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[INVITED SURVEY PAPER

A Survey of Social Network Analysis Techniques
and their Applications to Socially Aware Networking

SUMMARY  Socially aware networking is an emerging research field
that aims to improve the current networking technologies and realize novel
network services by applying social network analysis (SNA) techniques.
Conducting socially aware networking studies requires knowledge of both
SNA and communication networking, but it is not easy for communication
networking researchers who are unfamiliar with SNA to obtain compre-
hensive knowledge of SNA due to its interdisciplinary nature. This paper
therefore aims to fill the knowledge gap for networking researchers who
are interested in socially aware networking but are not familiar with SNA.
This paper surveys three types of important SNA techniques for socially
aware networking: identification of influential nodes, link prediction, and
community detection. Then, this paper introduces how SNA techniques are
used in socially aware networking and discusses research trends in socially
aware networking.

key words: social network analysis, socially aware networking, influence,
link prediction, community

1. Introduction

Thanks to the proliferation of various network services, fine-
grained and large-scale log data of communication among
individuals has become available, driving studies on social
network analysis (SNA) [1-5]. In SNA, social networks (also
called social graphs), in which individuals are represented by
nodes and social ties among them are represented by links,
are constructed from various data related to human com-
munication [1,2,5,6]. The constructed social networks are
then analyzed with the aim of understanding complex social
phenomena that involve interactions among a large number
of people. Various types of communication data, such as
records of mobile phones [7-9], email [9—1 1], and activities
and relationships on social media [ 1 2—14], have been used for
SNA. These studies reveal universal characteristics of social
networks, such as power-law degree distribution [10], small
shortest path length [15], high clustering coefficient [15],
and community structure [13, 16].

In the literature, many useful techniques for SNA have
been proposed, and those techniques have been applied to
various domains. For instance, techniques for identifying in-
fluential nodes have been used for viral marketing [ 17], those
for predicting future link formation have been used for user
recommendation [ 18], and those for detecting communities
in a social network have been used for predicting information
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Fig.1  An example scenario of socially aware networking: Users u and
v are close friends and have similar interests. They share a content cache
through a D2D link. If user v wants to access content that is already shared
by user u, user v can immediately access it.

diffusion on social media [19].

More recently, SNA techniques have attracted the atten-
tion of researchers in the communication networking com-
munity, leading to the emergence of a new research field,
socially aware networking [20]. There is an increasing need
to take human factors into account for the design and control
of communication networks [4,20]. To fulfill this need, SNA
techniques have been applied to problems in communication
networking. An illustrative example scenario of socially
aware networking is shown in Fig. 1. Suppose that users u
and v are close friends who have similar interests, which can
be inferred from a social network, and that user u has a spe-
cific content item in his/her mobile device. User u sends a
cache (or replica) of the content to user v via device-to-device
(D2D) wireless link when they meet each other. Then, user v
will be able to use the content whenever desired. Recall that
users u and v have similar interests. Therefore, it is expected
that user v will access the content, which has already been
accessed by user u. In this scenario, a socially aware net-
working scheme infers content access probability based on
a social network and allocates content caches using a D2D
link, which should improve the quality of service (QoS) of
content delivery and also reduce the amount of mobile net-
work traffic. While this is a very simple example of socially
aware networking, there have been many proposals for novel
communication technologies using SNA techniques [20].

This paper surveys promising SNA techniques that can
be used for socially aware networking, as well as recent
research trends in socially aware networking. To conduct
research on socially aware networking, knowledge of both
SNA and communication networking technologies is nec-
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essary. However, since SNA techniques have been mainly
developed in the network science and data mining research
communities, SNA has only recently received attention from
researchers in the communication networking field. Obtain-
ing comprehensive knowledge of SNA techniques is not an
easy task for researchers who are new to this field, since
research on SNA is interdisciplinary. Important studies are
distributed among several fields, including social science,
computer science, physics, and applied mathematics. This
paper therefore aims to fill the knowledge gap for networking
researchers who are interested in socially aware networking
but are not familiar with SNA. For readers who already have
a strong background in SNA, this paper aims to introduce so-
cially aware networking and promising application domains
for SNA.

There are several surveys and textbooks that introduce
SNA and socially aware networking. We introduce them as
references for readers who aim to gain further understanding
of topics not covered by this paper. The history of SNA in
social science is introduced in a survey paper by Borgatti et
al. [2] and a textbook by Scott [5]. For the theoretical aspects
of social networks and complex networks, good textbooks by
Newman [2 1] and Barabadsi [22] are available. Although so-
cially aware networking is a new research field, an excellent
survey paper has been written by Xia et al. [20]. While Xia et
al. [20] aimed for a comprehensive survey of socially aware
networking, the present paper aims to be a bridge between
SNA and socially aware networking research fields.

The remainder of this paper is organized as follows.
Section 2 gives an overview of SNA. Promising SNA tech-
niques for identifying influential nodes, link prediction, and
community detection are introduced in Sects. 3, 4, and 5,
respectively. These sections introduce conventional tech-
niques that can be used for socially aware networking and
also cover the state-of-the-art techniques that have potential
applications for socially aware networking. Section 6 intro-
duces socially aware networking studies and explains how
SNA techniques are used in these studies. In particular, we
will introduce studies on socially aware routing and socially
aware caching schemes. Section 7 discusses promising SNA
techniques that can be applied to socially aware networking
and also discusses open issues. Finally, Sect.8 concludes
this paper.

2. Overview of Social Network Analysis

This section first gives a taxonomy of techniques used in
SNA and discusses important techniques in the context of
socially aware networking. Then, we introduce several rep-
resentations of social networks as well as the notations used
in this paper.

2.1 Taxonomy of Social Network Analysis Techniques
Although there are various techniques that are studied in the

SNA research community, we can broadly classify these
techniques into four categories according to their scope:
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nodes, links, subgraphs, and entire graphs. Table 1 sum-
marizes some representative techniques studied in the liter-
ature. In Table I, related survey papers are also included.
Since the components of a social network are nodes and
links, inference of node and link characteristics has been
actively studied. The first and second categories include
techniques for estimating microscopic-level (i.e., at the level
of nodes and links) characteristics of networks. Many social
networks have interesting subgraph structures, and therefore
the detection of such structures of networks is also actively
studied. The third category includes techniques related to
mesoscopic-level structures of networks. Nodes and links
collectively build the complex structure of a social network,
and quantifying such complex structures is an important re-
search topic. The fourth category is related to macroscopic-
level characteristics of social networks. Note that this taxon-
omy does not include modeling network generation [23], in-
formation diffusion [24], or node mobility [25], even though
these are important topics related to social networks. This
paper focuses on analysis, rather than modeling, of social
networks.

Among the various SNA techniques, this paper par-
ticularly focuses on identification of influential nodes, link
prediction, and community detection. These are fundamen-
tal research problems in the SNA research field and crucial
techniques for socially aware networking [20]. While other
SNA techniques are also interesting and might be applied to
socially aware networking in future studies, the introduction
of those techniques is beyond the scope of this paper. Read-
ers who are interested in other techniques can refer to the
references shown in Table 1.

2.2 Social Network Representation

In SNA, individuals and the social relationships between
those individuals are represented as a network, in which
nodes represent individuals and links represent social ties
among them [1,2,5,6]. The representative network is called
a social network or a social graph. In this paper, we mainly
use the term social network, but we use the terms graph and
network interchangeably.

Social networks are constructed from various types of
data, with the choice of data depending on the objective of
the analysis [5]. Traditional SNA often uses questionnaire
data to construct networks of friendships, acquaintance re-
lationships, or trust relationships [, 5,37]. Recent SNA
studies have constructed social networks from log data of on-
line communications, such as email logs [10, | 1], records of
phone calls [7, 8], and activity logs on social media [12, [4].
Relational data, such as friendships in social networking ser-
vices (SNSs) [13] or co-authorship [38] of research papers,
are also often used. Log data of offline spatial proximity is
also available for SNA [39]. Among various SNA studies,
constructing a social network is a common and important
step [5].

There are several ways to represent a social net-
work (Fig.2). Let G = (V, E) be a social network, where V
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Table 1  Taxonomy of social network analysis techniques.

Category Techniques Related survey papers  Description
Node Identification of influential nodes  [26] Identifying influential nodes from a network

Node label estimation 271 Determining node label of each node

Node embedding [28] Representing node characteristics as a vector
Link Link prediction [29, Predicting future link formation in a network

Inferring trust [31] Inferring trust relationship between two nodes
Subgraph Community detection [32— Clustering nodes into communities

Motif detection [35] Finding frequently observed subgraph patterns
Entire graph  Quantifying graph characteristics [36] Quantifying characteristics of a given network

e

(b) Directed weighted
network

(a) Unweighted undi-
rected network

ford~ D
b= b

(c) Temporal network

(d) Multilayer network

Fig.2  Representations of social networks.

is a set of nodes representing individuals and E is a set of
links representing social ties. Links can be either directed or
undirected. Moreover, since social ties have strengths [40],
a social network can be represented as a weighted network
G = (V,E,W), where W is a set of link weights that char-
acterize the strengths of social ties. The appropriate choice
of representation depends on the objective of the SNA and
the data used for constructing the social network. When
we analyze a friendship network on Facebook, for example,
the network can be represented as an unweighted undirected
network since friendships have no direction and Facebook
friendship data does not offer direct information about tie
strengths. When we analyze an email network, in contrast,
the network can be represented as a weighted directed net-
work, where link direction represents email direction and
link weight represents the frequency of email communica-
tion. However, we can intentionally represent the email
network as an unweighted graph or an undirected graph by
forgetting some information. For example, if we are inter-
ested in only strong relationships, each link can represent
a particular relationship between a pair of individuals who
frequently communicate with each other. If we consider mu-
tual communication, the email network can be an undirected
graph, where a link represents the existence of mutual com-
munication. The appropriate social network representation
depends on the problem, and so the choice of representation
is an important step in SNA.

Other options exist for the representation of social
networks: multilayer networks [41,42] and temporal net-
works [43,44] are two notable types. Multilayer networks

Table 2  Notation used in this paper.
G a social network

\4 set of nodes in graph G

E set of links in graph G

w set of link weights in graph G
N number of nodes in graph G
T'(v)  setof nodes adjacent to node v

can represent different types of links, such as email and phone
call communications (Fig.2(d)). Temporal networks can
represent the time evolution of networks (Fig. 2(c)). These
two types of networks are currently being actively studied
and are expected to be powerful tools for representing com-
plex relationships among individuals [41—44]. Although
these representations should be useful for various applica-
tions, studies on multilayer and temporal networks have not
matured. Therefore, in this paper, we mainly introduce stud-
ies on single-layer, and non-temporal networks. For more in-
formation about temporal networks, please refer to [43—45],
and for multilayer networks, please refer to [41,42].

In what follows, the symbols shown in Table 2 are used
in explanations of SNA techniques.

3. Identifying Influential Nodes

One of the most well-studied problems in the SNA research
field is the identification of influential nodes in a given so-
cial network [17,26,46,47,47-50]. Influential nodes have
also been called central nodes [51], important nodes [52],
superspreaders [47], and key players [53]. Although dif-
ferent studies use slightly different definitions [26], in this
paper, influential nodes are defined as those that can spread
information to many other nodes in a social network. Typi-
cal applications of identifying influential nodes are efficient
information dissemination, viral marketing, and preventing
the spread of rumors and viruses [17,54].

In socially aware networking schemes, influential node
identification is used for identifying nodes that have a higher
chance to disseminate information to many other nodes [20].
A more detailed explanation will be given in Sect. 6.

This section first gives a definition of influential node
identification problems (Sect.3.1). Then, several mea-
sures and algorithms for the problems will be introduced
(Sects. 3.2 and 3.3). We will also briefly introduce other
related research topics (Sect. 3.4).
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3.1 Problem Formulation

Influential node identification is typically formulated as a
problem of estimating the influence of each node. The influ-
ence estimation problem is defined as follows.

Problem 1 (Influence Estimation Problem) Given a so-
cial network G = (V,E,W), where V is a set of nodes,
E is a set of links, and W is a set of link weights, the aim is
to find an influence score c(v) for each node v € V.

While the influence score ¢(v) represents the strength of the
influence of node v, we are often concerned with relative
rankings in terms of influence score c(v), rather than raw
score, and we are typically most interested in highly ranked
nodes [55,56].

Influential node identification is also formulated as the
problem of detecting a set of influential nodes from a social
network. This type of problem is called an influence maxi-
mization (IM) problem [17,57,58]. This problem was first
studied by Domingos and Richardson [57,58], and Kempe et
al. [17] formulated the problem as a combinatorial optimiza-
tion problem. IM aims to identify a small set of influential
nodes (“seed nodes”) such that the expected size of the influ-
ence cascade triggered by the seed nodes is maximized [17].
Let G = (V, E, W) be a social network, where V is a set of
nodes, E is a set of links, and W is a set of link weights
representing the probability of influence spread. Let S € V
be a subset of nodes in graph G and o (S) be the expected
number of active nodes at the end of the process of an influ-
ence cascade model when S is the initial set of active nodes
(i.e., the seed nodes). The IM problem is then defined as
follows [17].

Problem 2 (Influence Maximization (IM) Problem)
Given a social network G, an integer k, and an influence
cascade model, the aim is to find a set of seed nodes S (S C 'V
with |S| = k) such that o (S), which we call the influence
spread, is maximized under the given cascade model.

We introduce measures for the influence estimation
problem in Sect. 3.2 and algorithms for the influence maxi-
mization problem in Sect. 3.3.

3.2 Measures for Influence Estimation

Various measures for estimating the influence of nodes have
been proposed in the literature [26]. This section introduces
conventional measures as well as promising, recently pro-
posed ones. Please also refer to the recent survey paper [26]
for further information. In what follows, unless explicitly
stated otherwise, we assume that a social network G is an
unweighted and undirected graph. Most of the measures can
be naturally extended to directed graphs [59] and weighted
graphs [60,61].

Degree centrality [51], closeness centrality [51], and
betweenness centrality [51] are classical yet widely used
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measures [47].

Degree centrality estimates the influence of a node on
the basis of its degree. The degree centrality of node v is
defined as

IT(w)]
N-1

Ca(v) = (1)
where N is the number of nodes in the network G and I'(v)
is a set of neighbor nodes of v.

Closeness centrality estimates the influence of a node
based on the distance between the node and other nodes in a
network. The closeness centrality of node v is defined as

N -1
ZMEV d(l), I/t)’

where d (v, u) is the shortest path length from node v to u.

Betweenness centrality estimates the influence of a
node on the basis of the proportion of shortest paths be-
tween all other node pairs passing through the node. The
betweenness centrality of node v is defined as

Cc(v) = 2

2 Zs,teV,s#t#v gst (v)
(N-D(N=-2)

Cp(v) = ) 3)

Zs,tev,s;tr Jst

where g, is the number of shortest paths from node s to ¢,
and g5, (v) is the number of shortest paths from node s to ¢
through node v.

Various extensions of betweenness centrality have been
proposed, and they can be found in [62]. Representative
extensions include random-walk betweenness [63], network
flow betweenness [61], and routing betweenness [64]. These
measures estimate the influence of a node on the basis of
paths other than the shortest paths.

There also exist other types of centrality measures. An
excellent review of centrality measures can be found in [65].
Popular measures include Katz centrality [66], eigenvector
centrality [67], and eccentricity [68].

PageRank [69] is also widely used for estimating the
influence of nodes in social networks, although it was origi-
nally proposed for estimating the importance of a web page.
The PageRank of node v is defined as

1-a PR(u)

+a ,
N ety T @I

PR(v) =

4)

where « is a damping factor that can be set between 0 and
1. The basic idea of PageRank is that a node linked by
influential nodes is influential.

The k-core (also called k-shell) index [47,70-72] esti-
mates the influence of a node according to the size of a dense
subnetwork, called the core, to which the node belongs. The
k-core of node v in network G is defined as follows. Let H
be a subnetwork of network G, and let 6(H) be the degree
of a node whose degree is the minimum among the nodes
belonging to subnetwork H. In other words, the degree of
each node belonging to H is at least 6(H). Note that the
degree of each node is calculated only from links between
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Fig.3  An example of k-cores and k-core index of nodes. Nodes a, b,
c, and d belong to 1-core, 2-core, and 3-core, thus their k-core index is 3.
Nodes e and f belong to 1-core, and 2-core, thus their k-core index is 2.
Nodes g and h belong to only 1-core, thus their k-core index is 1.

nodes in subnetwork H. Subnetwork H is a k-core of net-
work G if §(H) > k. The k-core index of node v is defined
as the maximum k of the k-core to which node v belongs.
Figure 3 shows an example of k-cores.

Collective influence (CI) is a recently proposed scal-
able measure for identifying influential nodes based on the
optimal percolation theory [73]. The CI of node v is defined
as

Ch)=(T@I-1) )

uedBall(v,l)

(T @) =D, (&)

where dBall(v, 1) is a set of nodes that are / hops away from
node v, with / a parameter. This measure can be used for
estimating influence of nodes. Using this measure, Morone
and Makse [73] have also proposed an algorithm for finding
a set of influential nodes to be removed so that the network
connectivity (i.e., the size of the giant component) is mini-
mized. The algorithm is as follows. We first calculate the CI
values of all nodes and then obtain the node with the maxi-
mum CI value. We then remove the obtained node from the
social network G, recalculate the CI values for the remaining
nodes, and obtain the node with the maximum CI value. We
repeat this procedure and obtain a node ranking based on CI.
It is shown that when removing the nodes according to the
obtained ranking based on CI, near optimal percolation can
be achieved [73]. Moreover, the node ranking is shown to
be effective for identifying influential nodes in several social
networks [74].

3.3 Influence Maximization Algorithms

As defined in Sect. 3.1, the IM problem aims to find a set of
nodes that can influence to many other nodes under a given
influence cascade model. We first introduce two representa-
tive influence cascade models: the independent cascade (IC)
model [17] and the linear threshold (LT) model [17]. We
then introduce IM algorithms for these models. Although
the IC and LT models are the most popular, IM for other
cascade models, such as the credit distribution model [75],
the voter model for signed networks [76], and the continuous
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Algorithm 1 Simple greedy IM algorithm [17] (G, o)

1: initialize S « 0

2: while |S| < k do

3 select u « argmax o (S U {v}) — o (S)
veV\S

4: S «— SuU{ul}

5: end while

6: return S

time diffusion model [77-79], are also being studied. Please
refer to the above articles [75,77-79] for the IM algorithms
for other cascade models.

In the IC model, each node is either active or inactive.
When node u becomes active at time step ¢, node u will influ-
ence inactive neighbor node v((4,v) € E) with probability
Pu.v at the next time step ¢ + 1. Namely, node v becomes ac-
tive with probability p,, ,. The probability p, , is the weight
of link (u,v) and is called the influence spread probability
between node u and v. Note that each node has a single
chance to influence each of its neighbors. At time step O,
the nodes selected as seed nodes (S C V) become active,
and other nodes are inactive. Then, the stochastic process
explained above is repeated until no new active nodes are
created, at which time the process ends.

In the LT model, too, each node is either active or
inactive. For each node v, the sum of the weights on all
incoming links is assumed to be at most 1. Each node v
chooses a threshold 6, uniformly at random from [0, 1]. At
time step ¢, each inactive node v becomes active if the sum
of the weights on incoming links from v’s active neighbors
exceeds its threshold 6,. At time step 0, the nodes selected
as seed nodes (S C V) become active, and other nodes are
inactive. Then, the process explained above is repeated until
no new active nodes are created, at which time the process
ends.

Although the IM problems for both IC and LT models
are NP-hard, the objective function o (-) is non-negative,
monotone, and submodular, which gives us the greedy (1 —
1/e)-approximation algorithm [17]. A setfunction f : 2V —
R is non-negative if f(S) > O for all § C V, monotone if
f(S) < f(T) forall S C T, and submodular if f(SU {v}) —
f(S) = f(TU{v}) — f(T)forall S CTandv € V. The
greedy algorithm [17] (simple greedy) starts with an empty
seed set S = 0 and repeatedly adds the node u with the

maximal marginal influence (i.e., u = arg max o (S U {v}) —
veV\S
o (S)) into S until |S| = k. Pseudocode of Kempe’s greedy

algorithm is shown as Algorithm 1.

Although the greedy algorithm is very simple and gives
us a theoretical guarantee, it requires high computational
costs [80,81]. Since the exact computation of o (-) is #P-
hard [80], Monte-Carlo simulation has been used to obtain
o () [17,81]. We should note that the simple greedy al-
gorithm provides (1 — 1/e)-approximation solution only if
the exact influence spread o (+) can be calculated. To obtain
an accurate estimation of o (-), we require a large number
of simulation runs. The problem of calculating influence
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Table 3  Influence measures and influence maximization algorithms.

Measures Description Notes Required info.
Degree [51] Nodes with high degree are influential simple yet widely used local
Closeness [51] Nodes who have short paths to other nodes are influential global
Betweenness [51] Nodes bridging many paths are influential widely used yet computationally expensive | global
PageRank [69] Nodes who are linked by influential nodes are influential global
k-core [47,70-72] Nodes in cores of the network are influential global
CI[73] Nodes whose removal affects the network connectivity are influential | recently proposed and effective semi-local
IM algorithms
Simple greedy [17] | Using Monte-Carlo simulation of influence cascades computationally very expensive global
TIM [86], IMM [79] | Using sampling technique for estimating influence spread state-of-the-art global
IRIE [89] Heuristics based on the IC model not using Monte-Carlo simulation global
SIMPATH [90] Heuristics based on the LT model not using Monte-Carlo simulation global

spread is discussed in [82].

Several improvements in the computational costs of IM
algorithms have been proposed [79, 83—-88]. Cost-effective
lazy forward selection (CELF) [83] exploits the submodu-
larity to reduce the cost of calculating the influence spread,
which allows it to be more efficient than the simple greedy
algorithm. An improved version, called CELF++ [84], has
been also proposed. Recently, Borgs et al. [85] made a
breakthrough that achieves near-linear computational time
using a sampling technique called reverse influence sam-
pling (RIS). Tang et al. proposed an algorithm, two-phase
influence maximization (TIM) [86] and an improvement, in-
fluence maximization via martingales (IMM) [79] using the
idea in [85]. Further improvements over IMM can be found
in [87,88]. Thanks to the efforts of many researchers, state-
of-the-art IM algorithms can work on huge-scale networks
with millions of nodes [79, 87, 88].

Along another line, heuristic algorithms that avoid ac-
curate estimation of influence spread have also been studied.
Among these, the IRIE (influence ranking and influence es-
timation) [89] and SIMPATH [90] algorithms are efficient
algorithms for the IC model and the LT model, respectively.
These algorithms estimate the influence of nodes without
Monte-Carlo simulation. Note that influence measures in-
troduced in Sect. 3.2 can be used as heuristic algorithms for
the IM problem.

3.4 Related Research Topics

While the measures and algorithms introduced above use
only a social network for identifying influencers, several
other approaches that use the combination of a social network
and other information have been proposed. TwitterRank [91]
estimates the influence of Twitter users using social network
topology and topics [92] obtained from their tweets. Bakshy
et al. [93] identified influencers on Twitter from records of
information cascades using a machine-learning technique.

Identifying influential nodes from only limited knowl-
edge on a social network has been also studied. Mihara et al.
studied the IM problem for unknown social networks [94,95].
They proposed IM algorithms that only use partially ob-
served social networks. Kim et al. [96] studied the problem
of finding influential neighbors of each node.

Influence measures for temporal networks and multi-

layer networks have also been proposed. For temporal net-
works, eigenvector-based centrality [97] and random walk
centrality [98] have been proposed, and centrality mea-
sures [99] and PageRank [100] have been proposed for mul-
tilayer networks.

Table 3 summarizes the representative influence mea-
sures and influence maximization algorithms introduced in
this section. The different measures and algorithms are based
on different ideas. Among the IM algorithms, IMM is state-
of-the-art in terms of efficiency and effectiveness. When
using IM algorithms shown in this table, careful construc-
tion of a social network is necessary because these algorithms
require complete global knowledge of the social network, in-
cluding link weights. It is difficult to determine which influ-
ence measures are the best, since the definitions of influence
can be different among different applications. Therefore, it
is necessary to choose appropriate influence measures for
the application, according to their computational costs and
the required information.

4. Link Prediction

An important task in SNA related to link-level characteris-
tics is link prediction [29], which predicts future link forma-
tion in a given social network. Link prediction has many
applications, such as recommendation [18,29], anomaly de-

tection [101], network modeling [102], missing link detec-
tion [103], and the evaluation of network evolution mecha-
nisms [104].

In socially aware networking, link prediction is used
for measuring the similarity of nodes. Link prediction tech-
niques are mainly used to identify node pairs that have a high
probability of having contact, which helps routing in mobile
opportunistic networks [20].

This section first gives a definition of the link prediction
problem (Sect. 4.1). We then introduce link prediction tech-
niques that measure the likelihood of link formation (i.e.,
similarity) between two nodes (Sects. 4.2 and 4.3). Finally,
we briefly review research topics related to link prediction
(Sect. 4.4).

4.1 Problem Formulation

Typically, link prediction is the problem of either detecting
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di Jink f N compare new links
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of the social network

predicted link
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Fig.4  Tllustrative example of future link prediction: New link formation
in network Gy is predicted from network G,,.

missing links or predicting future link formation in a network
by utilizing a given network topology [29]. Formally, let
G, = (V,E,) and G; = (V, E;) be undirected unweighted
networks, where network G, represents the observed net-
work and network G, represents the future network or true
network for which we would like to predict the links. The
link prediction problem is defined as follows, and an illus-
trative example of future link prediction is shown in Fig. 4.

Problem 3 (Link Prediction Problem) Foreachnode pair
(i,j) ¢ E,, the aim is to predict whether (i, j) € E;, using
the observed network G,,.

Although this paper assumes G,, is an unweighted and undi-
rected network, most link prediction techniques can be natu-
rally extended to weighted networks [ 105, | and directed
networks [107, 108].

In what follows, we focus on unsupervised link predic-
tion in particular. Unsupervised link prediction techniques
estimate the likelihood of link formation (i.e., produce a link
prediction score) between two nodes by using knowledge
about the characteristics of real networks. For each node
pair (i, j) ¢ E,, we calculate the link prediction score s(i, j),
which estimates the likelihood of link formation or the ex-
istence of a link between the nodes. Link prediction score
s(i, j) is widely used for measuring the similarity of nodes
in socially aware networking [20]. Moreover, link prediction
scores can be used in supervised link prediction as features
for learning [109]. Therefore, we focus on unsupervised link
prediction. Link prediction scores used in unsupervised pre-
diction are introduced in Sects. 4.2 and 4.3. Supervised link
prediction techniques are briefly introduced in Sect. 4.4.

4.2 Neighborhood-Based Measures

Neighborhood-based link prediction uses only local infor-
mation. Namely, link formation between node u and v is
predicted from information about neighbors of nodes u# and
v.

The common neighbors (CN) method predicts link for-
mation based on the idea that the existence of many common
adjacent nodes between two nodes implies a high probabil-
ity of new link formation between those two nodes [110].
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In CN [110], s(u,v), an estimate of the likelihood of link
formation between nodes u and v, is given by

sen(u,v) = [F(u) NT(v)], (6)

where I'(u) is the set of nodes adjacent to node u.

The Jaccard coefficient (JC) method predicts new link
formation from the number of common adjacent nodes, simi-
larly to CN, but the link prediction score is normalized [1 1 1].

In JC [111], the link prediction score is given by
I'(u) NT(v)]
V)= ————— 7
syc(u, v) F) UT ()| (7

The Adamic/Adar (AA) method predicts new link for-
mation from the idea that many common adjacent nodes with
a small degree between two nodes implies a high probability
of new link formation between the nodes [112]. Similarly
to CN, AA predicts new link formation on the basis of the
number of adjacent nodes in common, but it assigns a weight
to s(u, v) according to the degrees of the common adjacent
nodes. In AA [112], the link prediction score is given by

1

_— 8
RG] ®

saa(u,v) =
keT()NT ()

The resource allocation (RA) method predicts new
link formation on the basis of a similaridea as AA [113]. RA
assigns a weight to s(u, v) based on the degree of common
adjacent nodes. In RA [113], the link prediction score is
given by

sra(u,v) =

1
—_ 9
2 T ©

kel (u)NC(v)

The preferential attachment (PA) method predicts
new link formation from the idea that a high-degree node has
a higher chance of forming new links [110]. In PA [110],
the link prediction score is given by

spa(u,v) = [Fw)| X [F(v)]. (10)

4.3 Path-based Measures

In contrast with neighborhood-based link-prediction, path-
based link prediction uses global knowledge of the social
network G to predict links.

The Katz index can be used to predict new link forma-
tion based on all the paths between two nodes [66]. The link
prediction score of the Katz index is given by

skar(w0) = " Blipaths,, , () (11)
=1

where paths,, (/) is a set of all paths with length / between
u and v, and B is a parameter. The Katz index gives shorter
paths higher weight. Since calculating Katz index for large-
scale social networks is computationally expensive, trun-
cated Katz index defined by the following equation is also
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Table 4  Link prediction techniques (node similarity scores).
Description type
Common neighbor (CN) [110] Number of common neighbors between two nodes local
Jaccard coefficient JC) [111] Normalized CN local
Adamic/Adar (AA) [112] Same idea as CN but low-degree neighbors have larger weight | local
Resource allocation (RA) [113] Same idea as AA but weight function is different local
Preferential attachment (PA) [110] Hub nodes get higher chance to get new links local
Katz index [66] Number of paths between two nodes global
Random walk with restart (RWR) [29] | Nodes who have many short paths between them are similar global
SimRank [115] Two nodes are similar if their neighbors are similar global
used [114]. network. However, for the link prediction problem, temporal
. information (i.e., information about when the existing links
max were created) is important. Tylendaetal. [122] proposed link
swar (,0) = > B'Ipaths,,, (1) (12) et - - : :
tRatz %% w0\ prediction scores incorporating temporal information. Tsug-
=1

where [,,,x is a parameter.

The random walk with restart (RWR) [29] technique
is based on PageRank [69]. Consider a random walker on a
social network G from node u, who returns to node u with
probability @. Namely, with probability @, a random walker
jumps to the starting node u, and with probability (1 — a),
the random walker moves to the randomly selected neighbor
of the current node. Then, the link prediction score between
node u and v is defined as the probability that the random
walker starting from node u will be located at node v in the
steady state.

SimRank [115] is based on the assumption that two
nodes are similar if they are connected to similar nodes. The
link prediction score of SimRank is given by

Ditel () 2t'el(v) SSR(E: 1)
[T @)|IT ()]

) 13)

ssr(U,0) = &

where ssr(,u) = 1 and @ € [0, 1] is a parameter. The
SimRank can be understood as characterizing arandom walk.
SimRank measures how soon two random walkers who start
from nodes u and v are expected to meet at a certain node.

4.4 Related Research Topics

Supervised approaches for link prediction have also been
studied [109, 116—119]. Supervised approaches construct
a classifier that can predict whether a link exists between
two nodes by using several features obtained from the net-
work topology. Link prediction scores can be used as fea-
tures for learning. Kashima and Abe [117] proposed a pa-
rameterized probabilistic model for link prediction. Licht-
enwalter et al. [109] used general classifiers and exam-
ined the effectiveness of several topological features. Pu-
jari and Kanawati [120] proposed supervised rank aggre-
gation. Recently, a deep-learning-based approach was also
proposed [119]. Other techniques can be found in a recent
survey paper [121].

The incorporation of temporal information was shown
to be a promising approach [119,122,123] for improving link
prediction accuracy. The link prediction scores introduced in
this section were obtained from a single snapshot of a social

awa and Ohsaki [ 1 23] examined the construction method of a
social network used for link prediction that incorporated tem-
poral information. In the recently proposed deep-learning-
based link prediction [119], the observed social network is
modeled as a temporal network.

Link prediction in multilayer networks is also a hot
research topic [124, ]. These studies show that using
metrics obtained from multiple layers greatly improves the
performance of both unsupervised and supervised link pre-
diction compared with using only metrics obtained from a
single network.

Table 4 summarizes major link-prediction techniques
introduced in this section. The effectiveness of these tech-
niques depends on the network characteristics. Comparative
studies of several link prediction techniques can be found
in [29,30].

5. Community Detection

Many social networks have been shown to have commu-
nity structure, where the network is composed of densely
connected subgraphs and sparse links connecting the sub-
graphs [13, 16, 126]. An example of communities in a so-
cial network is shown in Fig.5. The densely connected
subgraphs are called communities, and algorithms detecting
such communities have been actively studied [32, 33, ].
Since the communities obtained from social networks are
shown to reflect groups of individuals with similar charac-
teristics or backgrounds, community detection algorithms
have a wide variety of application domains, such as recom-
mender systems [127], viral marketing [128], and predicting
information diffusion [19].

In socially aware networking, communities in a social
network are used for measuring the similarity of nodes [20].
Community-based socially aware routing schemes have been
proposed, based on the assumption that nodes in the same
community will meet more frequently than nodes in different
communities [20]. In socially aware caching schemes, com-
munities are used for measuring the similarity of interests
between nodes [20].

In what follows, we first give a definition of the com-
munity detection problem (Sect.5.1). We then introduce
community detection algorithms (Sects.5.2 and 5.3). We
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Fig.5 An example of communities in a social network.

also discuss other related research topics on community de-
tection in Sect. 5.4.

5.1 Problem Formulation

First of all, it should be noted that there is no universal def-
inition of communities and the community detection prob-
lem [32]. Several definitions of communities can be found
in the literature [32, 129]. For the variety of definitions and
metrics for evaluating community structure, please refer to
the excellent survey papers [32, 129]. However, there is one
widely accepted basic concept of a community: there must
be more links within the community than links connecting
to nodes outside the community [32]. Therefore, the com-
munity detection problem can be informally considered as a
problem of finding such subgraphs in a given network.

Although there are several formulations of the commu-
nity detection problem, they can be categorized into disjoint
community detection and overlapping community detection.
Disjoint community detection can be considered as a graph
partitioning [32]. In disjoint community detection, each
node belongs to exactly one community (Fig.5). In con-
trast, overlapping community detection allows each node to
belong to multiple communities (Fig. 6). In our society, it
is natural to assume that each individual belongs to multi-
ple communities. Overlapping community detection aims
to find such complex structures. More formal definitions
of disjoint communities and overlapping communities are
given as follows.

Definition 1 (Disjoint Communities) A set of disjoint com-
munities C = {c1, ¢y, ...,ck} in social network G = (V,E)
satisfies the following conditions: (1) c; is a nonempty subset
of nodes (Vi,V 2 ¢; # 0), (2) Ule ¢; =V, (3) for any two
nodes u, v € c;, there exists at least one path where all nodes
along the path are also in c;, and (4) ¢c; N cj = 0 fori # j.

Definition 2 (Overlapping Communities) A set of over-
lapping communities C = {c1, 3, . . ., cr} in social network
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Fig.6  An example of overlapping communities in a social network.

G = (V,E) satisfies the following conditions: (1) c; is a
nonempty subset of nodes (Yi,V 2 ¢; # 0), (2) Uf.‘zl ¢ =V,
(3) for any two nodes u,v € c;, and there exists at least one
path where all nodes along the path are also in c;.

Other typologies of community detection also exist,
such as hierarchical and non-hierarchical [32]. In our soci-
ety, groups are nested, that is, small groups compose larger
ones [130]. Detecting such hierarchical community struc-
tures has also been studied [32, 130-132].

In this paper, we introduce disjoint community detec-
tion algorithms in Sect. 5.2 and overlapping community de-
tection algorithms in Sect.5.3. We particularly focus on
non-hierarchical community detection, but some algorithms
introduced in this paper can be used to obtain hierarchical
communities, which will be mentioned in the following sec-
tions. In what follows, we assume that a social network G is
undirected and unweighted. Most algorithms can be easily
extended to weighted networks (e.g., see [32,33]). Defining
communities in directed networks is nontrivial, and there-
fore several studies on community detection algorithms for
directed networks have been performed [ 133, 134]. However,
we can apply algorithms for undirected networks by simply
ignoring link direction (e.g., [3, 19]).

5.2 Disjoint Community Detection

Among the various approaches of community detection,
modularity maximization is particularly widely used [32].
In this approach, the community detection problem is for-
mulated as an optimization problem that aims to find a set
of communities that maximizes the modularity score [16],
which is a measure for evaluating the quality of commu-
nity detection. The modularity score of the detected disjoint
communities C in graph G = (V, E) is defined as
€c; dei (o

0(0) ZC< B G (14)
where e, is the number of links connecting nodes in com-
munity ¢; and a., is the sum of the degrees of the nodes in
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Algorithm 2 GN algorithm [16,
1: initialize ComList « 0
2: while E # 0 do
3: find link e(u, v) with highest betweenness in G
: remove link e(u, v) from E
set C as a set of connected components in G

4

5

6: m « modularity of current communities C
7. add (C, m) to ComList
8:

9:

1(G=(V.E))

end while
return C with the highest modularity from ComList

community ¢;. Modularity evaluates the tradeoff between the
fraction of intra-community links and the expected fraction
of such links when the links are randomly rewired keeping
the degree distribution [16]. Using this measure, modularity
maximization is defined as follows.

Problem 4 (Modularity Maximization) Given a social
network G = (V, E), the aim is to find a set of communi-
ties C such that the modularity score Q(C) is maximized.

The first algorithm using modularity was proposed by
Girvan and Newman [ 16, 135]. This was a pioneering work
of community detection in the network science research field.
The basic idea of the Girvan Newman (GN) algorithm is
that links connecting communities have high link between-
ness [135]. Similarly to the node betweenness [51] intro-
duced in Sect. 3.2, the betweenness of a link is defined as the
number of shortest paths passing through the link. Based on
this idea, the GN algorithm repeatedly removes the link with
the highest betweenness from the network. This procedure
causes the network to be fragmented into several compo-
nents, and then each of the components is considered as a
community. The difficulty with using GN is deciding when
to stop the link removal process. In the GN algorithm, the
modularity score is used as the stopping criteria [16]. Link
removal is repeated until all links are removed, and for each
removal, the modularity score is calculated. Then, the result
with the highest modularity is used. Pseudocode of the GN
algorithm is shown as Algorithm 2. Although the GN algo-
rithm uses modularity to determine when to stop, it does not
directly maximize the modularity score.

After the GN algorithm was proposed, many algorithms
that aim to maximize modularity were proposed. Since
modularity maximization problem is NP-hard [136], many
greedy heuristic approaches have been proposed for approx-
imation. Newman [137] proposed a greedy algorithm for
modularity maximization. The Newman algorithm is an ag-
glomerative hierarchical clustering. Starting from the set of
singleton communities (i.e., the set in which each node is
considered as a community), the Newman algorithm greed-
ily merges communities by choosing the merge that gives
the highest increase in modularity value. Clauset et al. fur-
ther optimized the Newman algorithm, proposing a faster
algorithm called the CNM algorithm [138]. The Louvain
algorithm [139] uses local optimization and achieves lower
computational costs than the CNM algorithm. It was also
shown that the Louvain algorithm generally achieves a higher
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modularity score than CNM [139]. The Louvain algorithm
is widely used and is one of the state-of-the-art algorithms
based on modularity. Further improvement and extensions
of the Louvain algorithm can be found in [140]. Other
approaches to maximizing modularity include simulated an-
nealing [141], spectral optimization [142], and external op-
timization [143].

Although modularity-based clustering (e.g., CNM and
Louvain algorithms) has been widely applied to many ap-
plications (e.g., [3, ) ]), it is important to be aware of
the limitations of modularity-based algorithms [32,33, 146]
when using them. The first limitation is that a high modu-
larity score can be achieved even if the target network has
no community structure [147]. Even for a random network,
modularity maximization may discover communities with
high modularity score. Another limitation is the resolution
limit of modularity [148]. Modularity maximization algo-
rithms may fail to detect small communities in a network due
to this limitation [148]. Moreover, it has been shown that
there are several different community partitions in a network
whose modularity scores are very close to the global maxi-
mum value [149]. Although greedy algorithms and the GN
algorithm can produce hierarchical community structures, it
has been suggested that it is unclear whether some of the
intermediate partitions could correspond to meaningful hi-
erarchical levels of the graph [32]. Due to the limitations
mentioned above, it is important to take care with the results
when using the modularity-based algorithms. However, in
our opinion, modularity-based community detection is still a
useful tool if the target social network has a clear community
structure.

5.3 Overlapping Community Detection

Overlapping community detection is a relatively new and
challenging research topic compared with disjoint commu-
nity detection [32-34].

The clique percolation method (CPM), proposed by
Palla et al. [150], is one popular algorithm. A k-clique is
a complete subgraph with k nodes. CPM finds overlapping
communities by finding k-cliques. In CPM, two k-cliques
are considered to be adjacent if they share (k — 1) nodes.
Then, a k-clique community is defined as the union of all k-
cliques that can be reached from each other through a series
of adjacent k-cliques. Each node may belong to multiple
k-clique communities. Thus, CPM can produce overlapping
communities. Kumpula et al. [151] proposed faster algo-
rithms for CPM.

Another popular approach is link clustering. Ahn et
al. [152] proposed measuring the similarity of two links
(u, k) and (v, k) with the Jaccard coeflicient between node
u and v defined as Eq. (7). Using this similarity measure,
hierarchical clustering of links is performed. Starting from
singleton communities, similar links are repeatedly merged
into a community. Link communities can be obtained by
stopping the merging process at a similarity threshold. Since
each node can belong to multiple link communities, overlap-
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Table 5 Community detection algorithms.
Notes overlapping  hierarchical

GN [16, 135] Pioneering algorithm. Computationally expensive. v
CNM [138] Modularity maximization. Faster than GN. v
Louvain [139] Faster than CNM and achieves higher modularity than CNM v
CPM [150] Based on clique percolation v

Link community [152] | Clustering links rather than nodes v v
LFM [130] Using seed set expansion from random nodes v v
NICE [154] Using seed set expansion. Seeds are determined based on personalized PageRank clustering. | v v

ping communities can be obtained. An algorithm using aline
graph, where links in the original graph are nodes and nodes
in the original graph are links, has also been proposed [153].
Evans and Lambiotte [153] converted an original graph to
a line graph and applied the disjoint community detection
algorithm to the line graph in order to obtain link communi-
ties.

Local expansion is an approach for overlapping commu-
nity detection that is currently being actively studied [154].
In this approach, several seed sets are selected, and each
seed set locally expands its community [34]. Namely, each
seed set corresponds to a community, and the seed set locally
searches for members that should belong to the community.
Several strategies for seed node selection and expansion ex-
ist. Lancichinetti et al. [130] proposed an algorithm called
LFM that expands a community from a random seed node to
form a natural community. The naturalness of community
¢; is evaluated by a fitness function defined as

kin(ci)
(kin(ci) + kour(ci)®’

where ki, (c;) and kou(c;) are the total internal and exter-
nal degrees of community c;, respectively, and « is a pa-
rameter for controlling the community size. The proposed
method expands a community until this fitness function is
locally maximal. Havemann et al. [155] modified the fitness
function and proposed a parameter-free algorithm. An al-
gorithm called EAGLE [131] uses maximal cliques as seed
sets. Whang et al. [154] proposed an algorithm called NICE
to use high-degree nodes as seed sets and expand the seed
sets using personalized PageRank clustering [156]. These
algorithms also explicitly consider hierarchical community
structures.

fle) = (15)

5.4 Related Research Topics

Many approaches for community detection exist. We will
briefly introduce other popular approaches. Optimization-
based approaches using metrics other than modularity have
been studied, with examples being optimization based on
normalized cuts [157] and conductance [ 158]. Non-negative
matrix factorization [159] and random walk [132] have also
been used for overlapping and hierarchical community de-
tection. A recent trend in community detection is using
statistical inference [33, s —162]. In this approach, a
network is assumed to be generated by a probabilistic model
that has a community structure, and the goal is to find the

model that best fits the observed network. A survey on this
approach has recently become available in [162].

As we have already discussed, many community detec-
tion algorithms have been proposed. Therefore, comparison
of these algorithms has been performed [34, 163—165]. How-
ever, to the best of our knowledge, there is no consensus on
which algorithm is the best [33]. This is because commu-
nity can be defined in many ways, meaning that the best
algorithm depends on the applications of the community de-
tection. When choosing the appropriate algorithm for your
problem, it is important to know the characteristics of the
algorithms (e.g., resolution limits of modularity-based algo-
rithms), and the above studies provide useful information.

Community detection in multilayer networks and tem-
poral networks are also topics of high interest. For commu-
nity detection for temporal networks (or dynamic networks)
please refer to [ | 66—168], and for multilayer networks please
refer to [125, ].

Table 5 summarizes the major community detection
algorithms introduced in this section.

6. Socially Aware Networking

This section first introduces the research background of so-
cially aware networking (Sect.6.1) and then explains how
SNA can be used for designing socially aware networking
schemes (Sects. 6.2 and 6.3).

6.1 Background

Designing networking technologies that take human be-
haviors into consideration is a topic that has been get-
ting increased attention from many researchers, with the
aim of achieving efficient utilization of limited network re-
sources and improved quality of service by various applica-
tions [4, 20]. Particularly for mobile networks, usage pat-
terns and mobility patterns of network users are suggested to
significantly affect the performance of communication net-
works [20]. Thus, incorporating human factors is a promis-
ing candidate for future networking technologies.

Socially aware networking is an emerging research field
that aims to improve the current network technologies and
realize novel network services by utilizing social relation-
ships among network users [20]. Socially aware networking
technologies are currently expected to be applied to mo-
bile networks, such as mobile opportunistic networks [169],
delay/disruption tolerant networks (DTNs) [170], and vehic-
ular ad-hoc networks (VANETS) [171]. In such networks,



28

messages (i.e., data or packets) are transmitted in a multi-
hop manner among mobile devices with short-range wire-
less communication, meaning that the mobility patterns of
devices strongly affect the efficiency of message delivery.
Since the mobile devices are mainly carried by individuals,
the mobility patterns are strongly affected by the charac-
teristics of individuals and the social relationships among
them [20]. Thus, social networks are expected to be a useful
source of information that can be used for improving the
quality of services in such mobile networks.

Two of the main research topics in the socially aware
networking research field are socially aware routing and so-
cially aware caching. In what follows, we introduce studies
on both technologies. Note that game-theoretic approaches
are out of scope of this paper, although they also incorporate
human factors in the design and control of communication
networks. This paper particularly focuses on the studies
using SNA techniques. Game-theoretic approaches can be
found in papers such as [172—175].

6.2 Socially Aware Routing
6.2.1 Overview

One of the most active topics in the socially aware net-
working research field is routing/forwarding schemes in
opportunistic networks [20]. Opportunistic networks, or
DTNs, are attracting attention from many researchers as
promising platforms for realizing communication without
constructing additional infrastructure [169, 176]. Many so-
cially aware routing schemes for such networks have been
proposed [20, —191]. Here, we consider the problem of
delivering message M from node s to node ¢ in an oppor-
tunistic network. In an opportunistic network, the existence
of a path between the source and destination nodes cannot
be assumed [169]. Therefore, many opportunistic network
routing schemes adopt the store-carry-and-forward paradigm
for message delivery [176]. In such schemes, when node u
with message M meets node v (i.e., node u and v are close
to each other), message M can be forwarded to node v.
By repeating such message forwarding, a message will be
delivered from source node s to destination node ¢. The
simplest way to achieve message delivery in opportunistic
networks is by using epidemic routing [192], in which each
node forwards messages to every encountered node. While
epidemic routing achieves optimally low message delivery
delay, it consumes significant network resources. There-
fore, forwarding a message to relay nodes that have a high
probability of meeting the destination node is a key issue in
the design of routing schemes [176]. Socially aware rout-
ing schemes utilize SNA for estimating the likelihoods of
future contacts among nodes, and the estimated likelihoods
are used in message forwarding [20].

An illustrative explanation of socially aware routing
scheme is shown in Fig. 7. In socially aware routing, contact
probabilities between two individuals are estimated from in-
fluence, similarity (i.e., link prediction scores), and/or com-
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high similarity

Fig.7  An illustrative example of socially aware routing: Suppose that
node s wants to send a message to node t. (¢t = 1): Node s forwards the
message to node ¢ since node c is influential and is expected to meet many
other nodes. (¢ = 2): Node ¢ forwards the massage to node d since node d
and the destination node ¢ are in the same community, which implies that
they will have contacts with high probability. (¢ = 3): Node d forwards
the message to node e since node e and the destination node ¢ are similar,
which implies that they will have contacts with high probability. (z = 4):
Finally, node e meets node 7, and the message is successfully delivered to
the destination node 7.

munity. An intuitive explanation of key ideas in socially
aware routing is as follows. (1) Influential nodes should
deliver messages to many other nodes that are suitable as
relay nodes. (2) Similar nodes will have a high probability
of contact. (3) Nodes in the same community will have a
high probability of contact.

Before introducing socially aware routing schemes, we
should mention the problem of how to obtain social net-
works. Obtaining social networks among users is a neces-
sary step shared in common among all socially aware routing
schemes [178]. If a social network is available from SNS
or questionnaire data, that network can be used in socially
aware networking schemes [177]. However, such informa-
tion is currently difficult to obtain. Therefore, many routing
schemes construct social networks from past contact logs,
called contact graphs [178]. A contact graph is typically
constructed from records of contacts within a specific time
window [178]. However, Hossmann et al. [ 193, 194] showed
that the method for constructing a social network (here, a
contact graph) significantly affects the performance of so-
cially aware routing. Therefore, the method for constructing
social graphs has been studied [ 195]. Many routing schemes
also assume that global knowledge of the social network is
unavailable, and the social network is only constructed via
distributed information from the past contact logs of each
node [177].

Table 6 summarizes major socially aware routing
schemes. Different schemes use different social features
(i.e., influence, similarity, and community). In what follows,
we briefly introduce each scheme and discuss how SNA
techniques are used in the schemes.
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Table 6  Socially aware routing schemes.
Social features

Community  Influence  Similarity | Source of Social Network
LABEL [196] v Questionnaire
BUBBLE Rap [179] v v Contact Logs
LocalCom [183] v v v Contact Logs
mGroup [185] v Contact Logs, Questionnaire
CAOR [186] v v Contact Logs
SMART [187] v v v Contact Logs
FBR [188] v v Contact Logs
dLifecomm [197] v v v Contact Logs
SimBet [180], SimBetTs [181] v v Contact Logs
SRBet [190] v v Contact logs
PeopleRank [182] v Contact logs, SNS
SANE [198] v Questionnaire
ML-SOR [184, 1 v Ve Contact Logs, SNS, Questionnaire
dLife [197] v v Contact Logs

6.2.2 Community-Based Schemes

Although different schemes use different combinations of
social features, as shown in Table 6, socially aware routing
can be divided into community-based and non-community-
based [20]. The basic assumption in community-based rout-
ing is that people in the same community meet each other
more frequently than people in different communities. This
subsection introduces major community-based schemes.

Hui and Crowcroft [196] performed pioneering work on
community-based socially aware routing, proposing a rout-
ing scheme called LABEL. LABEL assumes that each node
has a label representing its community. In LABEL, node v
forwards a message to node u if and only if node u belongs to
the same community as the destination node of the message.
LABEL was shown to successfully reduce the message over-
head while maintaining the message delivery delay using this
small amount of information (i.e., community label) [196].
However, the performance of LABEL is heavily dependent
on the community, and it has been suggested that, for in-
stance, message delivery will fail when the source node does
not meet any node in the destination’s community [178].

Hui et al. [179] proposed a routing scheme called BUB-
BLE Rap, which utilizes influence measures (i.e., degree and
betweenness centrality) as well as community information
of nodes. BUBBLE Rap uses two metrics: global influence
rank, which is a ranking based on an influence measure in a
whole social network, and local influence rank, which is a
ranking based on an influence measure within a community
only. The global influence rank is used for inter-community
routing, whereas the local influence rank is used for intra-
community routing. A message is forwarded to nodes with
higher global influence rank until the message reaches a node
that belongs to the same community as the destination node.
When a message reaches a destination community, the mes-
sage is forwarded to nodes with higher local influence rank.
Since global knowledge of a social network is difficult to ob-
tain, BUBBLE Rap adopts algorithms for detecting commu-
nities and calculating centrality from only local information
of each node.

Several other schemes for community-based routing ex-
ist. In LocalCom [183], the source node forwards a message
to the bridge node, which has high betweenness centrality in
the community of the source node, and then the bridge node
performs controlled flooding to deliver the message to the
destination community. Communities are detected in a dis-
tributed way using similarity among nodes. SMART [187]
uses a strategy similar to that of BUBBLE Rap. It combines
influence and similarity measures for the routing metrics.
CAOR [186] assumes that users have frequently visited home
locations. From this, home-aware communities are defined,
and intra-community and inter-community routing utilizing
influence measures is proposed. FBR [188] defines a simi-
larity measure called the social pressure metric (SPM), and
friendship communities are detected on the basis of SPM.
The forwarding strategy is similar to LABEL, but the friend-
ship communities are periodically updated. mGroup [185]
uses multiple communities of each node obtained from dif-
ferent social networks (e.g., social networks obtained from
contact logs and SNS).

In summary, community-based routing utilizes the char-
acteristic that two individuals in the same community have
a high probability of contact for message routing. Influence
and similarity measures are also used to achieve efficient
intra-community and inter-community routing. Community
detection from only locally available information is key for
achieving efficient community-based routing [20]. There-
fore, distributed community detection that can be used for
community-based routing has also been an important re-
search topic [199, ].

6.2.3 Non-Community-Based Schemes

To avoid the difficulty of detecting communities, non-
community-based approaches have been also studied. These
approaches utilize a similarity score between two nodes
or an influence score of each node to determine the relay
node. This subsection introduces major non-community-
based schemes.

SimBet [180] and its extended version SimBetTs [181]
use similarity and influence. CN [110] is used as the sim-
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ilarity measure and betweenness is used as the influence
measure. Although betweenness centrality is a global mea-
sure that requires an entire network, SimBet uses each node’s
ego-betweenness [201], which can be calculated from a sub-
network including the node and its one-hop neighbors. Since
ego-betweenness has a high correlation with global between-
ness [201], such an approximation is used. SimBet deter-
mines the relay node based on the metric combining the
betweenness of the node and the similarity between the relay
node and the destination node.

PeopleRank [182] forwards a message based on the
influence of a relay node. The influence is measured by
the measure PeopleRank, which is based on PageRank.
SANE [198] forwards messages based on the similarity be-
tween nodes. Similarity between nodes is obtained from the
predefined social profile of each node.

Since temporal patterns of human-to-human contacts
affect the performance of routing schemes, those utilizing
temporal social networks have been proposed. dLife is a
pioneering scheme that utilizes a temporal social network
for routing in opportunistic networks [197]. The forwarding
strategy of dLife is similar to other routing schemes intro-
duced above. If node u encounters node v and node v has
higher similarity with the destination node than node u, node
u forwards the message to node v. If the similarity is un-
known, node u forwards the message to node v if node v
has higher influence than node u#. The key idea of dLife is
estimating similarity based on the daily routines of users.
The assumption of dLife is that two individuals who rou-
tinely encounter with each other should have high similarity
(e.g., if two individuals meet each other at 5 p.m. every-
day, they should have high similarity). To find such routine,
a temporal network constricted from contact logs is used.
Note that community-based version of dLife, which is called
dLifecomm, has been also proposed [197]. SRBet [190] also
utilizes a temporal network. Its routing strategy is based on
a similar idea to SimBet, but it uses a temporal network
for calculating similarity and influence. SRBet incorporates
contact frequency, contact duration, and regularity of con-
tacts between nodes for estimating the similarity between
them. It has been shown that dLife and SRBet achieve better
routing efficiency than other socially-aware routing strate-
gies not using temporal networks [190, 197].

Routing schemes using multilayer social networks have
been also proposed for reliable calculations of influence and
similarity measures [189]. ML-SOR [189] utilizes multi-
layer social networks for obtaining influence and similarity
measures. A multilayer social network is constructed from
online social networks and physical contact networks.

In summary, non-community based schemes focus on
designing good metrics for relay node selection by combin-
ing multiple features obtained from social networks.
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6.3 Socially Aware Caching
6.3.1 Overview

Another topic of interest in socially aware networking is con-
tent caching. Caching has been getting increased attention
as a technology to reduce network traffic and realize efficient
content delivery [202, ].

Content-caching technologies can be categorized into
those that cache in the end device and those that cache in
the network. Caching in the network is key in content deliv-
ery networks (CDN5s) [204] and content centric networking
(CCN) or named data networking (NDN) [205], and it has
been widely studied [202, s ]. More recently, caching
in mobile edges (i.e., small-base stations), also called femto-
caching [207], has been getting attention as a key technology
in 5G wireless networks [203,208-210]. This is also consid-
ered a type of caching in the network. In contrast, the recent
development of highly functional mobile devices makes it
possible to cache content in the end devices (i.e., mobile
devices of network users) [203]. In the future mobile In-
ternet, users are expected to be able to retrieve content not
only from the original content server but also from caches
located at the neighboring mobile edge devices and network
routers [203], reducing content access delay and the network
traffic volume.

Socially aware networking paradigms can be applied
mainly to caching in the end devices. Since the effectiveness
of end device caching heavily depends on human mobility
patterns, the social network is useful for the effectiveness of
the cache. In socially aware caching, the social network is
used for determining where to cache and what to cache. An
illustrative explanation of socially aware caching is shown
in Fig. 8. The basic assumptions in socially aware content
caching are (1) that the proximity between two nodes in a
social network should reflect the similarity of interests be-
tween the two nodes and (2) that influential nodes are suitable
for allocating caches because they have the potential to dis-
seminate the content to many other nodes. We introduce
socially aware caching in the end devices in Sect. 6.3.2. So-
cially aware caching in networks will be briefly introduced
in Sect. 6.3.3.

6.3.2 Caching in End Devices

Influence measures and communities are used for deter-
mining which nodes should have caches in socially aware
caching. Since the caches in the end devices can be accessed
by other devices with D2D wireless links, influential nodes
who meet many other nodes and who have the potential to
disseminate caches are suitable for having caches. Gao et al.
proposed allocating caches of popular content to nodes with
high centrality [21 1]. Zhuo et al. [212] proposed a centrality
measure for measuring caching capability within a commu-
nity. Then, they proposed a method to allocate caches to the
nodes with high centrality for each community. Bastug et
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Fig.8  Anillustrative example of socially aware caching: Content caches
are located on user devices and network routers. Users can get contents
nearby user devices or network routers. Since nodes a, b, and ¢ are in
the same community and expected to have similar interest, they share the
caches of similar contents A, B, and C. They can access the content caches
through D2D links of their devices, which realizes faster access to content
than accessing to content repositories (i.e., servers). Similar nodes e and
g also share the caches of similar contents. Influential node d has caches
of popular contents X, Y, and Z, and those can be accessed by other nodes
with D2D links, which contributes to reduce network traffic in the core
network.

al[210],and Le etal [
of cache allocation.

While the above studies aim to allocate caches to a small
number of nodes and efficiently disseminate the caches to the
other nodes, there are also other approaches where all nodes
cooperatively have content caches. In such schemes, it is
important to determine what to cache rather than where to
cache. To improve the effectiveness of caching, nodes who
meet frequently and who have similar interests should have
caches of different content. Based on this idea, community-
based caching was proposed in [214]. In this scheme, dif-
ferent content caches are allocated for each node in the same
community. Namely, each content item is cached in at most
one node within a community. Nodes in the same community
are expected to meet frequently and have similar interests,
so this scheme achieves efficient content caching. Zhu et
al. [215] tackled the problem of what to cache by using the
similarity of nodes as well as considering the selfishness of
nodes.

] also proposed similar approaches

6.3.3 Caching in Networks

Bernardini et al. [216] studied socially aware caching for
CCN and proposed a caching strategy called SACS (Socially
aware Caching Strategy). SACS first identifies influencers
in social networks. Then, the caches of content produced by
the influencers are proactively replicated to the routers along
the shortest paths between the influencers and the neighbors
of the influencers in the social network.

Wang et al. [217] proposed socially aware content
caching (called replication in [217]) in CDN. They used
records of video content propagation in social networks for
determining which content should be cached at which CDN
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node. Hu et al. [218] proposed a method for content caching
in CDN using social network communities. The basic idea
is that each community corresponds to one or several CDN
nodes, and all the requests from a community will be served
by the corresponding CDN nodes.

6.4 Related Research Topics

In both socially aware routing and caching, the selfishness
of the nodes is an important issue [20,203]. The socially
aware networking schemes introduced in this paper assume
cooperative behavior from each node. Namely, each node is
assumed to store and forward messages and cache content for
other nodes. However, in reality, it is natural to assume that
selfish nodes exist. Incentive mechanisms have been used
for mitigating selfish behaviors of individuals [219-221].
Routing schemes incorporating incentive mechanisms can
be found in [222-224], and caching schemes incorporating
incentive mechanisms can be found in [215, ].

Security is another important issue [226]. Defense
schemes against Sybil attacks [227] and denial of service
attacks [228] have been studied in order to prevent attacks
from malicious nodes. However, security is still an open
issue that should be resolved in order to implement socially
aware networking schemes in our society [226].

7. Discussion

7.1 Promising Recent SNA Techniques that can be Applied
to Socially Aware Networking

While degree and betweenness centrality are widely used
in socially aware networking, as described in Sect. 6, other
influence measures are also applicable to socially aware net-
working technologies. CI [73] is a recently proposed, ef-
fective measure for identifying influencers, and it has been
shown to be more effective than several other measures, in-
cluding PageRank, degree, and k-core index in social media
networks such as Twitter and Facebook [74]. Moreover,
CI can be calculated from semi-local information of each
node (i.e., information about /-hop neighbors), which is a
preferable feature in socially aware networking. We there-
fore expect that CI will also be effective in socially aware
networking. Influence maximization with limited knowl-
edge on social networks [94,96] also has the potential to be
applied to socially aware networking schemes.

We expect that similarity measures used in socially
aware networking can be improved by using perspectives
in link prediction studies. While socially aware network-
ing schemes use similarity measures for predicting future
contact of individuals, such a problem is also studied in the
SNA research field. Scholtz et al. [229-231] and Tsugawa
and Ohsaki [123] studied the problem of predicting future
human-to-human contact. Takaguchi et al. [232] proposed
a method to quantify the predictability of face-to-face con-
tact patterns. We expect that these studies can be applicable
to socially aware routing schemes for determining relaying
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nodes.

We also anticipate that community detection algorithms
using local expansion [34, , , ] can be applica-
ble to socially aware networking schemes. Local expansion
algorithms typically detect communities from only the lo-
cal network structure of seed nodes [130, ]. Therefore,
these algorithms can be extended to distributed algorithms.
Moreover, measures for evaluating local community struc-
ture have also been proposed [164,233]. These can be used
to locally evaluate the goodness of a community. While sev-
eral distributed community detection algorithms have been
proposed in community-based socially aware routing stud-
ies [179,188], applying algorithms proposed in SNA studies
could be an effective approach.

Moreover, SNA techniques for temporal networks [43,

] and multilayer networks [41,42] could be useful in so-
cially aware networking. Contact graphs used in socially
aware routing contain information about contact timing,
which is suitable for representation as temporal networks. If
multiple social networks are available from multiple sources
(e.g., SNS data and contact logs), these networks are suitable
to be represented as a multilayer network. Using temporal
networks, as in dLife [197] and SRBet [190], and using mul-
tilayer networks, as in the socially aware routing scheme
ML-SOR [189], are expected to be promising approaches.

7.2 Open Issues in Socially Aware Networking

As already discussed in the previous survey papers [20, 177,

], there are several open issues in socially aware network-
ing, since socially aware networking is an emerging research
field. Open issues that should be resolved include privacy,
security, selfishness, and scalability.

Of the several open issues, we feel that designing
schemes for obtaining social network data in particular is
an important issue. As discussed in [226], the amount of
available social features affects the performance of socially
aware routing schemes. In order to make full use of the
benefit of using social networks, only using the past contact
logs of each node is not enough, and rich social features are
necessary. However, obtaining the social networks of many
network users is not easy due to the aforementioned privacy
and security issues. Moreover, it is also important to con-
firm the effectiveness of socially aware networking schemes
under ideal situations where rich social features of network
users are available.

8. Conclusion

In this paper, we introduced SNA techniques for the identifi-
cation of influential nodes, link prediction, and community
detection, all of which are key techniques for socially aware
networking. Then, we discussed how SNA techniques are
used in socially aware networking as well as introducing its
research trends. Although the research field of socially aware
networking is still in its infancy, we believe that socially
aware networking has the potential to be a key technology
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for future communication networks.

Before concluding this paper, we would also like to in-
troduce several tools and datasets useful for SNA and socially
aware networking studies. NetworkX" and igraph'" are pop-
ular tools for network analysis. Many algorithms introduced
in this paper can be easily used with these tools. Gephi [234]
and Cytoscape [235] are useful for network visualization.
The Stanford Network Analysis Project (SNAP) [236] pro-
vides various social network datasets and libraries for SNA.
The SocioPatterns project’'" also provides useful data on
human contact. Mobility trace data that is widely used in
socially aware networking studies is available through the
MIT Reality Mining project [237] and CRAWDAD [238].

We hope that this survey will be helpful to researchers
who are interested in using SNA techniques for various prob-
lems and will contribute to the development of socially aware
networking.
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