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Abstract

Coherent phonon (CP) generation is one of the representative ultrafast and non-equilibrium
phenomena induced by the irradiation of the ultrashort pulse laser. In particular, in the
early-stage of the CP generation, the longitudinal optical (LO) phonon and heavily pho-
toexcited carriers interact with each other. Therefore, quantum mechanical effects inher-
ent in the CP generation dynamics and their microscopic mechanisms have been targets
of considerable interest for a long time.

In this dissertation, we construct a fully quantum mechanical model for the CP gen-
eration dynamics applicable for both nonpolar and polar semiconductors on an equal
footing, on the basis of a polaronic-quasiparticle (PQ) picture. In this model, the PQ is
constituted of the LO phonon, the plasmon, and the single-particle excitation. Thereby,
we tackle the problem of the transient and nonlinear Fano resonance (FR). This quantum
mechanical effect manifests itself immediately after the carrier excitation by the ultra-
short pulse laser; this was observed exclusively in lightly n-doped Si [M. Hase, et. al.,
Nature (London) 426, 51 (2003)], though not observed yet in GaAs. Moreover, we explore
still-hidden quantum mechanical effects in the CP generation dynamics.

The PQ model straightforward shows that the LO phonon discrete state is embedded
in the electron-hole continuum state of the single-particle excitation, which is a require-
ment of the transient FR in the present system. We conduct numerical calculations of
induced photoemission spectra relevant to the retarded longitudinal susceptibility in the
non-equilibrium and transient system of concern. The photoemission spectra show an
asymmetric line shape characteristic of FR transiently in undoped Si, although not in
GaAs. This result is in agreement with the existing experimental results. It is found that
the difference between the obtained results of the spectra is attributed to a phase factor
of an effective LO phonon-carrier interaction.

We also investigate the time signal ascribed to an induced charge density of an ionic
core under the various pulse laser conditions characterized by the Rabi frequency .,
corresponding to the peak magnitude of the pump pulse, and the detuning A defined
by the difference between laser frequency and the band gap energy. It is found that in
the time signals, irregular oscillatory patterns with anomalously enhanced amplitudes are
manifested at specific conditions, where the energy of the plasmon due to the photoexcited
carriers coincides with that of the LO phonon leading to the striking anticrossings. The
irregular oscillations due to the energetically resonant interaction between the LO phonon
and the plasmon appear just in the early-stage of the CP generation, and further, result
in asymmetric spectral profiles of associated power spectra. Calculated results of Fano’s
asymmetric ¢ value of the spectra with respect to A are in harmony with experimental
ones. Moreover, the oscillatory patterns are subject to the Rabi flopping of the excited
carriers depending on €2y,,. These quantum mechanical effects enrich the dynamics in the
early-stage of the CP generation.
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Chapter 1

Introduction

1.1 Coherent Phonon Generation

The development of the technology for ultrashort pulse laser with high intensity has
enabled us to explore a new research area of ultrafast and non-equilibrium phenomena
governed by heavily photoexcited carriers [1]. The irradiation of the ultrashort pulse
laser excites a longitudinal optical (LO) phonon mode coherently, namely, with the same
frequency (2, 3]. Here, it is required that temporal width of the pulse is much shorter than
a period of the LO phonon; since the typical frequency of the LO phonon in materials
is in the 10 THz regime, femtosecond laser pulses are suitable for coherent phonon (CP)
generation. This is undoubtedly one of the representative ultrafast phenomena unveiled
by the irradiation of the ultrashort pulse laser.

The coherent lattice vibration causes the macroscopic temporal change in optical prop-
erties such as reflectivity and transmission, and this is distinct from thermal lattice vi-
brations which does not induce the macroscopic polarization. Thus, the CP signals are
measured in the time domain through the changes of the optical properties, typically
using the pump-probe experiments [2, 3|; the pump pulse creates photoexcited carriers,
followed by the probe pulse, delayed in time, which detects the modulations of the optical
properties. For various purposes of exploring underlying new physics, detecting phonon
modes with different symmetries in time domain, manipulating collective lattice motions,
and other objectives, the CP generation has been investigated in a variety of materials
such as semiconductors [4, 5, 6, 7, 8, 9, 10], semimetals/metals [11, 12, 13, 14, 15, 16, 17],
high-T, superconductors [18, 19, 20, 21], and other materials [22, 23, 24, 25, 26].

1.2 Theory of the Coherent Phonon Generation

1.2.1 Phenomenological oscillator models

Thus far, the CP generation mechanism has been discussed by means of classical models
based on a damped forced-oscillation, which is expressed as [2, 3]
d*Q(t) dQ(t)

F(t)
- 7 2 —_ 7
72 + 2y 7 + w Q(t) .

(1.1)

Here, Q(t) is a CP displacement amplitude, w is the frequency of the phonon, v is a
phenomenological damping parameter, F'(t) is an external driving force, and m is a re-
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duced lattice mass. Under the conditions that both Q(t) and dQ(t)/dt are zero before
F(t) is applied, Eq. (1.1) is solved by use of either the Green function technique or the
Laplace-transform method as

Q) = /t F(t) e—1(t=t") ¢in [\/W(t _ t’)}

dt'. (1.2)

oo M w? — 2

There are two well-known models for the CP generation as the limiting cases of F(t).
One is the impulsive stimulated Raman scattering (ISRS) model [27, 28], and the other
is the displacive excitation of CP (DECP) model [29, 30]. In the ISRS model, F(t) is
associated with the Raman polarizability, namely, a derivative of electronic susceptibility
with respect to lattice displacement, and the impulsive force induces the oscillation around
the current equilibrium position. Supposing that the force is given by F(t) = I0(t), the
solution of Eq. (1.2) is readily cast into

16(t)
e~

that is, Q(t) becomes of the sine form. In the transparent region, the ISRS is considered
to be the key mechanism for the CP generation.

On the other hand, in the DECP model, the interband excitation of carriers causes
an impulsive shift of the equilibrium position of the lattice vibration, and the external
force is related to the excited carrier density. Supposing that the force is provided by
F(t) = FO(t)/m, Eq. (1.2) is directly integrated, and thus we obtain Q(t) as

1—{\/%_725m< w2—'y2t)+cos< w2—’y?t)}e”t]. (1.4)

In fact, w > ~, and thus, Q(t) becomes of the cosine form with the center of the oscillation
shifted. It is understood that the DECP is the key mechanism in the opaque region.
Besides, Kuznetsov et al. presented a microscopic explanation of this model by means of
the phenomenological Hamiltonian for two-band semiconductors [30]. According to this
model, F'(t) is given by the diagonal components of the electronic density matrix, that is,
the phonon mode with momentum q = 0 is coupled with the excited carriers.

In addition to the two models mentioned above, one more mechanism of the transient
depletion field screening has been studied in polar semiconductors [31, 32]. A static
electric field perpendicular to the surface attributed to the surface depletion layer [33]
leads atoms to a new equilibrium position. The pump pulse irradiation gives rise to
screening of the surface field due to the photoexcited carriers on a subpicosecond time
scale. In other words, the initial band bending at the surface is relaxed toward a flat band
due to charge separation by the drift process. Thus, switching off the surface field launches
the longitudinal oscillation of the atoms, and its behavior indicates the cosine form. The
surface field is strongly dependent on the doping level, and the different types of the
oscillation have been observed among intrinsic, n-type, and p-type GaAs so far [32, 34].
In particular, the phase of the oscillation is deviated by 180° between the n- and p-type
samples [31].

Qt) = e sin( w? — 2 t) : (1.3)

_ Fo()

mw?

Q(t)
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Initial phase

Indeed, these classical models have succeeded in revealing overall character of the CP
generation dynamics. Given the results of these models, the phase shift built in an
asymptotic damped harmonic vibration, termed as an initial phase 6, is considered to
include the information about the CP generation mechanism, and it is typically defined
in such a form

Q(t) oc e cos(wt + 0). (1.5)

Therefore, a great number of experimental results have been examined from the viewpoint
of the initial phase. However, the experimentally obtained initial phases varied from
material to material, and further, they were strongly dependent on the doping level [7],
the pulse laser conditions [8], and the symmetry of the phonon modes [12, 15]. Therefore,
the relation between the CP generation mechanism and the associated initial phase is still
controversial.

Several theoretical studies related with the classical models have been reported so
far [35, 36, 37, 38, 39, 40]. In particular, Merlin and co-workers developed an extended
stimulated Raman scattering model — termed as transiently stimulated Raman scattering
(TSRS) model [35, 36, 38]— in order to describe light-induced lattice motion of both impul-
sive and displacive character. Here, the equation of motion of the CP amplitude relevant
to Eq. (1.1) was derived in an approximate manner starting from the phenomenological
Hamiltonian. According to this model, the external force is composed of both impulsive
and displacive contribution, and in particular, the displacive character is described by
resonant stimulated Raman scattering. Thereby, they compared the theoretical and ex-
perimental results of Sb. Further, Riffe et al. devised the TSRS model by hybridizing the
ISRS and DECP models; the authors gave a finite lifetime to the excited carrier density,
so as to be made in agreement with the experimental results of the initial phases for
various materials [40].

1.2.2 Microscopic mechanisms

However, it is a matter of course that the ultrafast carrier-lattice dynamics induced by
the ultrashort pulse laser is not able to be described by a single equation such a form of
Eq. (1.1), and the couped equations composed of both the phonon and the excited carriers
are to be solved. Further, the carriers are coupled each other through the Coulomb
potential interaction, leading to various considerable effects such as the formation of
the plasmon and the exciton [41]. Therefore, the above-mentioned approaches based
on the classical models encounter difficulties in not only demonstrating the details of
the dynamics of concern embedded in the initial phases, but also revealing unexplored
quantum mechanical effects. For the above-mentioned reason, microscopic mechanisms of
the CP generation dynamics have been targets of great interest for a long time.

Several theoretical studies apart from the classical models have been reported so far,
and the brief summary is provided in the following. Scholz et al. applied the density-
matrix theory in order to comprehend the external forces and the initial phases in the
system of Ge [42]. Lee et al. numerically solved the time-dependent Schrodinger equa-
tion in an electron-phonon system to demonstrate the quantum effect experimentally
observed [43]. Shinohara et al. applied the time-dependent density-functional theory to
the CP generation of Si [44] and Sb [45], and calculated physical quantities such as the
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initial phases and the amplitudes under several pulse laser conditions. Riffe constructed
a classical Fano oscillator model based on the Fano-Anderson Hamiltonian [46], and in-
vestigated the Fano resonance (FR) [47] effect on the initial phases [48]. Nakamura et
al. applied a simple two-level model and showed the dependence of the CP generation
mechanism on pulse width and detuning [49]. Kayanuma et al. proposed a dynamic
Jahn-Teller approach to elucidate the generation mechanism of asymmetric modes [50].
Nevertheless, the understanding of microscopic mechanisms focusing on quantum effects
has not sufficed yet thus far.

1.3 Quantum Mechanical Effect Concomitant to the
Coherent Phonon (Generation

Quantum effects are caused in the initial stage of the CP dynamics where heavily pho-
toexcited carriers still stay in the excited states without relaxation and interact with the
LO phonon; hereafter, this time region is termed as the early time region (ETR). The
non-equilibrium carriers generated by the pump pulse irradiation are relaxed into the
quasi-equilibrium state due to the intervalley scattering through the emission of phonons,
and carrier-carrier scattering [3], diminishing the contribution from the carriers to the
concerned dynamics. This time region after the ETR is termed as the classical region,
and in this region, the CP signal overall shows just a damped harmonic oscillation. In-
cidentally, in fact, additional complicated signals due to coherent artifact attributed to
nonlinear optical interference between the pump and probe pulses [51, 52, 53] manifest
themselves in the ETR, which result in masking inherent dynamics in the CP generation.

As regards the quantum effect accompanied by the CP generation, FR has been ob-
served transiently in the ETR for lightly n-doped Si [6]. This FR is considered to be
caused by interference between a discrete state of the LO phonon and continuum states of
the excited carriers. This is discerned just in a moment before the carrier relaxation time.
Further, it is speculated that the manifestation of the FR is the vestige of the birth of a
polaronic quasiparticle (PQ) due to the strong carrier-LLO phonon interaction [54]. Here,
it is noted that the transient FR has been observed exclusively in semimetals/metals of
Zn [13] and Bi [14, 17] in addition to lightly n-doped Si, not observed in GaAs and p-
doped Si so far. Incidentally, recently, a dynamical Fano-like effect was observed in CuCl
semiconductor microcavities, which was attributed to the interference between CPs and
short-lived Rabi oscillations [10]

Concerning theoretical studies of the transient FR, in Ref. [43], a displacement function
of CP was calculated under the far above-gap excitation conditions, and the associated
continuous-wavelet transform (CWT) was conducted for the system of GaAs. The CWT
spectra showed asymmetric shapes characteristic of FR, although it was not in consistency
with the existing experimental results. Further, it was argued that the resulting FR
originated from interference between two types of vibrational Raman scattering processes.
In Ref. [48], analytical expressions of the Fano absorption line shape and the initial phase
were derived by means of the classical Fano oscillator model, and it was shown that the
two quantities are relevant to each other. However in Ref. [17], the Fourier transform
of the Fano’s spectral formula into the time domain was taken in a direct manner, and
thus, the different initial-phase dependence of the line shape was shown. Further, it was
confirmed that the experimental results of the CP signal for Bi were in agreement with
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the obtained initial-phase dependence.

Transient and nonlinear Fano resonance

As is well known, FR is a quantum mechanical resonance effect due to the coupling
between discrete states and energetically degenerate continuum states, and this is char-
acterized by asymmetric line shapes composed of both a peak and a dip [47]. FR is one
of the fundamental and common concepts in diverse fields of chemistry and physics [55].

As regards FR observed in a Si crystal, a different type of FR from the concerned one
has been well studied so far; incoherent Raman scattering driven by the irradiation of a
continuous wave (cw) laser generates this FR in heavily doped Si [56, 57, 58, 59, 60, 61, 62].
This FR effect was observed in the system of heavily doped p-type Si in the I' point [56,
57, 58]. Here, the electron-LO phonon interaction causes an inter-valence-band electronic
transition with emission of the LO phonon, resulting in the FR. The similar FR was also
observed in the system of heavily doped n-type Si in the X-valley [60]. Interestingly, the
manners of doping affect the sign of the resulting Fano’s ¢ parameter [47], that is, this
parameter inclines to become positive (negative) in p(n)-type Si. Besides, this type of FR
was also observed in the system of d-doped GaAs [63, 64, 65].

In particular, as far as the FR process induced by the laser irradiation, the concerned
transient FR is categorized into unusual optically nonlinear and transient processes, which
are considerably distinct from most of optically linear and stationary FR processes owing
to the cw-laser irradiation. In fact, the concerned FR results from heavily photoexcited
carriers created by an ultrashort pulse laser, and manifest itself just in the temporal region
where the carriers still in the excited states, that is, immediately after the completion of
the pulse irradiation.

As one example which belongs to this type of FR, there is a transient excitonic FR
appearing in ultrafast optical processes [66, 67, 68]. However, the number of studies rele-
vant to this type is really limited since theoretical predictions in advance and experimental
measurements are quite difficult. Therefore, the studies directed toward this type of FR
would provide potentially enriched physics to be explored. Hereafter, we term this type
of FR transient FR just for the sake of simplicity unless otherwise stated.

1.4 Aim of the Present Dissertation

The aim of the present dissertation is as follows. First, we construct a fully quantum
mechanical model for the CP generation dynamics applicable for both nonpolar and polar
semiconductors on an equal footing [69]. Given the supposition of the formation of the
PQ in the experiments [6, 54|, we introduce PQ operators composed of an LO phonon
operator and a set of pairs of electron operators. In the present situation of concern, the
photoexcited carriers lead to the plasmon of a collective excitation mode and electron-hole
continua of single-particle excitation modes. Here, one more collective excitation mode
of exciton is omitted since its bound-state energy locates below the joint-energy band
dispersion of concern, and the coupling between the phonon and exciton modes would
be negligibly small. Second, on the basis of the PQ model, we examine the origin of the
transient FR [69, 70] and other unexplored quantum mechanical effects [71, 72]. In the
former, the interference between the LO phonon and the electron-hole continua plays a
key role, while in the latter, a coupling between two discrete states of the LO phonon and
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Figure 1.1: The schematic diagram of the time evolution of the CP generation dynamics.
The energy of the LO phonon wg, the plasmon, and the electron-hole continua are repre-
sented by a red line, a green line, and gradation of blue color, respectively. The gradation
shows how high the excited carrier density is in a schematic manner. Further, the green
dashed line in the classical region represents the plasmon mode which is decoupled with
the phonon due to the relaxation. T} is the phenomenological relaxation time of induced
carrier density, and represents a rough estimate of the border between the early-time re-
gion and the classical region. Further, the orange solid line represents the magnitude of
the laser-electron interaction dependent on a peak amplitude 2., and temporal width of
the pulse 77,

the plasmon plays a key role. Third, we investigate the features of the CP generation such
as the initial phases and the asymptotic amplitudes under various pulse laser conditions,
and compare the results with other experimental and theoretical ones [71, 72].

Figure 1.1 depicts the time evolution of the CP dynamics, where a rough border be-
tween the ETR and the classical region is delimited by a phenomenological relaxation
time constant T35 attributed to the carrier relaxation time and the dephasing time of a
subpicosecond time scale [3]. It is seen that the energy of the LO phonon w, with mo-
mentum q — represented by a red solid line — is embedded in the continuum state of the
single-particle excitation — represented by gradation of blue color—; the gradation shows
how high the excited carrier density is in a schematic manner. Moreover, the energy of
the plasmon wg, is shown by a green solid line. When the plasmon mode approaches
the phonon mode, wq and wg;, show an anticrossing, which influences the physical quan-
tities. The green dashed line in the classical region represents the plasmon mode which
is decoupled with the phonon due to the relaxation, although the carriers still stay in the
quasi-equilibrium states; the carriers recombine to reach the true equilibrium state on a
nanosecond time scale [3]. Further, the magnitude of the laser-electron interaction 2., (),
which depends on a peak amplitude €2y, and temporal width of the pulse 77, is shown by
an orange solid line. This provides the threshold of the continuum, and determines wg;,.
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The details are shown in Sec. 3.

For the above-mentioned purposes, we examine a retarded longitudinal susceptibility
leading to transient induced photoemission spectra from photoexcited states, and a CP
displacement function; the associated retarded Green functions are described by means
of an adiabatic expansion with respect to the PQ operators with time fixed. First, we
examine the photoemission spectra in the system of undoped Si and undoped GaAs, in
which an asymmetric spectral profile characteristic of FR manifests itself in Si, though
not in GaAs [see Sec. 3.1]. Next, we examine the CP displacement function in the system
of undoped Si, and irregular oscillatory patterns appear on the occasion that the phonon
and the plasmon resonantly interact with each other [see Sec. 3.2]. It is noted that
opaque interband transitions accompanying real excited carriers are exclusively taken
into account. Further, the delayed formation of plasmon-LO phonon coupled modes in
polar semiconductors are not taken into consideration in this study because these modes
do not appear immediately after the pulse laser irradiation of the ETR [34, 62, 73, 74,
75, 76, 77, 78].

This dissertation is organized as follows. In Chap. 2, we describe the theoretical
framework. In Chap. 3, we present the results and discussion. Finally in Chap. 4, we
present the conclusions. Atomic units (a.u.) are used throughout unless otherwise stated.
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Chapter 2

Theory

2.1 Equations of Motion

We take into consideration the total Hamiltonian H , provided by

H=H,+H'(t)+H,+ H,_,, (2.1)
where 1
He = Z gbkazkabk + 5 Z Vq(c) Z al];k—i-qalt’k:'—qab'k'abk’ (22)
bk q#0 bb' kk!
H(t)=- [Qw(t) al ok + Quelt) aikack] , (2.3)
k
H,= qucgcq, (2.4)
q
and )
H._,= Z <gchqa}:k+qabk + ggchlazkakarq) . (2.5)
bgk

H. is a two-band electron Hamiltonian, where we consider the energetically-lowest con-
duction band (b = ¢) and the energetically-highest valence band (b = v). a], and am
represent creation and annihilation operators of the electron, respectively, with the en-
ergy dispersion €, and the Bloch momentum k in band b; 4 is given based on the
effective-mass approximation with parabolic dispersion in the proximity of I' point. Vq(c)
is a Coulomb potential represented as

47 1
V) — =
q eV g2’

(2.6)

where €., V, and q are a dielectric constant in the high-frequency limit, volume of crystal,
and momentum, respectively. H'(t) is the electron-light interaction at time ¢, and Q;(t)
is expressed as

Qup(t) = Qo f (t) cos wot, (2.7)

where the Rabi frequency (2y; is provided by the product of a peak amplitude of an
irradiated electric field and the electric dipole moment between the ¢- and v-bands. Here,
we assume that the dependence of the dipole moment on k is negligibly small. The
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barred index b means that the index is unequal to b; ¢ = v and © = ¢. Further, wy and
f(t) are laser frequency and a pulse-envelope function, respectively. ﬁp and fle_p are
an LO phonon Hamiltonian and the electron-phonon interaction, respectively. cfl and cq
represent creation and annihilation operators of the LO phonon, respectively, with the
energy dispersion wq. We omit the zero-point energy of the phonon just for the sake of
simplicity. Further, g,q represents a coupling constant between the b-band electron and
the LO phonon.

The non-equilibrium dynamics driven by the pump laser irradiation of concern is
described by time-evolution of the phonon operator and a composite operator representing
an induced carrier density, defined as

Al (kW) = ajj,, qav. (2.8)

It is remarked that the transferred momentum q is finite, even though it is quite small:
q # 0. The equation of motion of Afl(kbb’ ) is expressed in terms of the Heisenberg
equation as

—i (i I > Al (kbY) = [H, + H'(t), AL(kbV)] + [H,_,, Al (kbV)], (2.9)
dt qubb’

where Torpy is a phenomenological relaxation time constant of Afl(k:bb’ ). The expression
of the first commutator in the right-hand side of Eq. (2.9) is obtained as

[H. + H'(t), Al (kbb')] =Y Al (kbb') Z, (kbY , kbY), (2.10)
kbt
where a c-number non-Hermitian matrix Z, is represented as
Za(Re1biby, kobabh) = wyykeyqObiba Oty Oterkes + Vi Ottt AProtieag

R R

_91(315)1101 51)1325(7/117,26’“1’“2 + Ql%’lb)/lk16b/1i’l26b1b25k1k2' (211>
Here,

Whb'kq = 55(,7,;)_,_(1 — El(f,)c (2.12)

with a renormalized electron energy in band b as

51()71;) = Sk — Z Vq(C)pbbk—i—qa (2.13)
q
and
R
Q1) = Us(t) + D Vi pr g (2.14)
q

Besides, a single-particle density matrix ppyp = (azkab/k) and
Apbb/kq = Pk — Pob'k+q> (2-15)

where <O> represents an expectation value of operator O with respect to the ground state.
It is noted that we evaluate Eq. (2.9) by employing a factorization approximation, and
four operator terms such as a£,~c+qa5,,;a;k L ¢k 18 split into a product of the operator

Ag(l::gl;’ ) and the single-particle density matrix pyy. The detail is shown in Appendix A.
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Moreover, we employ the rotating wave approximation [41, 79], and thus high-frequency
contributions are removed from Eq. (2.9); A} (kbb') and pyys are replaced by e’ Af (kbb')
and et pyy, respectively, where @, = Wy, @Wye = —wp, and @y, = 0. Thus, Egs. (2.9)
and (2.11) are cast into

(d 1 i / / Ty A / 1 o : A /
- (a " T> AY (') = [He + H' (), Af (kbb)] = AL (kb )y + [He—p, Al (b))

~ Y AL (kDY) Zg(kbY , kbY) + [Hep, Al (KbD)] (2.16)
kbb’
and

Zq(k1biy, kaboby) = Qbbb qOb1 00 b, Oker ko +Vq(c)5b1b’1Aﬁb2b’2k2q
~(R ~(R
_Ql(715)1k1 6b1525b’1b’25k1k2 + QIg’lb)/lkn61)/15/261]11725’61’62’ (217>

respectively, where
Whi'kq = Whb'kq — Whb! (2.18)
and .
(R )
Ql()l‘;k) (1) = §QObEf(t> + Z Vq(C)PEbk+q- (2.19)

q

As regards the equation of motion of cg, it is straightforward derived in terms of the
Heisenberg equation as

d 1 _
—i (— + ) ch = wech + > gug Al (Kbb), (2.20)
dt " Ty -

where Ty, is a phenomenological relaxation time constant of ¢} due to phonon anhar-
monicity.

2.2 Retarded Longitudinal Susceptibility

On the basis of the linear response theory, an induced charge density néi nd) (t) caused by
a weak external optical field f,(¢) is given by [79, 80]

in. 1 !
ng) = o | Dl (2.21)

X,(f) (t,t') is a retarded longitudinal susceptibility in the nonequilibrium and transient

system of concern, which consists of two contributions as

XD (1) = xq(t, 1) + X, (8, 1), (2.22)

where x4(t,t') and x; (f,t') are retarded susceptibilities attributed to an electron-induced
interaction and an LO phonon-induced interaction, respectively. x4(t,t’) is expressed as

Xq(t,1') = 4nVDI(t, 1) = X" 4 (L, 1), (2.23)
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where Df(t, t') represents a retarded density-density correlation function of electrons pro-

vided by

DGt ) = —il[sg(£), i_qlt)])6(t — ). (2.24)
Here, a density operator is given by
. 1
fg(t) = v Z azk+qabk (2.25)
bk
with
ialt) = (0, (2.26)
and
R R
DI (t,¢') = D (t,1). (2.27)
On the other hand, x;(¢,t') in Eq. (2.22) is expressed as
4dm
Xq(t,t') = 37 1gg|* DG (¢, 1), (2.28)
where
0 2
g
94" = |-& (2.29)
Uq
with 92 = (gcq + qu)/2 and
dm 1
o) _ o) _
0l = e VIO = T (2.30)
DiE(t,t') represents a retarded phonon Green function [79] defined as
DRt Y) = =i [eqlt) + cLy(t),cqlt) + ch(#)] Yot )
. T
= —i([ea(t), 1] = [e-qt)clq()] Yot~ 1)
= DR+ [DE )], (2.31)
where B
DRt 1) = —7;< [ea(t), ch(t)] >9(z€ — ). (2.32)

In the present study, we investigate two physical quantities associated with the re-
tarded susceptibilities. One is a transient induced photoemission spectrum for an analysis
of the transient FR, and the other is a CP displacement function. We derive analytic ex-
pressions of the two quantities, and the theoretical frameworks are described in Secs. 2.3
and 2.4, respectively. Here, we introduce the PQQ operator to the present model, which is
composed of flfl(kzbb’ ) and CII, and two physical quantities are expressed in terms of the
PQ operator.

2.3 Analysis of the Transient Fano Resonance

In this section, we derive the analytical expression of the transient induced photoemission
spectra so as to examine the transient FR. Here, we employ some approximation in
addition to the factrization approximation and the rotating wave approximation, and
solve the present problem as a multichannel scattering problem.
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2.3.1 Introduction of polaronic quasiparticle operators
Quasiboson operator

First of all, we solve left and right eigenvalue problems [81] of the non-Hermitian matrix
Zq of Eq. (2.17) with ¢ fixed as an adiabatic parameter, represented by

Ud' Zg = EULT (2.33)

and

Z U =UJE,, (2.34)

respectively. &, is an adiabatic eigenvalue diagonal matrix, and {U (f, U f} are the associ-
ated biorthogonal set of eigenvectors. The eigenvectors satisfy the orthogonality relation
UqLTUf = 1 and the completeness UfU It = 1. We employ matrix notations, that is,

Z, = {ZQ(EEB’, kbb’)}, Eq = {Eqa}, and UL/" {UQLC{R(kbb')}, where &, and UL (kbi)
represent the eigenvalue and eigenvector of the ath state, respectively. As shown in Ap-

pendix B, we solve Egs. (2.33) and (2.34) in an analytic manner, and thus, obtain the
expressions of the ath left and right eigenvectors as

Ul = NL VO (2.35)
and
UR = NEVIOUE, (2.36)

respectively. Here, uL/ = {ugéR(kbb’ )}, and chf represents a normalization constant,

which is determined by
NENEVIOP (uhiul ) =1. (2.37)

qo qoz

The creation operator of the quasiboson of the ath state is defined as

= Al (kb ULE (kbb) = AJULR,. (2.38)

q-qo’
kbt

It is noted that we introduce this operator so as to make sure the commutation relation
of [HE™ (1), Bl (t)] = Bl (t)€qa(t), where H, M) (1) is an effective electronic Hamiltonian

under the rotating wave approx1mat10n We define the adiabatic ground state of A (eff) (t)
as |0), and obtain the results of [H ), B 1o (0)]]0) = [He HED (4 ) —&olll; qo) = Eqall; qar),
where |1; gor) represents the single- qua81boson state. The mode qo is defined as |1; qa) =
B!, ()]0), and & is the zero-point energy; we set & = 0 for the sake of simplicity.

Thus, we obtain the expression of H™(¢)[1; ga) = Eqa(t)|1; gar). This procedure of the
quasibosonization reminds us of Dyson’s method of bosonization [82, 83]. It is remarked
that this procedure of the quasibosonization is correct just for the single-quasioboson
state. It would be questionable in the case that the number of quasibosons increases; for
instance, I:Ie(eﬁ)(t)|2; qa) # 2E44(1)|2; qor), where a two-quasiboson state |2; qa) is defined

as |2;qa) = V2 ' [Bh, (£)]2[0).

1Consultlng the approx1mations employed in Sec. 2.3.2, the correction to H, + ﬁ’(t) is given by
— Yo BloU. LTwU 'Bga

qa - qo
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The annihilation operator corresponding to the above-stated operator is defined as

= UM (kbY) Ag(kbb') = Ust Ag. (2.39)

kbb/

Employing the relation Zg = URE,UET, Eq. (2.16) is recast as follows:

dB! .
_zd—: = Bl\qa+1Y_ Bl Waara + [Heep, Bl ], (2.40)
where
)
an’a = an’a + q; = (2.41)
with a non-adiabatic coupling between the ath and o'th adiabatic states given by
AU, (kbb) AU,
_ qa R / “Yad rrR
an’a - Z TUqa(kbb) di quu (242)
kbt
and
vqa S = Uyl (kDY) Ui, (RebD). (2.43)
kbb’ Tar

Equation (2.40) represents an adiabatic coupled equation, where £, (%) is adiabatic energy
at t related to the operator Bj,(t). It is remarked that Bgo(t) and B, (t) do not fulfill the
equal-time commutation relations for a real boson: [Bg.(t), Bj;,a, (t)] # 0qq'Oans- Further,
Eqa 1s generally a complex number, although B:;a is Hermitian-conjugate of Bg,. The set
of eigenstates {a} consists of a single discrete state signified as a; with eigenenergy &gq,
and continuum states signified as § with eigenenergy E.5: {a} = (a1, {8}). The states
a; and {f} correspond to a plasmon-like mode and single-particle excitation modes in
interbands, respectively. Moreover, on the complex analogy of the Hellman-Feynman
theorem, Wy is readily rewritten as

Lt dZq 1R
Waara = M, o +a, (2.44)
Sqa - gqoz
and Wgaa # 0.

It is noted that we omit the exciton of another collective excitation mode; its energy
of the bound-states is below the joint-energy band dispersion, therefore, we assume that
the coupling between the phonon and exciton modes are negligibly small compared with
other electronic modes, and the effect of the exciton on the dynamics of concern is negli-
gible. This approximation is done by neglecting the terms relevant to the exciton in the
calculation of Eq. (2.11).

Quasiboson-LO phonon interaction

Following Egs. (2.38) and (2.39), H._, of Eq. (2.5) is rewritten as

He = (MgacBl, + Mj,c

qozq

! Bga) (2.45)

q7a
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where an effective coupling constant between a quasiboson and the LO phonon is given
by

Z GoqU L (Reb). (2.46)
Thus, the commutator of [H,_,, c:fl] is readily evaluated as

H,_,c Z . (2.47)

On the other hand, the commutator of [H,_,, Bl,] in Eq. (2.40) leads to

ey Blo) % MY g_q + Minch, (2.43)
where the factorization approximation is employed; [Bga, Bq ) and B, B; | are re-

placed by ([Bga, B;,Q,D and ([B! B o), respectively, and

qo

M, ZM—qa P o Bhal) = Z(Qb—qﬁbb/k—gb'—qﬁbbfk+q) U (kbb) (2.49)

kb’
and
Ml = Z Baor, Blo) =Y (GhaPrie — GqPuvrira) Uk (KBY). (2.50)
kbb!

It is noted that Mg,, M,,, and M”_, slowly vary in time because these functions are
given by the adiabatic eigenvectors Uy i and Uf, and furthermore, the density matrices
Purke Slowly vary in time, particularly after the pulse irradiation. This fact is an essential
point that provides a theoretical basis to the introduction of the PQ picture.

As regards the effective coupling constant Myg,, it is represented by the sum of Mfa
and MqDa which originate from the Frohlich interaction and the deformation potential

interaction, respectively, that is,
Mgo = M}, + M. (2.51)

The coupling constant gyq for the Frohlich interaction in polar crystals is approximately
independent of the band indices; gy, ~ gq, and gq is pure imaginary with | gq| x |g|™!
[41]. Following Eq. (2.46), M,fa is represented as

~ gt Z Ukt (kbb) = gE' N (2.52)

qov’

and in the small-g limit, the leading term of M/ is independent of g due to Nj, o |g|.
On the other hand, g4 for the deformation potential interaction represented by glf] is real
and approximately independent of q. Mfa is given by

bq qa

~ Z 9P UL (Kebb), (2.53)

where the leading term of M, qDa is independent of g. The similar results hold correctly for
both M” _ and Mg,
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Polaronic quasiparticle operators

Following Eq. (2.48), the adiabatic coupled equation of Eq. (2.40) is rewritten as

B!
2

it = BloEqa + ch My, +1)_ Blo Waata + M goc-g (2.54)

Further, the equation of motion of the LO phonon of Eq. (2.20) becomes of the form:

'(Z/ ! )c —cwq—i—ZB (2.55)

quh

We integrate Eqgs. (2.54) and (2.55) into a single equation in a matrix form of

d
—ZE[BJI,C] (Bl ctlhg + [iBIWq + M” jc_q,0]. (2.56)

Here, hq = {hgy,} is a non-Hermitian matrix provided by

Eq M

with 7, v/ =1 ~ N + 2. N represents the number of electron-hole (discretized) continua
of single-particle excitation modes, that is, 5 = 1 ~ N except for two discrete states
of the plasmon-like mode and the LO phonon mode signified as «; and «y, respectively:
{7} = ({B}, a1, ). It is noted that we will adopt the matrix indices of o/, ', 7/, and o/
(1 = 1,2) with the same meaning as «, 3, v, and «, respectively.

In this section, we are exclusively concerned with the case where the continuum level of
{B} overlaps the two discrete levels of oy and ay. This case is categorized into the Fano
problem, in other words, the multichannel scattering problem with one open channel
and two closed channels, except for hy being non-Hermitian. We take into account the
following coupled equations of

Z hqw qwﬁgqﬁa (2.58)

where Vi = {V[;} represents the right vector of the solution for given energy £g5. In
terms of Vﬁ, we define a set of N operators FJr (=1~ N) as

Z BQﬁ’ ap'B + Bqal V:zcuﬂ +c anzﬁ (2'59)

Further, we introduce the left vector VqLﬁT = {VqLﬂE} associated with Vq% in order to satisfy
the inverse relations

— T oyLt — Ty Lt
—ZF sV, cg_ZF sVt (2.60)

where > qLBTquvB’ = 0gp and Y, V" q/o’v = 0,,. Here, it is noted that the PQ

operator F! 46 18 introduced in a smnlar manner to that of the quasiboson operator Bqa;
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the commutation relation [I:I(eﬁ)(t),Fgﬁ(t)] = FT 5(t)Eqp(t) is ensured, where the total
effective Hamiltonian H©™(¢) is provided by H eﬂr)( ) = Héeﬂ)(t) + H, + H,_,, and the
expression hy(t) =) 4 Vq%(t)gqg(t)vqg(t) is employed in terms of Eq. (2.58).

Given Eq. (2.59), we obtain adiabatic coupled equations for F, J from Eq. (2.56):

d
it 2 = Fap€as + i Z FooTags+ Y M goaF gs, (2.61)
Bl

where F, represents Hermitian-conjugate of F, g . Further,

—lIﬁ/B’ = (Z Mﬁqa qaﬁ) —qasp’ (2.62)

and
’Y(O)
T,=1I,+ ‘; (2.63)
I, represents a non-adiabatic interaction expressed as
A (VadaUshrar )
qf'a’ ¥ qa'a R
Iqps = Z dt (quc” qaﬁ)
_ Ly qﬁ’
= > Vil Waea Vars + Z VE, (2.64)

aa!

with Iq # —1, :;, and a phenomenological damping factor 7((1%), 5 relevant to F, TB is provided

by
(0) (B)
%6 s _ Lt Jga'a
Vqﬁ’a’ anﬁ

(2.65)
Hereafter, we term the operators F| ; ﬁ(t) and Fyp(t) a creation operator and an annihilation
operator of PQ, respectively. These operators are not bosonic ones, and the ground state
of the PQ is provided by the direct product of the ground states of the quasiboson and
the LO phonon. Further, £,5(t) represents single-PQ adiabatic energy with mode gf at
time ¢.

Retarded Green function associated with the PQ operator

We solve Eq. (2.61) in an approximate manner to obtain the closed analytic forms of
F ;5 and Fyz. The details of the derivation is described in Appendix C. The point of this
derivation is to approximate the non-adiabatic interaction I,(¢) under the following as-
sumption. I,(t) is affected by the two contributions, namely, W,(t) and a time-derivative
of VI(t) [see Eq. (2.64)]. We have two pronounced effects on We(t). One is an effect of
a crossing between the adiabatic o/th and ath states. Here, the adiabatic energy curves
of £ (t) and E4q () tend to cross at t = t; —termed as exceptional point— [81], which
results in spike-like change of Wy, It is seen that this effect originates from the energy
denominator in Eq. (2.44) reminiscent of a Landau-Zener coupling [84]. The other effect
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is attributed to abrupt change of Qgg) (t) of Eq. (2.14), that is, deg) (t)/dt. These two
effects are also included in the time-derivative of V(¢) in Eq. (2 64).

In the present section, we set the pulse-envelop function f(¢) in Eq. (2.7) to a squared-
shape just for the sake of simplicity, that is,

f)=0(t+71,/2)0(t —11/2), (2.66)

where 7, is temporal width. Thus, spike-like change of Wy, (t) arises at t = ¢; including

t = 471, /2, whereas Z,, €44, and UqLC{R(kbb’ ) varies slowly in time owing to the rotating
wave approximation except for ¢t = £7;,/2. Accordingly, I,4(t) would be well described as

t)~ > 396t —t)), (2.67)
j

where J(j ) is a constant matrix with Jg ot # Jq From among a set of the off-diagonal
elements {J ab'(£6) ﬁ} we retain just single leading contribution, namely, ’Jffﬁ),)( 2p)p T =1p.
In practical calculations, tp is set to 71,/2, that is,
tp = —. (2.68)
The associated retarded Green function is defined in terms of Fy; and FJ as [79, 80]

Gh(t, ):-z9<t—t')<[p (1), Fgﬁ,(')b. (2.69)

As shown in Appendix C.2, it ends up with

. o 0%, (¢t
GE (8, 1) = —if(t — t')e~ O (t:tp) Z B (D) T (£, )VE i (tp)e e 12) 1 (2.70)

where the matrix Ty is given by Eq. (C.38), where all effects of the off-diagonal com-

ponents {J 5(2p)p) ab t =tp are incorporated. Ogs(t,t') represents an adiabatic energy
phase prov1ded by

¢ Oy
Ogs(t, 1) :/ﬂ dt”{ aa(t") =i [7‘152@ ) +I;56(t”)] } (2.71)

and the effect of the phenomenological damping is included in it. Further, in ©44(t,t'),

the effect of the non-adiabatic correction due to diagonal components {J( ) g} is also in-
corporated. We discuss this additional effect in more detail in Sec. 3.1.2.

2.3.2 Approximations employed

In the present subsection, first, we summarize the approximations employed for the tran-
sient FR problem. The major approximation is the factorization approximation employed
in Egs. (2.10) and (2.48) in addition to the rotating wave approximation implemented in
Eq. (2.16). Next, we introduce the further approximations for actual calculations as
follows. (i) Time integration for solving Eq. (2.61) starts at t = tp = 7./2, where
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the temporal width 7, of the squared pulse is defined by Eq. (2.66). Thus, we ne-
glect contributions from the temporal region ¢ < tp. (i) We assume the relation of
([Bqa,B;,a,D = 0gq'0aa’; 50 that Eq. (2.50) is provided by M, = My, (iii) We neglect
effects of M”, of Eq. (2.49) on Egs. (2.54) and (2.61). (iv) We assume that Eq. (2.65) is
provided by 7((1%)5, (t) = dpp7q0(t +tp), where v, is a real and positive constant.

The approximation (i) is valid in the present system because 7, is much shorter than
the relaxation time of the carrier-density of the order of 100 fs. Therefore, in the temporal
region of ¢t > tp, owing to the rotating wave approximation, the adiabatic picture is
justified, which is the basis of the PQ picture. Further, we take into account just the
leading contribution of the non-adiabatic interaction 351];/)( 2p)p b T =1p in Eq. (2.67).

Concerning the approximation (ii), we discuss the criterion of the validity of it in
Appendix C.3. This criterion is made sure in the temporal region ¢t > tp as well as the
approximation (i), where the Coulomb correction to the Rabi frequency »_, Vq(c) Phbk+q
in Eq. (2.19) is much smaller than w,. Besides, this approximation demands that the
limited set of {a} with &£y, of real and positive numbers is employed for all the solutions
of Egs. (2.33) and (2.34). As a result, the matrix h, of Eq. (2.57) becomes Hermitian, and
VqLﬁ and Vq% become equivalent, which enables us to employ the solutions of the ordinary
Fano problem as a set of the vectors [46].

The approximation (iii) is attributed to the present quasibosonization scheme where
the effects of two-quasiboson states are removed as described below Eq. (2.38). Actually,
M qo 15 pertinent to non-vanishing commutator between different quasi-boson operators
[see Eq. (2.49)]. This couples the PQ of the §'th state with that of the Sth state accom-
panying momentum transfer from —q to g. The approximation (iv) is derived from the
assumption that Tykpy provided in Eq. (2.9) is independent of k, b, and ', and is generally
labeled as Tg12 : 7 = 2/Tq12

2.3.3 Analytic expression of transient photoemission spectra

In the case that fq4(t') is provided by a delta pulse as fq(t') = fqod(t' —t,), where fgo is
independent of ¢'; the induced charge density of Eq. (2.21) becomes

ng"d) (t, +7) = ﬁfquf;) (t, +7,tp). (2.72)

Here, ¢, is the time where f,(¢') probes dynamics of concern, and nin (t, + 7) depends

on both ¢, and the relative time 7 = ¢ — ¢/, which is different from equilibrium systems;

they depend solely on 7, not on ¢, since temporal translational invariance is conserved.

Therefore, th) (t, 4+ 7,1,) reveals the way of change in the induced charge density after t,.
The inverse dielectric function e, (t, + 7,1,) is provided as

B B Vv
eql(tp +7,ty) =€ [(5(7’) + Evéc)x(qt) (t, +7,t,)0(7) |, (2.73)

where v,(lc) is given by Eq. (2.30), and €, is a background dielectric constant provided in

Eq. (2.6). The Fourier transform of ¢ (t, + 7,1,) is readily obtained as follows:
Eq(tpiw) = / dr e e, (t, + T, tp), (2.74)
0
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where the relation [* dt"e ' (t,+7,1")e,(t",t,) = 6(7) is employed. Therefore, we obtain
a transient absorption coeflicient oy (t,; w) at time ¢, represented as
I,(ty;w), (2.75)

aq(tp;w) = (i 0)C
D3

where
Iy(tp; w) = Tmé, (t,;w). (2.76)

Here, n(t,;w) is the index of refraction, which is approximately provided by n(t,;w) ~
V€, and C'is the speed of light. As regards I4(t,;w), it is remarked that this is nonlinear
in the pump field of Eq. (2.7). Further, the sign of w in Eq. (2.74) is defined such
that transient photoemission spectra I4(t,;w) < 0 peak at positive w, while transient
photoabsorption spectra I,(t,;w) > 0 peak at negative w. We define the transient induced
photoemission spectra as

Lo(tp;w) = —Ig(tp; w). (2.77)

Next, we derive explicit expressions of the retarded density-density correlation function
DJ(t,t') of Eq. (2.24) and the retarded phonon Green function D (t,t') of Eq. (2.32)
within the present scheme. The details of the derivation and the analytical expressions
of xq(t, ') and x}(t,t') are described in Appendix D. As regards D[ (t,t'), the density
operator of Eq. (2.25) becomes of the form

Z B! Nk (2.78)

where Eq. (2.38), Nk, = >, Uki(kbb) of Eq. (B.18), and the orthogonality relation of
the quasiboson operator are employed. According to this expression, it is seen that B:fla
represents a fraction of electron density at the ath state weighted with Nja /V. Using
Eq. (2.60), Eq. (2.78) is rewritten as

LT L
§ LVENE. (2.79)
Eventually, with Eqgs. (2.24), (2.69), and (2.79), we obtain

DE(t,1) Z NE@VE)GE, (.t o ()NE (). (2.80)
aa’/ﬂ’ﬁ’

On the other hand, employing Egs. (2.60) and (2.69), D/f(t,t') becomes

R Lt
D, t t Z qagﬁ qﬁ6’<t7t )Vqﬁ’ag( /)' (281)
BB’

Lastly, it is noted that an overall phase factor e”a=(®) of the normalization constant
NE (t) of the ath solution Uk (t) is not determined, where 7g4(t) represents an arbitrary
real function of ¢. This arbitrariness leads the quasiboson operators Bf,(t) and Bga(t) to
be transformed as B, (t) — B, (t)e™s=® and By (t) = Bga(t)e =) respectively. As
shown in Appendix E, x4 (¢, ') of Eq. (2.22) is independent of any choice of Nga(t), and
invariant with respect to these phase transformations.
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2.3.4 Allocation of time constants

Here, we summarize time constants employed in the present section. Single-particle den-
sity matrices ppyg defined below Eq. (2.14) follow the carrier-density relaxation time
constants 77 and T,. Here, T} describes the relaxation of the carrier distribution function
peor formed by the pump pulse irradiation to a quasi-equilibrium distribution function,
and Ty describes the dephasing of the transition amplitude py, [41, 79]. We assume that
the two relaxation time constants of the induced carrier density with isotropic momentum
distribution are identical; Tho = T} = T5. T2 is defined in Sec. 2.3.2, and represents the
phenomenological relaxation time constant of the induced carrier density with anisotropic
momentum distribution. The temporal region ¢ < T3, where strongly photoexcited carri-
ers still stay in the excited states and interact with the phonon, corresponds to the ETR,
while the temporal region t = Ti5 corresponds to the classical region.

Figure 2.1 represents schematic allocation of the time constants stated in the present
section, that is, tp, T412, and T'2 in addition to Ty, attributed to phonon anharmonicity.
We show the time constants employed in the actual calculations in Table 2.1. Reference [3]
summarizes time scales for different stages of relaxation phenomena in photoexcited ex-
periments. For the analysis of the transient FR, we set tp, T2, T2, and Ty, to 7.5,
20, 90, and 5000 fs, respectively. This allocation of the time constants given by Fig. 2.1
is a requirement for the manifestation of the transient FR of concern, and the detail is
discussed in Sec. 3.1.2.

Eary-Time Region

(Quantum-Mechanical Region ) Classical Region
>
TL I
|
: Time
01 T Ty, Topn

Figure 2.1: Schematic diagram of various time constants employed in the analysis of the
transient FR. (From Ref. [69] with partial modification.)

Table 2.1: Time constants employed in the analysis of the transient FR.

Time constants

tD 7.5fs
Tq12 20fs
T12 90fs
Typh ops

Concerning experimental estimates of the time constants, tp, T2, Th2, and Tg,, are
evaluated as 5, 16, 100, and 1300 fs, respectively by the CP measurements for Si at average
excited carrier density N, =4 x 10cm™ in Ref. [6]. T,1o for Si is also estimated in the
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pump-probe reflectivity study in Ref. [85] as 32 £ 5 fs at N, = (5.5 £ 0.3) x 10¥cm 3.
Ty, for GaAs is evaluated by the numerical calculations as 50 fs at N., = 3 x 108cm ™3
in Ref. [86]. Ty is estimated from Raman scattering in Si; Ty, ~ 2500 fs at low
temperature [87], and Ty,, ~ 1500 fs [87] and 2000 fs [88] at 300 K.

2.4 Analysis of Coherent Phonon Oscillatory Pattens

In the previous section, we solved the multichannel scattering problem. The scheme is
based on the approximation that the effects of the interband density matrices py;, are
partly neglected so as to solve the Hermitian problem substituted for the non-Hermitian
problem hg, of Eq. (2.57). This approximation scheme is justified for the case of the
relatively weak excitation conditions. Actually, in the calculations of the induced pho-
toemission spectra I,(t,;w) based on the previous scheme, we set the pulse area to 0.127
and 0.207 for undoped Si and undoped GaAs, respectively, as shown in Sec. 3.1.

In the present scheme, we incorporate these neglected effects into calculations, and
investigate physical quantities even under the strong excitation conditions such as 7- and
2m-pulse laser conditions. However as the price to be paid, the scattering problem to be
solved is replaced by the more tractable eigenvalue problem just for the sake of simplicity.
We solve the associated non-Hermitian problem, and derive an analytical expression of a
CP oscillatory pattern.

2.4.1 Introduction of polaronic quasiparticle operators

First, Eq. (2.16) is recast into the form:

d 1 _ _
I el AT — AT 1117/ Z 1171
i ( =+ qubb> ! (kbb) kzb/: LEVY)Z, (K'Y, kbb)

+O (1) Al (kD) — O (1) Al (kDD)  (2.82)

and

(d 1N o § o
i (_ n ) AL (Kbb) = @ypg AL (KbD) + QUY (1) { Al (kbb) — Al (kbb)}
dt qubb

‘|‘Vq(c) (Pobr — Pb5k+q) Z Az(k/b/b,% (2.83)
0%

where the c-number non-Hermitian matrix Z4 is provided by
Z, (K'Y kbb) = Spa Oy Dyirq + Vi (Pok — Driveta)- (2.84)

Next, we solve left and right eigenvalue problems of Z; as L{QLTZq = Eq,Z/{qLT and unlf =
L{qu with ¢ fixed as an adiabatic parameter. Here, F, is the eigenvalue, and L{é: and
I/{f represent the associated biorthogonal eigenvectors. In the long wave-length limit of
lg| — 0, the non-vanishing solution arises just from the collective excitation mode, whereas
intraband single-particle excitation modes vanish [41]. This procedure of introducing the
plasmon mode is somewhat different from that developed in the previous section in that
here we incorporate just the contribution from intraband excitation. The eigenvalue and
the eigenvectors are obtained by a similar manner described in Appendix B that interband
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density matrices pyp, are removed from Egs. (B.56) and (B.62). The adiabatic plasma
frequency wg,, is provided by

1
2

Wapl = Vq(c)q2 Z ﬁbkaiél()Q s (285)
kb

and the associated U} (kbb) and U} (kbb) are given by

quT(kbb) NL gbbkq(pbbk — Dobk+q) (2.86)

and
uf(kbb) = vaq(c)gbbkm (2.87)

respectively, where Gurg = [Wapr — @bbkq]’l. We determine the normalization constants
le and Nf with the condition of L{;TZ/{f = 1. Thus, the plasmon is represented as the
following operator:

ZAT (Kbb)UL (RbD). (2.88)

The equations of motion of Bq, cfl, and A:f](k:bb) of the interband single-particle exci-
tation mode are expressed in terms of the Heisenberg equations as

B}
—ZW (wapt — Wapt + i7gp) BY + M et + ZM’ (kbb) Al (Kkbb), (2.89)
,dcfl , : :
—i = (Waph + i7gpn)cly + MapnBY, (2.90)
and dAT (kD)
—i—T " = (Dying + Voikg) AL (kD) + M (Kbb)BL, (2.91)

dt
where effective couplings between the plasmon and single-particle excitation modes are
expressed as

My (kbb) = O (1) (U (kbb) — UL (kBB) Y + VONE (B, — P ) (2.92)

and
M, (kbb) = t) {UL (kbb) — UL (kbb) } . (2.93)

Further, the non-adiabatic term is given by

bbk:

AU (Kebb)
W = > UL (Fbb) —1-— (2.94)
kb

and an effective coupling constant between the LO phonon and the plasmon is given by

Mapn = Zgbq (kbb). (2.95)

Besides, in the derivation of Eqs. (2.89)-(2.91), U UF =1 and N} = 3, ULT(kbb) are
used. Moreover,
Japh 1

= 2.96
o (2.96)

qph
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Yapl Lt 1 R
= > UL (kbb) —UL (Kbb), (2.97)

) akbh
and ]
Vobkq (
—_ = 2.98)
2 qubE
where Ty, is attributed to phonon anharmonicity, and Ty is given in Eq. (2.9).
We integrate Eqgs. (2.89)-(2.91) into a single equation, expressed as
d _ - _
—i[e [ch, Al (kbD) - -+, BI] = [c], Al (kbb) - - -, B}] 2, (2.99)
where the non-Hermitian matrix Z, is provided by
Waph + 1Vqph 0 0 M:Ikph,
_ 0 Wpika + V5 0 M'! (kbb
Z, = bbkq T YVbbkq . q(' ) . (2.100)
0 0 i :
Maph Mg (kbb) e Wapl — 1Wapt + 1gpi

Here, the indices of ph, pl, and (kbb) represent the phonon, the plasmon, and the single-
particle excitation in interbands, respectively. As shown in Appendix F, we solve the
left and right eigenvalue problems [81] of Z, as VquTZq = quV(ij and ZVE = VEE,;,
respectively, with ¢ fixed, and {7, j/, 7"} = (ph, {kbb},pl). Eg; is the eigenvalue of the jth
mode, and Vqu and V,’E are the associated biorthogonal eigenvectors.

Now, we introduce the P(Q operator as

Pl =clVE, -+ BIVE +ZAT (ROb) Vi i) (2.101)

ph,j qpl J

and the equation of motion of PT is provided by

P},
—i—t = B, JPL =iy Pl X, (2.102)

where X, represents a non-adiabatic coupling between the jth and j'th modes expressed

as
dV /! dVR/
X i Zvjjj LEE :ijd—f. (2.103)

By analogy with the Hellman—Feynman theorem, this is cast into

YhtdZa R

Xajir = —E?J e i (2.104)

qj qj
and quj 7é 0.

We solve Eq. (2.102) in an approximate manner by neglecting the effects of the non-
adiabatic coupling. In the temporal region of ¢ 2 7, with the pulse width 7, it is assumed
that the non-adiabatic coupling term in the right-hand side of Eq. (2.102) is negligibly
small. In the present analysis, f(¢) in Eq. (2.7) is set to the Gaussian-shaped function:

f(t) = exp(—t*/20?) (2.105)
with 77, = 2v/2In20.
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2.4.2 Analytic expression of a coherent phonon oscillatory pat-
tern

The retarded phonon Green function given by Eq. (2.32) is rewritten as
Dt 1) = —i{[cqlt),ch()]) 0t
_ —zz o (0 ([ Pus(), PT (O] ) Vih o —1),  (2106)

where a relation CII = Z PT VE s used. According to the linear response theory,

qiph
Df(t, t') indicates an induced charge density of ionic-core resulting from a delta-shaped
weak external-potential at ¢’. The induced charge density ascribed to the CP generation
is provided by

Qq(m) = DE(r + ¢ ¥) — DEO(r +¢.¢) (2.107)

except for an unimportant proportional constant with 7 =t — ¢’ > 0. Here, we subtract
the contribution of the free phonon Green function without the pump laser, represented
as

DEO(t ') = —2sin[w,(t — )]0t — t'), (2.108)

since this leads to the incoherent phonon signal. Hereafter, we are concerned exclusively
with the time of ¢ = 0. Finally, Q4(7) is rewritten as

Qq(7) = Cq(T) cos [wyT + Og(7)] . (2.109)

Cq(7) and O,4(7) are a transitory amplitude and a renormalized phase modulus 7 at 7,
respectively. The Fourier transform of ()4(7) and a power spectrum Sq(w) are given by

Qqw) = /0 ) e TQq()dr (2.110)

and )
Sq(w) o< |Qq(w)]?, (2.111)
respectively.
In particular, for the long-time limit of 7 > 27 /w,, a non-vanishing value of chph, (1)

in Eq. (2.106) and Re {£4;(t)} =~ wq are exclusively concerned. For an undoped semicon-
ductor, Eq. (2.106) becomes

DE(t,¢) = —ie =g (¢, )VE L (OVE ()0 — 1), (2.112)

where quh]( 00) = Opnj, [Cq(—00), cf(—00)] =1, and [cq, BY] = [cq, AL (KbD)] = 0 are
used. Further,

—00 —00

t ¢
&(t, 1) = exp [—/ dt”ImEqph(t”)—/ dt”ImEqph(t”)]

t
X exp [—z/ dt" {ReEqg,n(t") — wq}] ) (2.113)
t/

In the present dissertation, undopoed semiconductors are considered for the sake of sim-
plicity. In a doped semiconductor, we have additional contributions from VI avh. pl( 00) #
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0 and V&,  (—o0) # 0, nevertheless they would be negligibly small compared with

V(ijh,ph(_qgg;hand Ve on(—00). The initial phase 6 and the asymptotic amplitude Ce™7ar™
are expressed as
0 = 5 — ang |&q(T.0) Vit (0) — 1] (2.114)
modulus 7, and
Cy = |&a(T, 0) Vg, 1 (0) — 1), (2.115)

respectively, where V‘fphmh(T) =1 is employed.

Lastly it is noted that the normalization constant N (t) in 2 (t), and the associated
operator Bga(t) are not determined up to an overall phase factor in the same way as
NE(t) in UE (t) and B}, (t) in Sec 2.3. However, physical quantities are unchanged for
these phase transformations, and not dependent on any choice of the phase factor for the
same reason as that shown in Appendix E.
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Chapter 3

Results and Discussion

In Fig. 3.1, we show the scheme of the CP generation dynamics. We take into account
exclusively opaque interband transitions accompanying real excited carriers. In the joint-
band energy dispersion, the carriers form the energy distribution depending on the Rabi
frequency Qoe, in Eq. (2.7), the pulse width 77, and the detuning A defined as

A= Wy — E

g

(3.1)

with the laser frequency wy and the band gap energy at I' point £,. Further, the en-
ergy distribution partially overlaps with the energy of the LO phonon w,. The pulse
width of concern is of an order of 10 fs, and corresponding spectral width of the laser is
approximately 300 meV to 400 meV.

Ener
&Y joint-energy band

\ LO-phgnon g

Excited carriers
single-particl¢ and
collective excitqtion
modes

A=a)0-Eg

Figure 3.1: The schematic diagram of the CP generation dynamics. Detuning A is defined
by A = wy — E, with the laser frequency wy and the direct band gap Ey,. (From Ref. [71]
with partial modification.)

Material parameters employed in the actual calculations are provided in Table 3.1.
Further, in order to evaluate the single-particle density matrices puyx(t), we solve optical
Bloch equations in advance within the two-band model constituted of ¢- and v-bands.
Hereafter, we refer the concerned materials of undoped Si and undoped GaAs just as Si
and GaAs, respectively, unless otherwise stated. Further, we assume the crystals to be
cubic.
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Table 3.1: Materials parameters of undoped Si and undoped GaAs used in the disser-
tation. m,. and m, are effective masses of conduction- and valence-electrons at I' point,
respectively. €y and €4, are a static dielectric constant and a dielectric constant in the high-
frequency limit, respectively. ggl and gﬁl are coupling constants between the conduction-
and valence-band electron and the LO phonon due to deformation-potential interaction,
respectively, where more accurate values are given by Ref. [89]. w, is LO phonon fre-
quency at I' point. Ny is the total number of sites considered in calculations, and d is a
lattice constant. Atomic units are used, unless otherwise stated.

Parameters undoped Si undoped GaAs
me 0.158 0.067
My, -0.523 -0.45
€0 11.9 11.53
€so 11.9 10.10
9t 0 0
gfq 0.147 0.0676
Wq 63 meV 35 meV
N, 703(=3.43 x 10°)  643(= 2.62 x 10°)
d 10.5 10.5

3.1 Transient Fano Resonance

In this section, we show the results of the numerical calculations of adiabatic energy in
Egs. (2.33) and (2.34), and the transient induced photoemission spectra of Eq. (2.77) for
Si and GaAs. The pulse-envelop function f(t) in Eq. (2.7) is set to a squared-shape with
71, = 15 fs. Further, the magnitude of momentum q is assumed to be quite small, and set
to |g| = 0.015 (a.u.). Other parameters of the pulse laser employed in the calculations
are provided in Table 3.2.

Table 3.2: Parameters of a square-shaped pulse laser used in Sec. 3.1, where g, is the
Rabi frequency in Eq. (2.7), Ay is the pulse area defined by A, = [ Qo f(t)dt with
the pulse-envelop function f(t), A is the detuning defined by Eq. (3.1), and N is the
maximum excited-electron density.

Parameters Si GaAs
Qocw 16.5 meV 27.2 meV
Ar 0.127 0.207

A 82 meV 73 meV
N 6.31 x 107 /em®  5.30 x 10'7/cm?
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Figure 3.2: Adiabatic energy curves of Si (in the unit of meV) as a function of time (in
the unit of fs). A red solid line, blue solid lines, a green solid line, a broken line, and an
orange solid line show wg, {€4s}, Eqars Wapt, and Qoe, f(t), respectively. Schematic change
of the excited electron density in time is depicted by the gradation of blue color, where
the threshold energy of {€,5} is represented by the lowest limit of this gradation. (From
Ref. [69].)

3.1.1 Adiabatic energy configuration

Figure 3.2 shows the calculated result of adiabatic energy curves £44(t) of quasiboson in
Si as a function of time in the small-g limit. A green solid line indicates E4q, (t) ascribed
to a plasmon-like mode, and it is seen that the the green line is almost proportional to the
plasma frequency wg,(t) indicated by a broken line. Here, the maximum of the excited
electron density is 6.31 x 10'7cm3. In fact, E4a, (¢) is dependent on Rabi frequencies of
QP (1) and O () of Eq. (2.19), and interband density matrices fok(t) and pue(t) in
an intricate manner as shown in Appendix B. The difference of the functional shapes
between wq,(t) and Eqq, (t) are due to the transient effect of the Rabi frequencies and the
interband density matrices. After such effects are suppressed, namely, in the time region
of t > t,/2 = tp, Egas(t) becomes equivalent to wgy(t), apart from a renormalization
effect attributed to Vq(c) on the Rabi frequencies.

Blue solid lines show discretized adiabatic-energy levels of a bundle of electron-hole
continua {&E4s(t)}, where the lowest energy of them represents a threshold of these con-

tributions. As described in Appendix. C.1, this threshold is provided by |2§2£f,i(t)| in an
approximate manner, which roughly corresponds to Q. f(t) [see Egs. (2.7) and (2.19)]
represented by an orange solid line. The energy discretization for {E,4(¢)} originates from
the incorporation of the finite number of sites in the calculations: V = N,d® and N, = 703
with lattice constant d. It is remarked that the formation of the continua {&€44(t)} is at-
tributed exclusively to single-particle excitation modes in interbands, and the effect of
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intrabands vanishes in the small-q limit. Further, schematic change of the excited carrier
density in time is shown by the gradation of blue color. The red line represents the LO
phonon energy w, = 63 meV. Adiabatic energy curves of GaAs as a function of time
represent the similar behavior to those of Si, though not shown here.

As is seen in Fig. 3.2, the LO phonon mode a5 is embedded in the continuum state {5}
of the single-particle excitation modes right after the onset of the laser irradiation. This
effect continues even after the completion of the irradiation: ¢ > ¢p. It is likely that Mgz
of Eq. (2.46) causes a coupling between the LO phonon and the quasiboson continuum
state in a resonant manner, that is, at ;3 =~ wg. As a result, FR is generated in the
case that the excited carrier density is high enough: Mgz is dependent on the excited
carrier density. Such an energy configuration is one of the essential requirements to be
satisfied for the occurrence of the FR in addition to the allocation of the time constants
mentioned in Sec. 2.3.4. The plasmon-like mode «; inclines to dive into the continua in
t > tp. However, FR ascribed to this mode is not expected to manifest itself since the
coupling between the a;th and Sth modes is provided by the second-order interaction of
the form MgsM,,, mediated by the LO phonon, and this would be negligible, as shown
later in Sec. 3.1.2.

Moreover, in Fig. 3.2, it is seen that the adiabatic energy curves in ¢t > tp vary so slowly
in time that the PQQ model based on the adiabatic picture is verified. The discontinuity
at t = +77,/2 is attributed to the square-shaped pulse of Eq. (2.66).

3.1.2 Transient induced photoemission spectra

Transient induced photoemission spectra I,(t,;w) of Eq. (2.77) represent the change of
the electronic structure at probe time ¢, formed by a nonlinear optical process attributed
to the pump pulse irradiation . This is a decisive observable to comprehend the occur-
rence of transient and nonlinear FR. Here, we take into account I,(t,;w) of Si and GaAs
as a function of frequency w. As seen from Eq. (2.22), the two interactions—the dy-
namically screened Coulomb interaction induced by electron and the LO phonon-induced
interaction— play a part to the total retarded longitudinal susceptibility, represented by

)NQ(;) (tp§w) = Xq(tzﬁw) + )NC,q(tﬁw)' (3‘2)

Here, )Z,(f)(tp;w), Xq(tp;w), and X, (tp;w) show the Fourier transforms of ¥ (ty + 7. 1),
Xq(tp + 7,1p), and X, (t, + 7,t,) with respect to time 7 into the frequency w-domain,
respectively. Yq(tp;w) is proportional to |g|? in the small-g limit. On the other hand,
owing to Eq. (2.29), X, (tp;w) is proportional to |g|* for the Frolich interaction of long
range, and |g|* for the deformation potential interaction of short range. This fact reflects
on I,(ty;w) through Eq. (2.73), as it should be; in nonpolar crystals such as Si, since
spatial inversion symmetry exists, lattice absorption vanishes in the limit of a dipole
transition accompanying no momentum transfer, namely, g = 0.

Figure 3.3 shows I,(t,;w) of Si and GaAs at probe time ¢, = 15, 65, and 100 fs.
Blue and green lines represent the separate contributions from x4 (t,;w) and X (t,;w),
respectively, and red lines represent the total one. The contribution of y,(¢,;w) is mostly
dominated by the plasmon-like mode «;, while that of x;(¢,;w) is dominated by the
LO phonon mode as. Xq4(t,;w) is attributed to electronic excitation through optical
interband transitions. fq(tp; w) includes structureless background spectra due to electron-
hole continuum modes {3}, which are almost constant in w of concern. In both I, (t,;w)’s

37



S1 GaAs

—_

X

[a—

S,
—
\S]

g 10t (d) 15 fs
s
S 1 8
5 6
- 4
NQ
—’ 2 _’_J
S 0 S
0 20 40 60 80 100 120 o 20 40 60 80
X10° 6
= 2
g (b) 65 fs (e) 65 fs
€ 1 4
s,
S
&
Sy S— N 2
NQ
p——
I$_1 0
59 60 61 62 63 64 65 66 67 4 345 35 355 36
x10" 1.6
E 6 (c) 100 fs (f) 100 fs
= 1.2
e
= 4
0.8
—
S,
A 0.4
p——
55

0 0
59 60 61 62 63 64 65 66 67 34 345 35 35.5 36
® [meV] @ [meV]

Figure 3.3: Transient induced photoemission spectra I,(t,;w) (red line) as a function of
frequency w (in the unit of meV) for Si at probe time ¢, of (a) 15 fs, (b) 65 fs, and (c)
100 fs, and those for GaAs at probe time ¢, of (d) 15 fs, (e) 65 fs, and (f) 100fs. Blue and
green lines represent separate contributions to the spectra from x4 (t,;w) and xg (t,;w),
respectively. (From Ref. [69] with partial modification.)
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of Si and GaAs, the formation of spectral peaks is due only to X (¢y;w). The width of the
spectral peaks follows 2/Tg,, = 0.27 meV rather than natural spectral width. Further,
it is noted that the back ground spectra in Fig 3.3 is attributed just to the a;th mode.
The choice of the baseline, that is, the line of I,(t,;w) = 0 corresponds to removal of the
contributions from the continuum modes {3}, which would be structureless, just for the
sake of simplicity of the calculation.

Figure 3.3(a) represents I, (t,;w) of Si at t, = 15 fs. The spectrum is governed by the

contribution from y,(¢,;w) attributed to the a;th mode, that is, e (tp;w) = Xq(tpw),

and the spectrum shows monotonous decrease in w. On the other hand, the contribution
from X/ (t,;w) is negligible since it is proportional to |g|*. In Fig. 3.3(b), the contribu-
tion from X4(,;w) becomes small due to Ty12, and therefore comparable with that from
)Z;(tp; w). It is remarked that asymmetric spectrum with a dip followed by a peak appears,
which is characteristic of FR . This spectral profile contrasts with that of the Lorentzian
profile shown in Fig. 3.3(c) at t, = 100 fs, where the spectrum is governed by X, (t,;w)
and Xy (£ ) ~ Xty ).

As regards I4(t,; w) of GaAs, Fig. 3.3(d) shows spectra at ¢, = 15 fs with a discernible
peak attributed to the asth mode. The contributions from xg4(t,;w) of the background
continuum and Xy (f,;w) of the peak are comparable order because both are proportional
to |g|?. Figure 3.3(e) shows the spectrum at ¢, = 65 fs governed by X (t,;w). The spectral
profile is symmetric and different a lot from that of Si shown in Fig. 3.3(b). Figure 3.3(f)
shows the spectrum at ¢, = 100 fs representing the similar profile to that in Fig. 3.3(c).

Discussion on the spectral profile of I,(t,;w) based on the PQ picture

The origin of the manifestation of the transient FR shown in Fig. 3.3(b) can be elucidated
by inspection of the details of the numerical calculation, namely, analytic expression of the
retarded longitudinal susceptibility x; (¢,t') given by Eq. (2.28) and associated expressions
of Egs. (D.15) and (D.31)-(D.33). According to the procedures, major difference between
the results of Si and GaAs originates just from the phase factor of the effective coupling
between the LO phonon and the quasiboson, that is,

Mgp = |Mqﬂ|ei¢q5 (3.3)

apart from trivial difference of material parameters. As shown in Eqgs. (2.51)-(2.53), Mys
is attributed to a phenomenological LO-phonon-induced deformation-potential interaction
Jbg = 913; that is real in non-polar crystals, and the Frohlich interaction g, = g,f; that
is pure imaginary in polar crystals. It is remarked that in GaAs, the contribution of the
deformation potential interaction in Mg is approximately an order of one thousand times
smaller than that of the Frohlich interaction in our calculations, that is, gy ~ gfq. Owing
to the approximation (ii) described in Sec. 2.3.2, Ui (kbb) in Eq. (2.46) is considered to
be real, and therefore ¢44 is determined by the phases of glg and gfq; ¢qs = 0,7 for Si,
whereas ¢4 = £7/2 for GaAs.

Now, we examine how the difference of Mg influences the spectral profile of I,(t,;w)
with the PQ picture. As shown in Fig. 3.2, the LO phonon discrete state as is embedded
in the quasiboson continuum state 5. They can be resonantly coupled, leading to the
formation of the FR state of the PQ. Given this situation, Fig. 3.4 schematically diagrams
the present FR dynamics, and we have the two transition processes. One is a direct process
through an optical transition matrix Décﬁ) from the quasiboson state to the PQ ground
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PQ FR-State

LO-Phonon
Discrete State: O,

PQ Ground-State

Figure 3.4: Schematic diagram of FR dynamics on the basis of the PQ picture, where
the LO phonon discrete state as is embedded in the quasiboson continuum state [ .
The PQ FR state constituted of as and S is deexcited by an induced photoemission
process. Transition matrices of photoemission from o, and S to the PQ) ground state are
represented as D((IQZ and Dgg, respectively. Further, a coupling matrix between as and
is represented as My,. (From Ref. [69] with partial modification.)

state. The other is a two-step resonant process which is mediated by Mg, from S to as,
followed by a deexcitation process through an optical transition matrix DS"CBQ from as to
the PQ ground state. Here, we omit dependence of Décﬁ), Dé&, and Mg on t, just for the
sake of simplicity. Consulting Shore’s model [90], the whole transition matrix Dgs(t,;w)
is represented as

Dl M

. _ o
Das(tpiw) = Dy + w—wq+ilgay/2’

(3.4)

where the natural spectral width is provided by T'ga, = 27 pgas| Mgas|*- Pqgas is the density
of state of the quasiboson, and My,, is the coupling matrix at €3 = wg. The induced
photoemission spectrum is provided by I,(t,;w) = |Dgs(ty;w)|?, and this shows Shore’s
spectral profile in the vicinity of w & wq, corresponding to well-known Fano’s formula [90].

That is,
T Agas (w— Wq) + Bt;{azl—‘qaz/2

I,(t,);w) =~ Cys +
) T+ T2

where we obtain Shore’s spectral parameters represented by Aga,, Bga,, and Cqs as

: (3.5)

™) || Mys| cos dgs, (3.6)

qa2

Agay =2/ D3| D

| D, 2| Mys ?

Baaa = =2AD3 DG, | Mas|sin 6gs + 13—t (3.7)
qo2
and
Cop = |D,(12‘2> (3.8)

respectively. Here, the phase ¢gg is provided by ¢gs = ¢gs+Adgs with Adgs = arg[Décﬁ) -

D((,Z)z]. We obtain the associated Fano’s asymmetric ¢ parameter by means of Shore’s
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Figure 3.5: (a) The crystal structure of Si (the diamond structure). A red filled circle
depicts each Si atom, and an arrow with a purple dotted line represents the direction of
electric field of a pump laser; the representative three directions of [001], [111], and [110]
are selected. (b) Schematic phonon energy-dispersion curve in Si along high symmetry
axes. The number in the abscissa shows Bloch momentum in the unit of 27 /d with a
lattice constant d.

parameters as
Ggas (tp) = Tqas (tp) + Tgas (tp)\/ [Tgas (tp)]* + 1 (3.9)

With 740, (tp) = Bgas/Agqas a0d Oga, (tp) = Agas/|Aqgas|, and Cqp represents a continuum
background.

The spectral profile depends on Ag,,. On the occasion of ¢qp = £7/2, Aga, = 0 and
the spectral profile of I,(t,;w) becomes symmetric with |gga,(¢,)| infinite. This situation
corresponds to the profile of GaAs in Fig. 3.3(e), where A¢qys ~ 0 is assumed so as to
match it to experiments. When ¢,5 # +7/2, both Age, and By, are finite, and the
spectral profile becomes asymmetric with |gga,(¢,)| finite. The profile of Si in Fig. 3.3(b)
with ¢qs = 0, 7 is categorized into this case, where A¢qyp ~ 0 is assumed as well as the
case of GaAs. For Figs. 3.3(c) and 3.3(f), because Dé‘g and |M,g| are negligible, I,(t,;w)
is dominated by the second term in the right-hand side of Eq. (3.7). As a result, the
spectral profile becomes symmetric. In conclusion, the effective coupling constant Mg
around Egs ~ wq plays a key part in the occurrence of the transient FR, and the spectral
profile is determined by ¢4s as far as |Myg| is finite.

Next, we examine the optical transition matrix DEIQQ for the LO phonon. A T'y optical
phonon of GaAs is categorized into the space group T7(F43m), whereas a I'y5 optical
phonon of Si is categorized into the space group Of (F'd3m). An infrared photon excites
the I'y optical phonon directly through an electric dipole transition, namely, DZ(IQQ # 0,
while the I's; optical phonon is not infrared active owing to the existence of inversion
symmetry. This is the reason why in I,(t,;w) of GaAs, the contributions of N (tp; w)
and X4(f,;w) are comparable orders even at t, = 15 as shown in Fig. 3.3(d). On the
other hand, in the time region for Si, the contribution of X{ (¢,;w) is much smaller than
that of Y4(t,;w). However, the former contribution for Si does not necessarily vanish,

in other words, D,(IQQ # 0 in the present optically nonlinear and transient process. With
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the increase of t,, this contribution becomes more dominant as shown in Figs. 3.3(b)
and 3.3(c).

We are concerned with a crystal where a pump laser is irradiated in a certain direction,
rather than a free crystal, as schematically shown in Fig 3.5(a). Hereafter, we term the
former crystal a dressed crystal. On the occasion that an electric field of the laser is
applied in the representative directions of [001], [111], and [110], the symmetry of the
dressed crystal is reduced from that of the free crystal of the point group O, into point
groups of Cy,, Csy, and Cy,, respectively. Thus, we obtain irreducible representations
subduced from the irreducible representation I'ys of Oy, as follows [91]:

F25/ \l, C4V = Agl -+ A5, (310)
F25/ \l/ Cgv - A1 + Ag, (311)

and
Doy | Coy = 1 + X + 2. (3.12)

Among the subduced representations obtained above, the irreducible representations of
A1, Az, and X3 are in agreement with the symmetry of an ionic momentum operator,
namely, Ay @ {z}, A3 @ {& £y}, and X3 : {z}, where A; and X3 are single-valued
representations and Az is a double-valued one. This result implies that the dressed crystal
can be infrared-active, and an optical deexcitation arises via an emission process induced
by an infrared laser, which differs from the free crystal.

We can interpret Egs. (3.10)-(3.12) by consulting a phonon energy-dispersion diagram
of Si shown schematically in Fig. 3.5(b) [33]. The subduced representations obtained
here are in agreement with the compatibility relations with respect to I'p5 point [91].
Concretely, for instance, the k group Ga related to A point (k,) along the (111) axis
of Bloch momentum, that is, the direction of L point is a subgroup of the k group Gr
related to the I' point (kr = 0). Here, the symmetry of the dressed crystal in Si is lowered
from kr to kj along the (111) axis, and a threefold-degenerate level I'ys is lifted into a
twofold-degenerate level A3 and nondegenerate level A;. The similar fact also holds for
the subgroups of Go and Gy, . According to this discussion, the degree of magnitude of the
symmetry lowering is associated with the momentum change of ¢ = k — kr, which results
from spatial inhomogeneity induced by the formation of polarized charge by the pump
laser. In other words, spatial inversion symmetry is broken by the generated polarization.
This is the reason why in I,(t,;w) of Si, the contribution from Xq(tp; w) is reduced by the
order of |g|? in comparison with that of GaAs, as seen from Fig. 3.3.

Therefore, a transition process governing )Zg(tp;w) is regarded as an electric-dipole
transition in the dressed crystal with absorption of, for example, a A; optical phonon.
Further, this is also considered to be an electric quadrupole transition in the original
crystal with absorption of a I'y5 optical phonon, as far as g = 0; actually, the irreducible
representation is in harmony with the symmetry {zy,yz, zz} [33, 91]. Significant roles of
the electric quadrupole transition are also investigated in optical second harmonic gen-
eration from Si [92]. Further, it is reported that heavily excited carriers by the strong
femtosecond pulse induce lattice instability of Si and GaAs due to LO phonon distor-
tions [93]. It is remarked that the results obtained from a viewpoint of the group theory
remain unchanged for the present spectra calculated in a cubic model.
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Figure 3.6: Transient induced photoemission spectra I,(t,;w) as a function of frequency
w (in the unit of meV) for Si at probe time ¢, = 65 fs with Imjg%i& of (a) —0.64m, (b) 0,
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Figure 3.7: The same as Fig.3.6 but for GaAs with Imjé%;@ of (a) 0 and (b) 0.237.

Effect of the non-adiabatic correction

Next, we examine the effect of the non-adiabatic correction due to jflcﬂg on I(ty;w) [see

Egs. (2.67) and (2.71)]. This effect is fully neglected in the calculations of the spectra
shown in Fig. 3.3 as mentioned in Sec. 2.3.2. Here, we conduct the calculation of I, (¢,;w)
at t, = 65 fs with given numerical values of Imjécﬁ; g, At t =1tc = 725 fs; ’JEJCB; 5, 18 a
diagonal component of the non-adiabatic coupling in the vicinity of £43 ~ wq, and it is
supposed that associated off-diagonal components are much smaller than it. Figures 3.6

and 3.7 show I,(t,;w) of Si and GaAs, respectively at ¢, = 65 fs. It is remarked that

spectral profiles of I,(t,;w) are influenced by jfzg)ﬁ in the limited region of ¢, < t¢, and after
the time region, the effect is canceled. Therefore, both spectra of Figs. 3.3(c) and 3.3(f)
are independent of this effect. Further, the profile depends just on Imjflgg, and Rejgcﬁzg
leads to the damping effect, as readily seen from Egs. (2.70) and (2.71). First, as regards

Si shown in Fig. 3.6, the spectral profiles of I(¢,;w) are definitely dependent on the value

of ImJ;%ZBQ. The profile of Fig. 3.6(b), which is the same as that of Fig. 3.3(b), changes to
©

the profile with a peak followed by a dip of Fig. 3.6(a) for ImJ_g ; = —0.647. This profile
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is characterized by gga,(t,) < 0. Further, Fig. 3.6(c) shows a window resonance-shaped
profile of gga,(t,) ~ 0 with Imjflcﬂi g, = 0.70m. The similar changes of the spectral profiles
are also recognized in GaAs of Fig. 3.7(b), where the profile of Fig. 3.7(a) is the same as
that of Fig. 3.3(e). The spectra of ¢qq, < 0 for Imjf]%i 5, < 0 is also obtained, though not
shown here. It is noted that in these calculations, we assume the non-adiabatic interaction
at t = to due to a crossing between the energetically adjacent quasiboson states, and treat
it with given parameters. However after the completion of the laser irradiation, the effect
of the non-adiabatic interaction would be actually small because the density matrices
composing the non-adiabatic interaction are suppressed to some extent at t = t¢, and the

energy curves vary slowly in time due to the rotating wave approximation.

Discussion from the viewpoint of the allocation of time constants

Prior to closing this section, we discuss the allocation of the time constants in Fig. 2.1
and Table 2.1 in order to deepen the understanding of the manifestation of the transient
FR, particularly in Si. As shown in Fig. 3.3(b), we obtain the asymmetric spectral profile
in the time region of Ty12 S ¢, < Th2. Actually in the ETR of ¢, < T35, the photoexcited
carriers are still populated around the energy region of wg, that is, g3 ~ wq, leading
to the coupling between the carriers and the LO phonon through Mgz to form the FR.
Further, in the region of Ty12 < t,,, the contribution from Y,4(t,;w) decreases, and the
spectral peak due to )Z;(tp; w) comes into existence. In the case of the different allocation
of the time constants, for instance, T2 is close to Tho, that is, Tg12 ~ 112, the FR profile
is no longer discernible because this is covered with the structureless continuum due to
Xq(tp;w) even in the temporal region ¢, < T12. Moreover, in the region of ¢, ~ Tis, the
effect of Myp is so small that the FR is not caused. Therefore, it is understood that the
allocation of the time constants provided by Fig. 2.1 is a requirement for the manifestation
of the FR of Si in I,(t,;w), otherwise it is never realized.

3.2 Irregular Oscillatory-Patterns in the Early-Time
Region

In the present section, we show the calculated results of the oscillatory patterns Qq(7) of
Eq. (2.109) and the power spectra Sg(w) of Eq. (2.111) for Si. We employ a Gaussian-
shaped pulse laser with the pulse width 77, = 10 fs, and furthermore we assume &, (7,0) = 1
of Eq. (2.113).

3.2.1 Rabi frequency dependence

In Figs. 3.8(a) and 3.8(b), we show the calculated results of ©4(7) and Cy(7) at 7 = 20
fs in the ETR as a function of €., respectively, with A = 0 meV and —136 meV. Both
O4(7) and Cy(7) for A = 0 meV represent irregular changes with cusp structures at

Qoey = ngv” = 82 meV and Qéff) = 286 meV. Further, the envelopes of both functions
show steep changes around €., = 350 meV. In contrast, the behaviors of ©4(7) and
Cq(1) for A = —136 meV are moderate over o,.

For the more precise interpretation of the results, we evaluate the real parts of the adi-

abatic energy Eq;(7) at 7 = 20 fs as a function of Qq,. Figure 3.8(c) shows the calculated
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Figure 3.8: (a) ©4(7) and (b) Cy(7) as a function of ., (in the unit of meV) for A =0
meV (red square) and —136 meV (blue diamond). (c) The real parts of Egpy(7) and
Eq4u(7) as a function of Qg., (in the unit of meV); filled and open red squares represent
the eigenvalues mainly governed by the phonon and plasmon modes, respectively. wgp(7)
for A = 0 meV and —136 meV are represented by red and blue dash lines, respectively,
and furthermore, the energy of the phonon wg, = 63 meV is represented by a green dash
line. (d) The enlarged view of Re[Eq,(7)] around wq for A = 0 meV in panel (c). In all

panels, 7 = 20 fs, and the positions of Qofvl and Q(()cv

lines. (From Ref. [71] with partial modification.)

are shown by vertical brown dash
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results for A = 0 meV, where filled and open red squares represent the eigenvalues mainly
governed by the phonon (j = ph) and the plasmon (j = pl), respectively. The plasma

frequencies wq,(7) for A = 0 meV and —136 meV are also shown by red and blue dash
(1)

lines, respectively. wgy(7) for A = 0 meV obviously coincides with wq at Qoe = Q.

and Q(()fvz ), and it leads to anticrossings between Re[Eqpn(7)] and Re[Eqgp(7)].

Figure 3.8(d) shows the enlarged view of Re[Eq,(7)] in Fig. 3.8(c). The difference
between Re[Egy(7)] and wg shows the self-energy, which is attributed almost to the
interaction between the phonon and the plasmon; the effects of the single-particle exci-
tation modes would be much smaller. The self-energy for A = 0 meV alters steeply at
Qoey = Q(()Svl ) and Q(()ff), and these positions are in agreement with those of the manifesta-
tion of the cusp structures in Figs. 3.8(a) and 3.8(b). Therefore, it is concluded that the
anomalies in O,4(7) and Cy(7) are clearly ascribed to the anticrossings resulting from the
energetically resonant interaction between the phonon and the plasmon of the photoex-
cited carriers. According to Fig. 3.8(d), the plasmon-phonon interaction remains effective
in the range of [Q(()Svl), Q(()ff )]. As regards the case for A = —136 meV, such anomalies are
not obtained since wg > wey (7) within the present range of Q.

Moreover in Fig 3.8(c), wgp(7) denoted by a dash line oscillates with a period of
approximately 350 meV. This is attributed to the interband Rabi flopping of the pho-
toexcited carriers [41, 79], where it ends at 7 & 71,/2, because the approximate estimate

(()207;) = 388 meV for 7, = 10 fs except for the Coulomb correction;

that of m-pulse is Ql(fc?) = QE)QC:) /2. Therefore, the evident alterations of ©,4(7) and Cy(7)

around Qo = Qgijj) for A = 0 meV shown in Figs. 3.8(a) and 3.8(b) result from the Rabi
oscillation.

The calculated results of the initial phase 6, and the asymptotic amplitude Cg as a
function of Q. are shown in Figs. 3.9(a) and 3.9(b), respectively, and the two quantities
are defined by Egs. (2.114) and (2.115). It is seen that the Rabi-oscillatory patterns still

of 2m-pulse is ., = 2

46



appear in both of 6, and Cg for A = 0 meV around €., = Qéiv), whereas the cusp
structures vanish because the plasmon-phonon coupling is suppressed due to the carrier
relaxation. The experimental results of 6, which represent the dependence on the pump
fluence for lightly n-doped Si [8], are also shown in Fig. 3.9(a). As the fluence increases,
04 varies from 90° to the vicinity of 0°. The result is in agreement with the calculated
one for A = 0 meV. We'll discuss the results of 0, and Cg later again.

Figures 3.10(a)-3.10(d) represent the calculated results of Qq(7) in the ETR as a

function of 7 for A = 0 meV. Here, ., is set to rou = 81.6 meV, Qo«w = 190.4 meV,
Qgcv) = 299.2 meV, and Qéiz = 353.6 meV, in the proximity to Qofvl , Qé:v, QOSUQ), and

Q™) respectlvely As shown in Fig 3.8(c), the number of excited carrlers is maxumzed at

Ocv »
Qoey = Qo@ , and minimized at (o, = (20262 of the four. At Qq., = QOcv and QOCU , owing

to the plasmon-phonon resonant coupling, (04 (7)’s show irregular oscillatory patterns from
a simple harmonics With a period of 27 /wg = 66 fs. The transitory amplitudes Cy(7) at

Qo = O (D and QL

Ocv Ocv
that at Qge, = Q()cv of the m-pulse laser condition, whereas the asymptotic amplitudes C’g
of the resonant conditions are several times smaller than that of w-pulse laser condition [see

Fig. 3.9(b)]. Moreover, it is seen that the renormalized phase O4(7) changes anomalously,
(C1)r,

Ocv

Y of the resonant conditions are approximately ten times larger than

in particular at g., = 2 the phase varies rapidly over 27 around 7 = 10 fs attributed

presumably to the appearance of the strong anticrossing. Besides, Qq(7) of Qe = 902/
deviates from a simple harmonics due to the maximized carrier inversion. In contrast,
Oq(7) and Cy(7) of Qoo = QP are almost unchanged, and gradually approaches the

Ocv
asymptotes; (Qq(7) represents a damped harmonic oscillation in most of the time-region.

3.2.2 Detuning dependence

In Figs. 3.11(a)-3.11(d), we show the calculated results of Q4(7) as a function of 7 and
their power spectra Sg(w). The detuning is set to A = —136, —54.4, —27.2, and 108.8
meV with ., = 108.8 meV. It is noted that in the calculations, we assume that the
interaction between the phonon and the plasmon, namely, Mg, in Eq. (2.95) is suppressed
owing to the phenomenological carrier relaxation time 715 which is set to 4000 a.u. ~ 100
fs: Mgpn — Mgpne™™/T12 is considered. It is seen that in Fig. 3.11(a), Q,(T) represents
almost sinusoidal, and the spectral profile of Sq(w) is symmetric. In Figs. 3.11(b) and
3.11(c), Qq(7)’s oscillate with much larger amplitudes in 7 < 100 fs of the ETR than
those in 7 2 100 fs. Further, both Q4(7)’s in the ETR show irregular oscillatory patterns
similar to those of Figs. 3.10(a)-3.10(c). It is remarked that asymmetric spectra are
manifested, and the Fano’s asymmetric ¢ values [47] are negative. Here, it is noted that the
asymmetric spectral profiles are not due to FR, and the detail is shown later. In contrast,
in Fig. 3.11(d), the amplitudes in the ETR and the classical region are comparable, and a
symmetric spectrum is manifested. The oscillations with enhanced amplitudes in the ETR
in Figs 3.11(b) and 3.11(c) are attributed to the energetically resonant coupling between
the phonon and the plasmon. Here, at 7 = 20 fs, the plasma frequency wq,(7) = 59.6 meV
for A = —54.4 meV, and wgy(7) = 68.7 meV for A = —27.2 meV. As time passes, the
plasmon-phonon interaction vanishes due to the carrier relaxation, and Q4(7) approaches
the damped harmonic oscillation. It is readily shown that S, (w) attributed to the damped
harmonic oscillation becomes symmetric, and therefore, it is concluded that asymmetric
profiles of S;(w) are attributed to the anomalies of Q4(7) in the ETR.
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Figure 3.10: Q4(7) as a function of 7 (in the unit of fs) in the ETR at four specific Qg.,’s
provided in panels (a)-(d) with A = 0 meV. (From Ref. [71].)
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Figure 3.11: QQ4(7) as a function of 7 (in the unit of fs ) and S,(w) as a function of w (in
the unit of meV) at four specific A’s provided in panels (a)-(d) with Qg., = 108.8 meV.
The insets of Figs. (b) and (c) emphasize Q4(7) for 300 fs < 7 < 500 fs. (From Ref. [72].)
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Figure 3.12: Asymmetry parameter 1/q of Fano profile for S;(w) as a function of A (in
the unit of meV) with Q., = 108.8 meV. (From Ref. [72].)

In Fig. 3.12, we show the asymmetry parameter 1/q for Sy(w) as a function of A
with Qe = 108.8 meV. It is seen that 1/¢g are negative in the present A-region, and 1/q
approaches zero at A < —100 meV, that is, the spectral profile becomes symmetric. With
the increase of A, the excited carrier density becomes large and wgy,(7) approaches wq,
and therefore the modulus of 1/¢ becomes large with its sign negative, since the resonant
plasmon-phonon coupling becomes more effective, namely, the anomalies of Q4(7) is man-
ifested. At A = —54.4 meV, 1/q = —0.286 and the profile is the most asymmetric. As A
increases further, 1/q approaches zero, namely, the profile becomes symmetric, since the
resonant coupling vanishes with wg,(7) greater than w,. In other words, the contribution
of the anomalies in the ETR becomes small, and the contribution of the damped har-
monic oscillation out of the ETR becomes dominant. The asymmetric spectra of Sq(w)
are reminiscent of FR. However, these asymmetric profiles are not always attributed to
FR. The asymmetric spectra of Sg(w) obtained here are due to the coupling between the
two discrete modes of the phonon and the plasmon.

Next, the abrupt behaviors of Q4 (7) at 7 ~ 10 fs shown in Figs. 3.11(b) and 3.11(c) are
discussed in detail. These are attributed to time-dependent coupling between the plasmon
and the phonon. In Fig. 3.13, we show Re[Eq,(7)]’s for A = —54.4 meV and —27.2
meV with Qg., = 108.8 meV. It is seen that these Egp(7)’s deviate from the associated
wqpi(T)’s particularly in the temporal region of 7 < 10 fs; at 7 = 9 fs, Re[Egy(7)] is below
Wapi(T) by roughly 10 meV for A = —54.4 meV, and 5 meV for A = —27.2 meV. The
difference from wg,, (7) is attributed to the self-energy renormalization due to the electron-
laser interaction, the electron-phonon interaction, and the Coulomb correction as shown
in Eq. (2.100). As time passes, Eg,(7) move toward wgy (7). As regards A = —54.4
meV, Re[Ey,(7)] approaches wq at 7 ~ 10 fs rapidly, while the associated wgq,(7) remains
almost unaltered. Thus, Re[Eq, (7)] becomes slightly below wy, and the resonant coupling
between the phonon and the plasmon becomes dominant in the region 7 2 15 fs. In other
words, the resonance is manifested after the suppression of the laser irradiation, leading
to the steep behavior of Qq(7). On the other hand, Re[Eq,(7)] of A = —27.2 meV
surpasses wq at 7 ~ 9 fs, and the resonance effect is maximized at this moment, causing
the steep change of Q4(7). In the region of 7 2 15 fs, Re[Equ(7)] is greater than w, by
approximately 10 meV, and the resonance effect is suppressed to a certain extent.
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Figure 3.13: Re[Equ(7)] (in the unit of meV) as a function of 7 (in the unit of fs) for
A = —54.4 meV (blue square) and —27.2 meV (green square). The associated plasma
frequencies wgq,(7) are represented by the blue and green dot lines, respectively, and
furthermore, the energy of the phonon w, is shown by the black dash line. (From Ref. [72].)

In Fig. 3.14(a) and 3.14(b), we show 64 and C{ as a function of A, respectively. The
Rabi frequency €., is set to 54.4 meV, 108.8 meV, and 244.8 meV. It is seen that 6 ~ 90°
at A ~ —100 meV for all Qp.,’s. With the increase of A, 0, for (., = 108.8 meV and
244.8 meV change from 90°; at A = 108.8 meV, 0, = —45.9° and —79.9° for (., = 108.8
meV and 244.8 meV, respectively. In contrast, 64 for (2., = 54.4 meV is almost unvaried.
On the other hand, C’S for 2., = 54.4 meV and 108.8 meV is enlarged with the increase
of A, whereas that for €., = 244.8 meV is maximized at A ~ 0.

The results of 0, and C’g are understood in terms of the magnitudes of the interactions
of electron with light and phonon. As shown in Eqgs. (2.114) and (2.115), 64 and C are
determined in part by what happens in the ETR at 7 = 0. Actually, the eigenvectors
appearing in Egs. (2.114) and (2.115) are determined by the electron-light and electron-
phonon interactions. For small ., and negative A, the density of the photoexcited
carriers is small, and thus the associated couplings are weak, and therefore Vqﬂ’ph (0) =1
in Eqs. (2.114) and (2.115). Thus, 6, approaches 90°, namely, a sine phase, and C
becomes small. In contrast, in the case that ., is large and A is positive, the density of
the carriers is enhanced, and thus, 6, changes from the sine phase, and Cg is enlarged. It

is considered that the saturation of 02 for Qoc, = 244.8 meV in the vicinity of Qg;z would
be ascribed to the carrier inversion.

3.3 Comparison with Other Studies

In this section, we compare the calculated results shown in Secs. 3.1 and 3.2 with the
results of other experimental and theoretical studies. We begin with a comparison with
the experimental works for lightly n-doped Si of Refs. [6], [8], and [72], where a transient
electro-optic reflectivity was measured as a function of time delay in I'95 configuration.
This would correspond to the symmetry I'ys | Csy given by Eq. (3.11), and the vibrational
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Figure 3.14: (a) 64 and (b) C7 as a function of A (in the unit of meV) for Qoe, = 54.4
meV (blue diamond), 108.8 meV (red square), and 244.8 meV (orange triangle). (From
Ref. [72] with partial modification.)
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Figure 3.15: Asymmetry parameter 1/q of Fano profile obtained experimentally as a func-
tion of the photon energy (in the unit of eV). (From Ref. [72] with partial modification.)

state of the dressed crystal can be optically deexcited through an emission process induced
by an infrared laser polarized in the [111] direction. As regards Ref. [6], the continuous-
wavelet transform of the time signal was conducted, and asymmetric spectra were found
around 50 fs immediately after the irradiation of the pump pulse. This conspicuous
result suggested the transient manifestation of the quantum interference between the LO
phonon and the excited carriers leading to FR. Moreover, the authors supposed the birth
of a composite particle due to such a strong interaction, termed as P(Q. The theoretical
model presented here is based on this supposition, and as described in Sec. 3.1, the PQ
picture succeeds in demonstrating the manifestation of the FR. The calculated result is
in agreement with the experimental one to some extent. Nevertheless, this fact does not
necessarily suggest that the PQ introduced here actually exists as a real entity. This is
beyond the scope of this study, although it is quite challenging.

Further, the initial phase 6, as a function of the pump fluence was also evaluated
in Ref. [8], which is shown in Fig. 3.9(a). The calculated results of A = 0 meV are
qualitatively consistent with the experimental ones. Here, the excited carrier density is
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N., = 1.4x10" cm~3 in the calculation with Qg., = 108.8 meV, and N,, = 2.5x 10" cm™3
is evaluated in the experiment with the pump fluence 2.5 J/cm? which corresponds to
Qoey = 100 meV [8]. Moreover, FT spectra of the reflectivity signals, and the dependence
of their asymmetric ¢ values on the photon energy were investigated in Ref. [72]. Fig-
ure 3.15 shows the experimental results of 1/¢, and this is in agreement to a certain extent
with the calculated ones shown in Fig. 3.12. Here, we refer to A and the photon energy
as the pulse laser parameter in the present study and the experiment, respectively. In Si,
the direct band gap energy at I' point is £/, ~ 3.3 eV, and therefore the photon energy of
the experiment correspond roughly to —300 < A < —100 meV, whereas —100 < A < 100
meV in the present calculation. This difference of A would be ascribed to bandgap renor-
malization via strong carrier excitation in the experiment [8]. Actually, as mentioned
above, real carrier excitation occurs considerably even when A < 0 in the experiment,
and N, is a comparable order with the calculated results.

As regards theoretical approaches, there are two studies concerning the FR accom-
panied by the CP generation. One of them was reported by Lee et al. [43], where time-
dependent Schrodinger equations were solved, and thus a phonon displacement function
was calculated for the system of GaAs under the far above-gap excitation condition. Thus,
the continuous-wavelet-transformed spectrum showed an asymmetric profile. Here, it is
understood that the FR results from the interference between two of the one-phonon
Raman processes with different time ordering. However, FR spectra have never been
observed in the experiments for GaAs so far, and the FR of Ref. [6] was manifested un-
der the resonant excitation condition with the real excited carriers. In the present study
of I(ty;w), the FR in Si does not originates from the interference between the Raman
diagrams, and the FR is not manifested in GaAs except for the non-adiabatic correction.

The other was reported by Riffe [48], where a classical Fano oscillator model derived
from the Fano-Anderson Hamiltonian [46] was proposed. The associated Hamiltonian is
expressed in terms of the present PQ picture as

HI = wqcheq + ) EqsBhgBas + Y _(MascqBls + Mysch Bys), (3.13)
5 5

where the quasiboson is regarded as a real boson with real eigenenergy £,5. Displacement
functions related to the LO phonon and quasiboson operators are defined by

X () = (eq(t) + L o)) /2 (3.14)
and
(1) = (Bas(t) + B 45 (1)) /2, (3.15)

respectively, and we obtain the associated equations of motion from Eq. (3.13). Further, in
the equations of motion for X,SJF) (t) and a:fjg) (t), a posteriori external forces are introduced,
which are termed as Fg(t) and fq3(¢), respectively. On the basis of the present PQ model,
these forces are mainly attributed to the time derivative of quasiboson adiabatic energy
d€qs(t)/dt, the non-adiabatic coupling Wygp (t) of Eq. (2.42), and the time derivative of
the effective coupling dMs(t)/dt. Nevertheless in Riffe’s work, it was assumed that Egs
and Mg,z were independent of time, and furthermore in X$P(t) and xflg) (t), expectation
values with respect to a coherent state were considered. This assumption leads to the
result that d€qs(t)/dt, dMgp(t)/dt, and Wyse (t) vanish simultaneously. Eventually, F (%)
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and fqs3(t) are ascribed just to the residual frictional forces as follows:

Z xqﬁ t)Im 7q523'( ) Mgg']/2 (3.16)
BB
and
Jas(t) = —Eqs quﬁ’ JImy 5, (1)/2, (3.17)

respectively. In particular for Si, Mgz and fyqﬁ, (t) are real. Therefore, both forces result
in Fy(t) =~ 0 and fgs(t) =~ 0.

Finally, we compare the results of the initial phase 6, with those of two theoretical
studies; one is the time-dependent density functional theory [44], and the other is the
simplified two-level model based on a perturbation with respect to the electron-light
interaction [49]. In the both results, 6, ~ 90°, namely, the sine phase in the case that A
is large negative. According to the former study, 6, changed from the sine phase with the
increase of A, which is in agreement with the present results. The former also evaluated
fq for 0.5 eV S A <2 eV. However, such a large positive A of a non-resonant excitation
condition is out of concern in the present analysis. As regards the latter study, 0, for
A > 0 was not examined.

3.4 Validity of the Present Model for the CP Gener-
ation

In this section, we discuss the validity of the model adopted in the present study for the
CP generation from a viewpoint of the band structure. First, we assume a simple two-
band parabolic energy dispersion, where ¢-band and v-band (heavy-hole band) are taken
into consideration; the actual band structure is more complicated than that employed
in the calculations. In fact, the joint-band energy dispersion of c-band with a light hole
band referred to v’-band, and the dispersion of c-band with a spin-orbit split-off hole
band referred to v”-band would also have contributions to the formation of the collective
excitation (plasmon) and single-particle excitation modes to some extent. Hereafter, let
us represent the joint-band energy dispersion of c-band with b,-band as

e =) — el — By, (3.18)

where b, = v, v/, and v”, and 51(,1,2 is given in Eq. (2.13). An opaque interband transition
forms real excited carriers, and the electron state with momentum k satisfying

& S/, (3.19)

contributes to this transition, where 7, is the pulse width, and the case of A = 0 is
considered for the sake of simplicity. Thus, a hole band with greater effective mass plays
a role for the real carrier excitation to a larger extent, because the electronic states
up to larger k become effective. In fact, v-band mostly governs the carrier excitation,
although ¢’- and v”-bands have limited contributions to it; for instance, values of the
average effective mass of v-, v'-, and v”-bands are 0.54, 0.15, 0.23, respectively in Si,
and 0.53, 0.08, and 0.15, respectively in GaAs [33]. Further, as regards v”-band, the
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contribution of this would be smaller than that of the other bands since the spin-orbit
splitting of the valence bands is of an order of tens to hundreds meV for semiconductors of
concern [33], whereas v- and v’-bands are degenerate at I" point. Therefore, it is remarked
that the v-band electrons in the proximity to this critical point are dominant for the
carrier formation.

Second, we take into account just the I' — I' carrier transitions. Actually in the
CP generation, a lot of carrier transitions along the A and A directions arise. In this
paragraph, we discuss the band structure especially for Si. The energy dispersion of
v-band along the A (X-valley) and A (L-valley) directions are almost parallel to the
energy dispersion of c-band. Therefore, the joint-band energy dispersion of c-band with
v-band becomes almost dispersionless, in other words, independent of k and effb“) R~
0. Thus, it is remarked that the k-dispersive carrier distribution is produced by the
interband transitions just near I' point, leading to the collective excitation and single-
particle excitation modes.

Third, as regards non-polar materials with the diamond crystal structure such as Si,
the LO phonon mode and the transverse optical (TO) phonon mode are degenerate at
['s5 point. Therefore, the latter mode would partially contribute to the CP signal with
the same asymptotic frequency as wq, and we consider the former mode exclusively in the
present study. The TO phonon is coupled with the carriers through the deformation po-
tential interaction, represented as a similar expression of Eqgs. (2.53) and (2.95). However,
unlike the LO phonon, the TO phonon does not interact with the plamon characteristic of
a longitudinal wave [94, 95]. Therefore, it is stated that the irregular CP signals shown in
Sec. 3.2 are governed mostly by the LO phonon. Incidentally, concerning the observation
of TO phonon modes, this has been reported recently in a GaAs crystal, and the TO
phonon is coherently excited by broadband terahertz pulses through direct coupling [96].
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Chapter 4

Conclusion

The fully quantum mechanical model based on the PQ picture for the CP generation in
semiconductors is constructed. In this model, the LO phonon, the plasmon of the collec-
tive excitation, and the electron-hole continua of the single-particle excitations are taken
into consideration. The model is applied to the non-equilibrium and transient system in-
duced by the opaque interband transition with the ultrashort pulse laser. Thereby, quan-
tum mechanical effects inherent in the interactions among the above-mentioned modes are
theoretically revealed, that is, the optically nonlinear and transient FR, the anomalous
oscillatory pattern ascribed to the plasmon-phonon resonant interaction, and the Rabi
flopping. It is found that these quantum effects enrich the underlying physics of the CP
generation in the ETR.

The transient FR is manifested in the transient induced photoemission spectra; an
asymmetric spectral profile appears in the temporal region of Ty S ¢, < Tio for Si,
whereas the spectral profile of GaAs is always symmetric, apart from the non-adiabatic
correction due to Igps(t). The difference between Si and GaAs is due to the effective
coupling Mg between the phonon and the quasiboson of the continuum state; by con-
sulting Shore’s model, the spectral profiles are strongly dependent on argMgg, and the
asymmetry in spectra is due to the LO phonon deformation interaction rather than the
Frohlich interaction. After the ETR of [Mys| =~ 0, the profiles become symmetric in both
Si and GaAs.

The transient plasmon-phonon resonance and the Rabi flopping also appear in the
ETR. In the CP displacement function of Si, irregular oscillatory patterns due to the
plasmon-phonon resonance are observed just in the ETR, and the associated power spectra
become asymmetric, though this asymmetry is not attributed to FR. This resonance
effect is expected to be verified in experiments by reducing the masking effect ascribed
to coherent artifacts. To be concrete, for instance, orthogonal polarizations of the pump
and probe beams with an attosecond pulse enable us to monitor dynamics in the ETR
without coherent artifacts [97]. Further, the resonance effect would be enhanced in polar
crystals such as GaAs because the Frohlich interaction is much larger than the deformation
potential interaction. On the other hand, the Rabi flopping is also manifested after the
ETR, and discernible in experiments by measuring the initial phase and the asymptotic
amplitude as a function of the Rabi frequency {2y, up to more than Qéi::). As regards the
initial phase, it shows the sine phase under the weak excitation conditions, and varies from
the sine one as the excitation becomes stronger. The calculated results are in agreement
with experimental and other theoretical ones to a certain extent.
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The PQ model presented here is straightforward applicable to CP generation dynamics
in heavily doped semiconductors and other attractive systems such as diamond [98] and
SiC [99]. However, there is room to improve the means of the investigation. This model is
not suitable for fully quantitative calculations because of the difficulty of evaluating the
non-adiabatic coupling due to its spike-like behavior in the proximity of the crossing region
between energetically adjacent adiabatic states, which can influence physical quantities.
For instance, as shown in Figs. 3.6 and 3.7, the spectral profiles of I,(t,;w) depend
also on an imaginary part of I zs(¢) in addition to argM,p, and the asymmetric profile
is possibly manifested even in GaAs. Therefore, it is worth developing the theoretical
framework so as to bear more quantitative investigation. As more sophisticated numerical
recipes, for instance, a diabatic-by-sector method [100, 101] and a R-matrix propagation
method [102, 103] are substituted for the adiabatic expansion, although a heavy numerical
burden would be incurred.

Finally, it is remarked that the PQ model creates a byproduct of the plasmon-like
mode, which is introduced as one of the quasiboson modes. The plasmon-like mode
is affected not only by excited carrier density but also pump-laser field and Coulomb
interaction. The energy of the plasmon &g, or Egy differs from the plasma frequency
under the laser irradiation, though the latter one is also renormalized by the plasmon-
phonon interaction. Moreover, the energy-eigenvalue becomes of a complex number even
with the transferred momentum |g| — 0; the imaginary part of the energy suggests an
effect of Landau or anti-Landau damping. Therefore, the plasmon mode found in this
study possibly has potential to enrich physics to be explored.
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Appendix A

Derivation of Eq. (2.11): A
Factrization Approximation

For the purpose of deriving Eq. (2.10), we apply the following commutation relation to
[H.+ H'(t), Al (kbY)] in a repeated manner:

T / T / _ T T

AL ), Al (abab)] = [ ] 00
T

Ay, Jki1+aq, abIQk’Q 5b/1 b2 5"’1 k2tqy

T
Wy, oo+ WK1 Oy, O+, o (A1)

First, the commutator [H,, Aj (kbb)] is given by

. 1 o .
[He, Ag(kbb’)] = (b — ) AG D) + 5 > VO {Afl,(k’bb)A;_q,(kbb’)
q'(F0)k'b
T 7F\ AT T T 7
— AL (KBD) AL (k+ q'bb) + AL, (kbb) AT, (k'BD)
— ALk — g AT q,(k’bb)} , (A.2)

where ey, = e — 1/23° g V9. By means of the factorization approximation, the four-

operator term of AE,(k:'I;B)AL_ o (KbY'), which appears as the first term in the curl brackets
of the right-hand side of Eq. (A.2), is rewritten as

AL (ROD)AT_ o, (kDY) ~ (a] . ape) AL (RbY) + AL (K'BD) (] s i)

—<a£k,+q, ab/k>az,k+(I*q'ab’k/ - a£7k/+q/ab'k<al]:,k+q7q/ab/k/>
pBEk’CSQ’OA:[](kbb/) + A;(k/bb)pbb’kdq’q
_pBb’kék'—&-Q’,kAL(k —q'b) — AL(kbb/)Pbb'k'5k’+q',k+q- (A.3)

Q

In the first equality, we make the factorization approximation to split the four-operator
term into products of a two-operator term and a two-operator expectation value, where
(O} represents an expectation value of an operator O with respect to the ground state.
Further, in the second equality, we make the random-phase approximation and replace the
expectation value by a density matrix ppyr = (a;kab/w. The similar reduction procedure
is applied to the other four-operator terms in Eq. (A.2). As a result, the commutator of
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[f]e, Az(kbb’ )] is expressed as the form which is linearized with respect to a single kind of
operator of the form Af.
Next, we evaluate the commutator [H'(t), Al (kbb')] by means of Eq. (A.1), leading to

[H'(t), AL (kbY)] = —Qe,(t) [Al (ke )d, — AL (Kbv)dey]
—Que(t) [AL (kvb)0e, — Al (kbe)duy] . (A.4)
From the resulting expressions of Eqgs. (A.2) and (A.4), we eventually obtain Eq. (2.10),

[He(t), Al (RbY)] = > Al (kb') Zg (Kb, kbY'). (A.5)
kbt

The expression of Z, given in Eq. (2.11), and it is linearized with respect to the operator
Al
q
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Appendix B

Solutions of Eigenvalue Equations of
Eqgs. (2.33) and (2.34)

First, we solve the left eigenvalue equation of Eq. (2.33) in an analytic manner. Explicit
expressions of the equations for respective components of the left eigenvector UqLT are
provided as follows:

UH (Kec) = geong {V;@Aﬁmkq SO UK — QU UL (kve) = QU UF (Rev)| } ,
kl

(B.1)
UqLT(k:vv) = Guokq {V;C)prkq Z Ué{*)(k’) + [chk ULT(kwc) k:cv }
k/
(B.2)
UsT(kcv) = Gevkq {v ) Afevkq Z UM (k) + Q) U (k)} , (B.3)
k/
and
Ul (kve) = guenq {v ) APockq Z U (k) - Q) Ul (k)} : (B.4)
where
Govkq — {Eqa - (z)bb’q}_1 (B5)
with (Dbb’kq = Whb'kq — (Dbb/, and
U (k) = Ut (kee) £ UL (kvv). (B.6)

Besides, wiyq, Apibkq, and QIESL are provided in Egs. (2.12), (2.15), and (2.19), respec-
tively.
We eliminate UM (kcv) and U (kve) by putting Eqs. (B.3) and (B.4) into Eqgs. (B.1)

and (B.2). Further, employing Eq. (B.6), we obtain a set of equations for Uéi)(k):

Ui (k) = VOP,, ZU + [geckq — Guokgl WiaUS™) (K). (B.7)
and
_ 2
U (k) = VIOPIS UM (K, (B.8)
k/
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where 77,(;1) and 77,(51) are provided by

,Pl(ct]) = gcckqAﬁcckq + gvvk:qAﬁvvkq + (gcckq - gvvkq)Aqua (Bg)
and
,Plgl) = [1 - (gcckq + gvvkq)qu]il
X [gcckqAﬁcckq - gvvk:quvvkq + (gcckq + gvvkq)Aqu] ) (B10>

respectively Further, AQg, and Wy4 are given by

Akaq = nglzggcvkqucvkq - Qz(,}j]lgvckqAﬁvckm (Bll)
and B B ) )
Wig = QcagueraQin + Qondeora2in: (B.12)

respectively. We eliminate U,g_)(k:) by putting Eq. (B.8) into Eq. (B.7), leading to

q

USH (k) = V{OPurq Y U (K), (B.13)
k:/

where Prq is given by
p, —pl) _ W PP B.14
kq kq + (gcckq gvvkq) kq kg - ( . )

We take the summation of both sides of Eq. (B.13) over k, expressed as
2 U k) = Vi D Pra 3 U7 (K), (B.15)
k k %

and obtain an identity relation:

1=V " Prg(Eqa), (B.16)
k

where the energy-dependence of Piq is explicitly shown. We solve the transcendental
equation of Eq. (B.16), and determine a full set of eigenenergies denoted as {£4}. The

ath solution of Uéz) (k) is given by
U (k) = NE VIO Prg(Eqa), (B.17)

qo

where NqLa represents a proportional constant to be determined later. Further, in terms
of the identity relation of Eq. (B.16), we obtain the following relation

> U (k) = NL, (B.18)
k

and thus, by use of Eq. (B.8), the ath solution of Ué;)(k) is written as

U (k) = NEVIOPE (E40). (B.19)

qo q
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Therefore, owing to the relation of Eq. (B.6), U (kcc) and U (kvv) are determined.
Moreover, Upt(kcv) and ULf(kvc) are also determined by inserting the expressions of

U,%)(k:) into Egs. (B.3) and (B.4). In summary, Ut (kb') is expressed as

Ugd (kDY) = N Vgl (kbb'), (B.20)

where .
uh(kee) = 5 | Pra(Ean) + Pl (€ae)] (B.21)

1
F00) = 5 [ Pra(Eaa) = PR3 (Eaa)] (B.22)
kCU = Yevkq [A Pevkq + quck’])@)(g )] ’ (BQS)

and

kUC = Guckq [Apvckq Qifk (g )} . (B24)

Next, we solve the right eigenvalue equation of Eq. (2.34) in an analytic manner.
Explicit expressions of the equations for respective components of the right eigenvector
U f are provided as follows:

U (kcc) = Geckq { Z U’ J(K) + quU’ (k/)} : (B.25)
U (kvv) = guokq { Z Ul (K'Y — WigUit™ (k:’)} : (B.26)
Ug(kev) = gmqﬂcﬁla’; (K), (B.27)
and
Ul?(kvc) = _gUquchkUl (k/)7 (B28)
where
=" ApigUg (kbY), (B.29)
bb
and
- R R
U‘;( (k) = Uy (kce) — U (kvv). (B.30)

We define U,;(d)(k:) as

and thus, Eq. (B.29) is cast into
Ul (k) = Ul (k) + AQuqUL T (k). (B.32)

We put Egs. (B.25) and (B.26) into Egs. (B.30) and (B.31), and thus, obtain

UL (k) = VIOPE S U (k) (B.33)
k:/
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and

U (k) = (Z Aitkg g) VaOUL (k) + Py Uy (k). (B.34)
b
where
7)’;(3) = [1 - (.gcck:q + gvvkq)qu}_l (gcckq - gvvkq) Vq(c) (B35>
and
73,;(3) = (Aﬁcckq Jeckqg — Aﬁvvk:q gvvkq) qu- (B36)

We put Egs. (B.33) and (B.34) into Eq. (B.32), leading to

k) = ViOPrq Y U (K), (B.37)
kl

which looks similar to Eq. (B.13).
By taking the summation of both sides of Eq. (B.37), the identity relation of Eq. (B.16)

is obtained again, and the ath solution of U;(J)(k:) is given by the form:
Ul (k) = NEVIOPrg(Eqa) (B.38)
with the normalization constant of Néz. Moreover, the following relation is straightfor-

ward derived
Z NE, (B.39)

and thus, by use of Eq. (B.33), the ath solution of Uqa_)(k:) is given by

- _ AzTR /(2)
UM (k) = NEVIOPL (Eqa)- (B.40)
UJ(kbV') is expressed as
UL (kbb') = NEVOUE (kbl), (B.41)

and explicit expressions of u/t,(kbb') are obtained by means of Egs. (B.25)-(B.28), (B.38),
and (B.40). In summary,

uqRa(kcc) = Yeckq [1 + (gcck:q - gvvkq)gk:quq] ) (B42)
uqRa(kUU) = Guvkgq [1 - (gcck:q - gvvkq)gqukq] y (B43)
Uga(kcv) = gcvkqﬂgi);(gcckq - gvvkq)gkqa (B44)
and

2 (V€)= —Guekg Qo (Gecka — Guvka)9 B.45
uqa( ve) Gucka Lpe(Geckq — Goukq) Tk (B.45)

where
gkq = [1 - (gcck:q + gvvkq>qu]_l . (B46)

Both of the left and right eigenvectors thus obtained evidently satisfy the biorthogonal
relation
> UL(KOY UL (KbY) = Sacr, (B.47)
kbb!
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and the completeness

> UR (Ferbaby UL (Kabab) = Gpeytes OOy, (B.48)

We determine the normalization constants [V, qLa and NN, tﬁé with the normalization condition
> UL (kbY ) UL (KbY) = (B.49)
kbb'

which is expressed in terms of Egs. (B.20) and (B.41) as

[NL NE (\/q<0>)2]1 =37 ki (bt yul, (bD). (B.50)

ga” 'qa
kbb/

Finally, we derive the expressions of the eigenenergy-determining transcendental equa-
tion of Eq. (B.16) and the normalization condition of Eq. (B.50) in the small-g limit of
our primary concern. In this limit, ppykq, Gevkg, and Grq are written as

Appyrg = —[alq - V pyyk, (B.51)
1 1 . ,
Gobg = 2 (1 + = lda- Vé‘ézﬁ) : (B.52)
q q
Ivbkq = 9vbk,q=0 = Ybbk> (B.53)
and )
2Wee \
Orq = <1 = kq) : (B.54)
&q
where V represents a gradient with respect to k, in other words, 9/0k. ebk) is provided
in Eq. (2.13). ¢ = q/|q|, and b represents b # b. Equation (B.16) is cast into the form
K(&) =1, (B.55)
where
V" g . 0\ WiqGr
KE) = Pt S a9 (4 Ve) + (a0 vasy) Ml
q k
. /. r . N W
(@ V) | (a-Vel)) - (a- vae) kggkq}
L q
) /. N & 2W,
L q
_ ) W
L q
with
Ay = el =< (B.57)
Further,
ook = Pook — 1 <0, (B.58)
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and |p), .| represents a hole density, where the second term in Vgl . becomes zero. Using
Egs. (B.5) and (B.12), and defining
Dig(&y) = 2 — w2, — 20002, (B.59)

q cvkq kcv

Eq. (B.56) is expressed as

1 Arr T . 0\ 120402
K(&) = 22 (wgpz + o 2{5 (Peck = Poui) (@ V) [(q : VA&;J) M
q * k

Q) (&, + Dopq)

+_cv q-V ~ VA&T(T) kcv\*~q CcURq

Pevk (@ - V) _(q k ) D&

N (A V) -<’\ VAF:(T)) Q;;Zi(gq + w'Uqu>- (B 60)
p’UCk q i q k} Dkq(gq) | M *

Here, wqp shows the plasma frequency, provided by

2

Vg pbbkvisg’,;)] . (B.61)
kb

Wapl =

In the case of the Rabi frequency terms, that is, ngg and Q;ﬁl being negligibly small,
Eq.(B.55) is straightforward solved to provide 53 equal to ngl-
Next, Eq. (B.50) is cast into the form

211 q* . _
[NqLaN;z (V;C)) ] = N (@ -V k) fovk, (B.62)
9o py
where ]
for = 5 [(@9) (5 +00) + (@ VAL) Gugdua (B.63)
q
1 A~ T I A~ '
fvvk == S_ [(q . V) <€£k) + 85},3) — (q . VA&“;C)) gkqqu:| s (B64)
q
N r = 2d
fcvk: - <q : VA&EC )) gcka;f;)}gkq (gcvk: + gkq) ) (B65)
q
and od
fvck = - (q : VAg;:)> gvckﬁgfilgkq (gvck + gkq) ) (B66>
q
with

1 2 + 2
g = 1+ GrgWiq (_ 4 Yevk T Guck

2
~ 1+ —GpWhe =~ . B.67
gq Jevk + gvck) gq gkq ka gkq ( )

It is noted that the normalization constants and both of u{f and uff are in proportion to
|g| in the small g-limit.

Moreover, replacing &g, by —&;, in Eq. (B.60) and taking a complex conjugate of
both sides of the equation, we readily obtain a relation

K(Eq) = [K(=E.)] - (B.68)
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This fact implies that a pair of &, and & (= —&,, ) are solutions of Eq. (B.55)
simultaneously. We apply the same procedure to Eq. (B.62), and obtain a relation

NE NE =—[NE NE T (B.69)
According to an energy-phase of exp [z f; Eqa(r)dT}, it is seen that &g, plays a role of
a complex energy of a quasiboson created by an operator of BZ’M. Thus, amplitude of
this operator is temporally damps, following exp [— ftf Imé&y, +<7‘)d7‘] Similarly, £ga_ is
readily interpreted as a complex energy of the quasiboson annihilated by an operator
By, where amplitude of it diminishes following exp [— f; Im&qq., (T)dT] again.
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Appendix C

Closed Analytic Forms of FC}L 3 and
F4p Derived by Solving Eq. (2.61)

C.1 Introduction of Operators of I (% and Fgﬁ

Before solving Eq. (2.61), we consider an equation of motion of another PQ operator

FOT Z B‘Iﬂ’ ap'8 T Bqalv B T CLan267 (Cl)
which is provided by
. d 0f 0f ¢0
—i o Fas = Fasles. (C.2)

Eq. (C.1) resembles Eq. (2.59), but a quasiboson operator By and an [(N + 2) x N]-
rectangular matrix V, are different from le and VqR, respectively. V; satisfies an equation

OV, = V€D, (C.3)
which differs from Eq. (2.58). hg represents a Hermitian matrix provided by

£ M,
hg = {MT w; ] (C.4)

where, 83 is real, as defined below Eq. (C.12). Moreover, similarly to Eq. (2.60), we
introduce an [N x (N + 2)]-rectangular matrix V; to ensure the inverse relation of Eq.
(C.1), that is,

BSL - Z Fc?/wqﬂm Cjz - Z Fc?/wqﬁar (C.5)
B8 B8

Therefore, we obtain V,V, = 1 and V,V,, = 1 which correspond to the expressions provided
below Eq. (2.60) for VqR and Vq”. In addition, we introduce F, g as a Hermitian-conjugate
of F, gT, namely,

Fog = Z 085 Basr T Vasa Baar T VasasCa (C.6)
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Here, both of F? o and F, 2} are required to satisfy the expectation values of equal-time
commutation relations as follows:

([Fé)ﬁ, FO/B'D = 5qq’5ﬁﬁ’> (0-7)

and
([F95, Fopl) = ([Fap Falar]) = 0, (C.8)

instead of the corresponding equal-time commutation relations where expectation values
are not taken. Under these conditions, we can consider F qp and F, (% as boson operators.
In Egs. (C.7) and (C.8), we omit the argument ¢ of these operators just for the sake of
simplicity. Applying Egs. (C.1) and (C.6) to Egs. (C.7) and (C.8), it is seen that the
following conditions are imposed on Bga and Bg:fl as:

<[32a7 ngro/b = 0qq'ac’, (C.9)
([Ba: Byarl) = (B, Byias]) = 0, (C.10)

and B
Vg =Vy. (C.11)

In Sec. C.3, we examine the criteria of the validity of this bosonization scheme.

A set of solutions V; of the Fano problem provided by the adiabatic coupled-equations
of Eq. (C.3) is shown in Sec. C.4. On the other hand, a set of eigenvalues £ follows the
equation

K°(&) =1, (C.12)

where K°(&€7) is expressed as
1\? AT 1
K°(&)) = (@) {W?;pz t— Z §(ﬁcck — Pyor) (@ V)
q k

x [(q.vmg)) T } (C.13)

Here, wgy is the plasma frequency provided by Eq. (B.61), ¢ = q/|q|, and V = 0/0k.
[Actually, K°(£]) is substituted for K (&) of Eq. (B.60) by employing the approxima-
tion for deriving Eq. (C.46) from Eq. (C.42). In other words, we adopt the equality of
Eq. (C.51), and neglect interband density matrices.]

Below, we discuss a couple of properties of solutions of the transcendental equation
of Eq. (C.12). In Fig. C.1, we show a trace of K°(&)) as a function of £ for Si; we
also obtain the similar trace for GaAs, though not shown here. Points of intersection of
K°(&)) with unity represent real solutions of Eq. (C.12). [It should be noted that just
a set of solutions, where the corresponding normalization constants satisfy Eq. (C.52), is
suitable for the present bosonization scheme.] Hereafter, let the normalization constants
for the ath state be expressed as

| 2Qk:cv |2

| Qchv | 2

cvkq

Ny, = Nl =N, (C.14)

qo’

where Nga is real, unless otherwise stated. Existence of such a set of real eigenvalues,

{ qa}, is in agreement with the requirement that hg should be Hermitian.
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Figure C.1: A trace of K°(&)) as a function of £) (in the unit of meV). K°(&)) = 1 is
shown by a horizontal solid line.

Figure C.2 shows this set of eigenvalues as a function of time. It seems that these
energy curves well reproduce those in Fig. 3.2 calculated without the bosonization scheme.
This fact would demonstrate the validity of this scheme. Moreover, it is noted that

even after the completion of the laser irradiation, Q;:ZZ does not vanish because of the

Coulomb correction. In the case of (_25:2 = 0, we obtain just solutions of 53 = Fwgpy for
Eq. (C.12), and the solutions of the electron-hole continua of Fig. C.2 vanish. Therefore,
the Coulomb correction is essential so as to form the continuum states. The continuum
states are coupled with the LO phonon, resulting in FR after the completion of the laser
irradiation.

According to Fig. C.1, it is seen that the eigenvalues belonging to the continuum states
[’s are located in the vicinity of the poles attributed to the denominator in the square
brackets of the right-hand side of Eq. (C.13), except for a solution of 53a1 corresponding
to the plasmon. Hence, the eigenvalue for the Sth state is well approximated to be

kcv

£y~ £\ J@2,, + 12000, (C.15)

and furthermore, we can consider the index  to be approximately equal to Bloch mo-
mentum |k|: as regards plus and minus signs of Eq. (C.15), consult Eq.(B.68).

. L] -i_
C.2 Approximate Solutions of F a5 and Fiyp
We solve Eq. (2.61) in an approximate manner in terms of the PQ operators of F 3;3

introduced above. [Refer to Secs. 2.3.1 and 2.3.2 for the approximation employed.] To do
this, firstly we define a new operator F‘% as

Fol(t) = Fl(t) e dastbto), (C.16)
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Figure C.2: Adiabatic energy curves of Si (in the unit of meV) as a function of time ¢ (in
the unit of fs). The curves are calculated on the basis of Eq. (C.12). A green solid line
represents a plasmon-like mode, and blue solid lines represent a bundle of the electron-
hole continua. Further, an orange line represents the alternation of bare Rabi frequency
Qoev of squared shape [see Egs. (2.7) and (2.66)] as a function of ¢. In addition, a red
solid line represents the LO phonon energy wg, = 63 meV, and a broken line represents
the plasma frequency wg, proportional to the total electron density, just for the purpose
of comparison of the plasmon-like mode. The gradation of blue color shows the schematic
change of the excited carrier density in ¢, where the lowest limit of the gradation means
the threshold energy of a bundle of the electron-hole continua.

where ty represents initial time when an initial condition is imposed before the laser
irradiation: ¢y < —71,/2. Here, both effects of the non-adiabatic correction due to diagonal
components and the phenomenological damping are incorporated in

t ) /41
3q5(t, 1) :/z dt’ [7"52(” +1255(t’)] . (C.17)

For the sake of later convenience, we define Jgs(t,t) as

t
t

Consulting Eq. (C.2), it is seen that F 22; (t) fulfills the equation of motion provided by
(0)
t
a3 (1) } . (C.19)

2
Subtracting Eq. (C.19) from Eq. (2.61) side by side, and defining AFgﬁ as

+ Igp5(t)

d = ~ .
_%Fgg(t) 0 {536(15) +i

T ot U]
AFqﬂ = Fqﬁ - F

a6 (C.20)
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we obtain the following equation of motion as:

d AFT t . ’y((loﬁ)(t) 0t 0
_Z% ( ) = AFqB(t) 5qﬁ(t) T+ + Iqﬂﬂ(t) + Fq,3<t) [ng(t) - gqﬁ(t)}
i D0 [ES (1) + AFL (0)] Taws (o) (C.21)

B'(#8)
The formal solution of this is given by
t
AFl(t) = AF!(to)east) 4 /t At FOl(t) [Eqa(t)) — Eos(t)] e~ [0t/ t0) =5 (tt0)]
0

- Z / dt' [Fgh(#) + AFf (#)] Lyprp(t))e O 01=00s0] - (€.22)

where ©44(t,t') represents an adiabatic energy phase provided by

t OF
Ogs(t, 1) :/t/ dt”{ aa(t") — 1 [%,52(15 ) +I;5ﬁ(t”)] } (C.23)

It is supposed that the initial condition of the above equation is provided by

AF,(to) =0, (C.24)

that is, F ;ﬁ(to) =F gg(to), with an additional approximation that £25(t) ~ £95(t), leading

to
t (0)
®q3(t,t’)z/t, dt’{ggﬁ(t”)—i [7“52( )+1355(t")”~ (C.25)

Therefore, Eq. (C.22) becomes

AFL ()~ = ) / dt’ FOT ")+ AF)(t )] Lygrs(t)e 1@t 10)=055(1t0)] (1 26)
B'(#8)

By putting Eq. (2.67) into Eq. (C.26), we obtain
AR~ -3 % [Fgg, )+ AFL(t )] FON0(t — t)e 1Ot =05 (0 .97)
J B(#B)

As described in Sec. 2.3.1, from among a set of the off-diagonal elements of the non-
adiabatic interaction, we retain just the single leading contribution at ¢ = tp = 7.,/2.
Thus, we obtain

1
Fo%(tp { (tp)———| C.28
=) [t | (C.28)
where

Pqprp(t) = (5)59(75 —tp)dpg (C.29)
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with 655 = 1 — §g5. If we consider more than two contributions of {J e #} we obtain a
set of AF(;B( ;)’s in a more complicated closed-form than Eq. (C.28). Hereafter, we simply

take account of just 351[5),) 5 since the present theoretical framework is described succinctly.

By putting Eq. (C.28) back into Eq. (C.27), we obtain AFgﬁ(t) as

. 1 N
AFgﬁ(t) ~ _ei©%s(tto) Z F‘%,( 0) ~—</§q(t)] , (C.30)
5 1+ ¢q4(tp) 24
where ¢, is defined as
dsq/m(t) _ 61‘@;/(tD,t0)¢quﬁ<t>€—i®;§(tp,to)7 (C.31)

and Eq. (C.16) is used. Therefore, in view of Eq. (C.20), Fgﬁ(t) is provided by

0% (Lt 1+ ¢ b
F;B(t) —  195s(tt0) Z F;{E/( 0) + leq—it;))@;)bq(t)]
1 8B

= eCasltto) Z a6 (E0) Tqr5(2); (C.32)

and by taking its Hermitian-conjugate, we obtain

Fap(t) = ¢ *Oas(btn) Z qgﬁ/ qgf (tp). (C.33)

Here, the off-diagonal components of the non-adiabatic interaction are incorporated to
T4(t) defined as

Toalt) = |1 Paltn) = 0all) | 5;yupt0) (C.34)
1 + ¢Q(tD) B’

The retarded Green function is defined in terms of Fy and F}} as [79, 80]

GE (4 ) = —if(t — t’)< [Fqg(t), i, (t')] > (C.35)
and the concomitant advanced Green function is provided by

Goga (1) =[G (1) (C.36)
Putting Egs. (C.32) and (C.33) into Eq. (C.35), the retarded Green function ends up with
Gl (1) = —if(t — t')e~Oar(t:tp) Z VI (t0) Tqy (81 )VVE 51 (tp)e a0 (C.37)

where Eq. (C.7) is employed. Here, we introduce the matrix of T, for the purpose of later
convenience as

To(t,t) = TS (1) To(t) (C.38)
with
Tq(t) = TtV (tn). (C.39)



Similarly to Eq. (C.37), we evaluate the expectation values of equal-time commutation
relations for the PQ operators as

et E o7,
<[FQ5 (t)7 F;/IB' (t)] = @qﬁ t tD) V;ZTY q*y’y t t)Vq,y/B, (tD)e aB (t tD)7 (C40)
and

([Fas(t), Fyor (£)]) = ([Fgs(t), Figr (D]) = 0, (C.41)
due to Eq. (C.8).

C.3 Bosonization Scheme and its Approximate Va-

lidity
First, we evaluate the expectation value of ([Bya, B o), and it is reduced to
((Ba Byarl) = 3 Uil (ki) ([Aq(lbibh), Af (k'bath)]) Ugios (K'bob)

kk'bq bll bzbé

= 6‘1‘1' Z {Z [U;J(kblb?)pblb?,k - Uﬂ(kb?)bl)ﬁhhk—i-q] }

kbabs ™ kbi
xUss (kbabs), (C.42)

where Eqgs. (2.38) and (2.39) are employed in the first equality. Here, we define UqLCI as
the term in the curl brackets of the second equality of the right-hand side of Eq. (C.42),
that is,

Uk (kbybs) = NEVIOult (kbsbs), (C.43)
where
Ul (kbabs) =Y~ [ufl (kbyba) bk — e (Kbsb1) Pobkrq) - (C.44)
b1

Thus, Eq. (C.42) is cast into the form

([Bga Blyos]) = 0qq Y Usd (kbabs) Uk, (Kbabs). (C.45)
kbabs

If U1 (kbybs) were exactly in agreement with U (kbsbs), the expectation value of present
concern would satisfy a desirable relation of

<[qu Bl/a/D = 0gq'0ac’ (C.46)

due to UMTUF = 1.
Below, we evaluate the following quantity:

Coor = |Soar = ([ Baor Bl )|

= > [Uki(kbY') — UL (kbY)] UL, (Kbl

kbb’
NR*
= |NLNE, (v;@)?Z[qug(kbb’) NqL -gg(kbb’)] o (KBY) |, (C.4T)
kbb
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where Egs. (B.21)-(B.24) and (B.42)-(B.45) are used in the last equality. z,. plays a
role for an estimate of the criterion of the validity of concern.

We evaluate this expression in the small-|g| limit. In terms of the power series with
respect to the ratio of the Rabi frequency ngz of Eq. (2.19) to adiabatic energy &qa,

namely,
(R

kev (C.48)

Tkqo = 9
&
qa

2

the summation in the last equality of Eq. (C.47) is expressed as

N
> [ug;(kbb’) - N%aél(k:bb’)] ult, (bt
Kbb/ qa
2 Rx
q 1 1 Nqa’ 1 1 - = A (r)
- ra - -V -V
Eqalqar [<5qa + gqa/) NE \é&:., + Eour %(q Pooke) (@ - Vegy)
/
+ Z Z(terms factorized by 3, T'Z;a/) (C.49)
nn' k

Here, >~" means that the summation over n and n’ are taken except for the term with
n=n"=0.

As is stated in Sec. 2.3.2, we are concerned particularly with the temporal region after
the completion of the laser irradiation. In this region, Eq. (C.48) is described by the ratio
of the Coulomb correction to adiabatic energy, that is,

Tkqo =

C)
Zq Vq( )pCUk+q

» (C.50)

The adiabatic energy of concern is around the LO phonon energy wq, and wgy = 63 meV for
Si and 35 meV for GaAs. On the other hand, according to our calculation, the magnitude
of the Coulomb correction is of the order of several meV at most. Therefore, the second
term in the right-hand side of Eq. (C.49) is negligibly small compared with the first term.

Further, additional conditions are imposed on Eq. (C.49) so as to satisfy that x,.
almost vanishes as follows: the first is that the limited set of {a} with &, of real is
retained out of the solutions of Egs. (2.33) and (2.34), and the second is that

NI =NL. (C.51)

Most of the solutions of Eq. (C.13), namely, £, are real or satisfy |[Re&),| > [Im&),|,
which ensures the first condition. Further, the corresponding normalization constants
with
L AR (a7 |2
NygaNgo = [Ngo|” >0 (C.52)

provide N, = N[ = N0, of real c-numbers. Eventually, Eq. (C.9) proves to be approxi-
mately correct. Moreover as a result of the approximation made here, the relation of Eq.
(C.10) can be assumed, and thus, the effective coupling constants of M g0 and Mo are
reduced to M’ =0 and M, = M,,, respectively.

—qo qa’
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C.4 Solutions of the Fano Problem given by Adia-
batic Coupled-Equations of Eq. (C.3)

In this section, we seek solutions of the Fano Problem provided by Eq. (C.3). Hereafter,
just for the sake of typographical simplicity, we omit a superscript 70" of hg, Ng, Eg,
and 52, and replace these notations with non-superscript counterparts of hq, Ny, Eq, and
&4, respectively, as far as it is not likely to cause unnecessary confusion between them.
Therefore, Eq. (C.3) is read as

hegVg = Va&q, (C.53)

where the Hermitian matrix hq is provided by

& 0 M, & 2
hq = 0 Wqay A]\fqoé1 = |: " h(d) :| (C54)
M‘IT M;oq wq042 Zq 1

Recalling the notations employed right below Eq. (2.58), N means the number of dis-
cretized continua. Here, & = {&4p0p3 } represents a (N x N)-diagonal matrix, M, =
{Mgyp} is a (N x 1)-matrix, wga, = Egay, and Wga, = wq. Moreover, z4 is a (N x 2)-matrix
and hfld) is a (2 x 2)-matrix, provided by

2q=1[0 My | (C.55)
and
M,
h(d) — |: wq*al qoy :| ’ C.56
1 Mqa1 wqaz ( )
respectively.

The Fano problem of concern is a scattering problem with a given energy £q,5 with
one open-channel and two closed channels [47]. Hence, Eq. (C.53) is of the form of

hq { 'la ] = { 'la ] Eq. (C.57)

Vq Vq

where ng = {ngss} and vq = {vgus} (0 = {@1,a2}) represent block matrices with size
of (N x N) and (2 x N), respectively, and V; is replaced by V, = *[n,, v4]. We obtain
explicit expressions of Eq. (C.57) as:

EqpMap s + Z Zq8 uVaus = Naqp8Eqs; (C.58)
I
and W
« d
> Zrautiaps + Y i Ve = Vausas. (C.59)
/B/ )L‘L/

Equation (C.58) is rewritten as

1
Nas's = <Pﬁ + Aq55ﬁ'5) > ZapuVaus, (C.60)
apB apB P
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where P[1/(Eqp — Eqp/)] means that a Cauchy’s principle value of [1/(Egs — Eqp)] is taken,
and Agp is a constant to be determined later. By putting this expression back into
Eq. (C.59), we obtain

d *
Z [hfm)u’ + Oqup (gqﬁ)] Vaqup + Aqﬁzqﬁu Z Zqpu'Vau'p = Vaup&ap (C.61)

w u

where 04,/ (Eqp) is provided by

2032
Oqu (Eqp) = P%- (C.62)
B’ aB ap’

We make the matrix elements in square brackets of the first term of the left-hand side of
Eq. (C.61) diagonal in terms of a diagonalization matrix A" as follows:

(WD + oy (& Z AY) g AGT, (C.63)

with an eigenvalue as wgq,. Therefore, defining 7, and z, as

~ )t
Vaup = ZA,(ME’ Vau's; (C.64)
and
Zqpp = Z Zqﬂu/A,(;La (C.65)
Eq. (C.61) is cast into the form:
" 5
Vaup = q/Bg s q_l:d Z Zq,B,u’un B <066>
q an "7

where Agp is determined by
|Zapul”
(C.67)
Z Eqp — Wau

According to the commutation relatlons of Egs. (C.7) and (C.9), we obtain the fol-
lowing relations:

Z lj‘l#ﬁﬁ;u’/g’ = 5MM/7 (068>
B
Z VausNgs s =V, anﬁ’ﬁﬁ;uﬁ =0, (C.69)
B B
and
> sy = S (C.70)
/B/l

where Eq. (C.5) is employed in view of Eq. (C.11). By putting Eq. (C.60) into the two
equations of Eq. (C.69), and subtracting the resulting equations side by side, we obtain

1 1 « ~ ~ - -
Zoa5m —P Zh o = Ao 200 — Ags 2l
Z aBp ( ﬁ” . gqﬂ gqﬁ” . gqﬂ’) qp" B qBp' —=qB “qp' qaBB=qaB~qB8

BII
(C.71)
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where

Zasp = Z ZqBuVaus’- (C.72)

Moreover, applying Eq. (C.60) to Eq. (C.70) again yields

- 1 1 - - 1 -
Opy = ) 2 ﬁﬁ“]P’< ) Zagry + ZappDasP o245
%,: ! 5(15” - gqﬁ 5q/3” - gqﬁ’ v e e 5(16 - 546/ e
~ 1 ~ -
—Zasp BapgP o= Zqpp + 0pp Aqs| Zqsl?
qpB qﬁ:
— (5[35/ [(qu5)2 + Agﬁ} |Zq55|2, (073)

where in the first equality, Eq. (C.72) is employed. Further, in the second equality,
Poincaré’s theorem is applied, that is,

1 1
"
Eqp

1 1 1
= P —P )
- 5qﬁ Sqﬁ” - 5(15’) 5(15 - Eqﬁ’ ( 5(1,8” - 5(15 gqﬁ” - Sqﬁ’
+7T25(5q3// — gq5)5(5q5~ — 5q5/), <C74)

where a density of state pgs of state 3 is defined as

dp
- 2 C.75
pqﬁ dgqb’ ( )
Here, by substituting Z4s for Aq52~q55 just for the sake of simplicity, we obtain
o1 —1/2
Z
Zgp = DgsZasp = |1+ (Wﬂ‘q > %) (C.76)
Wap
from Eq. (C.73) in view of Eq. (C.67).
Therefore, from Eq. (C.66), we readily obtain
Daus = gq—"’“zqﬁ, (C.77)

a8 — Wqu

and eventually, v, is given by means of Eq. (C.64). Further, by putting Eq. (C.77)
into Eq. (C.72), we obtain the expression of Z,3s. Accordingly, from Eq. (C.60), 14p:5 is
provided by

(C.78)
gqﬂ - 5q6’ gqﬁ

5qﬂ’,ﬁ*5 1
Nas's = [Z (]P’ o — > + 0pp | Zqp
P’ qn
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Appendix D

Derivation of an Expression of Total
Retarded Longitudinal Susceptibility

within the Framework of the
Bosonization Scheme

D.1 Derivation of a Redatderd Susceptibility due to
Electron-Induced Interaction x,(t,t')

Using Egs. (2.70) and (2.80), the retarded susceptibility x4(t,t") of Eq. (2.23) is read as

Xalt,t) = T S NEO) { Ryt 00) Ty (08 Rl 1) } N (), (D)

aalyy!

where R,/ (t,tp) is defined as

Rayy(t,tp) =Y Vi s(t)e OOV (2p). (D.2)
B

Hereafter, it is understood that ©g4s(t,tp) provided in Eq. (C.25) is replaced by ©45(t),
that is,

@qﬂ(t) ®q/3(t tD) (D-3)

just for the sake of simplicity.

Unfortunately, without approximation, we would tackle a formidable task to solve the
non-Hermitian Fano problem of Eq. (2.58), and hence to obtain V,* and V/* for evaluating
Eq. (D.2). Therefore, it would be preferable to approximately substitute a Hermitian
Fano problem for Eq. (2.58), that is, Eq. (C.3) is solved. Such an approximation would
be correct within the criterion of the validity of the bosonization scheme described in Sec.
C.3. Hereafter, just for the sake of typographical simplicity, we omit a superscript 70"
of hy, NJ, EJ, and &, and replace these notations with non-superscript counterparts of
hq, Nq, Eq, and Eq, respectively, as far as it is not likely to cause unnecessary confusion
between them. Thus, Eq. (2.58) is read as Eq. (C.53).
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Accordingly, we substitute Vg, Vq and N, for VR VLT, and N, L, respectively [see
Egs. (C.11) and (C.14)], and thus, Eq. (D.2) becomes of the approx1mated form:

Ry (L, tp) qu'yﬁ Je~'Canlt VqTﬁ’y( D)- (D.4)

For the convenience of practical calculations, we evaluate

Reyy (L, tp) ZVQ a(t z‘qu(t)f/;m, (tp), (D.5)

rather than R,(t,tp), where Vq(t) is defined as

Z Aq'y*y Q'Y 6( ) (D6)
Here, a [(N +2) x (N + 2)]-matrix A™ is introduced as follows:

S [1 0
A = { 0 AD } : (D.7)

where A" is composed of two diagonal block matrices of a [N x N]-unit block matrix with
v, 7 =1~ N, and a (2 x 2)-block-matrix just equal to Aff) related to h.(ld) in Eq. (C.54)
with vy, v/ = (N +1) ~ (N +2). A s defined in Eq. (C.63), which indicates the degree
of mixing between the two discrete levels of a; and «ay. The rest of off-diagonal block
matrices is nothing but rectangular matrices with null components. Thus, Eq. (D.4) is
provided by

(r
Ry (t,tp) ZAq,W,, Ry (t,tp) AL, (tp). (D.8)

An explicit expression of wa, (t,tD) with v = «, which is derived in Sec. D.4, is
provided by

t
Ry (t,tD) ZA;Z; ) exp {_i/t 5q,8(tll)dt//] 673qﬁ(t’tD)At(zTﬁ)w’(tD)
D
t 1" o t”
+ ) AW (1) exp [ / EW (t ”)dt”} exp {— / —— ( )dt”}
p=1,2 tp tp
Xe—Sqﬁp(t,tD)anp(t tD)A( r) (tD) (D.9)

Here, &SQP represents resonance energy of state o, (o, = aq, az), provided by

E (1) = Eqs (8), (D.10)

qop

and I'g,, represents natural resonance width (full width at half maximum) of state ay,,
provided by

Laga, (t) = 2mpgs, (t)|Zg8,0, (D)7, (D.11)
where o
2‘15# = Z Z‘]ﬁ.u/AqZL’ QBAqag,u <D12>
'ul
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Further, we introduce a new index [3,, which implies the index of continuum 3 with
Eqp = Eqa,- By solving Eq. (C.12), we obtain the adiabatic energy EX) () of Si, and
Fig. D.1 shows its energy curve as a function time. It is seen that the adiabatic energy
varies within a couple of meV. We obtain the similar result for GaAs, though not shown
here.

64.4

S1

64.0

63.6

63.2

e 5})@2 () [meV]

62.8

24— . . . . . .
10 20 30 40 50 60 70 80 90 100
t [fs]

Figure D.1: A trace of adiabatic energy £, (t) (in the unit of meV) as a function of time
t (in the unit of fs).

In Eq. (D.11), pgg, (t) represents a density of state of 3, at time ¢, and we obtain an ap-
proximate expression of pgg, (t) in terms of Eq. (C.15). It is noted that the contribution of
the non-adiabatic correction is incorporated in 344(t,tp) of Eq. (C.17), that is, Jgs(¢,tp)
of Eq. (C.18). This is a complex number in general, and is approximately provided by

Tas(t,tp) ZJq’gﬁ 0(t —t,)0(t; — tp), (D.13)

due to Eq. (2.67). In particular, the imaginary part of it as Z Imjggﬁ O(t —t;)0(t; —tp)

plays a significant role of determining the spectral profiles attrlbuted to the transient FR,
as shown in Sec. 3.1.2. In addition, 71(16)2 (t') in 34p,(t,tp) is considered as negligibly small,
that is,

19 () = 0, (D.14)
since Vgap, = 0 because of o # as; a discrete-like FR-feature is mostly determined by the
component Vga,z, ~ 1.

Moreover, in Eq.(D.9), Dga,(t,tp) is provided by

0
TPgs, -
Dya, (t,tp) = fqa(t—qtﬁpw{[ﬂ"%( {) = iZqs,0, ()] | ATaa, (1 ) + iZ35,0, (10)|
— | AT g0, (158) = 705, 1Zas,0, (D] | AT g (E:£0) = w5 |Zasa, (1) ]
(05, sy () Zqs, (t0) 2 (D.15)
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where

1. i
Alg, (1) = Erqap(t,tp)—Wp25p|zq5pap(t/)|2, (D.16)
_ 1

Lgo,(t,tp) = §[anp(t)+anp(tD)}, (D.17)

and pgﬁp = pgs,(tp) [see also Egs. (D.51) and (D.57)]. It is remarked that the first
and second terms of the right-hand side of Eq. (D.9) represent the contributions from a
background continuum and a resonance state a,, respectively. Furthermore, it is noted
that Al'ge, (tp;tp) = 0 at equal time, and thus, Dy, (tp,tp) = 1 and Rgas(tp,tp) = day,
as it should be.

As discussed in Sec. 3.1, in particular, the function Dgq, (t;tp) plays an essential role
of determining the spectral profiles of the transient FR of concern. Ry, (t,tp) consists of
Dqas,(t;tp) as shown in Eq. (D.9), and Rg,(t,tp) contains a meaning of time-evolution
of PQ from state 7 at tp to state v at ¢, as is shown in Eq. (D.4).

Owing to the presence of the adiabatic energy phase in Eq. (D.9), ix_4 of Eq. (D.1)
includes the following form of expression as

tp

t t
Sear (t, 1) = exp [—z’ / Ea(t”)dt”} Koo (t,1) exp lz / 5;,(t”)dt”], (D.18)
tp

where &,(t) represents a complex energy, if necessary, with a negative imaginary part as-
cribed to natural resonance width, and X,/ (¢,?’) represents an arbitrary matrix element;
specific forms of &,(t) and X, (t,t") will be provided later in Egs. (D.25) and (D.26). We
set 7=t —t' >0, and obtain

Saar (t, 1)) = e~ D)= (t 4 7,1, (D.19)

where

t'+r

St +7,8) = Xow(' +7,t") exp {—2/ [E5(t") — Ear(tD)] dt”}
t/

X exp {—i /tt v [Ea(t") = EX(t")] dt”}. (D.20)

Further, =,/ (t' + 7,t') is approximated as
Eaa (' + 7,1) B baZa(t' + 1,1), (D.21)

where

t'+7
S (47 t) = Xaalt 47,8 exp {—i / E2(H") = Enltp)] dt"}
t/

t'+7
X exp {—2/ ImEa(t")dt"}. (D.22)
tp

This approximation would be verified for relatively large ¢ satisfying the condition that

t'+1
/ Re [E.(t") — EL,(t")] dt"| > 2, (D.23)

tp
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because the last exponential function in the right-hand side of Eq. (D.20) oscillates rapidly
with the increase of ¢, and a dominant contribution originates just from Re&, (") =
Reé'a/ (t//).

Applying Egs. (D.9) and (D.19) to Eq. (D.1), Eq. (2.80) ends up with

4 ; c
ix-q(t +7,t) = TO) [ D e WTER (W 47, t)
B
+ Z e~ qap Zanp/Q]T—‘( r) (t + 7, t) (D24)
p=1,2

Hereafter, we omit the argument of tp in Eus(tp), 5§Qp (tp), and T'yq,(tp) just for the
sake of simplicity, unless otherwise stated. ”(c) 5t +7,1') and EE;;EP (t' + 7,t") correspond
to Eq. (D.22), where X,.(t' + 7,t') is replaced by Xqﬂﬁ(t’ + 7,t') and qupap(t’ + 7,1,
respectlvely Further, &, is replaced by ;5 and Sqap il'qa, /2, respectively. X (t'+7,1)

qof
and anpap (t' + 7,t") are provided by
X 95t 4+ 74') = Nos(t' + 7)Tasp(t' + 7,8 ) Ng(t )e 34 e=2Redast0) (D) 25)
and

X0 o @ +7t) = N (' + 1) Dga, (t' +7,tp) T, (' +7,1)

qoapap qapap

XDy (1, 1p) NG (#)e3am 470230, (40) (D), 26)

respectively. Here

N (t) = [Ng() AD (1), (D.27)
and )
T = AD (tp) Tu AT (). (D.28)

It is remarked that in the first term in the squared brackets of the right-hand side of
Eq. (D.24), the summation over 8 contains not only terms with positive energy 45 > 0,
but also terms with negative energy &4 < 0.

D.2 Derivation of a Retarded Susceptibility due to
LO-Phonon-Induced Interaction y,(t,t')

On the other hand, as regards the retarded susceptibility of xj (¥’ +7,%') of Eq. (2.28), the
associated retarded phonon Green function D;f*(¢,t') in Eq. (2.32) is rewritten as

DY) = Y Vanss{ [ Fas(t), Ffr (8)] YWl @),

BB’

= ZZ an25(t) qBB (t,t )Vq5/a2 (t/)
BB’

- Z Raasy(t,tD)Tany (8, 1) [Rq(t', tD)]W ay (D.29)

Y
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where Egs. (2.59), (2.60), and (C.35) are employed. Further, in the third equality,
Egs. (2.70) and (D.4) are used. Similarly to Eq. (D.9), Rga,~(t,tp) is expressed as

e gy ' Tgo, ()
RQOQ’Y t tD Z Aqagap exp _Z/t gqa ( )dt €exXp /t Tdt
D D

p=1,2

xe daspG)D (¢ 1) AT (tp). D.30
qop

qapy

Therefore, x, (' + 7,t') of Eq. (2.28) becomes

4 re(r .
'ZX;(t/ + 7, t,> _ VT( {efz[gqa)p,zfqap/Q]THggp(t/ + 7, t/)
p=1,2
(")
—e [gfqa +il'—gayp, /2]7 H(j‘);; ( /+T, t/)}7 <D31>
where
oy ' +r,t) = Py (' +7.t) exp{ / E1s (") — ED) }dt"}
t'+r
X exp / Lgs, (t")dt" (D.32)
ip
and
P (' +1t) = |g{1\2ASIQ§a (' + 7)Dgay, (' + 7,tp) TS0 o (£ +7,1)
XDy, (¢ D) AL, (t')e a5 (A7) =250, (t0) (D, 33)

D.3 Expression of XE}” (t'+7,1)

According to Egs. (D.24) and (D.31), we eventually obtain the explicit expression of the
total retarded susceptibility x4 (' + 7,¢') of Eq. (2.22) as

4
zxg)(t' +7,t) = il Z 615457"() ' +7,t)

4 B=B+
. Z [E$7) +iTgap /2)T EO( + 7 )+ I + 7 t’)]

p=1,2

— Z e qap quap/2]TH(T) (t/ + T, tl)} . <D34)

p=1,2
Further, we take into account the following relations as: ;3 = E_gp, gqap c‘irqap
Lo, = '—4a,, and El(fozp (t'+7,t) = E(f()lap (t'+7,t'), which are readily verified by consulting
Appendix B within the framework of the bosonization scheme provided in Sec. C.3 and
the small-qg limit.
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D.4 Calculation of R, (t,tp) of Eq. (D.5)

For the calculation of Rg(t,tp) of Eq. (D.5), we take into account the following four
cases:

Rgaya,, (t,tp) = Z Paaps(D)e OO0z, s(tp), (D.35)
Rqapﬂ’ (t tD) = Z anpﬂ(t) _iaqﬁ(t)UZﬂ/ﬁ(tD)y (D'36>
qﬁ/ap t tD an/B/ Z@qﬁ )an ﬁ(tD) <D37>
and
Raggn(t,tp) Zﬁqw 5O s(tp), (D.38)

where the matrix components of 74a,5(t) and nggs(t) in Vg,s are provided by Egs. (C.77)
and (C.78), respectively. Further, time-dependence of every term is explicitly shown, and
Qp, Oy = 01, Q9.

All of the expressions of Rq+(t,tp) given above contain a common factor of Z,g (t)Z455(tD).
According to Eq. (C.76), [Z45(t)] 2 is written as

[Z4(D)] 7 = {[Eas(t) — waar (1)][€45(t) — waas ()]} 7 Lgs(t), (D.39)

where

Las(t) = {[Eqs(t) — Waaa (1)][Eqs(t) — wWaas (D]} + [apas (8)/2[Eqs () — waar ()]
+Vgsar (1) /2*[€q5(t) — Waas (] + 2[7g80. (1) /2] [Vgpas () /2)*
x[Eq5(t) — waay (D)]*[Eg5(t) — waas (1)), (D.40)

with

Vasa, (t) = 2mpgs(t)|Zgsa, (1) (D.41)
[for pgs(t), refer to Eq. (C.75)]. Obviously, we have four solutions, provided by &45(t) =
51%2 (t), ensuring an algebraic equation of Lgs(t) = 0 with p = 1,2. By assuming that an
order of [Ygga, (t)/2]/[wga,, (t) — Wqa, (t)] for p # p' is negligibly small, namely,

VqBay (t)/2 ~ qap( )/2
|wWaa,, () = Waa, (1) |wga,, (t) — wWaa,, (t)]

<1, (D.42)

the solutions of &€ (%3 () are given in an approximate manner as

ESEN (1)~ waa, () £ 1Vqpa, (1)/2 = Waay (t) £ i0qa, (1)/2. (D.43)

Here, in both of the first equality of Eq. (D.42) and the second equality of Eq. (D.43),
YqBa, (t) is evaluated in the proximity of E45(t) & wqa, (t), and T'¢q, (t) is substituted for

YqBa,(t), namely, )
anp (t) = 27quﬁp (t) ‘Zqﬁpap (t) ‘ <D44)
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[for f3,, see below Eq. (D.12)]. Therefore, Eq. (D.40) is rewritten as

Eas®) = 50| [Eas) — €55 1)] (D.45)

p=1,2

Thus, in terms of L),(t) defined as

Las(t) = ] [Eas(t) = wga, (8], (D.46)
Z4p(t)Z25(tp) is cast into
Zqs(1)Zgs(tn) = Las(!)Las(in) (D.47)

[Las(t) Las(tp)]"*

The factor of Lys(t)Lges(tp) in the denominator of Eq. (D.47) is rewritten as products of
a term

LED (8, 1) = [&ﬁ(t) - 55?;3(75)} [alﬁ(tp) —e® (tD)] , (D.48)
that is,
Las(t) Las(tp) = [ £E7(t.tp), (D.49)
p,o=%

where a plus or minus sign corresponds to the signs in Eq. (D.48). In fact, Eg%i) (t,tp) is
reduced to the approximate form:

. 2
Eézgi) (t,tp) ~ {ng(tp) — Waay, (tp) F %fq%(t, tD)} , (D.50)
and .
Lga,(t.tp) = = [Tqa, (t) + Tqa, (tp)] - (D.51)

2
For deriving Egs. (D.49) and (D.50), the approximations of

Eqp(t) — Waa, () = Egs(tp) — Waa, (tp), (D.52)

and
[qa, () ~ Lqa, (tp) (D.53)

are partially employed, respectively. It is noted that these approximations would be
verified in the case of 4 & wga,, that is, in the resonant condition of 8 ~ f3,. Using
Eq. (D.50), the denominator of Eq. (D.47) becomes

[Las(®)Las(t0)]'"* = [T { [Eas(tn) = wan, (t0)]” + [Fan (t:10)/2] "} (D54)

p

This indicates that an integrand of Ry, (t,tp) in Egs. (D.35)-(D.38) as a function of
Eqp(tp) contains two first-order poles at

SQIB(tD) = wqap (tD) - %fqap (t, 2fD) <D55)
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in the lower-half complex-E,5(tp)-plane with p = 1,2. )
To begin with an evaluation of Eq. (D.35), by using Eq. (C.77), Rga,a,, (¢, tp) is recast
into

- Z50, (1) Zqpay (tp)e 070 Zy5(t) 225(tp)
Rqapap/ (t, tD) _ qp P P q
Xﬂ: [ng(t) - wqap<t)] [gqﬂ(tD) — Wqa,, (tD)}

= dgaltolrl,
lower

% 2;;504;7 (t)gqﬂap/ (t[))efieqﬁ(t)zqﬁ (t)Z; (tD) |
[5@3 (t) — Waay, (t)} [gqﬁ (tp) — Waa,, (tD)}

Here, in the second equality, we replace the summation over § with an integral over
Eqs(tp) in view of Eq. (C.75). Further, a density of state, ,025, at time tp is represented
as

(D.56)

pgﬁ = pgs(tpn). (D.57)
Moreover, this is rewritten as a contour integral with respect to a complex variable of
Eqs(tp). The contour is along a semicircle with an infinite radius in a lower-half plane
including a real axis, and this choice of the path is ensured by existence of a vanishing
exponential function of exp [-iO43(¢)] along the lower-half plane. This would be verified
by rewriting the adiabatic energy phase ©45(t) of Egs. (C.25) and (D.3) as

Ogp(t) ~ Eqs(tn)(t — tp) +/ dt' [Eqp,(t') — Eqp, (tD)] — i3gs, (£, D), (D.58)

tp

where 345(t,tp) is provided by Eq. (C.17), and J is approximately replaced by 3, in the
second and third terms of Eq. (D.58). Therefore, the evaluation of Eq. (D.56) results in
calculus of residues at the poles provided by Eq. (D.55); it is noted that spurious poles
emerging in a denominator of the integrand of Eq. (D.56) are exactly canceled with a factor
of Lys(t)Los(tp) in Zgs(t)Z25(tp), as shown in Eq. (D.47). The resulting expression is
represented as follows:

N t F o Z(://
Ranyor, (b10) R Gayer, exp{—z‘ / {5§Qp<t")—¢—q ;( )}dt”}
tp

0
T

-3 8 (t,tD) QBP = =1
xe Yy — i (t)Z tp), D.59
Fp i)z v Dasne, (). (D:59)

where Séz)p (t") is substituted for £z, (t"). It is evident that this expression is just consis-
tent with the identity relation provided by

Rqapocp/ (tD7 tD) = 5apap/ (DGO)

owing to 3g4s,(tp,tp) = 1, where this arises from an equal-time commutation relation of
Eq. (C.68). In fact, such compatibility is realized by virtue of neglecting additional terms
emerging on the way of reduction of Eq. (D.56), on the basis of the approximations made
in Egs. (D.42) and Eq. (D.50).

We employ the similar reduction procedures to that of Eq. (D.35) in order to evaluate
Egs. (D.36)-(D.38). Thus, below, we remark just the points of difference between the ways
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of calculations of the former equation and the latter three ones without describing details
of derivations. As regards Eq. (D.36), 145 is composed of two terms including dg 3 and
a Cauchy’s principle value, as seen in Eq. (C.78). For the reason to be mentioned right
below, we evaluate an expression of the form, >, Rqap g (t,tp)Cy, rather than Eq. (D.36),
where Cg represents an auxiliary regular-function of £gs. One part of this expression
with dg 4 is straightforward evaluated in the similar way as done for Eq. (D.35). On the
other hand, the other part of it contains the Cauchy’s principle value of an integral over
Eqp. For evaluating this contour integral, the path of integral is to be modified from that
taken in Eq. (D.35) so as to avoid a singular point of £,3 = E;p. The equation resulting
from this integration is cast into the form of another integral over £;5:. That is the reason
why the auxiliary function Cs is introduced in advance. We implement the integration
by means of calculus of residues, and obtain the expression as follows:

~ . t 17 -an (t”) "
Rga,p (t,tp) =~ O, expq—i / g (t ) —i—o | dt
tp

. ﬂ-pgﬁp ‘Zqﬁpap (tD)
Lga,(t,tp)/2

X(_~)e—3q6p(t7tp)7rp25 [1
D

e
ZaBya,(t). (D.61)
Similarly, Eq. (D.37) becomes

~ . t " .an (t”) "
Regra,(t,tp) = 0gp, exp —7,/ Ségp(t ) — ZPT dt
tp

(tp). (D.62)

0 z 2
- 76 o O] .
X (+i)e S )yl [1_ Ty
qap\ly

It is evident that this expression is just consistent with the identity relation provided by
Raa,s(tp:tp) =0, Rgpa,(tp.tp) =0, (D.63)

where these are attributed to equal-time commutation relations of Eq. (C.69).

Finally, for evaluation of Eq. (D.38), this is more complicated than the others of
Egs. (D.35)-(D.37), since a dual integral of Cauchy’s principle values is included ascribed
to the presence of the first term in parentheses of Eq. (C.78). For the same reason as
the introduction of an auxiliary function to }?qgap (t,tp) in advance, we introduce aux-
iliary regular-functions of &5 and Eggr, namely, Cp and Cf,, respectively, and calcu-
late >~ g g0 Cy Ryprpn (t,tp)Ch in place of Eq. (D.38). Because of Poincaré’s theorem of
Eq. (C.74), the product of Cauchy’s principle values is split into a sum of two Cauchy’s
principle values and delta-functions, which makes the resulting contour integrals feasible.
We conduct lengthy but elementary calculations, and obtain the following final expression
of Eq. (D.38) as:

t
RQB'ﬂ"(tatD) ~ 55'5" eXp{—Z/ gqﬁ,(t’/>dt”}6—3q3/(t,tp)

tp

. t (7») 17 . anp (t”> "
+ Z (5[3//3p5/3//,3p exXp 4§ —1 ) gqap (t ) — ZT dt
P D

XG_SQBP (t7tD)(7Tp25p>2 |:|§Qﬁpap <t>|2 + ‘211:8170‘1) (tD)|2

2105, [Zas,0, (1) Zasya, wf] (D.64)
anp(t7tD)/2 |
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It is evident that this expression is just consistent with the identity relation provided by

Rqﬁlﬂl/(tD7tD) = 56/6//, (D.65>

where this is attributed to equal-time commutation relation of Eq. (C.70).
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Appendix E

The Phase-Transformation
Invariance of the Present Study

In a biorthogonal set of eigenvectors {Up, (t), Uk (t)} provided in Eqs. (2.33) and (2.34),
the normalization constants N, (t) and NJ (t) are not determined up to overall phase

factors. Here, owing to such arbitrariness, the set of {ﬁqLa(t), Uéz(t)} are also solutions,

given as ~ '
UL(t) = ey Li(1) (E.1)

and 3 .
Uﬁy(t) = emq“(t)Uéz(t) (E.2)

under the normalization condition that U;J(t)f]%(t) = UM UE(t) = 1. Here, 1ga(1)
represents an arbitrary real function of time. Because the operators Bjm and By, are
defined as B}, = AJUL and Bg, = UcﬁéT A,, respectively, as shown in Egs. (2.38) and

q-qo
(2.39), these are transformed as

Bl (t) = Bl,(t) = B}, (t)e® (E.3)

and )
Bya(t) = Bga(t) = Bga(t)e Mae®) (E.4)

respectively. It is understood that such a transformation corresponds to the (temporally
local) gauge transformation with respect to the operators lea and Bgq,.

It is readily confirmed that a set of equations of motion provided by Eqs. (2.54) and
(2.55) remains unchanged under the transformation of Egs. (E.3) and (E.4), since My,
M" ., Mg, and Wyaa given by Eqgs. (2.46), (2.49), (2.50), and (2.41), respectively are
transformed as follows:

Mg (t) = Mga(t) = e My, (1), (E.5)
M () = M (t) = €M=" (1), (E.6)
M: (8) = M, (t) = e O My (#),
and
Winre = Wenre = e~ aar ol Z’dn‘ZZZ(t) 5o (E8)
respectively.
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On the other hand, the matrix hqy = {hqyy} provided by Eq. (2.57) with {v} =
({a},an) and {~'} = ({a'}, af) is transformed into

ha(t) = he(t) = Py(t)hg(t)Py(t)

where Py represents a diagonal matrix defined as
Pq’y’y’ (t) — e—i[nqa(t)"!‘nan (t)](s’y’y’éfya + e—inqaz 57,‘/,57&2‘ (El())

Nqas(t) is an arbitrary real function of ¢t. The matrix equation provided by Eq. (2.58) is

transformed into
ZhQ'Y'Y q'y/ﬁ — q’Y,ngﬁ’ (Ell)

and thus, we obtain the relations of
VE(t) = Pt)VE®), VI = VI)PL). (E.12)

Here, VqLT and f/q” represent the left vectors associated with the right vectors VqR and
VR, respectively, ensuring the normalization conditions V1V = quTqu = 1. Given
Eqs (E.3) and (E.12), the PQ operators are simply transformed into

Flo(t) = Fl5(t) = Fly(t)e e (E.13)

and 3 A
Fop(t) = Fap(t) = Fqﬁ(t)emq”(ﬂ- (E.14)

Thus, the retarded Green function provided by Eq. (2.69) is transformed such that

Gl (t,1) = Glag (8, 1) = GEyp (¢, 1) eMaea ()~ Mans (], (E.15)

Below, we show that the total retarded longitudinal susceptibility X,(; ) (t,t) provided
by Eq. (2.22) is unaltered under the phase transformation of concern. This is given by a
sum of the retarded susceptibility attributed to the electron-induced interaction x4(t,?')
and that of the LO phonon-induced interaction xg(¢,2'). Further, these are composed
of the correlation functions DE(¢t,¢') and D (t, ¢ ) provided by Egs. (2.80) and (2.81),
respectively. Therefore, in view of Eq. (E. 1) (E.2), (E.12), and (E.15), it is readily
verified that these are unchanged under the phase transformation.

In conclusion, the theory developed in the dissertation remains invariant under the
phase transformation, as it should be, and physical quantities related to XS;) (t,t') are
independent of the selection of the phases of 744(t) and 7ga, (2).
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Appendix F

Eigenvalue Problem of Zq in
Eq. (2.100)

Owing to a relatively sparse form of the matrix Z, of Eq. (2.100), we obtain analytical
expressions of transcendental equation for determining the eigenvalues and the associated
eigenvectors. The transcendental equation to be solved for the eigenvalues is expressed
as follows:

(Dqpt — Eq) H(d’qj — Eq) — Z MQth/u' H (d’qj’ — Eq) =0, (F.1)

J#pl J#pl J'#3:pl

where wy; is provided by wep = wWep — tWapt + 1Ygpl, Waph = Wq + iYgph, and Wy(rppy =

Wibkg t “Yobkqs Tespectively. Further, M, , = My, and M;/()kbg) = Mé/)(k:bg). Equation
(F.1) is cast into the form of
B o= o (Z)q] — Eq' Z\/jqj/Mtl]j’ (F 2)
q7 q7 %) —E . s — B B :
apl 9 jrpp q

Here, M,(kbb) of Eq. (2.92) and Mt’l(kbl_)) of Eq. (2.93) are expressed in the small g-limit
as

_ OB .
M, (kbb) = —|q|N,,LVr;l(C) %(q - V) (Povk — Pook) + (@ - V) P (F.3)
qp
and _
I (1T Ry 7(C) Qifﬁ (t) (r)
Mq<kbb) = ‘q’Nq Vq 2 (q ’ VAgk )7 (F4)

gpl
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respectively. Aeg) is provided by Eq. (B.57). Further, the summation with respect to
= {(kbb)} in the second term of the right-hand side of Eq. (F.2) is expressed as

My (kbb) M, (kbb) JNENERVEP >
— pr— —q _—_—
. Wobkq T Eq; w?]pl %
Q)P ( 1 1 >
Ve VA e - 4
(- Vpur)(q- VA o \Dora — Bar | Gvere — Eo;
|chk( )|2

1 1

. _ R (r)

—\q - V ) q - VA ( = + = )
( Puuk) e Wapl Wevkg — Eqj  Wockqg — Eqgj

A = a r cv t
+(@- Vpeur)(@ - VA >>¢

Wevkg — Egj

_(q ) Vﬁvck)( -V Ae (r) )L(t)

chkq qu

(F.5)

The left and right eigenvectors are provided by
= NEyH = NEyk (F.6)

q7 QJ’ q] QJ

/\7 L and /\7 R are normalization constants of the left and right eigenvectors respectively.

Hereafter a rnatrlx index | = {ph, (kbb)} is employed, and thus, v I is determined by the
following equations as
(@ql — Eq )

+ Mg =0 (F.7)

ql J qpl,j

and
L
Z qlJ (@gpt — qu)vq;lj =0. (F.8)

On the other hand, vfj are determlned by the following equations as

(@qt — Bgj)vli  + MLl =0 (F.9)

Yqlj qpl J

and
Z quvﬁj + (Wgp — qu)vﬁ)z,j = 0. (F.10)
1

In particular, for the analysis of the initial phase of an undoped semiconductor, we
are concerned with the normalization constants just for j = ph. In the case that vq;h oh
and quh,ph are set to 1, other components of the eigenvectors are provided by

E,n—& M (Egp, — @
Uéz;rl,ph = a qph, Uﬂph = ql( aph gph) (F'll)
Mapn Mgpn(Egpn — wa)
and 5 ) R
UR[ . = Eqph — Wyph UR[ .= Mql(Eqph - wQPh) . (F12>
wep Mt;ph o Mgpn(Eqpn — qu)

The normalization constants are determined by the normalization condition of quThVR =
1, which is cast into the form of

(Eqph — @qph)Q (Eqph - @qph)Q Mq(k’bg)Mé(k’bg)
| Mapn|® | Mapnl® kb (Eqpn — CDbl’ﬂcqy

. (Fa3)
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where the summation in the third term of the right hand side of Eq. (F.13) becomes the
similar expression to Eq. (F.5).
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