufficiently alleviate storage 

symptoms (van Kerrebroeck et al., 2013). Therefore, an agent that potently 
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improves bladder dysfunction in addition to BOO may be a better treatment option 

for LUTS associated with BPH.  

LPA is a small glycerophospholipid found ubiquitously in vertebrates that 

mediates diverse biological actions demonstrating medicinal relevance (Yung et al., 

2014). In the lower urinary tract, LPA contracts urethral strips isolated from rats, 

and increases intraurethral pressure in rats and dogs via LPA1 (Terakado et al., 2017; 

Terakado et al., 2016). In cultured bladder smooth muscle cells, LPA induces 

contraction (Kropp et al., 1999) and is suggested to mediate stretch-induced cellular 

activation possibly via LPA1, the most prominently expressed LPA receptor subtype 

(Kawashima et al., 2015). To my knowledge, however, no study has yet investigated 

the effect of LPA on bladder function in vivo. In Chapter 1 and 2, I demonstrated 

that LPA1 regulates the contraction and tonus of the prostate and urethra, using the 

potent and selective antagonist ASP6432. However, the effect of ASP6432 on 

bladder function remains to be elucidated. 

To clarify the role of LPA and LPA1 in the regulation of bladder function, I 

examined in this Chapter the effects of LPA and the LPA1 antagonist ASP6432 on 

the micturition reflex in conscious rats using continuous cystometry. In addition, I 

evaluated the effect of ASP6432 on the decrease in micturition interval (MI, a 

cystometry parameter reflective of urinary frequency) induced by the NOS inhibitor 

L-NAME. 
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Materials and Methods 

Test reagents 

ASP6432 (Figure 1-1) was synthesized at Astellas Pharma Inc. (Tokyo, Japan). 

ASP6432 was dissolved and serially diluted either with distilled water containing 

0.025 mol/L NaOH or with saline containing 5% N,N-dimethylformamide. LPA 

(1-linolenoyl-2-hydroxy-sn-glycero-3-phosphate) (Avanti Polar Lipids, Inc., 

Alabaster, AL, USA) was dissolved in saline containing 0.1% BSA. L-NAME 

(Nω-nitro-L-arginine methyl ester hydrochloride) (Sigma-Aldrich, St. Louis, MO, 

USA) was dissolved and diluted in distilled water. 

 
Experimental animals 

All animal experimental procedures were approved by the Institutional Animal Care 

and Use Committee of Astellas Pharma Inc. Astellas Pharma Inc. Tsukuba Research 

Center was awarded Accreditation Status by the AAALAC International. Male 

Wistar rats and female Sprague Dawley rats were purchased from Charles River 

Laboratories Japan Inc. (Kanagawa, Japan). The number of animals per group was 

determined based on the effect size and standard deviation estimated from 

preliminary experiments. 

 

Surgical procedures  

Animals were anesthetized with an intraperitoneal injection of pentobarbital sodium 

(50 mg/kg) and fixed in the supine position. For saline infusion into the bladder and 

measurement of IVP, a midline incision was first made in the abdominal wall, and 

a polyethylene catheter (PE-50; Becton, Dickinson & Co., Franklin Lakes, NJ, 
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USA) was then inserted through a small incision made at the bladder apex and the 

tip was placed inside the bladder dome. For drug administration, a polyethylene 

catheter (PE-50) filled with saline containing sodium heparin was inserted into the 

jugular vein. These catheters were tunneled subcutaneously and anchored to the 

skin of the back of the neck using silk ligatures. To evaluate the effect of LPA and 

the effect of ASP6432 on changes induced by LPA, animals were administered 

ampicillin sodium (20 mg/kg, sc) and housed for another three days with free access 

to food and water in individual cages. To evaluate the effect of ASP6432 on L-

NAME-induced changes, cystometry experiments were conducted on the same day 

as the surgery, after the animals had recovered from the anesthesia in Ballman’s 

cages (Natsume Seisakusho Co., Ltd., Tokyo, Japan). 

 

Cystometry experiments under conscious conditions 

Animals were placed in Ballman’s cages, and saline was continuously infused into 

the bladder through the inserted catheter using an infusion pump (STC-525 or TE-

331, Terumo, Tokyo, Japan; KDS100, Muromachi Kikai Co. Ltd., Tokyo, Japan or 

Neuroscience Inc., Tokyo, Japan) at 4.2 mL/h to induce the micturition reflex. IVP 

was measured using a pressure transducer (TP-400T, Nihon Kohden, Tokyo, Japan) 

connected to a pressure amplifier (AP-601G or AP-621G, Nihon Kohden).  

To evaluate the effect of LPA and ASP6432, female Sprague Dawley rats were 

used. The effect of LPA (1, 5, 10, and 15 mg/kg/h) on bladder parameters was 

evaluated in four groups. Before LPA administration, vehicle for LPA (saline 

containing 0.1% BSA) was intravenously infused at 3 mL/kg/h until the micturition 

reflex was stabilized, and the average MI, maximum IVP, BP, and TP of two 
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consecutive micturition cycles were measured as baseline. After determining 

baseline values, intravenous infusion was switched to LPA and cystometry was 

continued. After the changes by LPA were stabilized, the average MI, max IVP, BP, 

and TP of two consecutive micturition cycles were measured. To evaluate the effect 

of ASP6432, a separate experiment was performed. In animals showing greater than 

a 10% decrease in MI from baseline after LPA (5 mg/kg/h) infusion, ASP6432 (0.3, 

1, 3 and 10 mg/kg) was intravenously injected at the end of each micturition cycle 

with incremental dosing and the effect was evaluated at the next micturition cycle. 

Changes following drug treatment were expressed as a percentage of baseline 

values. 

To evaluate the effects of ASP6432 on L-NAME-induced changes, male Wister 

rats were used. L-NAME (10 mg/kg) was intravenously injected after the 

micturition reflex was stabilized. Animals showing greater than a 10% decrease in 

MI at around 30 min after L-NAME administration were used to evaluate the effect 

of ASP6432. ASP6432 (0.3 or 1 mg/kg) or vehicle (saline with 5% DMF) was 

administered intravenously. Cystometry measurement was continued for another 

30 min, and changes in MI, max IVP, BP and TP were calculated.  

 
Data analysis 

PowerLab and LabChart (ADInstruments Japan, Aichi, Japan) were used to 

collect data. Statistical analyses were performed using SAS software (SAS 

Institute Japan, Tokyo, Japan) or Prism (GraphPad Software, San Diego, CA, 

USA). Results are presented as mean ±SEM. The number of animals per group is 

indicated in either the graph or legend of the respective figure. Paired t-test was 
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used to compare changes before and after drug treatment. One-way analysis of 

variance (ANOVA) or ANOVA followed by Dunnett’s multiple comparisons test 

was used to compare the difference between groups. A p value<0.05 was 

considered statistically significant. 
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Results 

LPA caused bladder overactivity in conscious rats 

Under intravenous infusion of vehicle for LPA (saline containing 0.1% BSA), there 

were no differences in baseline MI, max IVP, BP, or TP between the groups. After 

switching the infusion from vehicle to LPA (1, 5, 10, or 15 mg/kg/h), MI dose-

dependently decreased compared to baseline at 5 mg/kg/h and greater. TP also 

statistically significantly decreased compared to baseline at 10 mg/kg/h. No 

significant changes were observed in BP or max IVP (Figure 3-1). 

 

LPA-induced urinary frequency was reversed by the LPA1 antagonist 

ASP6432 

Based on the above findings, we evaluated the effect of ASP6432 on LPA 

(5 mg/kg/h)-induced cystometric changes. Intravenous infusion of LPA 

significantly decreased MI and TP compared to baseline by 47% and 38%, 

respectively. ASP6432 (0.3 to 10 mg/kg iv) dose-dependently inhibited the LPA-

induced decrease in MI, with statistically significant inhibition observed at doses of 

1 mg/kg and greater compared to the vehicle-treated group (Figure 3-2 and 3-3).  

In contrast, ASP6432 did not inhibit the LPA-induced decrease in TP up to 

10 mg/kg iv. Neither LPA nor ASP6432 had an effect on BP or max IVP (Figure 3-

3). 

 

ASP6432 improved L-NAME-induced urinary frequency 

Intravenous injection of L-NAME (10 mg/kg) significantly decreased MI compared 

to baseline without significant changes in max IVP, BP, or TP (Figure 3-4 and 3-5). 
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Treatment with ASP6432 (0.3 and 1 mg/kg iv) dose-dependently and 

significantly reversed the L-NAME-induced decrease in MI compared to the 

vehicle-treated group (Figure 3-4 and 3-6). ASP6432 had no effect on the other 

cystometric parameters tested (Figure 3-6).  
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Discussion 

In this chapter, I demonstrated that LPA decreased MI and TP in conscious rats, 

and that the LPA1 antagonist ASP6432 inhibited the LPA- and L-NAME-induced 

decreases in MI. Despite recent studies demonstrating a significant role for the 

LPA-LPA1 signaling axis in urethral contraction (Saga et al., 2014; Terakado et al., 

2017)(Terakado et al., 2016), the effect of LPA and LPA1 in the bladder has not 

been clarified in vivo. To my knowledge, this is the first study to show that i) LPA 

causes bladder overactivity characterized by decreases in MI and TP, ii) the LPA1 

antagonist ASP6432 reverses the LPA-induced decrease in MI, and iii) ASP6432 

improves urinary frequency induced by the NOS inhibitor L-NAME. 

In the continuous cystometry study in conscious rats, intravenous infusion 

of LPA decreased MI and TP (Figure 3-1). Although I did not measure the plasma 

LPA concentration, the amount of LPA administered in this study (1 to 

15 mg/kg/h, approximately 0.04 to 0.6 mol/kg/min calculated from the free form 

molecular weight of around 450) appeared to be within the physiological level, 

since blood LPA concentrations range from 0.1 to 10 mol/L (Yung et al., 2014) 

and LPA is rapidly eliminated from the plasma (Salous et al., 2013). Given that 

LPA is a multifactorial bioactive phospholipid (Yung et al., 2014), it is likely that 

these LPA-induced changes result from multiple mechanisms. One simple 
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possible mechanism is that LPA induces contraction of the detrusor smooth 

muscle, since LPA contracts cultured bladder smooth muscle cells (Kropp et al., 

1999). However, intravenous LPA infusion did not significantly increase bladder 

contractility parameters such as BP and max IVP up to 10 mg/kg/h, while MI and 

TP decreased at 10 mg/kg/h or less (Figure 3-1), suggesting a minimal, if any, 

contribution of direct detrusor contraction by LPA. Alternatively, urethral 

contraction by LPA shown in Chapter 1 may have reduced the functional capacity 

of the bladder by causing BOO and accumulating post-void residual urine (PVR) 

in the bladder(Vesely et al., 2003). However, intravenous LPA infusion did not 

increase max IVP (Figure 3-1) indicative of a compensatory increase in bladder 

contractility, suggesting that LPA-induced significant BOO is not the cause of 

decrease in MI, although we did not measure PVR due to technical difficulties 

under the present study conditions. 

Another possible mechanism underlying the LPA-induced decrease in MI 

and TP is the excitation of bladder sensory neurons by LPA. Afferent Aδ-fibers 

transduce normal sensations of bladder filling and C-fibers are activated under 

pathological conditions (Fowler et al., 2008; Yoshimura et al., 2002). Stimulation 

or suppression of these afferent fibers leads to decreases or increases in MI and 

TP, respectively (Du et al., 2007; Nagabukuro et al., 2010; Strittmatter et al., 
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2012). In addition, LPA1 mediates the peripheral LPA-induced activation of 

primary afferent and spinal cord neurons (Elmes et al., 2004; Renback et al., 

2000). Further, LPA1 modulates the activity of the tetrodotoxin-resistant sodium 

channel Nav1.8 in dorsal root ganglion neurons (Pan et al., 2016), which is 

implicated in the activation of C-fibers after chemical irritation of the bladder 

(Yoshimura et al., 2001). These prior studies suggest that activation of LPA1 

expressed in afferent neurons can enhance the sensory signaling from the bladder 

and decrease MI and TP. 

Intravenous administration of the LPA1 antagonist ASP6432 significantly 

but not completely inhibited the LPA-induced decrease in MI (Figure3-2, 3-3), 

indicating that LPA1 plays a major role in the LPA-induced decrease in bladder 

capacity. However, the LPA-induced decrease in TP was not affected by ASP6432 

(Figure 3-3), despite my initial hypothesis. The present study result suggests that 

the LPA-induced decrease in TP is mediated by other LPA receptor subtypes or 

other LPA-binding proteins that regulate sensory signaling. LPA3 and LPA5 

receptors are implicated in the process of allodynia (Murai et al., 2017; Uchida et 

al., 2014), although it is unknown whether there is any mechanistic similarity 

between allodynia and bladder sensation. LPA can directly bind and activate 

transient receptor potential (TPR) channels TRPV1 and TRPA1 (Kittaka et al., 
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2017; Nieto-Posadas et al., 2011), which are expressed in afferent fibers and are 

involved in bladder hypersensitivity by acting as sensors for stretch and/or 

chemical irritation (Andersson, 2016). Direct activation of these channels by LPA 

may activate bladder afferent fibers and contribute to decreasing the TP and MI, 

which were not reversed by ASP6432. Another possibility is that peripherally 

administered LPA acts in the central nervous system (CNS), which ASP6432 

cannot affect due to its low brain permeability (data not shown), although it is 

unknown whether and to what extent LPA penetrates the brain blood barrier. 

Further studies are needed to identify the mechanistic basis of the effect of LPA 

and LPA1 on bladder function, including the mechanism governing the LPA-

induced decrease in TP and its implication for the micturition complex. 

To explore the consequence of suppressing LPA1 on bladder function, I 

evaluated the effect of ASP6432 on urinary frequency elicited by L-NAME in 

conscious rats. Previous studies suggest that L-NAME affects bladder urine 

storage function via multiple mechanisms. Bladder perfusion of L-NAME (10 

mg/mL) enhances the decrease in TP by capsaicin (Caremel et al., 2010) and 

increases the activity of bladder A- and C-fibers in anesthetized rats (Aizawa et 

al., 2011). The intravenous L-NAME administration (20 mg/kg) increases max 

IVP and decreases MI in conscious rats, while MI is increased in anesthetized rats 
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(Masuda et al., 2007). In the present study in conscious rats, intravenous 

administration of L-NAME (10 mg/kg) decreased MI without significantly 

affecting max IVP, BP, or TP (Figure 3-4 and 3-5), which is consistent with 

findings using intraarterial L-NAME administration (10 mg/kg) in conscious rats 

(Persson et al., 1992). Results of the present and previous studies suggest that 

systemic administration of L-NAME at 10 mg/kg decreases MI in conscious rats 

as a result of a combination of minor effects on multiple mechanisms regulating 

the micturition reflex. 

ASP6432 significantly reversed the L-NAME-induced decrease in MI 

(Figure 3-4 and 3-6), indicating that inhibition of LPA1 by ASP6432 can 

ameliorate urinary frequency resulting from impaired NO production. However, to 

my knowledge, no studies have investigated the correlation between impaired NO 

production and LPA1 activation. Given that both L-NAME and ASP6432 altered 

MI without affecting other cystometoric parameters (Figure 3-5 and 3-6), the 

mechanism underlying the effect of ASP6432 on L-NAME-induced decrease in 

MI may be multifactorial, as suggested by the effect of L-NAME at 10 mg/kg iv 

on MI. Another hypothesis is that urethral relaxation by ASP6432 demonstrated in 

Chapter 1 and 2 may have suppressed the sensory signaling from the urethra that 

facilitates bladder contraction (Danziger and Grill, 2017; Yokoyama et al., 2007). 
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However, it is unknown whether and how L-NAME or ASP6432 affects the 

afferent signaling from the urethra and modulates MI. Further investigation is 

required to elucidate the exact mechanism of action of ASP6432 on L-NAME-

induced changes in bladder function. 

The present finding that ASP6432 significantly reversed the LPA- and L-

NAME-induced decreases in MI suggests that ASP6432 has the potential to 

ameliorate urinary frequency and storage symptoms in BPH patients. This 

potential on top of potent urethral relaxation shown in previous chapters may 

provide ASP6432 with a significant advantage over existing pharmacotherapies, 

given that i) patients with symptomatic BPH normally have storage symptoms in 

addition to voiding symptoms (Gacci et al., 2018); ii) 1-blockers, the current 

first-choice pharmacotherapies, do not always satisfactorily improve storage 

symptoms (van Kerrebroeck et al., 2013); and iii) tadalafil, the only approved 

PDE5 inhibitor for the treatment of LUTS associated with BPH, did not 

significantly improve maximum urine flow or PVR in the majority of clinical 

studies(Hatzimouratidis, 2014). Further preclinical and clinical investigations will 

contribute to determining the optimal therapeutic option for treatment of the 

diverse symptoms of LUTS associated with BPH. 
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The present study results provide various insights for further investigations 

into the role of LPA1. Given that our results are limited to rodents, the expression 

and function of LPA and LPA1 should be confirmed in the human bladder, 

particularly in pathological conditions. As mentioned above, detailed investigation 

is required to fully elucidate the exact mechanism of action of LPA1 on MI, and 

the possible involvement of other LPA receptor subtypes or molecular targets on 

the LPA-induced change in TP. In addition, potential interaction between LPA1 

and NO or other neurotransmitters should be clarified. Future studies on these 

aspects will lead to a more extensive characterization of the therapeutic potential 

of ASP6432 in the treatment of lower urinary tract dysfunctions. 

In conclusion, I demonstrated for the first time that LPA is a bioactive 

phospholipid capable of causing bladder overactivity characterized by decreases 

in MI and TP, and that the LPA1 antagonist ASP6432 reversed the LPA- and L-

NAME-induced decreases in MI. The results in this chapter suggest a significant 

role for LPA1 in regulating the functional capacity of the bladder, and the potential 

of ASP6432 as a novel therapy for the treatment of bladder dysfunction caused by 

lower urinary tract diseases like storage symptoms in LUTS associated with BPH. 
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A. 

 

B. 

 
Figure 3-1. Cystometry parameters measured (A) and the effect of 
lysophosphatidic acid (LPA) on cystometric parameters in conscious rats (B). 
Micturition interval, maximum intravesical pressure (IVP), baseline pressure, and 
threshold pressure at baseline and after LPA infusion (1, 5, 10, and 15 mg/kg/h) 
were measured. Each column represents the mean ± SEM of four to six animals. 
* p<0.05, ** p<0.01 vs. baseline (paired t test).  
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Figure 3-3. Effect of ASP6432 on lysophosphatidic acid (LPA)-induced changes 
in cystometric parameters in conscious rats.  
Changes in micturition interval, maximum intravesical pressure (IVP), baseline 
pressure and threshold pressure after ASP6432 or vehicle (distilled water containing 
0.025 mol/L NaOH) administration were measured. Each parameter was expressed 
as a percentage of baseline values. Data are presented as the mean ± SEM of eight 
(ASP6432) or six (vehicle) animals. ## p<0.01 vs. baseline (paired t test), ** p<0.01 
vs. LPA (Dunnett’s test using within subject error).BL, baseline; N.S., not 
significant. 
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Figure 3-5. Effect of Nω-nitro-L-arginine methyl ester (L-NAME) on 
cystometric parameters in conscious rats. 
Micturition interval, maximum intravesical pressure (IVP), baseline pressure, and 
threshold pressure at baseline and after L-NAME administration were measured. 
Each column represents the mean ± SEM of eight animals. 
** p<0.01 vs. control interval (paired t test). 
BL, baseline; N.S., not significant.  
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Figure 3-6. Effect of ASP6432 on the Nω-nitro-L-arginine methyl ester (L-
NAME)-induced decrease in micturition interval (MI) in conscious rats.  
Changes in the micturition interval, maximum intravesical pressure (IVP), baseline 
pressure, and threshold pressure after treatment with L-NAME (10 mg/kg iv) 
followed by ASP6432 (0.3 and 1 mg/kg iv) or vehicle are shown. Each column 
represents the mean ± SEM of five to eight animals. 
** p<0.01 compared to vehicle (Dunnett’s multiple comparisons test). 
BL, baseline; N.S., not significant. 
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General discussion  

LUTS associated with BPH is one of the most common chronic urological 

diseases among elderly men, and the number of patients is expected to increase as 

the average life expectancy and aging population continue to rise (Roehrborn, 

2005). Despite recent progress in medical research, a number of remaining unmet 

needs of current BPH therapies, such as potent relaxation of the bladder outlet 

component, further improvement in storage symptoms, and suppression of stromal 

cell proliferation, indicate that pharmacotherapies for LUTS/BPH require further 

improvement. There is currently no single pharmacotherapeutic agent that 

substantially suppresses the pathological progression of BPH and improves all 

elements of LUTS. Considering the heterogeneous and multifactorial pathological 

nature of LUTS/BPH, novel treatment strategies will have to improve multiple 

pathophysiological features to achieve a significant treatment effect. While this is 

challenging, it is exciting from a drug discovery perspective to identify a 

mechanism that can simultaneously induce more potent urethral relaxation during 

voiding, suppress stromal hyperplasia, and further improve bladder dysfunction 

because such an agent will significantly improve treatment for LUTS/BPH by 

meeting all major unmet needs of current pharmacotherapies. 

The present study investigated the role of LPA, a pleiotropic lipid mediator, 

and its receptor LPA1 in the lower urinary tract by conducting pharmacological 

characterization of the novel LPA1 antagonist ASP6432. It was important and 

necessary to elucidate these characteristics in this study because the exact role of 

the LPA-LPA1 signaling axis in the lower urinary tract including its potential as a 
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therapeutic target remained unclear, particularly in vivo, despite its diverse 

biological actions such as smooth muscle contraction (Saga et al., 2014), cell 

proliferation (Adolfsson et al., 2002), and effects on cultured smooth muscle cells, 

and the potential pathophysiological relevance in BPH (Zeng et al., 2009). 

In Chapter 1, the pharmacological profile of ASP6432 and its effect on 

urethral/prostatic contractile function and prostate cell proliferation were 

characterized. ASP6432 exhibited potent antagonistic activity against human and 

rat LPA1 with selectivity over all other receptors, ion-channels, transporters, and 

enzymes tested (Table 1-1). In isolated rat tissue strips and anesthetized rats, 

ASP6432 concentration/dose-dependently inhibited LPA-induced urethral and 

prostate contractions (Figure 1-3), demonstrating that LPA1 was responsible for 

these actions. Interestingly, ASP6432 decreased the UPP in the absence of 

exogenous LPA stimulation in anesthetized rats, and the maximum reduction was 

greater than that induced by the α1-blocker tamsulosin. The effect of LPA on smooth 

muscle contraction (Figure 1-2), reported LPA concentration in rat plasma (around 

1 mol/L) (Saga et al., 2014), antagonist activity of ASP6432 on rat LPA1 (Table 1-

1), and pharmacokinetic profile of ASP6432 in rats after intravenous administration 

(Table 1-2) support the hypothesis that endogenous LPA constantly activates LPA1 

and plays a significant role in the regulation of urethral tonus, which is suppressed 

by ASP6432, at least in rats. In addition, ASP6432 suppressed LPA-induced 

proliferation of human prostate stroma cells (Figure 1-6). Given that there is 

currently no pharmacotherapy that is simultaneously efficacious for both of these 

components, the present findings indicate that ASP6432 may represent a novel 

therapy with dual mechanisms for improving BOO. More specifically, in the short 
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term, ASP6432 may be more efficacious than α1-blockers for improving voiding 

dysfunction and associated symptoms by potently relaxing the urethra. In the long 

term, ASP6432 may suppress the progression of stromal hyperplasia, which is not 

significantly improved by 5α reductase inhibitors (Marks et al., 1997), although this 

parameter is particularly difficult to examine in a preclinical setting due to the lack 

of appropriate animal models that mimic prostate stromal proliferation observed in 

the human condition (Hieble, 2011). Nevertheless, the findings in Chapter 1 suggest 

a pivotal role for LPA1 in both urethral/prostatic contraction and cell proliferation, 

and the potential of ASP6432 as a novel therapy for LUTS/BPH with a greater 

urethral relaxation effect and possible suppression of stromal hyperplasia. 

One notable finding in Chapter 1 was that ASP6432 significantly reduced 

the UPP (Figure 1-5), suggesting that endogenous LPA activates LPA1 to induce 

contraction of the urethra to contribute to maintaining urethral tonus. However, 

the role of LPA1 in the regulation of urethral tonus during urine voiding, which is 

critical for determining the efficiency of voiding and comparing the treatment 

effect with 1-adrenoceptor antagonists, was unclear. Therefore, in Chapter 2, I 

generated an animal model that mimicked the status of the bladder and urethra 

during bladder filling and at urine voiding, and evaluated the effect of ASP6432 

and tamsulosin on UPPbase and UPPnadir.  

In anesthetized rats under isovolumetric conditions, ASP6432 dose-

dependently decreased UPPbase and UPPnadir. In contrast, the 1-adrenoceptor 

antagonist tamsulosin reduced UPPbase but did not change UPPnadir (Figure 2-2A 

and 2-2B). To my knowledge, this is the first study to show that an LPA1 

antagonist decreases urethral tonus during urine voiding, suggesting a significant 
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role for LPA1 in controlling urethral tonus during urine voiding. The lack of an 

effect by tamsulosin on UPPnadir is consistent with the notion that the sympathetic 

nervous system is active at the filling phase but not at the voiding phase under 

normal conditions (Fowler et al., 2008). This study also suggests that the effect of 

ASP6432 on urethral tonus is not related to 1-adrenoceptor antagonism because 

ASP6432 induced a greater decrease in UPPbase than tamsulosin (Figure 2-2A), 

reduced the UPPnadir (Figure 2-2B), and showed good selectivity in an off-target 

screen that included l receptors (data not shown). While drugs acting on the NO 

pathway reportedly modulate the duration of urethral pressure at the voiding 

phase (Jung et al., 1999; Wibberley et al., 2002), ASP6432 did not alter the 

duration of urethral relaxation or HFOs (Figure 2-2D), suggesting that LPA1 and 

the NO pathway may act differently to modulate UPP. However, further 

investigations into potential interactions between LPA1 and the adrenergic or 

nitrergic pathways are required to clarify the physiological role of LPA1 in the 

lower urinary tract as well as the potential clinical benefits of the combined use of 

ASP6432 and 1-blockers or PDE5 inhibitors.  

To further assess the benefits of antagonizing LPA1 for reducing urethral 

tonus during urine voiding and improving voiding dysfunction, another animal 

model was generated by suppressing the synthesis of NO using L-NAME. This 

model is based on evidence that NO is a neurotransmitter responsible for urethral 

relaxation during urine voiding (de Groat et al., 2015) and L-NAME inhibits 

urethral relaxation at the voiding phase (Bennett et al., 1995; Masuda et al., 2007) 

and increases PVR (Persson et al., 1992). As expected, L-NAME increased PVR 

and decreased VE (Figure 2-3B). ASP6432 dose-dependently suppressed the 
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increase in PVR and the decrease in VE induced by L-NAME (Figure 2-4B). In 

contrast, tamsulosin did not improve the L-NAME-induced changes in PVR or 

VE (Figure 2-4A). The effect of ASP6432 in the L-NAME model confirms a 

significant role for LPA1 in regulating urethral tonus during urine voiding in male 

as well as female animals, which were used for UPP measurements for 

experimental reasons (see Discussion in Chapter 1).  

The present study results suggest that ASP6432 has the potential to improve 

voiding dysfunctions that are not improved by current pharmacotherapies, given 

that pharmacotherapies approved for the treatment of LUTS with BPH are not 

necessarily effective for LUTS associated with other urological disorders. For 

example, the efficacy of α1-blockers for female LUTS has not been established 

(Bae et al., 2005). Voiding dysfunctions associated with impaired urethral 

relaxation demonstrated in mice with targeted deletion of neuronal NO synthesis 

(Burnett et al., 1997) may be another candidate indication. Underactive bladder 

(Chapple et al., 2015), which may be caused by incomplete bladder emptying as a 

result of an imbalance between the bladder and the urethra, is one possible 

example. Potent urethral relaxation by ASP6432 may overcome the limited 

efficacy of currently available drugs for UAB (Andersson, 2017). 

One significant unmet need of current pharmacotherapies for BPH is in the 

improvement of storage symptoms (Chapple et al., 2014; van Kerrebroeck et al., 

2013). Although LPA1 is predominantly expressed in cultured bladder smooth 

cells and is implicated in stretch-induced cellular activation (Kawashima et al., 

2015), the role of LPA and LPA1 in the regulation of bladder function has not been 
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investigated in vivo. In Chapter 3, the effect of LPA and ASP6432 on the 

micturition reflex was evaluated in conscious rats using continuous cystometry. 

Intravenous infusion of LPA caused bladder overactivity, as characterized by 

the decrease in MI and TP (Figure 3-2 and 3-3). ASP6432 inhibited the LPA-

induced decrease in MI in a dose-dependent manner (Figure 3-1 and 3-3). To my 

knowledge, this is the first study to show that LPA is a biological substance 

capable of inducing urinary frequency in vivo via LPA1. Although the detailed 

mechanisms of the LPA-induced decrease in MI via LPA1 have not been clarified, 

the lack of change in BP and max IVP by LPA (Figure 3-3) suggests a minor, if 

any, contribution by LPA-induced bladder smooth muscle contraction (which 

could negatively affect bladder distention) and LPA-induced urethral obstruction 

(which could reduce functional bladder capacity by causing incomplete bladder 

emptying) to the LPA-induced decrease in MI. One possible mechanism 

underlying the LPA-induced decrease in MP and TP is the activation of sensory 

neurons (Elmes et al., 2004; Renback et al., 2000). However, the expression and 

function of LPA1 in bladder afferent neurons has not been closely examined. In 

addition, ASP6432 did not affect the LPA-induced decrease in TP (Figure 3-3), 

suggesting that another LPA receptor subtype or molecular target may be involved 

in the LPA-induced decrease in TP. Further investigation into the modulation of 

the bladder afferent pathway by LPA and its responsible receptor will help unravel 

the mechanism of LPA-induced changes in bladder function. 

To explore the potential of improving urinary frequency by suppressing the 

LPA-LPA1 signaling axis, I examined the effects of ASP6432 on urinary 

frequency induced by L-NAME in conscious rats using continuous cystometry. L-
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NAME treatment decreased MI compared to that at baseline (Figure 3-5), which 

is consistent with a previous finding that L-NAME suppresses the inhibitory effect 

of NO on bladder excitability and induces bladder hyperactivity(Aizawa et al., 

2011; Caremel et al., 2010; Masuda et al., 2007; Persson et al., 1992). ASP6432 

suppressed the L-NAME-induced decrease in micturition frequency (Figure 3-6), 

suggesting that inhibition of LPA1 activity can ameliorate bladder overactivity 

caused by impaired NO production. However, it should be noted that L-NAME 

can also affect bladder functions as a result of inhibiting urethral relaxation during 

voiding (Persson et al., 1992) or suppressing the sensory signaling from the 

urethra that facilitates bladder contraction (Danziger and Grill, 2017; Yokoyama et 

al., 2007), although it is unknown whether L-NAME decreases MI by affecting 

the afferent signaling from the urethra.. That ASP6432 improved the L-NAME-

induced decrease in MI suggests that LPA1 may be involved in bladder 

dysfunction, and that ASP6432 has the potential to improve bladder overactivity 

on top of its potent urethral relaxation effects during voiding and potential 

suppression of prostate stromal hyperplasia. The exact site/mechanism of action of 

LPA1 in the regulation of bladder functions, however, needs further investigation. 

In summary, the present study demonstrated a number of novel findings. In 

vitro experiments confirmed that ASP6432 is a potent and selective LPA1 

antagonist (Table 1-1). Studies using LPA and ASP6432 indicate that LPA1 may 

be responsible for LPA-induced prostate and urethral contraction (Figure 1-3) and 

prostate stromal cell proliferation (Figure 1-6). In vivo studies using LPA and 

ASP6432 further confirmed that LPA1 plays an important role in mediating the 

LPA-induced increase in urethral pressure (Figure 1-4) and urinary frequency 
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(Figure 3-3). In addition, ASP6432 potently decreased the urethral pressure, 

including during urine voiding, to a greater extent than that induced by tamsulosin 

(Figure 1-5, 2-2). Further, ASP6432 prevented voiding dysfunction (Figure 2-4) 

and reversed the decreased micturition frequency induced by L-NAME (Figure 3-

6). These results suggest extensive roles for LPA1 in the regulation of the lower 

urinary tract, ranging from prostate cell proliferation to bladder micturition 

interval, and the potential of ASP6432 in improving BPH and associated LUTS. 

The effects of ASP6432 clearly differentiate it from existing pharmacotherapies, 

such as its potent urethral relaxation effect during urine voiding, improvement of 

bladder function, and the potential suppression of prostate stromal cell 

hyperplasia. 

While the present findings provide various insights for further investigations 

into the role of LPA1, detailed mechanisms underlying the LPA1-mediated 

modulation of the lower urinary tract has not been fully unraveled, including the 

intracellular signaling pathway responsible for controlling smooth muscle 

contraction, interaction between LPA1 and other signaling pathways, the 

mechanism governing the modulation of bladder functions, and the in vivo 

prostate growth inhibition by suppressing LPA1. Future studies on these aspects 

will allow for a more extensive characterization of the therapeutic potential of 

LPA1 antagonists in the treatment of BPH and associated LUTS. In addition to 

urological diseases, ASP6432 may have other indications, given that a number of 

previous studies have demonstrated that LPA1 antagonists are effective in a 

variety of disease models. Findings in other research areas may help researchers 

in urology to better understand the function of LPA1 in the lower urinary tract. 
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In conclusion, the present study results suggest a role for LPA1 in regulating 

the function of the lower urinary tract, and the potential of ASP6432 as a new 

therapeutic option for LUTS associated with BPH and other lower urinary tract 

diseases. 
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