
Journal of Information Processing Vol.26 590–600 (Sep. 2018)

[DOI: 10.2197/ipsjjip.26.590]

Regular Paper

Abnormal Traffic Detection Circuit
with Real-time Cardinality Counter

Shuji Sannomiya1,a) Akira Sato1,b) Kenichi Yoshida2,c) Hiroaki Nishikawa3,d)

Received: November 10, 2017, Accepted: June 8, 2018

Abstract: To identify abnormal traffic such as P2P flows, DDoS attacks, and Internet worms, this paper discusses a
circuit design to realize real-time abnormal traffic detection in broadband networks. Real-time counting of cardinality
is the key feature of the circuit. Although our previous study showed that cardinality counting is effective for detecting
various types of abnormal traffic, the slowness of DRAM access prevented us from deploying cardinality counting in
backbone networks. To address the problem of DRAM access time, this paper proposes a new algorithm for cardinality
counting. By changing the order of the cardinality counting process, the proposed algorithm enables parallel accesses
of DRAM circuits, which hides the slow DRAM access time through a pipeline circuit. In addition, we propose a new
hashing function that also hides the DRAM access problem. It partially replaces scattered addresses with successive
addresses, in order to use a faster DRAM burst access. We also report the accuracy of the cardinality counting of the
new algorithm, and describe the estimated processing performance based on a pipeline tact level circuit simulation.
Our experimental results show that the use of the self-timed pipeline circuit can help realize cardinality counting at
rates up to 100 Gbps.

Keywords: real-time traffic analysis, simple frequent-itemset-mining, self-timed pipeline

1. Introduction

The explosive growth of Internet traffic has led to data rates of
100 Gbps or higher in backbone networks. Unfortunately, abnor-
mal traffic such as peer-to-peer (P2P) flows, distributed denial of
service (DDoS) attacks, and Internet worms that disrupt smooth
and safe communications are also increasing. To address this sit-
uation, network management techniques that detect and control
the abnormal traffic mixed into vast numbers of packet streams
are essential to ensure Internet reliability.

Previously, we proposed a cardinality counting method [1] to
realize automatic abnormal traffic detection. This previously pro-
posed method searches for header field combinations that are fre-
quently found in the packet streams of abnormal traffic, as well as
variations of those combinations. For instance, different destina-
tion IP addresses are combined with the same source IP address to
transfer malicious packets. A worm-infected client that is search-
ing for a new vulnerable server will send such packets.

Our previously proposed method uses a counting routine to
keep track of these frequently found combinations, and to track
the number of variations in the non-frequent parts of the combi-
nations. This original counting procedure and its offsprings were

1 Faculty of Engineering, Information and Systems, University of
Tsukuba, Tsukuba, Ibaraki 305–8577, Japan

2 Faculty of Business Sciences, University of Tsukuba, Bunkyo, Tokyo
112–0012, Japan

3 Headquarters for International Industry-University Collaboration, Uni-
versity of Tsukuba, Tsukuba, Ibaraki 305–8577, Japan

a) san@cs.tsukuba.ac.jp
b) akira@cc.tsukuba.ac.jp
c) yoshida@gssm.otsuka.tsukuba.ac.jp
d) nisikawa@cs.tsukuba.ac.jp

collectively termed cardinality counting, because of its similarity
to mathematical cardinality, which denotes the number of ele-
ments in a given set. Another advantage of this cardinality count-
ing method over conventionally studied methods is its relatively
small memory requirements. Our proposal also has a mechanism
to count cardinality using a given small fixed-size memory area,
to satisfy the design constraints of abnormal traffic detection sys-
tems [1].

The effectiveness of the cardinality counting method for actual
Internet traffic was demonstrated using a software implementa-
tion [1]. However, this software implementation failed to achieve
the processing capability required for traffic speeds of 100 Gbps
or higher. This is because the approach requires dynamic random
access memory (DRAM) for storing all the possible combina-
tions of addresses, ports, and protocols. To store this information,
the resulting access pattern becomes randomized. Thus, the long
latency associated with random access on DRAMs becomes the
bottleneck.

In this study, a self-timed pipeline is introduced to parallelize
the memory access and reduce access latency. The self-timed
pipeline is a global clock-less pipeline, whose stages process
data asynchronously without any additional controls. In the de-
ployment of the cardinality counting algorithm over the self-
timed pipeline, the processing order of the original algorithm is
changed. The original order results in a backward data transfer
over the pipeline. Because this backward data transfer prevents
the reduction of the number of DRAM accesses, we developed
a new algorithm that does not require backward data transfer.
Moreover, to increase the worst-case throughput for enhancing
the robustness of the cardinality counting, the hash function of

c© 2018 Information Processing Society of Japan 590



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

the original algorithm that calculates the DRAM addresses to be
used is modified to produce successive addresses when applica-
ble. The use of successive addresses enables the use of a burst
DRAM access with a short latency [2].

The changed processing order explores the longest combina-
tions first; in the original order, the shortest combinations were
processed first. This difference may affect the counting result.
In addition, the DRAM access latency varies at run-time owing
to refreshing operations. This variation may become a bottle-
neck that degrades the cardinality counting throughput. In this
study, the counting result is quantitatively evaluated by using ac-
tual traffic data to show the sufficiency of the counting accuracy.
The throughput of the self-timed pipeline circuit is also evaluated
by a pipeline tact level simulation, using an actual memory model
provided by a memory vendor. Finally, the processing capability
needed to achieve a throughput of 100 Gbps is discussed based on
the simulation results.

The early stage of this study was presented in Refs. [2], [3]. Al-
though Refs. [2], [3] reports basic ideas, this paper confirms the
adequacy of those ideas by providing experimental results; these
are described in Section 4. The remainder of this paper is orga-
nized as follows. Section 2 summarizes previous studies and Sec-
tion 3 explains the circuit design. Section 4 reports experimental
results and Section 5 summarizes our findings.

2. Related Work

Massive flows of abnormal traffic disrupt smooth and safe com-
munications. Several methods for detecting such mass flows have
been proposed or studied. In contrast with those methods, the
simple frequent-itemset-mining method [1] focuses on the item-
set of every packet and monitors its frequency and variety simul-
taneously. Itemset refers to a combination of packet header items
such as the source IP address and the destination port number; the
frequency of the itemset indicates the massiveness of the flow, and
the variety characterizes the type of flow.

In this section, we discuss the advantages of the simple
frequent-itemset-mining method by comparing it with other pro-
posed methods. Next, we explain the process of simultaneously
counting the frequency and variation using the cardinality count-
ing algorithm. Finally, we discuss the self-timed pipeline circuit
implementation in terms of the processing capability needed for
analyzing the traffic at speeds of 100 Gbps or higher.

2.1 Abnormal Traffic Analysis Method
One major abnormal traffic is the DDoS attack because of the

massiveness of its flow. For example, the response traffic against
the fumbling requests generated by Internet worms searching for
a vulnerable server appears as a mass flow from the target servers
to a victim client.

Depending on the location at which attacks are to be detected,
Beitollahi and Deconinck classified the defense methods against
DDoS attacks into two types: victim server and router [4]. The
device or program used for detecting the attacks in both of these
methods is called a sensor. In the victim server type, the sensor is
installed on all the servers to be protected. In the router type, the
sensor is installed on the router above the servers to be protected.

Obviously, the victim server type is more expensive because the
number of sensors required scales with the number of servers to
be protected; hence, we focus on the router type defense in our
work.

In recent years, the volume of traffic in the Internet back-
bone and the subnetworks underneath the backbone has increased
tremendously. It has been reported that the connection bandwidth
between the Internet backbone and internet service providers
(ISPs) is over 100 Gbps [5]. Hence, to protect the servers under
an ISP, the sensor should be able to analyze traffic at speeds of
100 Gbps or higher.

Based on the reaction time, router type methods are further
categorized into two groups: proactive and reactive [4]. Proactive
methods aim to prevent the occurrence of DDoS attacks, while
reactive methods come into effect after the DDoS attacks occur.
Owing to safe side filtering, proactive methods may detect a nor-
mal traffic as abnormal, i.e., false positive detection may occur.
To guarantee a normal traffic, the reactive methods are indispens-
able.

Within the reactive group, there are two main approaches:
change-point detection techniques and statistical techniques.
Change-point detection techniques [6], [7] count the number of
packets in the time series, and detect DDoS attacks based on the
temporal change in the packet count. For instance, the method
proposed in Ref. [6] counts the number of packets received at
each port in a router. The method in Ref. [7] counts the number of
packets transiting through the inbound and outbound ports of the
router. Using either of these methods, the router port transferring
the DDoS attacks can be detected and identified. However, it is
still difficult to detect or identify the victims because it is impos-
sible to count the number of packets included in all possible ses-
sions using a limited memory. Statistical techniques [8], [9] mea-
sure various statistical properties of specific fields in the packet
headers during normal conditions in order to detect abnormalities
that may indicate a DDoS attack; however, the identification of
the victims is not mentioned.

In contrast to these methods, simple frequent-itemset-mining
can detect and identify victims despite a limited memory, and it
works regardless of the location. Thus, it can be implemented
in a sensor in the router. Moreover, the wide range coverage for
the abnormal traffic is also the feature of the cardinality counting
based on the simple frequent-itemset-mining, and P2P flows and
scanning to search a vulnerable host can also be detected [1]. The
P2P flows may be concerned with fair use but they may disturb
the other flows; therefore, the detection of the P2P flows becomes
a help to not only illegal acts (e.g., piracy by file sharing) but also
traffic controls. This detection capability can be complementary
to the existing methods, e.g., the cardinalities may be used instead
of packets in the Change-point detection techniques.

In contrast to the massive flows, scanning to search vulnera-
ble hosts at a low traffic rate can be performed and its detection
method has already been studied [10]. Although the cardinality
counting with the previously studied algorithm can also detect
such scanning by using a large amount of memory to store long-
term cardinalities, it is difficult to analyze a high speed traffic of
more than 100 Gbps. This is because the memory access time

c© 2018 Information Processing Society of Japan 591



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

tends to increase as the size of memory increases and such a high
throughput cannot be achieved with the previously studied algo-
rithm.

Traffic monitoring methods using the cardinality have already
been studied. The simple frequent-itemset-mining method toler-
ates counting errors in order to count the cardinality with a fixed-
size memory. Other researchers also tolerate such errors and give
priority to memory resource requirements rather than precision
topics. For example, Ishibashi et al. also proposed stochastic al-
gorithms with good memory efficiency for similar purposes [11].
Their method is probabilistic, and thus it is assumed that the al-
gorithms’ results have probabilistic errors.

2.2 Simple Frequent-itemset-mining Method
The frequency of an itemset is used to detect mass flow in this

technique. For instance, assume that a DDoS attacker attempts to
deplete a target computer resource by sending a large number of
packets. In this case, the destination IP address (DIP) and desti-
nation port number (DPT) are frequently found in the sent pack-
ets, and can be taken as an itemset. This is shown in Fig. 1 (a).
Moreover, variations in the itemset are also important and can be
utilized to classify the detected mass flow. For example, itemsets
that have the same source IP address (SIP) but different DPTs
are frequently found in the packets sent by P2P software. This is
because the P2P software generates service ports with randomly
distinct numbers, as shown in Fig. 1 (b). In other words, the SIP
in Fig. 1 (a) and the DPT have a large cardinality.

In order to detect flows with a large cardinality, the CPM al-
gorithm was proposed [1], which counts both the frequency and
variation in the itemset. Figure 2 shows the CPM algorithm. The
Itemsets function is called recursively to count the cardinality for
every possible itemset, and only unique itemsets are enumerated
during the recursion in order to avoid multiple counts on each
itemset. A dagger mark is syntactically unmeaning but for indi-
cating a relation with a figure explained later. Figure 3 shows an
example of the function call process for the itemsets consisting of
the SIP, DIP, and DPT. In the figure, the numbers next to the ar-
rows indicate the recursion sequence. The parentheses “()” show
the value of the variable “items,” while the curled parentheses
“{}” show the value of the variable “rests.”

In each recursion, we need to check whether the itemset is new
or already present. To implement this, a quasi-associative mem-

Fig. 1 Examples of mass flows derived from an abnormal traffic.

ory function that only stores frequently found itemsets is realized
by using a hash function, Hash2, as shown in Fig. 4. Hash2 first
calculates “n” hash values of the input item, and then generates
“n” indexes from the calculated values. If the input item is new,
the input item is not equal to any of the cache memory contents
referred to by the indexes. In this case, Hash2 selects an index
corresponding to the cache memory content with the lowest fre-
quency. As a result, only frequently found itemsets are stored in
the cache memory. According to previous experimental evalua-
tion results, “n” is set to 4 [1].

Fig. 2 CPM algorithm.

Fig. 3 Example of a recursive call.

Fig. 4 Hash function for quasi-association.

c© 2018 Information Processing Society of Japan 592



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

Table 1 Structure of cache table.

ID cache 1st item (e.g., SIP) 2nd item (e.g., SPT) n-th
cnt cache diff value cache diff value item

1 16 - 198.51.100.5 - 80 . . .
2 152 - 203.0.113.19 8 - . . .
3 2 2 - - 443 . . .
4 40 - 192.0.2.46 - 110 . . .
5 20 - 198.51.100.5 2 - . . .
6 20 2 - - 80 . . .

Fig. 5 Example of original items.

The frequency and variations in the itemsets are stored in a
fixed-size cache table. Table 1 shows an example of the cache
table. The frequency and variation are represented by cache cnt
and cache diff, respectively. Generally, the number of columns
depends on the number of items to be considered. However, only
five columns are shown in the table because only two items, SIP
and source port number (SPT), are considered in order to simplify
the description.

Each entry in the cache table corresponds to a distinct value
in the itemsets. The cache cnt is incremented when the item-
set is already stored in the cache memory. The values of the
cache diff are cleared to zero when the corresponding itemset
is newly found, and they are incremented when the supersets
of the corresponding itemset are newly found. One itemset has
cache diff for every item that is not included in the itemset but
exists in the supersets of the itemset, and thus it may have plural
cache diff’s. When the superset of an itemset is newly found, the
itemset’s cache diff for an item that is included only in the super-
set is incremented. For example, both the cache diff of the SPT
column in the itemset (SIP) entry and the cache diff of the SIP
column in the itemset (SPT) entry are incremented when a new
itemset (SIP, SPT) is found. This is shown in Fig. 5. The subsets
are called “original items,” and they are generated by subtracting
one item from the newly found itemset. The cache diff’s of each
original item are simply termed cache diff, for simplification. For
example, the itemset (DIP) has cache diff’s for SIP and DPT re-
spectively in the case where three items, SIP, DIP and DPT, are
focused on, and the cache diff of itemset (DIP) indicates both the
cache diff for SIP and the cache diff for DPT. The count for the
cache diff is maintained by the single-underlined steps in Fig. 2.

Some examples are shown in Table 1. The first entry (ID=1)
shows that there are 16 packets with an SIP of “198.51.100.5”
and an SPT of “80.” The second entry (ID=2) shows that there
are 152 packets with an SIP of “203.0.113.19,” and that the num-
ber of packets with different SPTs is at least eight; i.e., there are
at least eight packets with an SIP of “203.0.113.19” designated
with distinct SPTs.

The value of the cache cnt is checked, and the statistics of ev-
ery itemset whose cache cnt reaches a given threshold are re-
ported. Concretely, the value, cache cnt and cache diff of the
itemset are simply read out from the cache table and output, after
that, the value is cleared and the cache cnt and cache diff are set

Fig. 6 Typical example of cardinality counting result.

to zero. This operation is realized by the double-underlined steps
in Fig. 2. In the outside of the cardinality counting, the output val-
ues are checked with criteria that discriminate between abnormal
and normal traffic.

Using this algorithm, in a fixed-size memory, only frequently
found itemsets are enumerated along with the number of varia-
tions in the non-frequent parts of the itemsets. The effectiveness
of the CPM has already been investigated, and Fig. 6 shows a
typical example of the cardinality counting result of the original
algorithm (CPM) [1]. In this figure, four items (SIP, SPT, DIP,
DPT) are focused on, and each plotted point represents the re-
ports of an itemset (SIP, SPT) and the horizontal axis denotes the
reported cache diff for DIP while the vertical axis denotes the re-
ported cache diff for DPT. Those cache diff’s are reported every
time when the cache cnt of the itemset (SIP, SPT) reaches 1,000.
Figure 6 (a), (b), (c), (d), (e) and (f) represent the points for the
same SIP or host, respectively. As a result of the analysis on an
actual traffic data, it is proven that the four hosts (a), (b), (c) and
(d) are under attack or trying to find vulnerable hosts (i.e., they
are concerned with DDoS or scanning) and they are clearly dis-
tinguished from the others. As the figure shows, this detection
capability can be maintained even if the reported cache diff val-
ues have a 10% or 20% error. Based on these facts, the throughput
improvement of the original algorithm is discussed by introduc-
ing a self-timed pipeline and the effectiveness of the proposed
algorithm is evaluated in this paper.

2.3 Self-timed Pipeline Implementation
An abnormal traffic should be detected in real time to mini-

mize its adverse effects, particularly for traffic rates of 100 Gbps
or higher. Moreover, the implementation cost of the CPM algo-
rithm should be as low as possible in order to deploy cardinal-
ity counting widely over the Internet. However, it is difficult to
implement the CPM algorithm for real-time detection over high-
speed networks in a cost-effective manner.

The CPM algorithm is implicitly designed for software imple-
mentation as shown in Fig. 2. However, a circuit implementation
is expected to achieve a higher throughput because it can elimi-
nate extrinsic controls such as fetching and decoding instructions.
Therefore, in this paper, we discuss the design and the effective-
ness of the circuit implementation of the CPM algorithm.

c© 2018 Information Processing Society of Japan 593



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

Fig. 7 Self-timed pipeline with power control mechanism.

As shown in Fig. 2, the dominant operations of the CPM algo-
rithm are memory reads and writes; these implement the quasi-
associative memory function and the update of the cache table.
From the previous study, we know that the memory size should be
on the order of 1 GB to support the processing of the Gbps class
of traffic [1]. To lower the implementation cost, a general-purpose
memory should be utilized as long as it satisfies the requirements.
Unfortunately, a static random access memory (SRAM) and con-
tent addressable memory (CAM) chips cannot be used because
of their limited capacity. DRAM chips provide sufficient mem-
ory size, but they suffer from a long latency during random ac-
cess. Random access is required for both the quasi-associative
memory function and the cache table update because the effective
addresses are calculated by hashing. Consequently, the key re-
quirement for the circuit implementation is to reduce the DRAM
access latency.

Generally, the amount of traffic that can be processed depends
on the throughput, which is the number of packets processed per
unit time. To increase the throughput, we implement pipelin-
ing. In this technique, the target algorithm is divided into small
parts called pipeline stages that are temporally executed in par-
allel. Moreover, the spatially parallel execution of atomic parts
that cannot be divided into the pipeline stages can also be imple-
mented to increase the throughput.

To realize the temporal and spatial pipelining of the DRAM ac-
cess, we introduce a self-timed pipeline. The self-timed pipeline
is not an exclusive circuit architecture to realize the pipelining of
a cardinality counting algorithm. Although conventional clock-
synchronized pipeline can also be used to the pipelining, the flex-
ibility and power saving feature of the self-timed pipeline make
it possible to implement the cardinality counting algorithm with
low power consumption as described later. Figure 7 illustrates
the basic structure of the self-timed pipeline [12]. In the self-
timed pipeline, pipeline stages with valid data are driven exclu-
sively by a localized data transfer called a handshake. As shown
in Fig. 7, each pipeline stage consists of a data-latch (DL), a func-
tional logic (FL), and a transfer control unit (C). The self-timed
pipeline is a type of asynchronous bundled data pipeline that em-
ploys a four-phased handshake [13]. Based on the handshake, the
valid data in the self-timed pipeline is transferred between adja-
cent stages according to the following procedure.

Fig. 8 Timing chart of handshake.

• (0) Reset: After the assertion of the reset signal, C negates
both its send signal (representing a transfer request) and its
ack signal (representing acknowledge).

• (1) C asserts its ack signal after its send signal is asserted.
• (2) After the assertion of the ack signal, the preceding C

negates its send signal.
• (3) After negation of the send signal, C asserts both its gate

open signal (cp) and its send signal. Concurrently, it negates
its ack signal if the ack signal from the succeeding C is
negated. As a result, the data is latched in the stage to which
the succeeding C belongs.

• The succeeding C repeats the above steps in the same man-
ner as the current C, as shown in Fig. 8.

T f and Tr denote the send signal propagation time and the ack
signal propagation time, respectively. T f is adjusted to the crit-
ical path of the corresponding FL, while Tr is set to the set-up
hold time of the corresponding DL. As a result of the handshake,
Tr is contained within T f and thus no extrinsic processing time
is added as long as the occupancy of the pipeline stages is kept
within a design target.

This handshake also lowers power consumption by directing
dynamic consumption current into pipeline stages with valid data.
On the other hand, empty pipeline stages can be powered off by
the power control and power switch to reduce the leakage current
through the empty stages [14]. Moreover, the signal propagation
delay of DL, FL, and C are changed at an equal rate according
to the supply voltage. Thus, the supply voltage of the self-timed
pipeline can be scaled at run time while the rate of change of the
voltage is moderate enough to guarantee transistor switching. In
other words, to lower the power consumption, the throughput and
the processing time can be changed during the execution of the
target algorithm. The self-timed pipeline can implement not only
dedicated circuits but also processors; its feasibility and effective-
ness are analyzed in Refs. [12], [15], [16].

To exploit the parallelism inherent in the target algorithm ex-
haustively, there must be flexibility in the deployment of the
pipeline stages to implement data dependencies among the op-
erations in the target algorithm. The self-timed pipeline can be
expanded freely by using (1) a merge (M) stage that accepts data
from two preceding stages in the order of arrival and then trans-
fers the accepted data to a succeeding stage, and (2) a branch

c© 2018 Information Processing Society of Japan 594



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

(B) stage that transfers each set of accepted data to one of the
succeeding stages selectively. The flexibility of the self-timed
pipeline structure is discussed in Ref. [17].

Consequently, the self-timed pipeline is a promising circuit ar-
chitecture to realize the temporally and spatially parallel DRAM
access required for cardinality counting.

3. Cardinality Counting Circuit Design

Although the CPM algorithm can be deployed over the self-
timed pipeline that parallelizes DRAM access, serially plural ran-
dom accesses for updating the cache table remain because of the
processing order of the itemsets. Aggregating such plural ran-
dom accesses into a single access is necessary to reduce the total
DRAM access latency and to achieve a high throughput.

In the next section, we describe how the processing order inher-
ent in the CPM algorithm is an obstacle to the aggregation in the
circuit implementation. We also present a new algorithm whose
processing order enables the DRAM access aggregation and the
self-timed pipeline circuit implementation.

3.1 Algorithm
As shown in Fig. 2 and Table 1, the value, frequency

(cache cnt), and variety (cache diff) of an itemset is stored at an
address calculated by hashing the itemset. In other words, the
entries of one itemset can be stored into a discrete DRAM chip
independently from those of the other itemset without any col-
lisions, in this case, each DRAM chip plays a role of a cache
table dedicated to one itemset and there are no needs to combine
the entries stored in different DRAM chips. Based on this fact,
the cache table can be divided into distinct spaces that are re-
spectively assigned to discrete DRAM chips. On the other hand,
to minimize overhead or additional controls, the pipeline should
be deployed along with the data flow inherent in the target algo-
rithm. The unfolding of the iterations of the Itemsets function
over the self-timed pipeline is shown in Fig. 9 (a). The cache ta-
ble is divided into distinct spaces based on the itemset, and each
space is allocated to the corresponding iteration part. By imple-
menting this pipelining, an itemset’s value and cache cnt can be
updated by a single read from and a single write to the DRAM at
each iteration. Moreover, the cache diff updates denoted by dot-
ted lines in Fig. 9 (a) can be combined with this single read and
write by postponing the update timing until the execution pro-
ceeds to the corresponding original item’s iteration part. In con-
trast, the cache diff updates denoted by solid and backward lines
cannot be aggregated into the other updates. This is because their
corresponding itemsets may differ from the itemset processed in
the source pipeline stages, and thus the calculated effective ad-
dresses in the source pipeline stages may differ from those in the
destination pipeline stages.

To realize the aggregation of the cache diff updates, the pro-
cessing order of the itemsets is changed by modifying the recur-
sive call of the Itemsets function. This is shown in Fig. 10; the
modified part is marked with wavy underlines. The new algo-
rithm in Fig. 10 is named CPM2. The original items of an itemset
are a subset of the itemset and must be shorter than the itemset.
Based on this fact, CPM2 processes longer itemsets before shorter

Fig. 9 Pipelining of itemsets function’s iterations.

ones. By introducing a Boolean flag new, the original item’s
cache diff update is postponed until the corresponding itemsets
are processed. Figure 9 (b) illustrates the pipelining using CPM2.
This shows that DRAM accesses required for all cache diff up-
dates are aggregated, and that each itemset is processed with a
single read from and a single write to the DRAM.

The original CPM was realized on the basis of the well-known
frequent itemset mining program Apriori [18]. Apriori explores
shorter itemsets first, followed by the longer itemsets based on the
found/shorter itemsets. In other words, Apriori uses the “shorter
first” strategy to explore frequent itemsets. The original CPM
follows this process, and this results in the backward data flow
shown in Fig. 9 (a). In contrast, CPM2 explores the longest item-
sets first. Here, Hash2 is used to store frequent itemsets and dis-
card less frequent itemsets. This change in the processing order
eliminates the backward data flow, and allows for the realization
of parallel processing with aggregated plural random access using
self-timed pipeline circuits. This aggregation results in through-
put increase because it reduces the total DRAM access time that

c© 2018 Information Processing Society of Japan 595



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

Fig. 10 Pipelining-oriented CPM algorithm.

is the bottleneck of the pipeline. As shown in the Fig. 9 (a), the
cache diff of itemset (SIP) is incremented in addition to the in-
crement of its cache cnt when a new itemset (SIP, DIP) or a new
itemset (SIP, DPT) is found, and thus three times of DRAM ac-
cesses are performed at most for one packet while these access
are aggregated to one DRAM access with the CPM2; therefore
the throughput of the CPM2 becomes 3 times that of the origi-
nal CPM at the worst-case. Moreover, the maximum number of
DRAM accesses required for one packet is governed by the maxi-
mum number of cache diff increments, and thus it increases as the
number of items in the target itemset increases. For instance, four
times of DRAM accesses are required at most for 4-tuple itemset
(SIP, SPT, DIP, DPT), e.g., one cache cnt increment is required
and three cache diff increments performed by new itemsets (SIP,
SPT), (SIP, DIP) and (SIP, DPT) against an itemset (SIP). In this
case, the worst-case throughput of the CPM2 becomes 4 times
that of the original CPM.

Furthermore, we introduce a new memory management func-
tion named Hash3 in CPM2 to improve the throughput. This is
shown in Fig. 11. It is well-known that the DRAM imposes not
only a long latency on the random access but also a shorter latency
on a burst access for successive addresses. The original Hash2
imposes “n” times a random access in the worst case. From the
viewpoint of guaranteeing the robustness of cardinality counting,
the worst case throughput should be improved. Hash3 makes the
“n” effective addresses successive and “n” entries are checked
or updated at a time. Obviously, this burst access reduces the
DRAM access latency and thus improves the cardinality count-
ing throughput.

3.2 Self-timed Cardinality Counting Circuit
To exploit the parallelism of the CPM2 algorithm, the recur-

Fig. 11 DRAM-oriented memory management.

Fig. 12 Pipelining of Itemsets2 function.

sion of the Itemsets function is unfolded and the iterative parts
are deployed linearly (or temporally) as shown in Fig. 12. In con-
trast to this linear deployment, a concurrent deployment in which
some iterative parts are performed concurrently after their prece-
dent parts can be realized. As for the concurrent deployment,
an additional mechanism that results in the circuit area/power in-
crease is required to detect the completion of all the spatially par-
allelized parts and to gather sets of data that correspond to each
iterative part among the output data from its precedent parts. This
is because the completion timing of each iterative part may be
different from that of the others due to the DRAM access time’s
run-time variation caused by refreshing operations. To avoid such
area/power overhead, the linear deployment is adopted. In each
iterative part, to conceal the access latency of the DRAM, the
read and write required to realize the quasi-associative memory
function and cache table update are parallelized spatially by di-
viding the memory space of the cache table. This spatial division
is realized by using a specific part of the hash value calculated
from the itemset for selecting one of the DRAM chips. More-
over, the “n” itemsets are stored to successive addresses indexed
by the calculated hash value, and they are read from and written
to the DRAM in a burst. These techniques eliminate the one-by-
one memory read and write accesses in the pipeline stages for
checking whether the input itemset is already stored and writing
back the updated values.

Figure 13 illustrates the block diagram of the self-timed
pipeline that implements the temporally and spatially parallel ex-
ecution of each Itemsets recursion. Although the spatially divided
DRAM accesses can be assigned to parallel pipeline stages, they
are deployed temporally into linear pipeline stages. This is be-
cause a set of signal lines that are connected to I/O pins one-on-
one is required for each DRAM chip and the temporal deploy-
ment leads to a reduction in the number of signal lines per an
LSI chip by assigning each Itemset process to a discrete LSI chip
connected to a DRAM chip. In contrast, the spatial deployment

c© 2018 Information Processing Society of Japan 596



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

Fig. 13 Pipelining of DRAM accesses in an N-item process.

Fig. 14 Pipelining of itemset process.

into spatially parallel pipeline stages inherently requires parallel
signal lines to plural Itemset processes or DRAM chips, and thus
it increases the number of I/O pins per an LSI chip in proportion
to the number of the DRAM chips used. The numbers of I/O pins
are strictly limited and should be lowered to reduce the develop-
ment cost.

The body of the recursion is finely divided and parallelized us-
ing the self-timed pipeline, as shown in Fig. 14. First, the “n”
itemsets and their cache cnt’s and cache diff’s are read from the
DRAM in a burst during the “Cache burst read/write” stage. They
are compared to the input itemset to realize the quasi-association
by which one itemset with the lowest frequency is discarded in
the “Quasi-association” stage. In accordance with the result of
the quasi-association, the values of the cache cnt and cache diff
are updated in the “cache cnt & cache diff update” stage. The up-
dated values are compared with the given threshold values in the
“Threshold check & Statistics report” stage. In this stage, if the
updated values exceed the threshold, the corresponding statistics
are added to the output data. To realize the zero-clear of cache cnt
and cache diff and perform a cache table update, a write-back
path is added. At the last stage (“Itemset break-down & origi-
nal item flag set”), the itemsets for the next recursion are pro-
duced by subtracting one of the items from the input itemset. A
flag representing the original item’s cache diff for the subtracted
item is added to the produced itemset if the input itemset is newly
found. This flag is evaluated in the “cache cnt & cache diff up-
date” stage of the next recursion part, and the corresponding item-

set’s cache diff for the subtracted item is incremented if the flag
is set.

Thus, the temporal and spatial parallelism inherent in the
CPM2 algorithm is deployed using the self-timed pipeline. The
DRAM access latency is reduced to 1/M theoretically, where M
denotes the number of DRAM chips utilized.

4. Evaluation of Practicality

4.1 Performance of Cardinality Counting
To enable parallel processing, the processing order is changed

in our algorithm. In the previous algorithm, the shortest item-
sets are stored first, and extended/longer itemsets are stored later.
In contrast, in the new algorithm, the longest itemsets are stored
first, and subset/shorter itemsets contained in the longest itemsets
are stored later.

As a result of the hashing described in Fig. 11, an itemset may
be assigned to an address at which a previously processed dis-
tinct itemset is stored. When two distinct itemsets are assigned
to the same address, the itemset with the lowest frequency count
is removed. If the two distinct itemsets have the same frequency
count, the itemset that was processed first is removed. Thus, the
change in the processing order may also change the cardinality
counting result.

To analyze the difference between the two algorithms, we
count cardinalities in the actual Internet traffic. For this pur-
pose, we downloaded traffic data from the MAWI Internet Traffic
Archive [19] in Dec. 2016. As shown in the Fig. 10, the CPM2
reports the itemsets whose cache cnt reaches a given threshold
value. After the counting, the existence or non-existence of the
abnormal traffic is checked by investigating the cache diff’s val-
ues of the reported itemsets [1]. In the investigation, the abnor-
mal traffic existence is indicated if the value of any one of the
cache diff’s is high. For example, the Fig. 6 shows that the ab-
normal traffic exists if the value of either the cache diff for DIP
or the cache diff for DPT is more than 500. Based on these facts,
we compare the cache diff’s values of the itemsets reported by
both algorithms.

Figure 15 shows the results. In this figure, “number of item-
sets” denotes the number of unique itemset instances that are re-
ported, and “reported cardinalities” means the number of unique
itemset instances that have cache cnt reaching 1,000. The hori-
zontal axis denotes the value ranges for the highest value in the
cache diff’s of each reported itemset. As the value range be-
comes higher, the number of itemsets reported commonly from
both algorithms decreases from approximately 7,000 to 1,000, as
shown in Fig. 15 (a). The ratio “the reported cardinality of each
algorithm/the number of itemsets reported commonly from both
algorithms” approaches 1.0 as the value range becomes higher,
as shown in Fig. 15 (b). In the previous study, it was found that
cache diff’s whose value is more than 500 are useful in detecting
the abnormal traffic [1]. Based on this, we expect that a ratio close
to 1.0 within the value ranges of more than 500 is acceptable for
practical network monitoring.

4.2 Throughput of Cardinality Counting
To show the practicality of the proposed circuit implementa-

c© 2018 Information Processing Society of Japan 597



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

Fig. 15 Comparison of cardinality.

tion, the throughput of the designed circuit is evaluated from the
viewpoint of achieving 100 Gbps. As shown in Fig. 12, the car-
dinality counting circuit is a series of pipeline blocks that are
structured as shown in Fig. 13, where the minimum configuration
is composed of a hash value calculation and an itemset process
with one DRAM chip. The maximum throughput of pipelines
is determined by the longest pipeline stage, which will have the
longest processing time in the entire pipeline. This is defined
to be 1/Tmax [packet/sec.], where Tmax denotes the longest pro-
cessing time. In the cardinality counting circuit, the FL’s of the
pipeline stages except for “Cache burst read/write” stage can be
realized by combinational circuits because they need no states
inherently, and thus they can be divided into more than 2 finer
parts that are housed in different successive pipeline stages in or-
der to shorten the processing time of each pipeline stage; there-
fore, Tmax is governed by the processing time of the “Cache burst
read/write” stage with the longest itemset, and Tmax can be re-
duced to a design target value by parallelizing the number of
Itemset processes.

In this evaluation, to determine the design target of Tmax, we
assume that the number of packets is 50M (= 100G

250×8 ) per second
for 100 Gbps traffic, and assume a packet length of 250 Bytes. In
other words, Tmax should be equal to or less than 20 ns (= 1/50M)
to realize a real-time traffic analysis for a data rate of 100 Gbps or
higher. Moreover, the design target of the other pipeline stages’
processing times (i.e., the pipeline tact) should be less than 20 ns.

In the self-timed pipeline, the pipeline tact is defined by (T f +Tr);
the difference (Tmax−(T f +Tr)) is used to absorb a part of the pro-
cessing time of the next pipeline stage [20], and thus the (T f +Tr)
of each pipeline stage is set to the minimum value by tuning the
circuit design. However, it is difficult to retain the (T f + Tr) de-
fined in the circuit design phase through a circuit implementation
process that depends on design tools and the fabrication environ-
ment; therefore, the (T f + Tr) may vary. Based on these facts, to
evaluate the worst-case throughput, the (T f + Tr) is set to 20 ns
(the same as for Tmax) and a four-item process for (SIP, SPT, DIP,
DPT) with a minimum configuration is simulated to estimate the
required number of DRAM chips.

The cardinality counting is finely pipelined into simple op-
erations. Apart from the burst DRAM accesses, the dominant
operations are (1) comparisons that check the equivalence and
exceedance of two values, (2) summation and multiplication for
hash value calculations, and (3) incrementation. The processing
time for one of these operations may be shorter than 10 ns. This
is because more complex operations, such as compound manipu-
lation and accumulation implemented on the latest processor pro-
totype LSI [16] using a self-timed pipeline for a 65 nm-CMOS
process, take less than 10 ns to complete.

Although the pipeline stages shown in Fig. 14 can be directly
implemented or pipelined finely as discussed above, overwriting
the entries of the cache table may occur and it changes the count-
ing results slightly. Stochastically, distinct instances of an item-
set correspond to different hash values. On the other hand, the
same itemset instances may be input or produced and they corre-
spond to the same hash value. For example, two itemset instances
that have the same value (192.0.2.46) for (SIP) are produced by
subtracting the SPT from two distinct itemset instances that are
(192.0.2.46, 80) and (192.0.2.46, 443) for (SIP, SPT). Moreover,
even distinct itemset instances may have the same hash value in-
frequently because the hash value space is limited. When plu-
ral itemset instances that correspond to the same hash value are
processed simultaneously, they may exist in consecutive pipeline
stages in the pipeline, and thus the same address of a DRAM
may be read consecutively in the “Cache burst read/write” stage.
In this case, the memory read for an itemset instance may oc-
cur before the processing result of the precedent itemset instance
is written back, and the processing result of the precedent item-
set instance may be overwritten by that of the itemset instance.
In the evaluation of this paper, to eliminate the possibility of the
overwriting, the pipeline stages from the “Cache burst read/write”
stage to the “Threshold check & Statistics report” stage are inte-
grated into one pipeline stage.

As a result of the pipelining, the “Hash value calculation” and
“Itemset process with DRAM#0” are realized in 23 and 10 stages,
respectively.

The Tmax is the processing time of the integrated pipeline stage
because this stage includes the “Cache burst read/write”. The
“Cache burst read/write” stage is composed of DRAM and a
memory controller necessary to broker data transfers between
the self-timed pipeline circuit and the DRAM. We set 20 ns to
each processing time for the “Quasi-association,” “cache cnt &
cache diff update,” and “Threshold check & Statistics report”

c© 2018 Information Processing Society of Japan 598



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

stages for the worst-case evaluation. That is, the Tmax is com-
posed of 60 ns (= 20 × 3), the DRAM access time and the pro-
cessing time of the memory controller. As a practical DRAM,
Micron’s DDR3 SDRAM with 2-Gbit capacity and 16-bit data
width is assumed and its circuit simulation model provided by
Micron is used. Although the designed circuit can be realized
by an application specific integrated circuit (ASIC) with circuit
tuning, a field-programmable gate array (FPGA) device, Intel’s
Stratix V GS, is assumed in the simulation for easy prototyp-
ing, because the circuit simulation model of a memory controller
that is necessary to broker data transfers between the self-timed
pipeline circuit and the DRAM is provided in the Intel’s circuit
libraries. These circuit simulation models recreate the actual pro-
cessing time, and thus the Tmax can be estimated precisely for the
worst-case evaluation. By utilizing these simulation models and
the designed circuit, a circuit simulator (ModelSim) is used to
conduct RTL (register-transfer-level) simulation to simulate the
pipeline tact level behavior of the entire cardinality counting cir-
cuit.

To measure the worst-case throughput, 1000 itemsets with ran-
domly generated IP addresses and port numbers are input by
changing the input rate, which is the number of itemsets input
per second. For every input itemset, two DRAM accesses are
performed to read and update the cache table in the circuit. Fig-
ure 16 shows the measured result; it shows that the through-
put is proportional to the input rate within the maximum value,
and that the maximum achievable throughput is approximately
4.6 M packet/sec. This result also indicates that a 100 Gbps traffic
can be analyzed in real-time by providing 11 (= �50/4.6�) paral-
lel DRAM accesses, because Tmax has an average value of 217 ns
(� 1/4.6M) and will decrease to less than 20 ns (= 217/11).

Consequently, the proposed circuit with 11 DRAM compo-
nents is expected to handle 100 Gbps traffic. By increasing the
number of DRAM components, the proposed circuit can handle a
faster network traffic. This conclusion is based on an assumption
that the input itemsets amount of one Itemset process becomes
stochastically the same as that of the other Itemset process as a re-
sult of the selection based on the hash value of the input itemset in
the pipelining illustrated in Fig. 13. On the other hand, the item-
sets to each Itemset process may be unequally input depending on
traffic patterns, even in such cases, the expected throughput can
be easily guaranteed by adding extra DRAM’s and Itemset pro-
cesses as a margin of processing capability because the self-timed
pipeline circuit can be easily extended by virtue of its localized
wiring.

Although all possible itemsets are generally surveyed in the
cardinality counting and the effectiveness of this exhaustive sur-
vey has already been shown [1], some item processes may be
skipped in the pipelining illustrated in Fig. 12 in practical use.
In such cases, those redundant processes can be easily skipped
by bypassing them with additional branch (B) and merge (M)
pipeline stages without any degradation on the throughput of each
pipeline stage in the proposed circuit while the aggregation of
the DRAM accesses still increases the throughput; therefore, the
throughput of the proposed circuit can be greater than that of a
cardinality counting circuit with the original algorithm as dis-

Fig. 16 Achieved throughput.

cussed in Section 3.1.

5. Conclusion

This paper proposes a new cardinality counting algorithm that
enables the parallel handling of data with a reduced number of
memory accesses. This algorithm and the design of a self-timed
pipeline circuit to realize real-time cardinality counting are the
main contributions of this paper. In summary:
• In contrast to the previous algorithm, the newly developed

algorithm makes it possible to aggregate plural DRAM ac-
cesses by changing the processing order.

• The self-timed pipeline circuit can reduce the DRAM ac-
cess duration by parallelizing the process. With 11 parallel
DRAM accesses, the developed circuit is expected to handle
network traffic rates of up to 100 Gbps.

• Although the change in processing order makes the cardi-
nality counting results inaccurate, the experimental results
show that the inaccuracy is within an acceptable range.

In the cardinality counting algorithm, the frequency (cache
cnt) of itemset is focused on and compared to a threshold because
it is essential to detect a large amount of packet streams that dis-
turb smooth and safe communications. On the other hand, the
itemset’s variation (cache diff) is not checked with the threshold
value. The detection capability of an expanded algorithm whose
cache diff has a threshold will be investigated as a future work.
Moreover, the integration of the designed circuit into actual traffic
monitoring systems remains as a future work.

References

[1] Shomura, Y., Watanabe, Y. and Yoshida, K.: Analyzing the number
of varieties in frequently found flows, IEICE Trans. Communications,
Vol.E91-B, No.6, pp.1896–1905 (2008).

[2] Sannomiya, S., Sato, A., Yoshida, K. and Nishikawa, H.: FPGA
implementation of cardinality-based abnormal traffic detection algo-
rithm, Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pp.252–258 (July
2017).

[3] Sannomiya, S., Sato, A., Yoshida, K. and Nishikawa, H.: Cardinality
counting circuit for real-time abnormal traffic detection, Proc. 2017
IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), pp.505–510 (July 2017).

[4] Beitollahi, H. and Deconinck, G.: Analyzing well-known countermea-
sures against distributed denial of service attacks, Computer Commu-
nications, Vol.35, No.11, pp.1312–1332 (June 2012).

[5] Urushidani, S., Abe, S., Yamanaka, K., Aida, K., Yokoyama, S.,
Yamada, H., Nakamura, M., Fukuda, K., Koibuchi, M. and Yamada,
S.: New directions for a Japanese academic backbone network, IEICE
Trans. Information and Systems, Vol.98, No.3, pp.546–556 (2015).

[6] Chen, Y., Hwang, K. and Ku, W.-S.: Collaborative detection of DDoS

c© 2018 Information Processing Society of Japan 599



Journal of Information Processing Vol.26 590–600 (Sep. 2018)

attacks over multiple network domains, IEEE Trans. Parallel and Dis-
tributed Systems, Vol.18, No.12, pp.1649–1662 (2007).

[7] Wang, H., Zhang, D. and Shin, K.G.: Change-point monitoring for the
detection of DoS attacks, IEEE Trans. Dependable and Secure Com-
puting, Vol.1, No.4, pp.193–208 (2004).

[8] Feinstein, L., Schnackenberg, D., Balupari, R. and Kindred, D.: Statis-
tical approaches to DDoS attack detection and response, Proc. DARPA
Information Survivability Conference and Exposition, Vol.1, pp.303–
314 (Apr. 2003).

[9] Toledo, A.L. and Wang, X.: Robust detection of MAC layer denial-of-
service attacks in CSMA/CA wireless networks, IEEE Trans. Infor-
mation Forensics and Security, Vol.3, No.3, pp.347–358 (June 2008).

[10] Yoon, M. and Chen, S.: Detecting Stealthy Spreaders by Random Ag-
ing Streaming Filters, IEICE Trans. Communications, Vol.94, No.8,
pp.2274–2281 (2011).

[11] Ishibashi, K., Mori, T., Kawahara, R., Hirokawa, Y., Kobayashi, A.,
Yamamoto, K. and Sakamoto, H.: Estimating top N hosts in cardinal-
ity using small memory resources, Proc. 22nd International Confer-
ence on Data Engineering Workshops (ICDEW ’06), p.29 (Apr. 2006).

[12] Terada, H., Miyata, S. and Iwata, M.: DDMP’s: Self-timed super-
pipelined data-driven processors, Proc. IEEE, Vol.87, No.2, pp.282–
296 (1999).

[13] Myers, C.J.: Asynchronous circuit design, University of Utah John
Wiley & Sons, Inc. (2001).

[14] Miyagi, K., Sannomiya, S., Iwata, M. and Nishikawa, H.: Low-
powered self-timed pipeline with variable-grain power gating and
suspend-free voltage scaling, Proc. International Conference on
Parallel and Distributed Processing Techniques and Applications
(PDPTA), pp.618–624 (July 2013).

[15] Nishikawa, H.: Design philosophy of a networking-oriented data-
driven processor: CUE, IEICE Trans. Electronics, Vol.E89-C, No.3,
pp.221–229 (2006).

[16] Sannomiya, S., Aoki, K., Iwata, M. and Nishikawa, H.: Power-
performance verification of ultra-low-power data-driven networking
processor: ULP-CUE, Proc. International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA),
pp.465–471 (July 2012).

[17] Komatsu, K., Sannomiya, S., Iwata, M., Terada, H., Kameda, S. and
Tsubouchi, K.: Interacting self-timed pipelines and elementary cou-
pling control modules, IEICE Trans. Fundamentals of Electronics,
Communications and Computer Sciences, Vol.E92-A, No.7, pp.1642–
1651 (2009).

[18] Agrawal, R., Imielinski, T. and Swami, A.: Mining association rules
between sets of items in large databases, Proc. 1993 ACM SIGMOD
International Conference on Management of Data, pp.207–216 (May
1993).

[19] MAWI working group traffic archive, available from 〈http://mawi.
wide.ad.jp/mawi/〉.

[20] Sannomiya, S., Omori, Y. and Iwata, M.: A macroscopic behavior
model for self-timed pipeline systems, Proc. 17th Workshop on Paral-
lel and Distributed Simulation (PADS), pp.133–140 (June 2003).

Shuji Sannomiya received his B.E. and
M.E. degrees in Information Systems En-
gineering from Kochi University of Tech-
nology, Kochi, Japan, in 2002 and 2004,
respectively. He received his Ph.D. degree
in engineering from Kochi University of
Technology in 2009. Now he is an assis-
tant professor of Faculty of Engineering,

Information and Systems, University of Tsukuba. Currently he
has interests in networking processor architecture and its VLSI
implementation.

Akira Sato received his Ph.D. from Uni-
versity of Tsukuba in 1998. He is an as-
sociate professor in Department of Infor-
mation Engineering, Academic Comput-
ing and Communications Center at Uni-
versity of Tsukuba. His current research
interest is an operation of academic net-
works. He is a member of IPSJ.

Kenichi Yoshida received his Ph.D.
from Osaka University in 1992. In 1980,
he joined Hitachi Ltd., and is working for
University of Tsukuba from 2002. His
current research interest includes appli-
cation of Internet and application of ma-
chine learning techniques.

Hiroaki Nishikawa received his B.E.,
M.E. and Ph.D. degrees in electronic en-
gineering from Osaka University in 1976,
1981 and 1984, respectively. After being
with Osaka University, he is presently a
Professor at University of Tsukuba. He
was Dean of School of Informatics from
2013 to 2015 and Vice President for Aca-

demic Intelligence from 2016 to 2017. He was also worked as
a visiting scientist at Laboratory for Computer Science, MIT in
1994, 1995, 1997, 1998 and a visiting professor in the Electri-
cal Engineering and Computer Science Department at the Uni-
versity of Southern California in 1988. His current research
interests include user-friendly system specification and verifica-
tion environment, ultra-low-power data-driven processor archi-
tecture and hyper-distributed system. He received IASTED Best
Paper Award in the area of Processor Architecture in PDCS,
WORLDCOMP ’10 Outstanding Achievement Award, WORLD-
COMP ’16 Leadership & Visionary Award, respectively. Dr.
Nishikawa is a member of IPSJ, IEICE and a senior member of
IEEE.

c© 2018 Information Processing Society of Japan 600


