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Abstract

Similarity joins are common database operations that can relate records based

on their similarity degree. Set similarity joins constitute a specific type of similar-

ity joins that assume records to be sets. Although seemingly restrictive at first, a

wide range of data types can be treated as sets during its processing. For example,

market basket data can be seen as a set of purchased items, text documents can be

sets whose elements are words, and images can be represented as set of chosen fea-

tures. Due to its flexibility in finding similar data items, set similarity joins have a

large number of applications, which include data cleaning, entity recognition and

duplicate elimination.

Although a number of works have been proposed to enhance set similarity joins,

the development of recent technologies (e.g., many-core processors and fully homo-

morphic cryptosystems) offers new ways for improvement. In this dissertation, we

investigate the use of such emergent technologies, particularly focusing their use on

the performance and security aspects of set similarity joins.

Regarding performance, we propose a new scheme of set similarity joins that use

graphic processing units (GPUs) to accelerate the computation. As for the security

facet, we propose a privacy-preserving scheme to execute two-party set similarity

joins using encrypted data.

We highlight the main contributions of this study as follows: (1) A novel method

to accelerate the processing of set similarity joins using the massive parallelism pro-

vided by GPUs. To overcome the memory limitations of GPUs, we employ a di-

mension reduction technique, MinHash, and create compact representations of sets.

An extensive experimental evaluation shows speedups of more than two orders of

magnitude when compared to serial execution. (2) A two-party protocol for secure

execution of similarity joins that uses a fully homomorphic cryptosystem, offering

security and privacy-preservation when calculating similarity values over encrypted

data. We take advantage of the threshold Tversky index to determine whether two

sets are similar without disclosing the similarity value itself. To compensate for

execution costs incurred by fully homomorphic schemes, we explore CPU paral-

lelization and the adaptation of filter techniques to the context of encrypted data.

Considering the growing amount of data generated by different sources, includ-

ing sensitive applications, we expect our contributions to aid in the processing of

large datasets in a reliable and secure way.
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Chapter 1

Introduction

With the dissemination of technological advances like online social networks and

the Internet of Things, we have been witnessing an unprecedented amount of data

being generated at a continuously increasing speed. This phenomenon has created

numerous opportunities that have been explored by different parties, from govern-

ments to enterprises. For instance, due to the volume of data available, it is possible

to study epidemic patterns and target potential customers with much more accuracy

than before.

Notwithstanding its promises, there are also several challenges inherent to ma-

nipulating large data; e.g., efficient processing, adequate storage and responsible

management. In particular, because such data is usually generated by multiple

sources, there is a growing need for its proper integration in order to explore its

full potential. Examples regarding the need for data integration include research

collaboration between different institutes, enterprise merging and international law

enforcement.

In this context, a proper processing has great impact on the quality of the anal-

ysis and on the general use of the data being handled. Considering the case of data

stored in databases, a common way to process data that come from different sources

is to use the join operator, which associates database records based on a specified

condition. The join operator is one of the most useful and most explored tools for

data processing, but, in its simple form, it considers only total matches between

records. In order words, comparing two records yield a binary answer that does not

account for the degree of difference between them.

However, in real applications, the quality and the correctness of data can be

subject to variations due to human errors, cultural differences and lack of standards.

As an illustration, consider the different spellings of names in a list of clients or
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in a product catalog. As another example, for data integration purposes, it might

be interesting to detect whether “University of Tsukuba” and “Tsukuba University”

refer to the same entity. Applying simple joins to relate records having such subtle

differences would not be beneficial. In these scenarios, it is more advantageous

to rely on similarity joins, a class of joins that acknowledge disparities between

records and determine the result based on the degree of similarity between them.

Among the factors pertaining the execution of similarity joins, it is critical to

consider the way the data is represented. Set similarity joins constitute a variation of

similarity joins that works on sets instead of regular records. Although seemingly

restrictive at first, set similarity joins provide great usability due to the fact that

different types of data can be mapped to sets: market basket data, text and images.

Furthermore, by adopting the set representation, it is possible to apply the many

well-known similarity metrics used to compare sets (e.g., Jaccard similarity, Dice

coefficient and cosine similarity) [55, 75].

Due to their ample applicability, there is a high demand for efficiently process-

ing set similarity joins, especially in the current context of large data. Notably, since

performance improving techniques used in simple joins do not consider the simi-

larity factor, a growing body of literature has been proposed to address the specific

requirements of similarity joins [2, 5, 14, 41, 69, 77, 87, 119]. The state-of-the-art

adopt a filter-verification approach whose objective is to reduce the number of com-

parisons between pairs of records [2, 14, 41, 119]. This is done by applying filter

strategies that first prune dissimilar pairs and generate candidate pairs. Then, it

verifies which of the candidate pairs are actually similar.

Other works explore a different processing paradigm, namely parallel process-

ing [77, 87]. Among these, a few researchers have investigated the use of special

hardware, accelerators, to speedup similarity joins. In particular, GPUs (graphic

processing units) have shown high processing throughput that scales well with

highly parallelizable tasks [5, 69].

However, GPUs have a peculiar architecture that differs from that of CPUs in

aspects like processing units and memory hierarchy. Furthermore, since the amount

of available memory in GPUs is usually modest in comparison to modern CPUs, it

is required to carefully design data structures and processing strategies. We propose

the utilization of GPUs to accelerate set similarity joins and answer these challenges

by leveraging a dimension reduction technique called MihHash [9]. By using Min-

Hash to create signatures for the sets, we are able to fit more sets into the GPU’s

memory, thus improving the overall efficiency of the proposal.

Besides efficiency, another pressing matter affecting set similarity joins relates

to the privacy of the data being joined. Due to the growing trend of outsourcing

2



computation and storage to cloud services, there is also an increasing concern re-

lated to the privacy of sensitive data (e.g., medical records and proprietary chemical

compounds). When joining this kind of data, it is important to do it in a way that

there is no disclosure of information other than the final result of the operation. To

this end, a promising approach is to use multi-party computation and cryptography

to guarantee the secrecy of the data [6, 13, 40, 56, 100, 102].

Fully homomorphic encryption is a cryptography breakthrough [36] that offers

high security guarantees while allowing the calculation of similarity between two

encrypted records [11, 20, 35, 60, 65, 109, 116, 124]. We propose a two-party set

similarity join protocol to securely compute similar pairs of records that come from

relations belonging to different parties. Our solution utilizes threshold Tversky in-

dex [99] to find similar pairs without leaking their similarity value, thus protecting

the computation against regression attacks.

Despite its security and flexibility, fully homomorphic encryption schemes suf-

fer from performance costs that can make their use impractical in certain scenarios.

To overcome these performance penalties, we resort to parallelization using multi-

core CPUs and to the adaptation of filter techniques to the context of encrypted

data. As a result, we achieve important speedups that help making the protocol

more feasible in real situations.

We focus on the aforementioned facets of similarity joins (i.e., efficiency and

security) and make contributions that include:

• A scheme for set similarity joins that uses the storage efficiency of provided

by MinHash [9] and capitalizes on the highly parallel processing power pro-

vided by GPUs. The scheme is evaluated in terms of performance and ac-

curacy, and results show high speedups without sacrificing the quality of the

results.

• A two-party protocol for secure set similarity joins based on modern fully ho-

momorphic cryptosystems, offering both security and flexibility to perform

calculations using encrypted data. To determine whether two sets are similar,

we make use of the threshold Tversky index [99], which protects the similar-

ity value itself and prevents its exploitation by regression attacks. In addition,

the adaptation of filter techniques and the parallalization using multiple CPU

cores assist in reducing the performance costs added by fully homomorphic

schemes.

The remainder of this dissertation is organized as follows. Chapter 2 provides

more details about similarity joins and about other concepts and technologies used
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in our solutions. The related work is analysed in Ch. 3, which also positions this

dissertation among the existing research. An explanation about our how our efficient

scheme for set similarity joins leverages the combination of MinHash and GPUs is

presented in Ch. 4. Chapter 5 examines our secure set similarity join protocol,

giving security details and offering strategies to improve the performance when

computing over encrypted data. Finally, Ch. 6 summarizes this work and discusses

future research directions.

4



Chapter 2

Preliminaries

This chapter presents an overview of the field in which this dissertation is posi-

tioned. First, we provide a formal definition of similarity joins and list some of

their main applications. Then, we describe the main methods and technologies used

in our proposals: Jaccard similarity, GPU, secure multi-party computation and ho-

momorphic encryption.

2.1 Similarity joins

A similarity join (Def. 1) is an operator that receives as input two database relations

and a similarity threshold, and outputs all pairs of records, one from each relation,

whose similarity is greater than the specified threshold. It has become a significant

class of database operations due to the diversification of data, and it is used in many

applications, such as data cleaning, entity recognition and duplicate elimination [14,

41].

Definition 1. The similarity join operation takes as input two database relations,

R and S , and a similarity threshold θ. It returns pairs of records whose similarity

is greater than or equal to θ, according to a given similarity function Sim(x, y):

{(r, s)|r ∈ R, s ∈ S , Sim(r, s) ≥ θ}

Set similarity join [55] is a variation of similarity join that works on sets instead

of regular records, and it is an important operation in the family of similarity joins

due to its applicability on different data (e.g., market basket data, text and images).
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2.1.1 Applications

Due to its high flexibility, similarity joins have been used in a number of differ-

ent scenarios. Although many applications have some degree of overlap or can be

combined, we categorize such applications as follows.

Data Integration

Due to the quantity and the heterogeneity of data processed, in many situations (e.g.,

enterprise merging, research collaboration, surveillance programs) it is necessary to

perform the integration of different data sources [28]. Since such data sources do

not follow a standard in terms of identifiers, similarity joins can be used to find

common items based on similarity definitions that better suit the situation. In this

field, Cohen [17, 18] designed WHIRL, a system for similarity joins based on text

similarity metrics that infers a rank of possible answers for a given similarity query.

Entity Resolution

Entity resolution, also referred to as record linkage, appertains to finding different

database records that correspond to the same entity. Winkler [115] surveyed the

use of entity resolution in the context of population census, highlighting challenges

like the choice of linking techniques, parameters and confidentiality methodology.

Wang et al. [110] introduced an alternative to the common practice of machine-

based entity resolution, exploring a hybrid approach that makes use of crowdsourc-

ing to reduce processing costs.

Data Mining

Similarity joins are also used in a number of data mining applications, like social

network analysis [103], document clustering [10], recommendation systems [23,

91, 94] and membership checking [12]. Among such works, Chakrabarti et al. [12]

proposed a method based on the filter-verification framework to identify input sub-

strings that match with entries of a potentially large dictionary without producing

false negatives. Their method uses an in-memory filter structure that first prunes

substrings that cannot match with any entry in the dictionary and then verify the

remaining substrings.

6



Data Cleaning

Data cleaning refers to the process of identifying and processing (i.e., correcting or

removing) inaccurate or duplicated records in a dataset [1,48]. This is an important

step in numerous applications that prepare data for further processing, having great

impact on the performance of algorithms and quality of results. One of the most

prominent works in this field is the one by Chaudhuri et al. [14], which introduces

prefix filter (detailed in Sec. 3.1.1), a pruning technique explored in many other

works [2, 86, 111, 113, 117, 119].

Other Applications

Other than the aforementioned applications, a large number of works explored sim-

ilarity joins in scenarios, ranging from plagiarism detection [49] to finding inflation

attacks in advertising networks [76].

2.2 Jaccard Similarity

Among the various set similarity metrics available (e.g., Jaccard similarity in-

dex [54], Dice coefficient [27], cosine similarity), one of the most effective is the

Jaccard similarity (JS) [51]. We choose to use the Jaccard similarity in this work

because of its efficiency and its highly parallelizable calculation method that pairs

well with modern multi-core and many-core hardware architectures.

To see how Jaccard similarity is used to calculate the similarity of sets, con-

sider Fig. 2.1. It presents two collections of documents1, R and S , that contain two

documents each: r0, r1, and s0, s1. In this scenario, the objective of the similarity

join is to retrieve pairs of documents, one from each relation, that have a similarity

degree greater than a specified threshold θ. One way to represent such documents

is to consider them as sets of words (or tokens), and then use the Jaccard similarity

to determine how similar they are. It is possible to calculate the Jaccard similarity

between two sets, A and B, in the following way:

JS(A, B) =
|A ∩ B|

|A ∪ B|
(2.1)

Considering (2.1) and the documents in Fig. 2.1, we obtain the following results:

1In a relational database setting, collections correspond to relations, and documents correspond

to records. We use these terms interchangeably if there is no ambiguity.
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Figure 2.1: Two collections of documents, R and S .

JS(r0, s0) = 3/5 = 0.67, JS(r0, s1) = 1/6 = 0.17, JS(r1, s0) = 1/7 = 0.14 and

JS(r1, s1) = 1/6 = 0.17.

2.3 Graphics Processing Units

Despite being originally designed for games and other graphic applications, the

applications of Graphics Processing Units (GPUs) have been extended to general

computation due to their high computational power [82]. This section presents the

features of this hardware and the challenges encountered when using it.

The properties of a modern GPU can be seen from both a computing and a

memory-related perspective (Fig. 2.2). In terms of computational components, the

GPU’s scalar processors (SPs) run the primary processing unit, called thread. GPU

programs (commonly referred to as kernels) run in an SPMD (Single Program Mul-

tiple Data) fashion on these lightweight threads. Threads form blocks, which are

scheduled to run on streaming multiprocessors (SMs).

The memory hierarchy of a GPU consists of three main elements: registers,

shared memory and device memory. Each thread has access to its own registers

(quickly accessible, but small in size) through the register file, but cannot access

the registers of other threads. In order to share data among threads in a block, it is

possible to use the shared memory, which is also fast, but still small (16KB to 96KB

per SM depending on the GPU’s capability). Lastly, in order to share data between

multiple blocks, the device memory (also called global memory) is used. However,

it should be noted that the device memory suffers from a long access latency as it

resides outside the SMs.

When programming a GPU, one of the greatest challenges is the effective uti-

lization of this hardware’s architecture. For example, there are several benefits in

exploring the faster memories, as it minimizes the access to the slower device mem-

ory and increases the overall performance.
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· · ·
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Device Memory

Shared Memory
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Register File

Figure 2.2: Architecture of a modern GPU.

In order to apply a GPU for general processing, it is common to use dedicated

libraries that can facilitate such task. Our solution employs NVIDIA’s CUDA [80],

which provides an extension of the C programming language to define parts of a

program to be executed on the GPU.

In terms of algorithms, a number of data-parallel operations, usually called

primitives, have been ported to be executed on GPUs in order to facilitate program-

ming tasks. He et al. [46, 47] provide details on the design and implementation of

many of these primitives.

One primitive particularly useful for our work is scan or prefix-sum (Def. 2 [45]),

which has been target of several works [29, 98, 121]. Figure 2.3 illustrates its basic

form, in which the binary operator is addition. It receives as input an array of

integers and outputs an array where the value in each position is the sum of the

values in previous positions.

Definition 2. The scan (or prefix-sum) operation takes a binary associative oper-

ator ⊕ with identity I, and an array of n elements [a0, a1, ..., an−1], and returns the

array [I, a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an−2)].

As detailed in Sec. 4.3, we use the scan primitive to calculate the positions where

each GPU block will write the result of its computation, allowing us to overcome
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Input: 2 4 0 1 3

Output: 0 2 6 6 7

Figure 2.3: Example of using the scan primitive.

the lack of incremental memory allocation during the execution of kernels and to

avoid write conflicts between blocks. To do so, we adopt the scan implementation

provided by the library Thrust [50] due to its high performance and ease of use.

2.4 Secure Multi-party Computation

Multi-party computation pertains to the computation of a given function whose in-

puts come from the participants of a multi-party protocol. More formally, let us

assume that each participant i has an input xi, and the protocol’s objective is to cal-

culate the function f (x1, . . . , xn) using inputs of n participants. Considering secure

multi-party computation, one critical requirement is that, at the end of the protocol,

the participants should only learn the output of the function. They should not learn

about inputs of each other, except what can be derived from the final result and their

own original input.

Other than the number of participants, one important concept related to secure

multi-party computation is the adversary model. Essentially, the adversary model

defines the behavior of the involved parties. The term adversary can include not

only entities attempting to disrupt the protocol, but also the participants themselves,

which may be trying to learn more information than initially intended.

It is common to divide adversaries in two categories: honest-but-curious and

malicious. Honest-but-curious adversaries, also known as semi-honest, follow the

rules of the protocol, but try to learn additional information from it. Such adver-

saries can also collude to obtain advantages against the non-corrupt parties. On the

hand, malicious adversaries are not guaranteed to follow the rules of the protocol.

They are able to provide intentionally incorrect input in order to gain advantage

during the protocol’s execution [100].

One way to help prevent the mentioned leakage of information is to make the

data inaccessible to other parties by encrypting it. By doing so, adversaries can-

not obtain any new information about the data since they do not have the key for

decryption. However, as a drawback, encryption can also limit the usability of the

data, since it becomes more difficult to do computations using it. In this context,
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a number of works, aiming at achieving security and utility, propose methods to

computer over encrypted data [6, 13, 40, 56, 102].

Among the findings of such proposals, two main categories of encryption

schemes are considered: deterministic and probabilistic. Deterministic cryptosys-

tems [3] yield the same output for the same input (i.e., key and message) given to it.

In other words, using a deterministic encryption algorithm E to encrypt two equal

messages m0 and m1 (m0 = m1), we would obtain two equal ciphertexts E(m0) and

E(m1) (E(m0) = E(m1)). This property can be useful in many applications. For

example, consider that one needs to search for a particular record in a database

table having deterministically encrypted records. One way to obtain the result is

to encrypt the query record using the same cryptosystem and key, and then scan

the table to find a matching ciphertext. Nonetheless, deterministic cryptoystems

have a major drawback: Although at first the original messages might appear

secure, it is possible to learn, for instance, the distribution of a database whose

records are deterministically encrypted. This learning itself might be considered an

unacceptable information leakage in sensitive applications.

Contrarily, given the same input (m0,m1 such that m0 = m1), probabilistic cryp-

tosystems [39] yield different outputs with high probability (E(m0) , E(m1)). This

is a necessary condition to the concept of semantic security [38] (or indistinguisha-

bility), which states that, given a ciphertext E(m), no information can be obtained

about the message m with non-negligible probability.

Whilst having great utility, due to the aforementioned properties, deterministic

cryptosystems can be target of a number of statistical attacks [15, 59, 61]. On the

other hand, probabilistic cryptosystems are generally more secure, but they are also

less flexible. Although the decision about what cryptosystem to use depends on

the application, probabilistic cryptosystems are usually preferred when processing

highly sensitive data.

2.5 Homomorphic Encryption

Other than protect the data, in the case of set similarity joins, it is also important to

be able to perform secure similarity computation. To do so, it is necessary to encrypt

the data in a way that it can be manipulated. Homomorphic encryption schemes

can offer this kind of manipulation while providing the security of probabilistic

encryption [32, 83].

For example, consider an encryption algorithm, E, its decryption counterpart,

D, and two messages, m1 and m2. A cryptosystem having the homomorphic ad-
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ditive property would allow us to sum the corresponding ciphertexts, E(m1) and

E(m2), and the decryption would yield the sum of the original messages: D(E(m1)⊕

E(m2)) = m1 + m2, where ⊕ denotes the homomorphic addition operation.

By being able to do homomorphic additions and multiplications over a cipher-

text, one can combine these two basic operations using a logic circuit and do more

complex procedures. Although having a system offering both homomorphic ad-

dition and homomorphic multiplication was something desired for a long time, it

was not until 2009 that the first fully homomorphic encryption scheme was cre-

ated [36]. Since then, a number of improvements to the original work were pro-

posed [8, 37, 71], and we use one of such improvements, the BGV scheme [8], due

to its efficiency when working with large plaintext spaces [19].
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Chapter 3

Related Work

This chapter presents the work that relates to this dissertation, describing their ap-

proaches and highlighting their contributions. First, we survey studies regarding

efficiency and then focus on the privacy-preservation facet of set similarity joins.

After that, we establish the position of this dissertation in relation to the existing

research.

3.1 Efficient Similarity Joins

Due to the diversification and growth of data seen in recent years, using similarity

joins on large datasets has become an usual task. The straightforward approach is to

iterate over both relations in a nested-loop fashion and compare the similarity of all

the pairs. However, this method has quadratic complexity and does not scale well in

the case of large datasets. In order to improve the efficiency of this similarity joins,

it is desirable to avoid comparing all pairs, focusing only on the ones that are more

likely to be similar.

3.1.1 Filter-verification Framework

A common way to do reduce the computational cost of set similarity joins is to

follow the filter-verification framework, which first filters pairs of records according

to a specified aspect and then calculates similarity values, verifying which pairs are

actually similar.

Based on this filter strategy, two of the most important and widely used methods

are the length filter [41] and the prefix filter [14].
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Length Filter

The length filter [41] considers that two records cannot be similar if their lengths

are too different. The original work used string lengths to do such filtering, but the

same idea can be used in the case of sets. Although in this dissertation we adapt the

conditions in (3.1) to consider the cardinality of sets instead of lengths, we keep the

original name of the technique in the remainder of the explanation. Formally, using

the Jaccard similarity threshold θ and the cardinalities of sets r and s as |r| and |s|, a

pair must satisfy the following conditions to pass the length filter:

θ|s| ≤ |r| ≤
|s|

θ
(3.1)

For example, if θ = 0.8 and |r| = 10, it is not possible for r to be similar to sets

whose cardinality is greater than 12 or lesser than 8. Because of this, we can prune

pairs composed by r and such sets.

Prefix Filter

The prefix filter [14] sorts elements in all sets according to a global order and selects

the first p = b(1 − θ)|r|c + 1 elements as the prefix for set r. If there is no overlap

between prefixes of a pair, it is not necessary to calculate the similarity of that pair.

For improved efficiency, one can construct an inverted index using the prefixes from

one relation, thus reducing the number of prefix comparisons.

To illustrate the prefix filter, consider the steps in Fig. 3.1. This example uses

four sets whose elements are words (Fig. 3.1a). In Fig. 3.1b, these sets are sorted

using a global order. We used the alphabetical order, but different orders can also

be used (e.g., TF-IDF). Then, the prefixes are calculated based on the similarity

threshold and the cardinality of the set. For set r0, the first p = b(1 − θ)|r0|c + 1 =

b(1−0.8)5c+1 = 2 elements form its prefix (Fig. 3.1c). Finally, instead of comparing

prefixes in a nested-loop way, it is possible to create an index using the prefixes from

one relation (Fig. 3.1d), and compare the prefixes from the other relation with the

index. As result, the pairs (r1, s0) and (r1, s1) are pruned since the prefixes of sets in

those pairs have no overlap.

Section 5.3.6 contains more practical details regarding length and prefix filters,

as well as an in-depth discussion about how such filters can improve the perfor-

mance of set similarity joins over encrypted data.
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r0: {smart, city, safe, nation, idea}

r1: {idea, secure, smart, people, safe}

s0: {smart, city, nation, idea}

s1: {country, smart, safe, city, people}

(a) Sets from relations R and S .

r0: {city, idea, nation, safe, smart}

r1: {idea, people, safe, secure, smart}

s0: {city, idea, nation, smart}

s1: {city, country, people, safe, smart}

(b) Sets’ elements sorted according to alphabetical

order.

r0: {city, idea}

r1: {idea, people}

s0: {city}

s1: {city, country}

(c) Prefixes of each set.

city → s0, s1

country → s1

(d) Inverted index built using

prefixes from relation S .

Figure 3.1: Example of prefix filter.

Other Filter Approaches

Other than the length and prefix filters, there are proposals which explore other fil-

ters (e.g., suffix filter [118] and position-enhanced length filter [74]), data partition-

ing methods [26, 72] and other properties of the data, like set relations [112, 114].

For instance, Wang et al. [114] explored relations between sets to reduce the filter

phase. They used such relations to skip unnecessary index probing and to incre-

mentally calculate similarity values.

A survey done by Jiang et al. [55] examined a number of string similarity join

approaches. The majority of these contributions focus on the elimination of un-

necessary comparisons and adopt the filter-verification approach [2, 14, 41, 64, 88,

92, 111, 113, 117, 118]. The evaluated algorithms were divided into categories, de-

pending on the similarity metric they use. In the particular case of Jaccard sim-

ilarity, AdaptJoin [111] and PPJoin+ [118] yielded the best results. The survey

included differences concerning the performance of algorithms based on the size of

the dataset and on the length of the joined strings. Jiang et al. [55] also pointed out

the necessity for disk-based algorithms to deal with really large datasets that do not
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fit in memory.

A more recent survey done by Mann et al. [75] performed an extensive ex-

perimental evaluation to compare many of the existing similarity join works: All-

Pairs [2], PPJoin [119], PPJoin+ [118], GroupJoin [7], MPJoin [88], PEL [74] and

AdaptJoin [111]. The survey explored how the filtering techniques used by the

different algorithms affect the overall performance. The results showed that All-

Pairs [2], PPJoin [119] and GroupJoin [7] have the best performance in a number

of different datasets. Mann et al. [75] concluded that, since the verification phase is

usually fast, complex techniques that have high pruning power are rarely competi-

tive due to their large overhead during the filter phase.

3.1.2 Parallel Similarity Joins

Instead of solely focusing on the reduction of pairs to verify, other works concen-

trate on taking advantage of parallel processing to produce more scalable similarity

join algorithms [5, 25, 69, 77, 87, 89, 120, 122].

Among these, Vernica et al. [87] proposed a work based on PPJoin+ [118] and

used MapReduce [24] to distribute the processing among nodes in CPU clusters,

discussing ways to partition the dataset among nodes in order to achieve a good

load balancing, as well as methods to control the amount of data kept in-memory

during the processing. Metwally et al. [77] claimed speedups of up to 30 times when

compared to the work of Vernica et al. [87]. Such improvements were possible due

to eliminating the scalability bottleneck caused by prefix filter in a MapReduce

setting.

Although the similarity join is a thoroughly discussed topic, works utilizing ac-

celerators, like GPUs, for the processing speedup are not numerous [5, 69]. Lieber-

man et al. [69] mapped the similarity join operation to a sort-and-search problem

and used well-known algorithms and primitives for GPUs to perform these tasks.

After applying the bitonic sort algorithm to create a set of space-filling curves from

one of the relations, they processed each record of the other relation in parallel, ex-

ecuting searches in the space-filling curves. The similarity between the records was

calculated using the Minkowski metric.

Böhm et al. [5] presented two GPU-accelerated nested-loop join (NLJ) algo-

rithms to perform the similarity join operation, and used Euclidean distance to cal-

culate the similarity in both cases. The best of the two methods was the index-

supported similarity join, which has a preprocessing phase to create an index struc-

ture based on directories. The authors reported that the GPU version of the indexed-

supported similarity join achieved an improvement of 4.6 times when compared to
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its serial CPU version.

3.2 Privacy-preserving Similarity Joins

Despite several studies that attempted to improve similarity joins in terms of perfor-

mance and accuracy, there are other requirements that create new challenges related

to similarity joins. For instance, as the trend of outsourcing data and processing

to the cloud grows, the number of concerns about the privacy and security of such

data also rise. Even though cloud storage services offer data confidentiality and

protection against outside attacks, occurrences of inside threats and leaks indicate

that sensitive information should receive extra attention. In this context, privacy-

preserving computation has been receiving increasing attention due to its goal of

not only protecting the data itself, but also preventing inferences that can ultimately

harm the parties involved in a given multi-party protocol [16, 58].

Although focusing in a different application, Vatsalan et al. [107] defined a

comprehensive taxonomy for privacy-preserving record linkage that identifies pri-

vacy aspects that are also common to similarity joins: number of parties, adversary

model and privacy techniques. In particular, the listed privacy techniques include

secure hashing encoding [30], secure multi-party computation [123], phonetic en-

coding [57], anonymization [78], Bloom filters [4] and differential privacy [31].

Among these techniques, we focus on secure multi-party computation due to its

security assurances based on strong cryptographic schemes and its applicability to

the case of similarity joins [70, 85, 101].

3.2.1 Computing on Encrypted Data

The combination of multi-party computation and encryption as the way to securely

perform a given computation is considered by many works [43, 44, 52, 63, 84, 93,

96, 104–107]. Regarding the processing of encrypted data stored in relational

databases, most existing proposals make use of different cryptosystems to allow

different operations [44, 84, 93, 104].

For instance, Popa et al. designed CryptDB [84], a system that allows SQL

queries over encrypted data. The basic flow of execution of CryptDB is as follows:

(1) The data owner encrypts their data and send them to the cloud server. (2) Users

can then send plaintext queries to a proxy, which parses the query and rewrites it to

a secure format by encrypting variables and changing column names. (3) The proxy

sends the query to the cloud server, which executes it and returns the encrypted re-
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sult to the proxy. (4) The proxy decrypts the results and sends them to the users.

The implementation is done by user-defined functions incorporated to MySQL [79].

Each record is expanded in a number of new columns that hold the different en-

cryptions of the record. The cryptosystems used include: probabilistic (AES [22]

or Blowfish [95] in CBC mode with a random initialization vector), deterministic

(Blowfish or AES in CMC mode), order-preserving encryption, homomorphic en-

cryption (Paillier [83]) using ciphertext packing, and word search (SEARCH [102]).

The evaluation uses the TPC-C [62] workload and shows a reasonable 21–25% loss

in throughput and a storage overhead of about 3.76 times compared to when using

plaintext data.

Other systems have been developed based on CryptDB, focusing on different

aspects of databases, like analytical processing [104], attribute-based access con-

trol [93] and data encrypted using different keys [44]. Nonetheless, none of them

consider similarity-related queries.

Despite having a different focus, works related to privacy-preserving similarity

calculation can also be found in the field of record linkage [43,52,63,96,105–107].

They explore concepts and techniques that can be also used in the context of set

similarity joins, like how to represent and compute the similarity between encrypted

data items. For example, Schnell et al. [96] tackled the problem of securely link-

ing identifiers that might contain errors by using Bloom filters [4] generated using

cryptographic hash functions (e.g., MD5 [90] and SHA-1 [34]).

3.2.2 Privacy-preserving Similarity Search

Other researchers focus on the similarity search problem, and not joins [11, 20, 35,

60, 65, 109, 116, 124].

For instance, Kuzu et al. [60] devised a method to perform similarity search over

encrypted data by using locality sensitive hashing (LSH). The similarity searchable

encryption scheme used is a non-deterministic method that can generate a trapdoor

for a feature of a particular data item. A secure index is created for the data items

and it is used to find items that have a specific feature. Although other works also

explore the use of trapdoors to perform the similarity computation, they usually

have an overhead associated with computation and transferring of trapdoors.

In another study about privacy-preserving similarity search, Wang et al. [108]

used Bloom filters [4] to perform privacy-preserving similarity search, exploring

locality-sensitive hashing to preserve the similarity between the original records.
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3.2.3 Privacy-preserving Similarity Joins

Up to date, there is not a large number of proposals that tackle the problem of

privacy-preserving similarity joins [97, 125]. Although focusing on the privacy-

preserving record linkage problem, Sehili et al. [97] adapted PPJoin [119] to data

encoded in Bloom filters and to the GPU architecture, achieving speedups of 20

times compared to sequential implementations. Since their data representation was

based on the encryption strategy by Schnell et al. [96] (i.e., Bloom filters constructed

using deterministic functions), their scheme was also susceptible to common statis-

tical attacks [15].

Yuan et al. [125] explored the combination of locality-sensitive hashing

(LSH) [53] and searchable symmetric encryption (SSE) [21]. First, one of the

parties, the data owner, creates a LSH-based index. Then, the client generates

tokens to probe the index, and count the number of LSH collisions that happen for a

given token. If this number is greater than a given threshold, the pair is considered

similar. They proposed different schemes that try to achieve a balance between

security and performance, using a client cache to avoid sending repeated tokens

and hiding the distribution of the relations. Despite having good performance, the

security of the system relies on deterministic pseudo-random functions and might

not be secure enough for highly sensitive applications.

3.3 Position of this Dissertation

This dissertation addresses two important aspects of set similarity joins: efficiency

and security. The main objective is to enable fast processing of large datasets and to

protect the privacy of sensitive data during this processing. To this end, we propose

solutions that answer these challenges by harnessing recent technologies, namely

general-purpose processing on GPUs and fully homomorphic encryption.

Concerning efficiency, our first solution exploits the massive parallel process-

ing power provided by GPUs and achieve high speedups in the processing of set

similarity joins. The main characteristic that discerns our work from other simi-

larity join schemes that use GPUs is the effective use of MinHash [9] to overcome

challenges inherent to the use of GPUs, especially the memory limitations.

Regarding security, we design a novel two-party set similarity join protocol that

is based on the strong security guarantees of modern fully homomorphic cryptogra-

phy schemes. By leveraging the threshold Tversky index [99], the solution outputs

similar pairs without leaking the similarity value between them. In addition, we

present the adaptation of established filter strategies to a privacy-preserving con-

19



text, thus overcoming performance penalties of homomorphic cryptosystems. To

the best of our knowledge, this is the first protocols to apply the considerably recent

fully homomorphic cryptosystems to execute similarity joins.

We expect our contributions to aid in the processing of large datasets and to add

to the growing area of secure processing in untrusted environments.
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Chapter 4

GPU Acceleration of Set Similarity

Joins

In this chapter, we propose a scheme for efficient set similarity joins. Our solution

takes advantage of the massive parallel processing offered by GPUs. Additionally,

we employ MinHash to estimate the similarity between two sets in terms of Jac-

card similarity. By exploiting the high parallelism of GPUs and the space efficiency

provided by MinHash, we can achieve high performance without sacrificing accu-

racy. Experimental results show that our proposed method is more than two orders

of magnitude faster than the serial version of CPU implementation, and 25 times

faster than the parallel version of CPU implementation, while generating highly

precise query results.

4.1 Introduction

One of the major drawbacks of a set similarity join is that it is a computationally

demanding task, especially considering the rapidly increasing sizes of datasets seen

nowadays. For this reason, many researchers have proposed different set similarity

join processing schemes [92, 111, 118]. Among them, it has been shown that par-

allel computation is a cost-effective option to tackle this problem [77, 87], notably

with the use of Graphics Processing Units (GPUs), which have been gaining much

attention due to their performance in general processing [82].

Nonetheless, there are numerous technical challenges when performing set sim-

ilarity join using GPUs. First, how to deal with large datasets using GPU’s memory,

which is limited up to a few GBs in size. Second, how to make the best use of the

21



high parallelism of GPUs in different stages of the processing (e.g., similarity com-

putation and the join itself). Third, how to take advantage of the different types

of memories on GPUs, such as device memory and shared memory, in order to

maximize the performance.

We propose a new scheme of set similarity join on GPUs. To address the afore-

mentioned technical challenges, we employ MinHash [9] to estimate the similarity

between two sets in terms of their Jaccard similarity. MinHash is known to be a

space-efficient algorithm to estimate the Jaccard similarity, while making it possi-

ble to maintain a good trade-off between accuracy and computation time. Moreover,

we carefully design data structures and memory access patterns to exploit the GPU’s

massive parallelism and achieve high speedups. Experimental results show that our

proposed method is more than two orders of magnitude faster than the serial ver-

sion of CPU implementation, and 25 times faster than the parallel version of CPU

implementation. In both cases, we assure the quality of the results by maximizing

precision and recall values. We expect that such contributions can be effectively

applied to process large datasets in real-world applications.

4.2 Estimation of the Jaccard Similarity

Although conceptually simple, the computation of Jaccard similarity (explained in

Sec. 2.2) requires a number of pairwise comparisons among the elements from dif-

ferent sets to identify common elements, which incurs a long execution time, par-

ticularly when the sets being compared are large. In addition, it is necessary to store

the whole sets in memory, which can require prohibitive storage [68].

To address the aforementioned problems, Broder et al. proposed a technique

called MinHash (Min-wise Hashing) [9]. Its main idea is to create signatures for

each set based on its elements and then compare the signatures to estimate their

Jaccard similarity. If two sets have many coinciding signature parts, they have a

high degree of similarity with high probability. In this way, it is possible to estimate

the Jaccard similarity without conducting costly scans over all elements. In addition

one only needs to store the signatures instead of all the elements of the sets, which

greatly contributes to reduce the required storage.

After its introduction, Li et al. suggested a series of improvements for the Min-

Hash technique related to memory use and computation performance [66–68]. Our

proposal is based on the latest of those improvements, namely, One Permutation

Hashing [67].

In order to estimate the similarity of the documents in Figure 2.1 using One
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r0 r1 s0 s1

database 1 0 1 0

transactions 1 0 1 0

are 1 0 1 1

crucial 1 0 0 0

important 0 1 1 0

gains 0 1 0 0

using 0 1 0 0

gpu 0 1 0 1

fast 0 0 0 1

(a) Before row permutation

r0 r1 s0 s1

fast 0 0 0 1

important 0 1 1 0

gains 0 1 0 0

database 1 0 1 0

are 1 0 1 1

crucial 1 0 0 0

gpu 0 1 0 1

using 0 1 0 0

transactions 1 0 1 0

bin b0

bin b1

bin b2

(b) After row permutation

Figure 4.1: Characteristic matrices constructed based on the documents from Fig-

ure 2.1, before and after a permutation of rows.

Permutation Hashing, first we change their representation to a data structure called

characteristic matrix (Figure 4.1a), which assigns the value 1 when a token repre-

sented by a row belongs to a document represented by a column, and 0 when it does

not.

After that, in order to obtain an unbiased similarity estimation, a random per-

mutation of rows is applied to the characteristic matrix, followed by a division of

the rows into partitions (henceforth called bins) of approximate size (Figure 4.1b).

However, since the actual permutation of rows in a large matrix constitutes an ex-

pensive operation, in practice, MinHash uses hash functions to simulate such per-

mutation.

Compared to the original MinHash approach [9], One Permutation Hashing

presents a more efficient strategy for computation and storage, since it computes

only one permutation instead of a few hundreds. For example, considering a dataset

with D (e.g., 109) features, each permutation emulated by a hash function would

require a an array of D positions. Considering a large number k (e.g., k = 500)

of hash functions, a total of D × k positions would be needed for the scheme, thus

making the storage requirements impractical for many large-scale applications [67].

For each bin, each document has a value that will compose its signature. This

value is the index of the row containing the first 1 (scanning the matrix in a top-down

fashion) in the column representing the document. For example, the signature for

the document s0 is 1, 3 and 8. It can happen that a bin for a given document does not

have any value (e.g., the first bin of set r0), and this is also taken into consideration

during the similarity estimation. Figure 4.2 shows a data structure called signature
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b0 b1 b2

R0 * 3 8

R1 1 * 6

S 0 1 3 8

S 1 0 4 6

Figure 4.2: Signature matrix, with columns corresponding to the bins composing

the signatures of documents, and rows corresponding to the documents themselves.

The symbol * denotes an empty bin.

matrix, which contains the signatures obtained for all the documents.

Finally, the similarity between any two documents is estimated by Eq. 4.1,

where Nmat is the number of matching bins between the signatures of the two doc-

uments, b represents the total number of bins composing the signatures, and Nemp

refers to the number of matching empty bins.

Sim(X,Y) =
Nmat

(b − Nemp)
(4.1)

The estimated similarities for the given example are Sim(r0, s0) = 2/3 = 0.67,

Sim(r0, s1) = 0/3 = 0, Sim(r1, s0) = 1/3 = 0.33 and Sim(r1, s1) = 1/3 = 0.33.

Even in this simple example, the estimated values can are close to the real Jaccard

similarities previously calculated (i.e., 0.67, 0.17, 0.14 and 0.17). In practical terms,

using more bins yields a more accurate estimation, but it also increases the size of

the signature matrix.

Let us observe an important characteristic of MinHash. Since the signatures

are independent of each other, it presents a good opportunity for parallelization.

Indeed, the combination of MinHash and parallel processing using GPUs has been

considered by Li et al. [68], as they showed a reduction of the processing time by

more than an order of magnitude in online learning applications. While their focus

was the MinHash itself, here we use it as a tool in the similarity join processing.

4.3 Efficient Similarity Joins

In the following discussion, we consider the sets to be text documents stored on

disk, but the solution can be readily adapted to other types of data. We also as-

sume that techniques to prepare the data for processing (e.g., stop-word removal
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Figure 4.3: System’s workflow.

and stemming) are out of our scope, and should take place before the similarity join

processing on GPU.

Figure 4.3 shows the workflow of the proposed scheme. First, the system re-

ceives two collections of documents representing relations R and S . After that, it

executes the three main steps of our solution: preprocessing, signature matrix com-

putation and similarity join. Finally, the result can be presented to the user after

being properly formatted.

4.3.1 Preprocessing

In the preprocessing step, we construct a compact representation of the characteris-

tic matrix, since the original one is usually highly sparse. By doing so, the amount

of data to be transferred to the GPU is greatly reduced (more than 95% for the

datasets used in the experimental evaluation in Section 4.4).

This representation is based on the Compressed Row Storage (CRS) format [42],

which uses three arrays: var, which stores the values of the nonzero elements of the

matrix; col ind, that holds the column indexes of the elements in the var array; and

row ptr, which points to the locations in the var array that start a row in the matrix.

Considering that the nonzero elements of the characteristic matrix have the same

value, 1, there is only need to store their positions. Figure 4.4 shows such represen-

tation for the characteristic matrix of the previous example (Fig. 4.1a). The array
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r0 r1 s0 s1

doc start 0 4 8 12 15

doc tok 0 1 2 3 4 5 6 7 0 1 2 4 2 7 8

Figure 4.4: Compact representation of the characteristic matrix.

r0 r1 s0 s1

0 4 8 12 15

0 1 2 3 4 5 6 7 0 1 2 4 2 7 8

Figure 4.5: Computation of the signature matrix based on the characteristic matrix.

Each GPU block is responsible for one document, and each thread is assigned to

one token.

doc start holds the positions in the array doc tok where the documents start, and

the array doc tok shows what tokens belong to each document.

After its construction, the characteristic matrix is sent to the GPU, and we as-

sume it fits completely in the device memory. If the characteristic matrix does not

fit in the device memory, it is possible to process it in a nested-block fashion. In ad-

dition, the overlapping of data transfer and processing can also contribute to handle

larger datasets.

4.3.2 Signature Matrix Computation

Once the characteristic matrix is in the GPU’s device memory, the next step is to

construct the signature matrix. Algorithm 1 shows how we parallelize the MinHash

technique, and Fig 4.5 illustrates this processing. In practical terms, one block is

responsible for computing the signature of one document at a time. Each thread in

the block (1) accesses the device memory, (2) retrieves the position of one token

of the document, (3) applies a hash function to it to simulate the row permutation,

(4) calculates which bin the token will fit into, and (5) updates that bin. If more

than one value is assigned to the same bin, the algorithm keeps the minimum value

(hence the name MinHash).

During its computation, the signature for the document is stored in the shared

memory, which supports fast communication between the threads of a block. This is

advantageous in two aspects: (1) It allows fast updates of values when constructing

the signature matrix, and (2) since different threads can access sequential memory
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Algorithm 1: Parallel MinHash.

input : characteristic matrix CMt×d (t tokens, d documents), number of bins

b

output: signature matrix SMd×b (d documents, b bins)

1 binSize ← bt/bc;

2 for i ← 0 to d in parallel do // executed by blocks

3 for j ← 0 to t in parallel do // executed by threads

4 if CM j,i = 1 then

5 h ← hash(CM j,i);

6 binIdx ← bh/binSizec;

7 SMi,binIdx ← min(SMi,binIdx, h);

8 end

9 end

10 end

positions, it favors coalesced access to the device memory when the signature com-

putation ends. Accessing the device memory in a coalesced manner means that a

number of threads will access consecutive memory locations, and such accesses can

be grouped into a single transaction. This makes the transfer of data from and to the

device memory much faster.

The complete signature matrix is laid out in the device memory as a single

array of integers. Since the number of bins per signature is known, it is possible to

perform direct access to the signature of any given document.

After the signature matrix is constructed, it is kept in the GPU’s memory to be

used in the next step: the join itself. This also minimizes data transfers between

CPU and GPU.

4.3.3 Join

The next step is the similarity join, and it utilizes the results obtained in the previ-

ous phase, i.e., the signatures generated using MinHash. To address the similarity

join problem, we choose to parallelize the nested-loop join (NLJ) algorithm. The

nested-loop join algorithm iterates through the two relations being joined and check

whether the pairs of records, one from each relation, comply with a given predicate.

For the similarity join case, this predicate is that the records of the pairs must have

a degree of similarity greater than a given threshold.

Algorithm 2 outlines our parallelization of the NLJ for GPUs. Initially, each
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Algorithm 2: Parallel nested-loop join.

input : signature matrix SMd×b (d documents, b bins), similarity threshold θ

output: pairs of sets whose similarity is greater than θ

1 foreach r ∈ R in parallel do // executed by blocks

2 r signature ← SMr;// read the row corresponding to the

signature of r and store it in the shared memory

3 foreach s ∈ S in parallel do // executed by threads

4 coinciding minhashes ← 0;

5 empty bins ← 0;

6 for i ← 0 to b do

7 if r signaturei = SMs,i then

8 if r signaturei is empty then

9 empty bins ← empty bins + 1;

10 else

11 coinciding minhashes ← coinciding minhashes + 1;

12 end

13 end

14 end

15 pair similarity ← coinciding minhashes/(b − empty bins);

16 if pair similarity ≥ θ then

17 output(r, s);

18 end

19 end

20 end

block reads the signature of a document from collection R and copies it to the shared

memory (line 2, Fig. 4.6a). Then, threads compare the value of each bin of that

signature to the corresponding signature bin of a document from collection S (lines

3–7), checking whether they match and whether the bin is empty (lines 8–12). The

access to the data in the device memory is done in a coalesced manner, as illustrated

by Fig. 4.6b. Finally, using Equation 4.1, if the comparison yields a similarity

greater than the given threshold (line 15–16), that pair of documents belongs to the

final result (line 17).

As highlighted by He et al. [47], outputting the result from a join performed in

the GPU raises two main problems. First, since the size of the output is initially

unknown, it is also not possible to know how much memory should be allocated on

the GPU to hold the result. In addition, there may be conflicts between blocks when
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r0 * 3 8

r1 1 * 6

s0 1 3 8

s1 0 4 6

(a) Block level

* 3 8 1 3 8

(b) Thread level

Figure 4.6: Parallelization of NLJ.

writing on the same locations of the device memory. For this reason, He et al. [47]

proposed a join scheme for result output that allows parallel writing, which we also

adopt in our implementation.

Their join scheme performs the join in three phases:

1. The join is run once, and the blocks count the number of similar pairs found

in their portion of the execution, writing this amount in an array stored in

the device memory. There is no write conflict in this phase, since each block

writes in a different position of the array.

2. Using the scan primitive, it is possible to know the correct size of memory

that should be allocated for the results, as well as where the threads of each

block should start writing the similar pairs they found.

3. The similarity join is run once again, outputting the similar pairs to the proper

positions in the allocated space.

This process is illustrated in Fig. 20. First, four blocks write the size of their

results in the first array. Then, the scan primitive gives the starting positions where

each block should write. Finally, each block writes its results in the last array.

After that, depending on the application, the pairs can be transferred back to

the CPU and output to the user or kept in the GPU for further processing by other

algorithms.

4.4 Experimental Evaluation

In this section, we present the experiments performed to evaluate our proposal.

First, we introduce the used datasets and the environment on which the experiments
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0 4 6 6

B0 B0 B0 B0 B1 B1 B3 B3

Figure 4.7: Example of the three-phase join scheme created by He et al. [47].

Table 4.1: Characteristics of datasets.

Dataset Number of Sets Average Number of Elements per Set

IMAGES 68,040 32

ABSTRACTS 233,445 165

TRANSACTIONS 1,692,082 177

were conducted. After that, we show the results related to performance and accu-

racy. Finally, we present other experiments related to parameter tuning and to the

behavior when varying characteristics of relations.

4.4.1 Setup

To demonstrate the range of applicability of our work, we chose datasets from three

distinct domains (Table 4.1). The IMAGES dataset, made available at the UCI Ma-

chine Learning Repository1, consists of image features extracted from the Corel

image collection. The ABSTRACTS dataset, composed by abstracts of publications

from MEDLINE, were obtained from TREC-9 Filtering Track Collections2. Finally,

TRANSACTIONS is a transactional dataset available through the FIMI repository3.

From the original datasets, we randomly chose sets in order to create collections

R and S , whose sizes vary from 1,024 to 524,288 sets. Unless stated otherwise, all

1http://archive.ics.uci.edu/ml/datasets/
2http://trec.nist.gov/data/t9 filtering.html
3http://fimi.ua.ac.be/data/
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the experiments were performed using the same parameters and settings, including

the contents of the relations. The similarity threshold used was 0.8 and the number

of bins composing the documents’ signatures was 32.

The CPU used in our experiments was an Intel Xeon E5-1650 (6 cores, 12

threads) with 32GB of memory. The GPU was an NVIDIA Tesla K20Xm (2,688

scalar processors) with 6GB of memory. Regarding the compilers, GCC 4.4.7 (with

the flag -O3) was used for the part of the code to run on the CPU, and NVCC 6.5

(with the flags -O3 and -use fast math) compiled the code for the GPU. For the

parallelization of the CPU version, we used OpenMP 4.0 [81].

4.4.2 Performance Comparison

Figure 4.8, Fig. 4.9 and Fig. 4.10 present the execution time of our approach for

the three implementations (GPU, CPU Parallel and CPU Serial) using the three

datasets.

Let us first consider the MinHash part, i.e., the time taken for the construction

of the signature matrix. It can be seen from the results (Fig 4.8a, Fig. 4.8b and

Fig. 4.8c) that the GPU version of MinHash is more than 20 times faster than the

serial implementation on CPU, and more than 3 times faster than the parallel im-

plementation on CPU. These findings reinforce the idea that MinHash is indeed

suitable for parallel processing.

For the join part (Fig. 4.9a, Fig. 4.9b and Fig. 4.9c), the speedups are even

higher. The GPU implementation is more than 150 times faster than the CPU Serial

implementation, and almost 25 times faster than the CPU Parallel implementation.

The speedups of more than two orders of magnitude demonstrate that the NLJ al-

gorithm can benefit from the massive parallelism provided by GPU.

Measurements of the total time of execution (Fig. 4.10a, Fig. 4.10b and

Fig. 4.10c) show that the GPU implementation achieves speedups of approximately

120 times when compared to the CPU Serial implementation, and approximately

20 times when compared to the CPU Parallel implementation.

The analysis of performance details provides some insights into why the overall

speedup is lower than the join speedup. Table 4.2, Tab. 4.3 and Tab. 4.4 present the

breakdown of the execution time for each of the datasets used. Especially for larger

collections, the join step is the most time consuming part for both CPU implemen-

tations. However, for the GPU implementation, reading from data disk becomes the

bottleneck, as it is done in a sequential manner by the CPU. Therefore, since the

overall measured time includes reading data from disk, the speedup achieved is less

than the one for the join step alone. A mentioned in Sec. 4.3.1, overlapping data

31



10
−4

10
−3

10
−2

10
−1

10
0

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

|R|

E
la

p
s
e
d
 t
im

e
 (

s
)

CPU (Serial)
CPU (Parallel)
GPU

(a) IMAGES

10
−4

10
−3

10
−2

10
−1

10
0

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

|R|

E
la

p
s
e
d
 t
im

e
 (

s
)

CPU (Serial)
CPU (Parallel)
GPU

(b) ABSTRACTS

10
−4

10
−3

10
−2

10
−1

10
0

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

|R|

E
la

p
s
e
d
 t
im

e
 (

s
)

CPU (Serial)
CPU (Parallel)
GPU

(c) TRANSACTIONS

Figure 4.8: MinHash performance comparison (|R| = |S |).
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Figure 4.9: Join performance comparison (|R| = |S |).
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Figure 4.10: Overall performance comparison (|R| = |S |).
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reading and processing can be help lessen the impact of such a bottleneck.

It can also be noted that the compact data structures used in the solution con-

tribute directly for the short data transfer time between CPU and GPU. In the case

of the CPU implementations, this transfer time does not apply, since the data stays

on the CPU throughout the whole execution.

4.4.3 Accuracy Evaluation

Since our scheme uses the MinHash technique to estimate the similarity between

sets, it is also important to confirm how accurate are the results obtained from it. We

evaluated the accuracy of the proposal in terms of precision and recall. Precision

relates to the fraction of really similar pairs among all the pairs retrieved by the

algorithm, and recall refers to the fraction of really similar pairs that were correctly

retrieved.

Table 4.5 presents the measurements of experiments in which we varied the

number of bins composing the signatures of the documents, showing the impact of

the number of bins on the number of similar pairs found, as well as on the perfor-

mance. As the number of bins increases, the number of similar pairs found nears

the number of really similar pairs, thus increasing the values of precision and recall.

On the other hand, increasing the number of bins also incurs a longer execution

time. Therefore, it is important to achieve a balance between accuracy and execu-

tion time. For the used datasets, using 32 bins offered a good trade-off, yielding the

lowest execution time without false positive or false negative results.

4.4.4 Other Experiments

We also conducted experiments varying other parameters of the implementation and

characteristics of the datasets. Fig. 4.11 shows that, in the GPU implementation,

varying the number of threads per block has little impact on the performance.

Figure 4.12 reveals that all three implementations are not greatly affected by

varying the similarity threshold. In other words, although the number of similar

pairs found changes, the GPU implementation is consistently faster than the other

two.

Table 4.6 shows the impact of the similarity threshold on precision and recall

levels. When the threshold is low, many pairs with a low degree of similarity are

also part of the result, thus increasing the number of false positives. This situation

is illustrated by the low precision value when the similarity threshold is 0.2.
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Table 4.2: Breakdown of the execution time in seconds when joining collections of

the same size (IMAGES dataset, |R| = |S | = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 47.7 47.2 47.4

Preprocessing 2.9 2.9 2.9

MinHash 0.034 0.053 0.332

Join 145 2,988 27,964

Data transfer 0.53 0 0

Total 197 3,040 28,016

Table 4.3: Breakdown of the execution time in seconds when joining collections of

the same size (ABSTRACTS dataset, |R| = |S | = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 201.5 200.5 198.4

Preprocessing 9.3 9.4 9.1

MinHash 0.037 0.151 1.033

Join 145 1,403 11,955

Data transfer 0.09 0 0

Total 359 1,615 12,167

Table 4.4: Breakdown of the execution time in seconds when joining collections of

the same size (TRANSACTIONS dataset, |R| = |S | = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 379.8 378.4 376.2

Preprocessing 15.9 16.1 15.6

MinHash 0.040 0.250 1.728

Join 147 1,513 13,323

Data transfer 0.21 0 0

Total 549 1,914 13,723
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Table 4.5: Impact of varying number of bins on precision, recall and execution time

(ABSTRACTS dataset, |R| = |S | = 65, 536).

Number of Bins Precision Recall Execution Time (s)

1 0.0000 0.9999 25.3

2 0.0275 0.9999 25.4

4 0.9733 0.9999 25.6

8 0.9994 0.9999 25.7

16 0.9998 1.0000 26.1

32 1.0000 1.0000 27.4

64 1.0000 1.0000 29.6

128 1.0000 1.0000 34.4

256 1.0000 1.0000 45.8

384 1.0000 1.0000 77.6

512 1.0000 1.0000 133.6

640 1.0000 1.0000 161.5

Additionally, we constructed different collections of sets by varying the number

of matching sets between them, i.e., the join selectivity. Figure 4.13 indicates that

varying the selectivity does not impact the join performance.

Finally, we also investigated the performance when joining collections of dif-

ferent sizes. Figure 4.14 shows the overall results when we vary the size of the

collection processed the outer loop. Similar results were found when varying the

size of the collection processed by the inner loop.

Table 4.6: Precision and recall varying similarity threshold (GPU implementation,

ABSTRACTS dataset, |R| = |S | = 8, 192).

Similarity Threshold Precision Recall

0.2 0.08 0.89

0.4 0.99 0.99

0.6 1.00 1.00

0.8 1.00 1.00

1.0 1.00 1.00

35



0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

p
s
e
d
 t
im

e
 (

s
)

GPU

(a) IMAGES

0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

p
s
e
d
 t
im

e
 (

s
)

GPU

(b) ABSTRACTS

0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

p
s
e
d
 t
im

e
 (

s
)

GPU

(c) TRANSACTIONS

Figure 4.11: Execution time varying the number of threads per GPU block (|R| =

|S | = 131, 072).

4.5 Summary

In this chapters, we have proposed a GPU-accelerated similarity join scheme that

uses MinHash in its similarity calculation step. Experiments have shown a speedup

of more than two orders of magnitude when compared to the sequential version

of the algorithm. Moreover, the high levels of precision and recall confirmed the

accuracy of our scheme.

The strongest point of GPUs is their superior throughput when compared to

CPUs. However, they require special implementation techniques to minimize mem-

ory access and data transfer. For this purpose, using MinHash to estimate the sim-

ilarity of sets is particularly beneficial, since it enables a parallelizable way to rep-

resent the sets in a compact manner, thus saving storage and reducing data transfer.

Furthermore, our implementation explored the faster GPU memories (i.e., registers

and shared memory) to diminish effects of memory stalls. This solution can aid in

the task of processing large datasets in a cost-effective way without ignoring the

quality of the results.

The main characteristic that discerns our work from the other similarity join

schemes for GPUs is the effective use of MinHash to overcome challenges inherent

to the use of GPUs for general-purpose computation, as emphasized in Sec 4.2.

Furthermore, to the best of our knowledge, our solution is the first one to couple

Jaccard similarity and GPUs to tackle the similarity join problem.
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Figure 4.12: Execution time varying the similarity threshold (|R| = |S | = 131, 072).
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Figure 4.13: Execution time varying the join selectivity (|R| = |S | = 131, 072).
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Figure 4.14: Overall performance comparisons varying the size of the outer relation.
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Chapter 5

Privacy-Preserving Set Similarity

Joins

Despite the numerous contributions regarding efficiency and performance of simi-

larity joins, the privacy of the data being joined also becomes an important aspect to

consider, as leaking sensitive information can result in grave consequences for indi-

viduals, enterprises and governmental organizations. In this chapter, we propose a

protocol for secure execution of similarity joins that is based on fully homomorphic

cryptosystems, which are resistant to a number of attacks and provide flexibility to

calculate the similarity between encrypted records. We also consider the adapta-

tion of filter techniques to improve the efficiency of the protocol by reducing the

number of record pairs that are compared. In addition, we exploit modern hardware

to parallelize the solution and evaluate the performance of the proposal using real

datasets.

5.1 Introduction

Although the main concerns related to similarity joins are usually focused on per-

formance, in some situations the security and the privacy of the data is paramount.

For instance, consider a scenario in which the administrative body of a particular

city wants to make a study regarding the health of the citizens. Analyzing data to

find common items from different sources may reveal patterns that can be used to

improve the health system of a particular region. To do so, it may be necessary to

gather data from different institutions, like hospitals, clinics and laboratories. Some

records might have subtle differences in the way they are stored, even though they
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might refer to the same entity. This is the case when a patient’s name has a typo in

one of the databases or the middle name is abbreviated. Joining these records based

on their similarity provides a way to take such differences into account and improve

the quality of the results.

Despite the efforts to enhance similarity joins in terms of both accuracy and

performance [111, 119], the privacy of the data being joined also becomes an im-

portant aspect to consider, as leaking sensitive information can result in grave con-

sequences for individuals and enterprises alike. In the aforementioned example,

medical records have information that, if leaked, could result in more expensive

insurance plans or discrimination against a particular individual. The possibility

of such harmful consequences raises security requirements for the use of sensitive

data. Regarding similarity joins, one of these requirement is that the result of the

join can be disclosed (i.e., the common records), but not the records that do not

belong to the result.

Encrypting data in a way that allows processing over ciphertexts has emerged

as a solution to this problem, as it considers both utility (i.e., the possibility of

similarity calculation) and security. Such a solution has been adopted by differ-

ent protocols to address applications like secure similarity search and record link-

age [60, 63, 65, 105], but it has not been much explored in the context of similarity

joins. Furthermore, the few existing works using encryption base their security on

deterministic cryptographic functions [97], which are vulnerable to statistical at-

tacks [15].

To address these limitations, we propose a two-party protocol that securely ex-

ecutes set similarity joins over encrypted data. Parties are able to identify common

records in their databases without disclosing the rest of their records. The encryp-

tion is done using a fully homomorphic cryptosystem, which provides semantic

security (thus avoiding statistical attacks) and enough flexibility to manipulate ci-

phertexts. This allows us to use the additive and multiplicative properties of such

schemes to calculate the similarity between pairs of encrypted records.

The similarity computation uses the threshold Tversky index [99], which is a

similarity measure that generalizes the Dice coefficient and the Jaccard similarity

index. The advantages of using the threshold Tversky index are two-fold. First,

it allows the calculation of similarity between encrypted records by using simple

operations, namely addition and multiplication of ciphertexts. Second, it does not

leak the similarity value itself, thus avoiding regression attacks.

Although useful, current fully homomorphic cryptosystems present limitations

in terms of performance. To address this drawback, we propose secure adapta-

tions of existing filter techniques (i.e., length filter and prefix filter [14,41]) that can
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prune pairs of highly dissimilar records, thus reducing the total number of compar-

isons done and the overall execution time. Furthermore, we explore parallelization

opportunities throughout the protocol in order to diminish the overhead created by

the use of fully homomorphic encryption.

Our contributions include:

• A two-party protocol for secure execution of similarity joins. The protocol

uses a semantically secure homomorphic cryptosystem that provides strong

security while offering ways to calculate similarity over encrypted data.

• Strategies to adapt consolidated filtering techniques to the context of en-

crypted data. These techniques aim at reducing the number of pairs to be

compared by the join step, thus improving the overall efficiency of the ap-

proach.

• Parallelization of the protocol to exploit modern hardware architecture and

improve the performance.

• Experimental evaluation of the proposal using real datasets, focusing on the

performance comparison between different optimizations.

In the remainder of this chapter, we utilize the notations summarized in Tab. 5.1.

5.2 Secure Similarity Calculation

Due to the limited number of operations offered by fully homomorphic cryptosys-

tems, the similarity computation should be done using only additions and multipli-

cations. This can be achieved by the threshold Tversky index [99].

The Tversky index (TIα,β), given by (5.1), can be seen as a generalization of the

more well-known Jaccard similarity (α = β = 1) and Dice coefficient (α = β = 1/2).

Considering a similarity threshold θ, if the Tversky index between two vectors is

equal to or greater than θ, then the vectors are deemed similar.

TIα,β(r, s) =
|r ∩ s|

|r ∩ s| + α|r \ s| + β|s \ r|
(5.1)

Shimizu et al. [99] proposed an extension to the Tversky index to securely cal-

culate the similarity between two chemical compound fingerprints represented by
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Table 5.1: Notations and acronyms used throughout the chapter.

Symbol Meaning

θ Jaccard similarity threshold (0.8 unless stated otherwise)

R (S ) Database relation R (S )

r (s) Record from relation R (S )
−→r (−→s ) Bit vector representing record r (s)

` Length of bit vector

|R| (|S |) Number of records in relation R (S )

|r| (|s|) Cardinality of set representing record r (s)

JS Jaccard similarity

λ Security parameter

E Encryption algorithm from the BGV scheme

D Decryption algorithm from the BGV scheme

m Plaintext message

q Modulus for the plaintext space

⊕ Homomorphic addition over ciphertexts

⊗ Homomorphic multiplication over ciphertexts

T I Tversky index

T I Threshold Tversky index

α, β, γ, Γ, θn, θd Threshold Tversky Index parameters

Pr(x) (Ps(x)) Polynomial representing record r (s)

RG (S G) Group of sets from relation R (S )

ψRG
(ψS G

) Cardinality of sets in group RG (S G)

ψRG
(ψS G

) Upper limit of interval of cardinalities in RG(S G)

ψ
RG

(ψ
S G

) Lower limit of interval of cardinalities in RG(S G)

p Length of prefix used in the prefix filter

bit vectors −→r and −→s (alternatively, −→r and −→s can be used to represent sets1 whose

elements are the positions having value 1 in the corresponding bit vector).

They pointed out that disclosing the computed similarity between two chemical

compound fingerprints can lead to regression attacks and compromise the protocol’s

security. To prevent such attacks, the result should only show whether a pair is

similar or not, instead of the pair’s similarity value. Based on this premise, Shimizu

et al. [99] defined the threshold Tversky index (TIα,β,θ):

Definition 3. Given the parameters α = µa/γ, β = µb/γ and the similarity threshold

1By abuse of the notation used to represent records, we use r and s to denote such sets.
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θ = θn/θd, the threshold Tversky Index TIα,β,θ between r and s is defined as:

TIα,β,θ(r, s) = Γ|r ∩ s| − θn(µa|r| + µb|s|) (5.2)

where Γ = (θd − θn)γ + θn(µa + µb).

Based on this definition, Lemma 1 shows how the threshold Tversky index pro-

vides a way to determine whether two data items are similar without disclosing the

similarity value itself.

Lemma 1. If the Tversky index of a pair is greater than or equal to a threshold θ,

then the threshold Tversky index using the same parameters is non-negative.

Proof.

TIα,β(r, s) ≥ θ

|r ∩ s|

|r ∩ s| + α|r s| + β|s r|
≥ θ

|r ∩ s|

|r ∩ s| + α|r| − α|r ∩ s| + β|s| − β|r s|
≥ θ

|r ∩ s|

|r ∩ s| + (1 − α − β) + α|r|β|s|
≥ θ

Considering the parameters, α =
µa

γ
, β =

µb

γ
, θ =

θn

θd
, then:

|r ∩ s|

|r ∩ s| + (1 −
µa

γ
−

µa

γ
) +

µa

γ
|r|

µb

γ
|s|
≥
θn

θd

θd|r ∩ s| ≥ θn

(

|r ∩ s|

(

1 −
µa

γ
−
µb

γ

)

+
µa

γ
|r| +

µb

γ
|s|

)

θd|r ∩ s| − θn|r ∩ s|

(

1 −
µa

γ
−
µb

γ

)

− θn

µa

γ
|r| − θn

µb

γ
|s| ≥ 0

γθd|r ∩ s| − θn|r ∩ s|(γ − µa − µb) − θnµa|r| − θnµb|s| ≥ 0

(γθd − γθn + µaθn + µbθn)|r ∩ s| − θn(µa|r| + µb|s|) ≥ 0

|r ∩ s|((θd − θn)γ + θn(µa + µb)) − θn(µa|r| + µb|s|) ≥ 0

As stated by Def. 3, assuming Γ = (θd − θn)γ + θn(µa + µb), then:

Γ|r ∩ s| − θn(µa|r| + µb|s|) ≥ 0

TIα,β,θ(r, s) ≥ 0

�
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Figure 5.1: Representation of text documents using bit vectors.

Although Shimizu et al. [99] used the threshold Tversky index to calculate the

similarity between chemical compound fingerprints, the method can be applied to

other kinds of data represented using bit vectors. For example, Fig. 5.1 shows doc-

uments (text data) that can be represented by sets of words and then mapped to bit

vectors. Each position of the bit vector represents a word found in a collection of

documents (i.e., the universe set), and that bit position has the value 1 if that word

is in the document corresponding to that vector having such a representation. Then,

it is possible to use the threshold Tversky index to calculate the similarity between

the documents. Considering a similarity threshold θ = 0.8 (θn/θd = 8/10 = 4/5),

α = β = γ = 1 (µa = µb = 1) and Γ = 9: TI1,1,0.8(r, s) = 9 · 4 − 4 · (5 + 4) = 0. Since

TI1,1,0.8(r, s) ≥ 0, r and s are considered similar, which can be confirmed by their

Jaccard similarity index (JS ): JS (r, s) = |r ∩ s|/|r ∪ s| = 4/5.

5.3 Secure Similarity Joins

As mentioned in Sec. 2.5, one way to preserve the privacy of the data processed by

similarity joins is to encrypt it before doing the processing. Among the possible

encryption methods, probabilistic cryptosystems offer strong security guarantees,

being resistant to a number of statistical attacks. On the other hand, they impose

limitations regarding the kind of operations that can be done using probabilistic

encrypted data.

In particular, as the same message is encrypted to different ciphertexts with high

probability, probabilistic cryptosystems make it difficult to perform comparisons. In

the case of similarity joins, it is desirable find records from different relations that

are more similar than a given threshold. Since the similarity calculation involves

comparisons, it cannot be done straightforwardly over data encrypted using proba-

bilistic encryption schemes. Nonetheless, by using probabilistic cryptosystems with
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homomorphic properties, it is possible to compute the similarity between encrypted

records.

5.3.1 Security Model

Our proposal addresses the problem of securely executing similarity joins in an un-

trusted environment, focusing on preserving the privacy of the relations that are

involved in the join. The protocol performs secure similarity joins has two honest-

but-curious parties: Alice and Bob. Their objective is to discover what data items

they have in common, while keeping the remainder of their datasets private. In

addition, in order to prevent regression attacks, it is also important to protect the

calculated similarity values themselves [99]. Considering these security require-

ments, the relations are encrypted using a probabilistic cryptosystem, thereby being

protected against frequency attacks.

The protocol is illustrated in Fig. 5.2. After agreeing on the initialization pa-

rameters, without loss of generality, suppose that Alice generates the private and

public key pair (Sec. 5.3.2). She shares the public key with Bob, so he can en-

crypt his data with the same key used by Alice to encrypt hers. Alice encrypts her

dataset (Sec. 5.3.3) and sends the ciphertexts to Bob, who does the computation

of the similarity between Alice’s and his data. Bob calculates the similarities be-

tween ciphertext pairs using the threshold Tversky index (Sec. 5.3.4) and returns to

Alice the ciphertexts corresponding to the threshold Tversky index values. Alice

uses her private key to decrypt these values (Sec. 5.3.7) and checks which values

are non-negative, which represent pairs that have similarity greater than the thresh-

old specified in the initialization phase. Finally, she shares these results with Bob.

At the end of the protocol, both parties have the result of the set similarity join

(i.e., pairs of sets whose similarity is greater than the specified threshold) without

learning the similarity values themselves.

5.3.2 Initialization

The initialization step consists of choosing the parameters used in the cryptosystem,

such as the security parameter λ and the modulus for the plaintext space q. After

that, Alice generates the private and public key pair. Also, in this step, the parties

select an appropriate similarity threshold for the application.
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Alice Bob

Agreement on λ, q, θ

pk

Epk(r),∀r ∈ R

Epk(TI(r, s)),∀r ∈ R,∀s ∈ S

{(r, s) : TI(r, s) ≥ 0}

{(r, s) : TIr,s ≥ 0} {(r, s) : TIr,s ≥ 0}

Figure 5.2: Secure two-party set similarity join protocol.

5.3.3 Encryption

As explained in Sec. 5.3.4, we assume that each record in the relations is a set

represented as a bit vector. Although it would be possible to create one ciphertext

per bit, our solution takes advantage of the encryption method provided by the BGV

scheme to create a single ciphertext that encrypts a whole bit vector.

More specifically, this method allows all bits of a vector to be embedded into a

polynomial, and the polynomial to be encrypted as a single ciphertext. For example,

considering r in Fig. 5.1, we obtain the following polynomial Pr(x) = 1 + x + x2 +

x3 + x4 by using the bits of r as coefficients of Pr(x). After that, Pr(x) is encrypted

as E(Pr(x)) following the BGV encryption scheme [8].

Although the limit of bits packed can be adjusted according to the parameters

chosen in the initialization, in some situations the size of the universe to which the

sets belong to can be very large (e.g., ` = 264 [33]). In such cases, techniques to

construct more compact representations of the sets may be used [9]. We highlight

that the choice of which technique to use does not affect the security of the protocol,

since the bit are encrypted after the bit vector is constructed.

In addition, since there will be less ciphertexts, this method allows us to reduce

the memory used, while keeping the same security level as encrypting the bits sep-

arately. It also supports a simpler way to calculate the similarity, as explained in

Sec. 5.3.4.
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Algorithm 3: Calculation of the encrypted threshold Tversky index.

input : E(Pr(x)), E(Ps(x)), E(P1(x)), E(Γ), E(µa), E(µb), E(θn)

output: E(T I(r, s))

1 E(|r ∩ s|) ← E(Pr(x)) ⊗ E(Ps(x))

2 E(|r|) ← E(Pr(x)) ⊗ E(P1(x))

3 E(|s|) ← E(Ps(x)) ⊗ E(P1(x))

4 E(T I1) ← E(|r ∩ s|) ⊗ E(Γ)

5 E(T I2) ← E(|r|) ⊗ E(µa) ⊗ E(θn) ⊗ E(−1)

6 E(T I3) ← E(|s|) ⊗ E(µb) ⊗ E(θn) ⊗ E(−1)

7 E(T I(r, s)) ← E(T I1) ⊕ E(T I2) ⊕ E(T I3)

5.3.4 Similarity Calculation

The similarity between two encrypted bit vectors is calculated using the threshold

Tversky index (Def. 3). This procedure is shown in Alg. 3, in which the symbols

⊕ and ⊗ denote homomorphic addition and multiplication operations. Other than

operations over the constant parameters (Γ, θn, µa, µb), there are three computations

done using ciphertexts: |r ∩ s|, |r|, |s|.

It is possible to obtain |r∩ s| by calculating the inner product between bit vectors

r and s. Although this could be done by a bit-wise multiplication between r and s,

followed by a summation of all bits in the resulting bit vector, the encryption method

detailed in Sec. 5.3.3 allows for a more efficient way to find the inner product value.

We can multiply the polynomial representing the bit vector r by the one representing

the bits of s in the inverse order (Alg. 3, line 1). As shown by Lemma 2, the value

of the inner product will then be the coefficient of the `-th term of the polynomial

resulting from the multiplication, where ` is the length of the bit vectors.

Lemma 2. The inner product between two `-dimensional vectors can be found in

the `-th coefficient of a polynomial obtained from the multiplication between the

first vector’s polynomial representation and the second vector’s polynomial repre-

sentation in the inverse order.

Proof. Consider two `-dimensional vectors, a = (a0, a1, . . . , a`−1) and

b = (b0, b1, . . . , b`−1). We construct a polynomial for each of the vectors us-

ing the values in each position as coefficients of the polynomials. In the case of a,

we use the values in the order they appear: Pa(x) = a0 + a1x + · · · + a`−1x`−1. In the

case of b, we use the values in the inverse order: Pb(x) = b`−1 + b`−2x+ · · ·+ b0x`−1.

When multiplying Pa(x) and Pb(x), the terms of the result have the form akxk ·
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bkx`−1−k = akbkx`−1. Using this fact, we observe that the `-th coefficient (having

degree ` − 1) of the resulting polynomial gives the inner product between a and b:















`−1
∑

k=0

akbk















x`−1

�

Using the example in Fig. 5.1, consider the polynomial created from r, Pr(x) =

1+x+x2+x3+x4, and the inverted polynomial created from s, Ps(x) = 1+x+x3+x4.

In this case, since ` = 5, |r ∩ s| is given by the 5th coefficient of Pr(x) · Ps(x) =

1 + 2x + 2x2 + 3x3 + 4x4 + 3x5 + 2x6 + 2x7 + x8, i.e., |r ∩ s| = 4. In practice, as seen

in Alg. 3, this operation is done using the encrypted polynomials.

To find |r|, one can just sum the bits of r. However, that would require `−1 inde-

pendent homomorphic additions, which can be reduced to a inner product between

r and a bit vector containing only bits 1. Using polynomials, this means multiply-

ing Pr(x) by P1(x), where P1(x) is a polynomial having all coefficients equal to 1

(Alg. 3, lines 2–3). The resulting polynomial has the value of the inner product as

its `-th coefficient. Still using the same example, |r| would be the 5th coefficient of

Pr(x) · P1(x) = 1 + 2x + 3x2 + 4x3 + 5x4 + 4x5 + 3x6 + 2x7 + x8, i.e., |r| = 5. The

same method can be used to obtain |s| = 4.

After calculating |r ∩ s|, |r| and |s|, the threshold Tversky index value will be in

the `-th coefficient of the polynomial resulting from (5.2), as shown in Alg. 3, lines

4–7. In the previous example, considering the same parameters used before (i.e.,

Γ = 9, θn = 4 and µa = µb = 1), T I(r, s) is the 5th coefficient of the polynomial

1+2x−2x2−x3+0x4−x5−2x6+2x7+x8, i.e., T I(r, s) = 0. Since the threshold Tversky

index between r and s is a non-negative value, this pair is considered similar.

In our protocol, the similarity calculation is performed by Bob using the en-

crypted data sent by Alice and his own data. Although Bob’s data is encrypted with

the public key generated by Alice, she does not have access to it, thus being unable

to use her secret key to decrypt his data.

5.3.5 Join

The join step determines what pairs should be compared and calculates the similar-

ity for each pair. The most straightforward approach is to compare all combinations

of pairs by iterating both relations using a nested loop. We assume the nested-loop

join is performed over two relations, R and S , but the same steps are applied for

self-joins (i.e., one relation joined with itself).
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If R has |R| sets and S has |S | sets, the time complexity of the nested-loop join

is O(|R||S |). For this reason, the number of pairs to compare grows quickly as the

joined relations become larger. Although in some cases it is necessary to compare

all pairs, usually it is possible to apply filtering strategies that can reduce the number

of pairs checked [14, 41].

5.3.6 Filtering Strategies

The premise of filtering techniques is that some pairs are too different according to

a particular aspect, so their actual comparison can be avoided. The filtering can be

based in different aspects, like the difference between cardinalities of sets (i.e., the

number of elements in the sets, represented by the number of bits 1 in the bit vectors)

or a required minimum overlap between sets. These aspects in particular were used

to create the length filter [41] (Sec. 3.1.1) and the prefix filter [14] (Sec. 3.1.1).

We consider the application of these two filter strategies in our work and pro-

pose four ways to use them: simple length filter, equi-width length filter, equi-depth

length filter and prefix filter. To the best of our knowledge, this is the first work

that applies these filters to probabilistically encrypted data by leveraging fully ho-

momorphic encryption.

Simple Length Filter

A simple way to use the length filter is to group sets by cardinality and then calculate

what groups would satisfy the conditions given by an adaptation of (3.1). Suppose

that RG and S G are groups of sets from R and S . For these groups, assume that all

the sets in RG have the same cardinality, ψRG
. Likewise, all sets in S G have the same

cardinality, ψS G
. For sets in group RG to be compared with sets in group S G, the

groups have to satisfy the following conditions:

θψS G
≤ ψRG

≤
ψS G

θ
(5.3)

This grouping can be seen in Fig. 5.3. The left table represents relation R, and

the right table represents relation S . We omit the values of elements in the sets and

show only the cardinalities, which are relevant to the application of length filter. As

mentioned, sets having the same cardinality are assigned to the same group.

After grouping, the conditions in (5.3) are checked for each pair of groups in

a nested-loop way. Since the number of groups is generally considerably smaller

than the number of records, the number of group pairs is usually smaller than the
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Cardinality Group

r0 8 RG0

r1 7 RG1

r2 6
RG2r3 6

r4 5 RG3

r5 4 RG4

r6 1
RG5r7 1

(a) Relation R

Cardinality Group

s0 9
S G0s1 9

s2 8 S G1

s3 4

S G2
s4 4

s5 4

s6 2 S G3

s7 1 S G4

(b) Relation S

Figure 5.3: Simple length filter approach, in which sets are grouped according to

their cardinality.

number of record pairs. Records in groups that pass the length filter are then joined

in the way described in Sec. 5.3.5.

Although disclosing the cardinality values of all records may be tolerable in

some scenarios, it might not be acceptable in others that have more strict security

requirements. To prevent this information leakage, we execute the length filter in an

encrypted way by using homomorphic operations. In this case, the conditions given

by (3.1) are adapted to be more easily performed using homomorphic addition and

multiplication:

ψRG
− θψS G

≥ 0 ∧ ψS G
− θψRG

≥ 0 (5.4)

By doing so, Bob can calculate the values of the two conditions without knowing

the cardinalities of Alice’s sets: E(ψRG
)⊕E(−1)⊗E(θ)⊗E(ψS G

) and E(ψS G
)⊕E(−1)⊗

E(θ) ⊗ E(ψRG
). After that, he sends these values back to Alice so she can decrypt

them and check what pairs of groups pass the filter (i.e., pairs whose both conditions

yield non-negative values). Alice then tells Bob what groups should be compared,

and he calculates the threshold Tversky index for each pair of sets inside the pairs

of groups that passed the filter.

For the example, in Fig. 5.3, 6 groups from R will be compared with 5 groups

from S , in a total of 30 group pair comparisons. From these, 6 pairs of groups would

pass the filter {(RG0
, S G0

), (RG0
, S G1

), (RG1
, S G1

), (RG3
, S G2

), (RG4
, S G2

), (RG5
, S G4

)},
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yielding a total of 12 pairs of sets whose similarity should be checked. The overall

number of comparisons is then 30+12 = 42, meaning a reduction of approximately

35% from the 64 pairs of sets checked by the nested-loop join approach.

As confirmed by the experimental evaluation (Sec. 5.5), the grouping strategy of

the simple length filter provides a substantial improvement compared to the nested-

loop join. However, when most of the sets have different cardinalities, it is a better

idea to group them according to cardinality intervals. By doing so, the groups have

upper and lower cardinality bounds, instead of just one value. The intervals can

have the same length (equi-width) or the same number of sets in each interval (equi-

depth).

Equi-width Length Filter

If many sets have different cardinalities, the number of groups created in the simple

length filter approach is close to the number of sets, and the efficacy of the simple

length filter is reduced. In such situations, it is possible to divide the whole range

of cardinalities into a fixed number of intervals. Figure 5.4 shows sets divided in

groups representing intervals of length 2. In this example, RG0
contains sets whose

cardinalities are 9 or 8, and RG1
contains sets whose cardinalities are 7 or 6, and so

on.

After sets are grouped, we compare pairs of groups and, to pass the filter, a

pair has to satisfy the conditions given by (5.5). ψ
RG

and ψRG
represent the lower

and upper bounds of the interval corresponding to group RG, while ψ
S G

and ψS G

represent the lower and upper bounds for the group S G.

ψRG
− θψ

S G

≥ 0 ∧ ψS G
− θψ

RG

≥ 0 (5.5)

In the encrypted version of the equi-width filter, Bob uses the homomorphic

properties of the encryption scheme to calculate the values in the left-hand side of

the conditions in (5.5): E(ψRG
)⊕E(−1)⊗E(θ)⊗E(ψ

S G

) and E(ψS G
)⊕E(−1)⊗E(θ)⊗

E(ψ
RG

). As it was done in the encrypted simple length filter, he sends these values

to Alice so she can decrypt them and check what pairs have non-negative values

for both conditions. After that, Bob proceeds to the calculation of the threshold

Tversky index for the sets in the groups that passed the filter.

In the example in Fig. 5.4, 25 pairs of groups are compared, and 8 pairs,

{(RG0
, S G0

), (RG1
, S G1

), (RG2
, S G2

), (RG2
, S G3

), (RG3
, S G2

), (RG3
, S G3

), (RG4
, S G3

),

(RG4
, S G4

)}, pass the equi-width length filter. These 8 pairs of groups include 20
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r0 8 RG0

r1 7 RG1

r2 6 RG1

r3 6 RG1

r4 5 RG2

r5 4 RG2

r6 1 RG3
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(a) Relation R

Cardinality Group

s0 9 S G0
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s4 4 S G1
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s6 2 S G2

s7 1 S G3

(b) Relation S

Figure 5.4: Equi-width length filter approach. Sets are divided in intervals of length

2.

pairs of sets that are also compared. In total, 45 comparisons are done using the

equi-width length filter (about 30% less than the nested-loop join).

Equi-depth Length Filter

Another way to divide sets is to create groups with the same number of sets. In this

case, the cardinality bounds of a group varies depending on the sets in it instead of

being fixed, as it happens in the equi-width approach.

For example, Fig. 5.5 shows groups containing two sets each. Since group S G1

has sets whose cardinalities are 4 and 8, its lower bound is ψ
S G1

= 4 and its upper

bound is ψS G1
= 8.

The comparison between groups uses such lower and upper bounds in the same

way as the equi-width approach does, i.e., by checking whether pairs of groups

satisfy the conditions in (5.5). The encrypted version of this filter follows the same

pattern as the equi-width approach, in which Bob calculates the conditions using

encrypted cardinality bounds and sends them for Alice to check the non-negative

ones.

In Fig. 5.5, 16 pairs of groups are compared, and 6 pairs, {(RG0
, S G0

), (RG1
, S G1

),

(RG1
, S G2

), (RG2
, S G2

), (RG3
, S G2

), (RG3
, S G3

)}, pass the filter. From those groups, 24

pairs of sets would be compared, adding to 40 comparisons overall (about 37% less

than the nested-loop join).
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Cardinality Group

r0 8 RG0

r1 7 RG0

r2 6 RG1

r3 6 RG1

r4 5 RG2

r5 4 RG2

r6 1 RG3

r7 1 RG3

(a) Relation R

Cardinality Group

s0 9 S G0

s1 9 S G0

s2 8 S G1

s3 4 S G1

s4 4 S G2

s5 4 S G2

s6 2 S G3

s7 1 S G3

(b) Relation S

Figure 5.5: Equi-depth length filter approach. Sets are divided in groups containing

2 sets each.

Prefix Filter

Aspects other than the cardinalities of sets can also be considered when filtering

pairs of records. The prefix filter [14] (detailed in Sec. 3.1.1) considers common

parts of records and prune pairs which do not share a canonized overlap.

The execution of the prefix filter using sensitive data poses extra challenges. For

example, by calculating the prefix in the aforementioned way, not only the elements

composing the prefix, but number of such elements can also leak information about

the cardinality of the original set.

To address this problem, we propose the encrypted version of the prefix set,

exemplified by Fig. 5.6. The initial steps are the same as the plaintext prefix filter,

but performed over bit vectors representing sets. Figure 5.6a shows the bit vectors

representing the sets, and Fig. 5.6b presents the vectors after being sorted using the

alphabetical order.

Then, Alice and Bob construct their prefixes by choosing the first p bits having

the value 1, as it can be seen in Fig 5.6c. p is calculated in the same way as the

plaintext version.

After that, Bob constructs the inverted index using the prefixes from relation

S and compares Alice’s prefixes with this index. In practice, the bit vectors are

encrypted using the method described in Sec. 5.3.3. Therefore, to check whether

the prefixes overlap, Bob calculates the inner product between the bit vectors rep-
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resenting prefixes from R and the bit vectors representing each inverted list in the

index. To find the inner products of encrypted vectors, Bob uses the polynomial

multiplication, as explained in Sec. 5.3.4.

After computing the inner products, Bob then sends the values so Alice can

check which pairs of sets should be actually compared.

Finally, Alice tells Bob what pairs of sets should have their threshold Tversky

index calculated, and the protocol enters the join phase (Sec. 5.3.5).

5.3.7 Decryption

As mentioned in Sec. 5.3.3, since Bob does not have the secret key, he must send

the values E(TI(r, s)) for Alice to decrypt. She can then decrypt the ciphertexts and

verify whether their value is greater than or equal to zero, which would imply that

r and s are similar. Finally, according to the honest-but-curious adversary model,

Alice shares that result (i.e., pairs whose threshold Tversky index is non-negative)

with Bob.

5.4 Security Analysis

The security of the proposal depends on the security of the BGV encryption

scheme [8]. The BGV scheme is based on the Learning with Errors (LWE) prob-

lem, which is considered hard even with the advent of quantum computers [73].

The privacy model considers an honest-but-curious adversary that follows the

specified protocol, but tries to learn from it. This learning can be done in different

ways, including the use of background knowledge that may hint the distribution

of sets’ cardinalities. However, due to the probabilistic nature of the encryption

scheme used, the protocol is resistant to statistical attacks like dictionary and fre-

quency attacks.

Also, as mentioned in Sec. 5.3.3, the method to embed sets into bit vectors do

not affect the security, since the bits are independently encrypted after a vector’s

construction.

In addition, since the use of plaintext filters can leak information regarding the

original data, we presented ways to execute the filtering using encrypted values for

the cardinalities of the sets and for the prefixes.
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(a) Bit vectors representing sets from relations R and S .
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(b) Bit vectors representing sets’ elements sorted according to

alphabetical order.
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(c) Bit vectors representing prefixes of each set.
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0 1 0 0 0 0 0 0 → s1

(d) Inverted index built using prefixes from relation S .

Figure 5.6: Example of the encrypted version of prefix filter.
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5.5 Experimental Evaluation

This section presents the results of experiments performed to evaluate the proposal.

We compared different implementations of the protocol, varying in terms of execu-

tion model (i.e., serial or parallel) and filtering approach. Unless stated otherwise,

the similarity threshold used was 0.8.

5.5.1 Setup

To validate the applicability of the proposal, the experimental evaluation was done

using three real datasets, whose characteristics are detailed in Sec. 4.4.1: paper ab-

stracts (ABSTRACTS), image features (IMAGES) and transactions (TRANSAC-

TIONS).

As described in Sec. 4.4.1, we create relations R and S by randomly choosing

sets from the original data sets, varying relations’ sizes from 1,024 to 524,288.

Regarding the construction of the bit vectors, we adopted the same encoding

scheme used by Schnell et al. [96]. The bit vectors (Bloom filters) of size ` = 1000

were generated by hashing each element of the set representing each record using

ten hash functions in the form hi(x) = S HA256(x) + i · MD5(x) mod `, 1 ≤ i ≤ 10.

As highlighted in Sec. 5.3.3, this choice of encoding does not affect the security of

the protocol, as the bits of the Bloom filters are independently encrypted using the

BGV scheme’s encryption algorithm.

The server used in the evaluation was an Intel Xeon E5–1650 v2 (6 cores, 12

threads) with 32GB RAM. In terms of software, we used CentOS 6.8, GCC 6.1.0

and the libraries GMP 6.1.1, Crypto++ 5.6.3, NTL 9.10.0 and HElib 1.3.

5.5.2 Parallelization Impact on Performance

As previously mentioned, we explore parallelization opportunities in most steps of

the protocol, in order to mitigate the computational overhead created by the fully

homomorphic cryptosystem used. We parallelized the encryption and decryption

phases, as well as the join phase in which records are compared, such that the simi-

larities of different pairs are calculated in parallel.

Figure 5.7 shows the impact of using parallelization when executing the nested-

loop join and the different filters. The parallel version of most implementations

yielded speedups of 4 to 6 times when compared to the serial version, except in the

case of the equi-width filter when processing the IMAGES dataset.
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(a) ABSTRACTS (b) IMAGES (c) TRANSACTIONS

Figure 5.7: Parallelization impact on performance.

The reason for speedup of only two times in this case was that all the sets in

the relation constructed from the IMAGES dataset had the same cardinality. When

representing such sets using bit vectors, the number of bits 1 in the vectors is similar,

translating into a small number of groups containing a large number of records.

Since groups were processed concurrently, a smaller number of groups limited the

gains of the parallelized version.

Due to its superior performance, all the following results are related to experi-

ments using the parallel version of all approaches. We observed similar trends using

the serial version.

5.5.3 Encrypted Filtering Performance

The results depicted in Fig. 5.8 reveal how the performance of the filters changed

with varying relations’ sizes. Independently of the dataset used, the equi-depth

approach was the fastest one thanks to its low cost and high pruning power charac-

teristics.

Interestingly, except in the case of the IMAGES dataset (due to reasons ex-

plained in Sec. 5.5.2), the prefix filter had the worst performance. Since extra bit

vectors were created to maintain the index, the encrypted prefix filter introduced a

high overhead to the filter step, resulting in a considerable increase in the overall

execution time.
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(a) ABSTRACTS (b) IMAGES (c) TRANSACTIONS

Figure 5.8: Performance of encrypted filters for varying relations’ sizes.

(a) ABSTRACTS (b) IMAGES (c) TRANSACTIONS

Figure 5.9: Performance comparison between encrypted and plaintext versions of

filters.

5.5.4 Plaintext Filtering Performance

In the cases in which a better performance is desirable in favor of the privacy-

preservation of terms used in the filters, using plaintext filters can reduce the cost

of the filtering step. As it can be seen from Fig. 5.9, using the plaintext version is

mainly effective in the case of prefix filter. As mentioned in Sec. 5.5.3, the encrypted

prefix filter has a high overhead, which does not exist in the case of the plaintext

version. On the other hand, since not so much time was taken by the encrypted equi-

width and equi-depth filters, using their plaintext versions did not offer expressive

gains.
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5.6 Summary

In this chapter, we have proposed a protocol for secure similarity joins that can be

used in untrusted environments to process sensitive data. The protocol uses proba-

bilistic encryption, and it is secure against statistical attacks. All the computation is

done over ciphertexts created using fully homomorphic encryption, and the similar-

ity computation uses the threshold Tversky index which also protects the similarity

value itself.

Despite the theoretical soundness, current fully homomorphic encryption

schemes still have drawbacks in terms of performance, which might hinder their

adoption in a large scale. To address this obstacle, we have presented the use of

parallel processing and the adaptation of filtering strategies to reduce the number

of pairs compared in the join step.

In its current state, the proposed scheme can be used in applications that have

high security requirements and that are tolerant of performance penalties. Exam-

ples of such applications include the exchange of highly sensitive proprietary data

between enterprises, join of genomic data of high profile individuals for research

purposes and integration of databases related to law enforcement for the identifica-

tion of criminals.

The use of GPU have been considered in this solution to improve performance,

but the large ciphertext expansion, characteristic of fully homomorphic schemes,

makes it impractical to fit more than a few dozens of ciphertexts in the GPUs mem-

ory. On the other hand, as discussed in Sec. 6.2, the use of other accelerators that

have less memory limitations (e.g., Intel Xeon Phi) may be a viable alternative for

faster processing. In addition, in terms of scalability, the parallelism provided by

the solution can also be explored by clusters of CPUs in a distributed fashion.

Although in this work we considered the BGV scheme [8], the proposal can be

adapted to other schemes, as long as the additive and multiplicative homomorphic

properties are available. For this reason, the performance of our protocol can be

improved not only by the use of parallelization or filter strategies, but also as faster

and more efficient fully homomorphic encryption schemes are developed.
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Chapter 6

Conclusion

This chapter concludes this dissertation by summarizing the main contributions of

our work and indicating possible avenues for future work.

6.1 Summary of Contributions

The numerous applications of set similarity joins require agility in their execution

and, in case of sensitive data, privacy-preserving processing methods. In this dis-

sertation, we have proposed solutions to address such efficiency and security chal-

lenges. In particular, we have exploited recent advances in terms of parallel process-

ing by using GPUs as well as the strong security and flexibility provided by fully

homomorphic cryptosystems. Based on this, we highlight our main contributions:

• A new scheme to accelerate set similarity joins by exploring parallel pro-

cessing. We made use of MinHash’s storage efficiency to overcome mem-

ory challenges posed by GPUs and achieved high speedups in comparison to

CPU-only implementations.

• To preserve the privacy of the data being joined, we introduced a two-party

protocol for similarity join execution. The protocol is based on fully homo-

morphic encryption schemes and harness their security properties to protect

the data. In order to securely compute whether two sets are similar, we em-

ploy threshold Tversky index, which also secures the similarity value itself

and safeguards against regression attacks. The performance issues associated

with fully homomorphic encryption schemes are addressed by adapting fil-

ter strategies to the privacy-preservation context. Such methods decrease the
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number of pairs that are compared and help improve the overall execution

time.

6.2 Future Work

We have identified opportunities for future work in the following areas:

• Join algorithms and scalability: Since the join is still an expensive part of the

processing, future work can explore the adaptation of partitioning techniques

and set relations to reduce the number of comparisons and improve perfor-

mance. The implementation of such techniques using GPUs also require

special considerations; i.e., the chosen algorithms should have parallelizable

processing-intensive parts and infrequent memory transfers. Another option

is to use a higher number of hardware components, like multiple GPUs or

clusters containing multiple nodes with CPUs and GPUs.

• Efficiency of the privacy-preserving protocol: As shown in this work, the

slow execution of encrypted data processing may hinder its adoption in some

scenarios. To deal with this drawback, we suggest the study of dimension

reduction techniques with the objective of decreasing the sizes of ciphertexts.

Although this creates a trade-off between performance and accuracy, it can

help abate the costs imposed by fully homomorphic encryption. The com-

bination of different approaches to achieve higher scalability seems advanta-

geous. For instance, the utilization of a different accelerator, Intel Xeon Phi,

can aid in the faster processing of larger relations. This is especially promis-

ing when dealing with the large ciphertexts yielded by fully homomorphic

cryptosystems.
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